| /* $OpenBSD: queue.h,v 1.44 2016/09/09 20:31:46 millert Exp $ */ |
| /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */ |
| |
| /* |
| * Copyright (c) 1991, 1993 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * @(#)queue.h 8.5 (Berkeley) 8/20/94 |
| */ |
| |
| #ifndef _SYS_QUEUE_H_ |
| #define _SYS_QUEUE_H_ |
| |
| /* |
| * This file defines five types of data structures: singly-linked lists, |
| * lists, simple queues, tail queues and XOR simple queues. |
| * |
| * |
| * A singly-linked list is headed by a single forward pointer. The elements |
| * are singly linked for minimum space and pointer manipulation overhead at |
| * the expense of O(n) removal for arbitrary elements. New elements can be |
| * added to the list after an existing element or at the head of the list. |
| * Elements being removed from the head of the list should use the explicit |
| * macro for this purpose for optimum efficiency. A singly-linked list may |
| * only be traversed in the forward direction. Singly-linked lists are ideal |
| * for applications with large datasets and few or no removals or for |
| * implementing a LIFO queue. |
| * |
| * A list is headed by a single forward pointer (or an array of forward |
| * pointers for a hash table header). The elements are doubly linked |
| * so that an arbitrary element can be removed without a need to |
| * traverse the list. New elements can be added to the list before |
| * or after an existing element or at the head of the list. A list |
| * may only be traversed in the forward direction. |
| * |
| * A simple queue is headed by a pair of pointers, one to the head of the |
| * list and the other to the tail of the list. The elements are singly |
| * linked to save space, so elements can only be removed from the |
| * head of the list. New elements can be added to the list before or after |
| * an existing element, at the head of the list, or at the end of the |
| * list. A simple queue may only be traversed in the forward direction. |
| * |
| * A tail queue is headed by a pair of pointers, one to the head of the |
| * list and the other to the tail of the list. The elements are doubly |
| * linked so that an arbitrary element can be removed without a need to |
| * traverse the list. New elements can be added to the list before or |
| * after an existing element, at the head of the list, or at the end of |
| * the list. A tail queue may be traversed in either direction. |
| * |
| * An XOR simple queue is used in the same way as a regular simple queue. |
| * The difference is that the head structure also includes a "cookie" that |
| * is XOR'd with the queue pointer (first, last or next) to generate the |
| * real pointer value. |
| * |
| * For details on the use of these macros, see the queue(3) manual page. |
| */ |
| |
| #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC)) |
| #define _Q_INVALIDATE(a) (a) = ((void *)-1) |
| #else |
| #define _Q_INVALIDATE(a) |
| #endif |
| |
| /* |
| * Singly-linked List definitions. |
| */ |
| #define SLIST_HEAD(name, type) \ |
| struct name { \ |
| struct type *slh_first; /* first element */ \ |
| } |
| |
| #define SLIST_HEAD_INITIALIZER(head) \ |
| { NULL } |
| |
| #define SLIST_ENTRY(type) \ |
| struct { \ |
| struct type *sle_next; /* next element */ \ |
| } |
| |
| /* |
| * Singly-linked List access methods. |
| */ |
| #define SLIST_FIRST(head) ((head)->slh_first) |
| #define SLIST_END(head) NULL |
| #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head)) |
| #define SLIST_NEXT(elm, field) ((elm)->field.sle_next) |
| |
| #define SLIST_FOREACH(var, head, field) \ |
| for((var) = SLIST_FIRST(head); \ |
| (var) != SLIST_END(head); \ |
| (var) = SLIST_NEXT(var, field)) |
| |
| #define SLIST_FOREACH_SAFE(var, head, field, tvar) \ |
| for ((var) = SLIST_FIRST(head); \ |
| (var) && ((tvar) = SLIST_NEXT(var, field), 1); \ |
| (var) = (tvar)) |
| |
| /* |
| * Singly-linked List functions. |
| */ |
| #define SLIST_INIT(head) { \ |
| SLIST_FIRST(head) = SLIST_END(head); \ |
| } |
| |
| #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ |
| (elm)->field.sle_next = (slistelm)->field.sle_next; \ |
| (slistelm)->field.sle_next = (elm); \ |
| } while (0) |
| |
| #define SLIST_INSERT_HEAD(head, elm, field) do { \ |
| (elm)->field.sle_next = (head)->slh_first; \ |
| (head)->slh_first = (elm); \ |
