blob: c5a943109a3ecbb11c30894f374e64485fe73217 [file] [log] [blame] [raw]
/* $Id: grid.c,v 1.5 2009-01-10 01:51:21 nicm Exp $ */
/*
* Copyright (c) 2008 Nicholas Marriott <nicm@users.sourceforge.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER
* IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <string.h>
#include "tmux.h"
/*
* Grid data. This is the basic data structure that represents what is shown on
* screen.
*
* A grid is a grid of cells (struct grid_cell). It is sparse, in that cells
* are not allocated until they are written to. The grid is logically split
* into history and viewable data with the history starting at row (line) 0 and
* extending to (hsize - 1); from hsize to hsize + (sy - 1) is the viewable
* data. All functions in this file work on absolute coordinates, grid-view.c
* has functions which work on the screen data.
*/
/* Default grid cell data. */
const struct grid_cell grid_default_cell = { ' ', 0, 0, 8, 8 };
#ifdef DEBUG
#define grid_check_x(gd, px) do { \
if ((px) >= (gd)->sx) \
log_fatalx("x out of range: %u", px); \
} while (0)
#define grid_check_y(gd, py) do { \
if ((py) >= (gd)->hsize + (gd)->sy) \
log_fatalx("y out of range: %u", py); \
} while (0)
#else
#define grid_check_x(gd, px) do { \
if ((px) >= (gd)->sx) { \
log_debug("x out of range: %u", px); \
return; \
} \
} while (0)
#define grid_check_y(gd, py) do { \
if ((py) >= (gd)->hsize + (gd)->sy) { \
log_debug("y out of range: %u", py); \
return; \
} \
} while (0)
#endif
#define grid_put_cell(gd, px, py, gc) do { \
memcpy(&gd->data[py][px], gc, sizeof gd->data[py][px]); \
} while (0)
/* Create a new grid. */
struct grid_data *
grid_create(u_int sx, u_int sy, u_int hlimit)
{
struct grid_data *gd;
gd = xmalloc(sizeof *gd);
gd->sx = sx;
gd->sy = sy;
gd->hsize = 0;
gd->hlimit = hlimit;
gd->size = xcalloc(gd->sy, sizeof *gd->size);
gd->data = xcalloc(gd->sy, sizeof *gd->data);
return (gd);
}
/* Destroy grid. */
void
grid_destroy(struct grid_data *gd)
{
u_int yy;
for (yy = 0; yy < gd->hsize + gd->sy - 1; yy++) {
if (gd->data[yy] != NULL)
xfree(gd->data[yy]);
}
if (gd->data != NULL)
xfree(gd->data);
if (gd->size != NULL)
xfree(gd->size);
xfree(gd);
}
/* Scroll a line into the history. */
void
grid_scroll_line(struct grid_data *gd)
{
u_int yy;
GRID_DEBUG(gd, "");
if (gd->hsize >= gd->hlimit - 1) {
/* If the limit is hit, free the bottom 10% and shift up. */
yy = gd->hlimit / 10;
if (yy < 1)
yy = 1;
grid_move_lines(gd, 0, yy, gd->hsize + gd->sy - yy);
gd->hsize -= yy;
}
yy = gd->hsize + gd->sy;
gd->size = xrealloc(gd->size, yy + 1, sizeof *gd->size);
gd->data = xrealloc(gd->data, yy + 1, sizeof *gd->data);
gd->data[yy] = NULL;
gd->size[yy] = 0;
gd->hsize++;
}
/* Reduce line to fit to cell. */
void
grid_reduce_line(struct grid_data *gd, u_int py, u_int sx)
{
if (sx >= gd->size[py])
return;
gd->data[py] = xrealloc(gd->data[py], sx, sizeof **gd->data);
gd->size[py] = sx;
}
/* Expand line to fit to cell. */
void
grid_expand_line(struct grid_data *gd, u_int py, u_int sx)
{
u_int xx;
if (sx <= gd->size[py])
return;
gd->data[py] = xrealloc(gd->data[py], sx, sizeof **gd->data);
for (xx = gd->size[py]; xx < sx; xx++)
grid_put_cell(gd, xx, py, &grid_default_cell);
gd->size[py] = sx;
}
/* Get cell for reading. */
const struct grid_cell *
grid_peek_cell(struct grid_data *gd, u_int px, u_int py)
{
grid_check_x(gd, px);
grid_check_y(gd, py);
if (px >= gd->size[py])
return (&grid_default_cell);
return (&gd->data[py][px]);
}
/* Get cell at relative position (for writing). */
struct grid_cell *
grid_get_cell(struct grid_data *gd, u_int px, u_int py)
{
grid_check_x(gd, px);
grid_check_y(gd, py);
grid_expand_line(gd, py, px + 1);
return (&gd->data[py][px]);
}
/* Set cell at relative position. */
void
grid_set_cell(
struct grid_data *gd, u_int px, u_int py, const struct grid_cell *gc)
{
grid_check_x(gd, px);
grid_check_y(gd, py);
grid_expand_line(gd, py, px + 1);
grid_put_cell(gd, px, py, gc);
}
/*
* Clear area. Note this is different from a fill as it just omits unallocated
* cells.
