| /* Functions to compute SHA512 message digest of files or memory blocks. |
| according to the definition of SHA512 in FIPS 180-2. |
| Copyright (C) 2007 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, write to the Free |
| Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307 USA. */ |
| |
| /* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */ |
| |
| #ifdef HAVE_CONFIG_H |
| # include <config.h> |
| #endif |
| |
| #include <endian.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/types.h> |
| |
| #include "sha512.h" |
| |
| #if __BYTE_ORDER == __LITTLE_ENDIAN |
| # ifdef _LIBC |
| # include <byteswap.h> |
| # define SWAP(n) bswap_64 (n) |
| # else |
| # define SWAP(n) \ |
| (((n) << 56) \ |
| | (((n) & 0xff00) << 40) \ |
| | (((n) & 0xff0000) << 24) \ |
| | (((n) & 0xff000000) << 8) \ |
| | (((n) >> 8) & 0xff000000) \ |
| | (((n) >> 24) & 0xff0000) \ |
| | (((n) >> 40) & 0xff00) \ |
| | ((n) >> 56)) |
| # endif |
| #else |
| # define SWAP(n) (n) |
| #endif |
| |
| |
| /* This array contains the bytes used to pad the buffer to the next |
| 64-byte boundary. (FIPS 180-2:5.1.2) */ |
| static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ }; |
| |
| |
| /* Constants for SHA512 from FIPS 180-2:4.2.3. */ |
| static const uint64_t K[80] = |
| { |
| UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd), |
| UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc), |
| UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019), |
| UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118), |
| UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe), |
| UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2), |
| UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1), |
| UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694), |
| UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3), |
| UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65), |
| UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483), |
| UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5), |
| UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210), |
| UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4), |
| UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725), |
| UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70), |
| UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926), |
| UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df), |
| UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8), |
| UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b), |
| UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001), |
| UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30), |
| UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910), |
| UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8), |
| UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53), |
| UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8), |
| UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb), |
| UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3), |
| UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60), |
| UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec), |
| UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9), |
| UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b), |
| UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207), |
| UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178), |
| UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6), |
| UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b), |
| UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493), |
| UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c), |
| UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a), |
| UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817) |
| }; |
| |
| |
| /* Process LEN bytes of BUFFER, accumulating context into CTX. |
| It is assumed that LEN % 128 == 0. */ |
| static void |
| sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx) |
| { |
| const uint64_t *words = buffer; |
| size_t nwords = len / sizeof (uint64_t); |
| uint64_t a = ctx->H[0]; |
| uint64_t b = ctx->H[1]; |
| uint64_t c = ctx->H[2]; |
| uint64_t d = ctx->H[3]; |
| uint64_t e = ctx->H[4]; |
| uint64_t f = ctx->H[5]; |
| uint64_t g = ctx->H[6]; |
| uint64_t h = ctx->H[7]; |
| |
| /* First increment the byte count. FIPS 180-2 specifies the possible |
| length of the file up to 2^128 bits. Here we only compute the |
| number of bytes. Do a double word increment. */ |
| ctx->total[0] += len; |
| if (ctx->total[0] < len) |
| ++ctx->total[1]; |
| |
| /* Process all bytes in the buffer with 128 bytes in each round of |
| the loop. */ |
| while (nwords > 0) |
| { |
| uint64_t W[80]; |
| uint64_t a_save = a; |
| uint64_t b_save = b; |
| uint64_t c_save = c; |
| uint64_t d_save = d; |
| uint64_t e_save = e; |
| uint64_t f_save = f; |
| uint64_t g_save = g; |
| uint64_t h_save = h; |
| |
| /* Operators defined in FIPS 180-2:4.1.2. */ |
| #define Ch(x, y, z) ((x & y) ^ (~x & z)) |
| #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
| #define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39)) |
| #define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41)) |