| } while (0) |
| |
| #define SLIST_REMOVE_AFTER(elm, field) do { \ |
| (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \ |
| } while (0) |
| |
| #define SLIST_REMOVE_HEAD(head, field) do { \ |
| (head)->slh_first = (head)->slh_first->field.sle_next; \ |
| } while (0) |
| |
| #define SLIST_REMOVE(head, elm, type, field) do { \ |
| if ((head)->slh_first == (elm)) { \ |
| SLIST_REMOVE_HEAD((head), field); \ |
| } else { \ |
| struct type *curelm = (head)->slh_first; \ |
| \ |
| while (curelm->field.sle_next != (elm)) \ |
| curelm = curelm->field.sle_next; \ |
| curelm->field.sle_next = \ |
| curelm->field.sle_next->field.sle_next; \ |
| } \ |
| _Q_INVALIDATE((elm)->field.sle_next); \ |
| } while (0) |
| |
| /* |
| * List definitions. |
| */ |
| #define LIST_HEAD(name, type) \ |
| struct name { \ |
| struct type *lh_first; /* first element */ \ |
| } |
| |
| #define LIST_HEAD_INITIALIZER(head) \ |
| { NULL } |
| |
| #define LIST_ENTRY(type) \ |
| struct { \ |
| struct type *le_next; /* next element */ \ |
| struct type **le_prev; /* address of previous next element */ \ |
| } |
| |
| /* |
| * List access methods. |
| */ |
| #define LIST_FIRST(head) ((head)->lh_first) |
| #define LIST_END(head) NULL |
| #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head)) |
| #define LIST_NEXT(elm, field) ((elm)->field.le_next) |
| |
| #define LIST_FOREACH(var, head, field) \ |
| for((var) = LIST_FIRST(head); \ |
| (var)!= LIST_END(head); \ |
| (var) = LIST_NEXT(var, field)) |
| |
| #define LIST_FOREACH_SAFE(var, head, field, tvar) \ |
| for ((var) = LIST_FIRST(head); \ |
| (var) && ((tvar) = LIST_NEXT(var, field), 1); \ |
| (var) = (tvar)) |
| |
| /* |
| * List functions. |
| */ |
| #define LIST_INIT(head) do { \ |
| LIST_FIRST(head) = LIST_END(head); \ |
| } while (0) |
| |
| #define LIST_INSERT_AFTER(listelm, elm, field) do { \ |
| if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \ |
| (listelm)->field.le_next->field.le_prev = \ |
| &(elm)->field.le_next; \ |
| (listelm)->field.le_next = (elm); \ |
| (elm)->field.le_prev = &(listelm)->field.le_next; \ |
| } while (0) |
| |
| #define LIST_INSERT_BEFORE(listelm, elm, field) do { \ |
| (elm)->field.le_prev = (listelm)->field.le_prev; \ |
| (elm)->field.le_next = (listelm); \ |
| *(listelm)->field.le_prev = (elm); \ |
| (listelm)->field.le_prev = &(elm)->field.le_next; \ |
| } while (0) |
| |
| #define LIST_INSERT_HEAD(head, elm, field) do { \ |
| if (((elm)->field.le_next = (head)->lh_first) != NULL) \ |
| (head)->lh_first->field.le_prev = &(elm)->field.le_next;\ |
| (head)->lh_first = (elm); \ |
| (elm)->field.le_prev = &(head)->lh_first; \ |
| } while (0) |
| |
| #define LIST_REMOVE(elm, field) do { \ |
| if ((elm)->field.le_next != NULL) \ |
| (elm)->field.le_next->field.le_prev = \ |
| (elm)->field.le_prev; \ |
| *(elm)->field.le_prev = (elm)->field.le_next; \ |
| _Q_INVALIDATE((elm)->field.le_prev); \ |
| _Q_INVALIDATE((elm)->field.le_next); \ |
| } while (0) |
| |
| #define LIST_REPLACE(elm, elm2, field) do { \ |
| if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \ |
| (elm2)->field.le_next->field.le_prev = \ |
| &(elm2)->field.le_next; \ |
| (elm2)->field.le_prev = (elm)->field.le_prev; \ |
| *(elm2)->field.le_prev = (elm2); \ |
| _Q_INVALIDATE((elm)->field.le_prev); \ |
| _Q_INVALIDATE((elm)->field.le_next); \ |
| } while (0) |
| |
| /* |
| * Simple queue definitions. |
| */ |
| #define SIMPLEQ_HEAD(name, type) \ |
| struct name { \ |
| struct type *sqh_first; /* first element */ \ |
| struct type **sqh_last; /* addr of last next element */ \ |
| } |
| |
| #define SIMPLEQ_HEAD_INITIALIZER(head) \ |
| { NULL, &(head).sqh_first } |
| |
| #define SIMPLEQ_ENTRY(type) \ |
| struct { \ |
| struct type *sqe_next; /* next element */ \ |
| } |
| |
| /* |
| * Simple queue access methods. |
| */ |
| #define SIMPLEQ_FIRST(head) ((head)->sqh_first) |
| #define SIMPLEQ_END(head) NULL |
| #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head)) |
| #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next) |
| |
| #define SIMPLEQ_FOREACH(var, head, field) \ |
| for((var) = SIMPLEQ_FIRST(head); \ |
| (var) != SIMPLEQ_END(head); \ |
| (var) = SIMPLEQ_NEXT(var, field)) |
| |
| #define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \ |
| for ((var) = SIMPLEQ_FIRST(head); \ |
| (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); \ |