*/
void
grid_clear(struct grid_data *gd, u_int px, u_int py, u_int nx, u_int ny)
{
u_int xx, yy;
GRID_DEBUG(gd, "px=%u, py=%u, nx=%u, ny=%u", px, py, nx, ny);
if (nx == 0 || ny == 0)
return;
if (px == 0 && nx == gd->sx) {
grid_clear_lines(gd, py, ny);
return;
}
grid_check_x(gd, px);
grid_check_x(gd, px + nx - 1);
grid_check_y(gd, py);
grid_check_y(gd, py + ny - 1);
for (yy = py; yy < py + ny; yy++) {
for (xx = px; xx < px + nx; xx++) {
if (xx >= gd->size[yy])
break;
grid_put_cell(gd, xx, yy, &grid_default_cell);
}
}
}
/* Fill area. */
void
grid_fill(struct grid_data *gd,
const struct grid_cell *gc, u_int px, u_int py, u_int nx, u_int ny)
{
u_int xx, yy;
GRID_DEBUG(gd, "px=%u, py=%u, nx=%u, ny=%u", px, py, nx, ny);
if (nx == 0 || ny == 0)
return;
grid_check_x(gd, px);
grid_check_x(gd, px + nx - 1);
grid_check_y(gd, py);
grid_check_y(gd, py + ny - 1);
for (yy = py; yy < py + ny; yy++) {
for (xx = px; xx < px + nx; xx++) {
grid_expand_line(gd, yy, xx + 1);
grid_put_cell(gd, xx, py, gc);
}
}
}
/* Clear lines. This just frees and truncates the lines. */
void
grid_clear_lines(struct grid_data *gd, u_int py, u_int ny)
{
u_int yy;
GRID_DEBUG(gd, "py=%u, ny=%u", py, ny);
if (ny == 0)
return;
grid_check_y(gd, py);
grid_check_y(gd, py + ny - 1);
for (yy = py; yy < py + ny; yy++) {
if (gd->data[yy] != NULL) {
xfree(gd->data[yy]);
gd->data[yy] = NULL;
gd->size[yy] = 0;
}
}
}
/* Fill a group of lines. */
void
grid_fill_lines(
struct grid_data *gd, const struct grid_cell *gc, u_int py, u_int ny)
{
grid_fill(gd, gc, 0, py, gd->sx, ny);
}
/* Move a group of lines. */
void
grid_move_lines(struct grid_data *gd, u_int dy, u_int py, u_int ny)
{
u_int yy;
GRID_DEBUG(gd, "dy=%u, py=%u, ny=%u", dy, py, ny);
if (ny == 0 || py == dy)
return;
grid_check_y(gd, py);
grid_check_y(gd, py + ny - 1);
grid_check_y(gd, dy);
grid_check_y(gd, dy + ny - 1);
/* Free any lines which are being replaced. */
for (yy = dy; yy < dy + ny; yy++) {
if (yy >= py && yy < py + ny)
continue;
grid_clear_lines(gd, yy, 1);
}
memmove(&gd->data[dy], &gd->data[py], ny * (sizeof *gd->data));
memmove(&gd->size[dy], &gd->size[py], ny * (sizeof *gd->size));
/* Wipe any lines that have been moved (without freeing them). */
for (yy = py; yy < py + ny; yy++) {
if (yy >= dy && yy < dy + ny)
continue;
gd->data[yy] = NULL;
gd->size[yy] = 0;
}
}
/* Clear a group of cells. */
void
grid_clear_cells(struct grid_data *gd, u_int px, u_int py, u_int nx)
{
u_int xx;
GRID_DEBUG(gd, "px=%u, py=%u, nx=%u", px, py, nx);
if (nx == 0)
return;
grid_check_x(gd, px);
grid_check_x(gd, px + nx - 1);
grid_check_y(gd, py);
for (xx = px; xx < px + nx; xx++) {
if (xx >= gd->size[py])
break;
grid_put_cell(gd, xx, py, &grid_default_cell);
}
}
/* Move a group of cells. */
void
grid_move_cells(struct grid_data *gd, u_int dx, u_int px, u_int py, u_int nx)
{
u_int xx;
GRID_DEBUG(gd, "dx=%u, px=%u, py=%u, nx=%u", dx, px, py, nx);
if (nx == 0 || px == dx)
return;
grid_check_x(gd, px);
grid_check_x(gd, px + nx - 1);
grid_check_x(gd, dx + nx - 1);
grid_check_y(gd, py);
grid_expand_line(gd, py, px + nx);
grid_expand_line(gd, py, dx + nx);
memmove(&gd->data[py][dx], &gd->data[py][px], nx * (sizeof **gd->data));
/* Wipe any cells that have been moved. */
for (xx = px; xx < px + nx; xx++) {
if (xx >= dx && xx < dx + nx)
continue;
memcpy(
&gd->data[py][xx], &grid_default_cell, sizeof **gd->data);
}
}