| #define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7)) |
| #define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6)) |
| |
| /* It is unfortunate that C does not provide an operator for |
| cyclic rotation. Hope the C compiler is smart enough. */ |
| #define CYCLIC(w, s) ((w >> s) | (w << (64 - s))) |
| |
| /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ |
| for (unsigned int t = 0; t < 16; ++t) |
| { |
| W[t] = SWAP (*words); |
| ++words; |
| } |
| for (unsigned int t = 16; t < 80; ++t) |
| W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; |
| |
| /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ |
| for (unsigned int t = 0; t < 80; ++t) |
| { |
| uint64_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; |
| uint64_t T2 = S0 (a) + Maj (a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| } |
| |
| /* Add the starting values of the context according to FIPS 180-2:6.3.2 |
| step 4. */ |
| a += a_save; |
| b += b_save; |
| c += c_save; |
| d += d_save; |
| e += e_save; |
| f += f_save; |
| g += g_save; |
| h += h_save; |
| |
| /* Prepare for the next round. */ |
| nwords -= 16; |
| } |
| |
| /* Put checksum in context given as argument. */ |
| ctx->H[0] = a; |
| ctx->H[1] = b; |
| ctx->H[2] = c; |
| ctx->H[3] = d; |
| ctx->H[4] = e; |
| ctx->H[5] = f; |
| ctx->H[6] = g; |
| ctx->H[7] = h; |
| } |
| |
| |
| /* Initialize structure containing state of computation. |
| (FIPS 180-2:5.3.3) */ |
| void |
| __sha512_init_ctx (ctx) |
| struct sha512_ctx *ctx; |
| { |
| ctx->H[0] = UINT64_C (0x6a09e667f3bcc908); |
| ctx->H[1] = UINT64_C (0xbb67ae8584caa73b); |
| ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b); |
| ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1); |
| ctx->H[4] = UINT64_C (0x510e527fade682d1); |
| ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f); |
| ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b); |
| ctx->H[7] = UINT64_C (0x5be0cd19137e2179); |
| |
| ctx->total[0] = ctx->total[1] = 0; |
| ctx->buflen = 0; |
| } |
| |
| |
| /* Process the remaining bytes in the internal buffer and the usual |
| prolog according to the standard and write the result to RESBUF. |
| |
| IMPORTANT: On some systems it is required that RESBUF is correctly |
| aligned for a 32 bits value. */ |
| void * |
| __sha512_finish_ctx (ctx, resbuf) |
| struct sha512_ctx *ctx; |
| void *resbuf; |
| { |
| /* Take yet unprocessed bytes into account. */ |
| uint64_t bytes = ctx->buflen; |
| size_t pad; |
| |
| /* Now count remaining bytes. */ |
| ctx->total[0] += bytes; |
| if (ctx->total[0] < bytes) |
| ++ctx->total[1]; |
| |
| pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes; |
| memcpy (&ctx->buffer[bytes], fillbuf, pad); |
| |
| /* Put the 128-bit file length in *bits* at the end of the buffer. */ |
| *(uint64_t *) &ctx->buffer[bytes + pad + 8] = SWAP (ctx->total[0] << 3); |
| *(uint64_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) | |
| (ctx->total[0] >> 61)); |
| |
| /* Process last bytes. */ |
| sha512_process_block (ctx->buffer, bytes + pad + 16, ctx); |
| |
| /* Put result from CTX in first 64 bytes following RESBUF. */ |
| for (unsigned int i = 0; i < 8; ++i) |
| ((uint64_t *) resbuf)[i] = SWAP (ctx->H[i]); |
| |
| return resbuf; |
| } |
| |
| |
| void |
| __sha512_process_bytes (buffer, len, ctx) |
| const void *buffer; |
| size_t len; |
| struct sha512_ctx *ctx; |
| { |
| /* When we already have some bits in our internal buffer concatenate |
| both inputs first. */ |
| if (ctx->buflen != 0) |
| { |
| size_t left_over = ctx->buflen; |
| size_t add = 256 - left_over > len ? len : 256 - left_over; |
| |
| memcpy (&ctx->buffer[left_over], buffer, add); |
| ctx->buflen += add; |
| |
| if (ctx->buflen > 128) |
| { |
| sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx); |
| |
| ctx->buflen &= 127; |
| /* The regions in the following copy operation cannot overlap. */ |
| memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~127], |
| ctx->buflen); |
| } |
| |
| buffer = (const char *) buffer + add; |
| len -= add; |
| } |
| |
| /* Process available complete blocks. */ |
| if (len >= 128) |
| { |
| #if !_STRING_ARCH_unaligned |
| /* To check alignment gcc has an appropriate operator. Other |
| compilers don't. */ |
| # if __GNUC__ >= 2 |
| # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0) |
| # else |
| # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0) |
| # endif |
| if (UNALIGNED_P (buffer)) |
| while (len > 128) |
| { |
| sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, |
| ctx); |
| buffer = (const char *) buffer + 128; |
| len -= 128; |
| } |
| else |
| #endif |
| { |
| sha512_process_block (buffer, len & ~127, ctx); |
| buffer = (const char *) buffer + (len & ~127); |
| len &= 127; |
| } |
| } |
| |
| /* Move remaining bytes into internal buffer. */ |
| if (len > 0) |
| { |
| size_t left_over = ctx->buflen; |
| |
| memcpy (&ctx->buffer[left_over], buffer, len); |
| left_over += len; |
| if (left_over >= 128) |
| { |
| sha512_process_block (ctx->buffer, 128, ctx); |
| left_over -= 128; |
| memcpy (ctx->buffer, &ctx->buffer[128], left_over); |
| } |
| ctx->buflen = left_over; |
| } |
| } |