| (var) = (tvar)) |
| |
| /* |
| * Simple queue functions. |
| */ |
| #define SIMPLEQ_INIT(head) do { \ |
| (head)->sqh_first = NULL; \ |
| (head)->sqh_last = &(head)->sqh_first; \ |
| } while (0) |
| |
| #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \ |
| if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \ |
| (head)->sqh_last = &(elm)->field.sqe_next; \ |
| (head)->sqh_first = (elm); \ |
| } while (0) |
| |
| #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \ |
| (elm)->field.sqe_next = NULL; \ |
| *(head)->sqh_last = (elm); \ |
| (head)->sqh_last = &(elm)->field.sqe_next; \ |
| } while (0) |
| |
| #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
| if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\ |
| (head)->sqh_last = &(elm)->field.sqe_next; \ |
| (listelm)->field.sqe_next = (elm); \ |
| } while (0) |
| |
| #define SIMPLEQ_REMOVE_HEAD(head, field) do { \ |
| if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \ |
| (head)->sqh_last = &(head)->sqh_first; \ |
| } while (0) |
| |
| #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do { \ |
| if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \ |
| == NULL) \ |
| (head)->sqh_last = &(elm)->field.sqe_next; \ |
| } while (0) |
| |
| #define SIMPLEQ_CONCAT(head1, head2) do { \ |
| if (!SIMPLEQ_EMPTY((head2))) { \ |
| *(head1)->sqh_last = (head2)->sqh_first; \ |
| (head1)->sqh_last = (head2)->sqh_last; \ |
| SIMPLEQ_INIT((head2)); \ |
| } \ |
| } while (0) |
| |
| /* |
| * XOR Simple queue definitions. |
| */ |
| #define XSIMPLEQ_HEAD(name, type) \ |
| struct name { \ |
| struct type *sqx_first; /* first element */ \ |
| struct type **sqx_last; /* addr of last next element */ \ |
| unsigned long sqx_cookie; \ |
| } |
| |
| #define XSIMPLEQ_ENTRY(type) \ |
| struct { \ |
| struct type *sqx_next; /* next element */ \ |
| } |
| |
| /* |
| * XOR Simple queue access methods. |
| */ |
| #define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \ |
| (unsigned long)(ptr))) |
| #define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first)) |
| #define XSIMPLEQ_END(head) NULL |
| #define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head)) |
| #define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next)) |
| |
| |
| #define XSIMPLEQ_FOREACH(var, head, field) \ |
| for ((var) = XSIMPLEQ_FIRST(head); \ |
| (var) != XSIMPLEQ_END(head); \ |
| (var) = XSIMPLEQ_NEXT(head, var, field)) |
| |
| #define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \ |
| for ((var) = XSIMPLEQ_FIRST(head); \ |
| (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \ |
| (var) = (tvar)) |
| |
| /* |
| * XOR Simple queue functions. |
| */ |
| #define XSIMPLEQ_INIT(head) do { \ |
| arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \ |
| (head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \ |
| (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \ |
| } while (0) |
| |
| #define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \ |
| if (((elm)->field.sqx_next = (head)->sqx_first) == \ |
| XSIMPLEQ_XOR(head, NULL)) \ |
| (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ |
| (head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \ |
| } while (0) |
| |
| #define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \ |
| (elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \ |
| *(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \ |
| (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ |
| } while (0) |
| |
| #define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
| if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \ |
| XSIMPLEQ_XOR(head, NULL)) \ |
| (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ |
| (listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \ |
| } while (0) |
| |
| #define XSIMPLEQ_REMOVE_HEAD(head, field) do { \ |
| if (((head)->sqx_first = XSIMPLEQ_XOR(head, \ |
| (head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \ |
| (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \ |
| } while (0) |
| |
| #define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \ |
| if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \ |
| (elm)->field.sqx_next)->field.sqx_next) \ |
| == XSIMPLEQ_XOR(head, NULL)) \ |
| (head)->sqx_last = \ |
| XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ |
| } while (0) |
| |
| |
| /* |
| * Tail queue definitions. |
| */ |
| #define TAILQ_HEAD(name, type) \ |
| struct name { \ |
| struct type *tqh_first; /* first element */ \ |
| struct type **tqh_last; /* addr of last next element */ \ |
| } |
| |
| #define TAILQ_HEAD_INITIALIZER(head) \ |
| { NULL, &(head).tqh_first } |
| |
| #define TAILQ_ENTRY(type) \ |
| struct { \ |
| struct type *tqe_next; /* next element */ \ |
| struct type **tqe_prev; /* address of previous next element */ \ |
| } |
| |
| /* |
| * Tail queue access methods. |
| */ |
| #define TAILQ_FIRST(head) ((head)->tqh_first) |
| #define TAILQ_END(head) NULL |
| #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) |
| #define TAILQ_LAST(head, headname) \ |
| (*(((struct headname *)((head)->tqh_last))->tqh_last)) |
| /* XXX */ |
| #define TAILQ_PREV(elm, headname, field) \ |
| (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) |
| #define TAILQ_EMPTY(head) \ |
| (TAILQ_FIRST(head) == TAILQ_END(head)) |
| |
| #define TAILQ_FOREACH(var, head, field) \ |
| for((var) = TAILQ_FIRST(head); \ |
| (var) != TAILQ_END(head); \ |
| (var) = TAILQ_NEXT(var, field)) |
| |
| #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \ |
| for ((var) = TAILQ_FIRST(head); \ |
| (var) != TAILQ_END(head) && \ |
| ((tvar) = TAILQ_NEXT(var, field), 1); \ |
| (var) = (tvar)) |
| |
| |
| #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \ |
| for((var) = TAILQ_LAST(head, headname); \ |
| (var) != TAILQ_END(head); \ |
| (var) = TAILQ_PREV(var, headname, field)) |
| |
| #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \ |
| for ((var) = TAILQ_LAST(head, headname); \ |
| (var) != TAILQ_END(head) && \ |
| ((tvar) = TAILQ_PREV(var, headname, field), 1); \ |
| (var) = (tvar)) |
| |
| /* |
| * Tail queue functions. |
| */ |
| #define TAILQ_INIT(head) do { \ |
| (head)->tqh_first = NULL; \ |
| (head)->tqh_last = &(head)->tqh_first; \ |
| } while (0) |
| |
| #define TAILQ_INSERT_HEAD(head, elm, field) do { \ |
| if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \ |
| (head)->tqh_first->field.tqe_prev = \ |
| &(elm)->field.tqe_next; \ |
| else \ |
| (head)->tqh_last = &(elm)->field.tqe_next; \ |
| (head)->tqh_first = (elm); \ |
| (elm)->field.tqe_prev = &(head)->tqh_first; \ |
| } while (0) |
| |
| #define TAILQ_INSERT_TAIL(head, elm, field) do { \ |
| (elm)->field.tqe_next = NULL; \ |
| (elm)->field.tqe_prev = (head)->tqh_last; \ |
| *(head)->tqh_last = (elm); \ |
| (head)->tqh_last = &(elm)->field.tqe_next; \ |
| } while (0) |
| |
| #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
| if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\ |
| (elm)->field.tqe_next->field.tqe_prev = \ |
| &(elm)->field.tqe_next; \ |
| else \ |
| (head)->tqh_last = &(elm)->field.tqe_next; \ |
| (listelm)->field.tqe_next = (elm); \ |
| (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \ |
| } while (0) |
| |
| #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ |
| (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ |
| (elm)->field.tqe_next = (listelm); \ |
| *(listelm)->field.tqe_prev = (elm); \ |
| (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \ |
| } while (0) |
| |
| #define TAILQ_REMOVE(head, elm, field) do { \ |
| if (((elm)->field.tqe_next) != NULL) \ |
| (elm)->field.tqe_next->field.tqe_prev = \ |
| (elm)->field.tqe_prev; \ |
| else \ |
| (head)->tqh_last = (elm)->field.tqe_prev; \ |
| *(elm)->field.tqe_prev = (elm)->field.tqe_next; \ |
| _Q_INVALIDATE((elm)->field.tqe_prev); \ |
| _Q_INVALIDATE((elm)->field.tqe_next); \ |
| } while (0) |
| |
| #define TAILQ_REPLACE(head, elm, elm2, field) do { \ |
| if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \ |
| (elm2)->field.tqe_next->field.tqe_prev = \ |
| &(elm2)->field.tqe_next; \ |
| else \ |
| (head)->tqh_last = &(elm2)->field.tqe_next; \ |
| (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \ |
| *(elm2)->field.tqe_prev = (elm2); \ |
| _Q_INVALIDATE((elm)->field.tqe_prev); \ |
| _Q_INVALIDATE((elm)->field.tqe_next); \ |
| } while (0) |
| |
| #define TAILQ_CONCAT(head1, head2, field) do { \ |
| if (!TAILQ_EMPTY(head2)) { \ |
| *(head1)->tqh_last = (head2)->tqh_first; \ |
| (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \ |
| (head1)->tqh_last = (head2)->tqh_last; \ |
| TAILQ_INIT((head2)); \ |
| } \ |
| } while (0) |
| |
| #endif /* !_SYS_QUEUE_H_ */ |