| /* |
| * UFC-crypt: ultra fast crypt(3) implementation |
| * |
| * Copyright (C) 1991-1993,1996-1998,2000,2010 Free Software Foundation, Inc. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; see the file COPYING.LIB. If not, |
| * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 02111-1307, USA. |
| * |
| * @(#)crypt_util.c 2.56 12/20/96 |
| * |
| * Support routines |
| * |
| */ |
| |
| #ifdef DEBUG |
| #include <stdio.h> |
| #endif |
| #include <atomic.h> |
| #include <string.h> |
| |
| #ifndef STATIC |
| #define STATIC static |
| #endif |
| |
| #ifndef DOS |
| #include "ufc-crypt.h" |
| #else |
| /* |
| * Thanks to greg%wind@plains.NoDak.edu (Greg W. Wettstein) |
| * for DOS patches |
| */ |
| #include "pl.h" |
| #include "ufc.h" |
| #endif |
| #include "crypt.h" |
| #include "crypt-private.h" |
| |
| /* Prototypes for local functions. */ |
| #if __STDC__ - 0 |
| #ifndef __GNU_LIBRARY__ |
| void _ufc_clearmem (char *start, int cnt); |
| void _ufc_copymem (char *from, char *to, int cnt); |
| #endif |
| #ifdef _UFC_32_ |
| STATIC void shuffle_sb (long32 *k, ufc_long saltbits); |
| #else |
| STATIC void shuffle_sb (long64 *k, ufc_long saltbits); |
| #endif |
| #endif |
| |
| |
| /* |
| * Permutation done once on the 56 bit |
| * key derived from the original 8 byte ASCII key. |
| */ |
| static const int pc1[56] = { |
| 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, |
| 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, |
| 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, |
| 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 |
| }; |
| |
| /* |
| * How much to rotate each 28 bit half of the pc1 permutated |
| * 56 bit key before using pc2 to give the i' key |
| */ |
| static const int rots[16] = { |
| 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 |
| }; |
| |
| /* |
| * Permutation giving the key |
| * of the i' DES round |
| */ |
| static const int pc2[48] = { |
| 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, |
| 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, |
| 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, |
| 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 |
| }; |
| |
| /* |
| * The E expansion table which selects |
| * bits from the 32 bit intermediate result. |
| */ |
| static const int esel[48] = { |
| 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, |
| 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, |
| 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, |
| 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 |
| }; |
| |
| /* |
| * Permutation done on the |
| * result of sbox lookups |
| */ |
| static const int perm32[32] = { |
| 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, |
| 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 |
| }; |
| |
| /* |
| * The sboxes |
| */ |
| static const int sbox[8][4][16]= { |
| { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, |
| { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, |
| { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, |
| { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } |
| }, |
| |
| { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, |
| { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, |
| { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, |
| { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } |
| }, |
| |
| { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, |
| { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, |
| { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, |
| { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } |
| }, |
| |
| { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, |
| { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, |
| { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, |
| { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } |
| }, |
| |
| { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, |
| { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, |
| { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, |
| { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } |
| }, |
| |
| { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, |
| { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, |
| { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, |
| { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } |
| }, |
| |
| { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, |
| { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, |
| { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, |
| { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } |
| }, |
| |
| { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, |
| { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, |
| { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, |
| { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } |
| } |
| }; |
| |
| /* |
| * This is the initial |
| * permutation matrix |
| */ |
| static const int initial_perm[64] = { |
| 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, |
| 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, |
| 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, |
| 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 |
| }; |
| |
| /* |
| * This is the final |
| * permutation matrix |
| */ |
| static const int final_perm[64] = { |
| 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, |
| 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, |
| 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, |
| 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 |
| }; |
| |
| #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.') |
| #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.') |
| |
| static const ufc_long BITMASK[24] = { |
| 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, |
| 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, |
| 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, |
| 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008 |
| }; |
| |
| static const unsigned char bytemask[8] = { |
| 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 |
| }; |
| |
| static const ufc_long longmask[32] = { |
| 0x80000000, 0x40000000, 0x20000000, 0x10000000, |
| 0x08000000, 0x04000000, 0x02000000, 0x01000000, |
| 0x00800000, 0x00400000, 0x00200000, 0x00100000, |
| 0x00080000, 0x00040000, 0x00020000, 0x00010000, |
| 0x00008000, 0x00004000, 0x00002000, 0x00001000, |
| 0x00000800, 0x00000400, 0x00000200, 0x00000100, |
| 0x00000080, 0x00000040, 0x00000020, 0x00000010, |
| 0x00000008, 0x00000004, 0x00000002, 0x00000001 |
| }; |
| |
| /* |
| * do_pc1: permform pc1 permutation in the key schedule generation. |
| * |
| * The first index is the byte number in the 8 byte ASCII key |
| * - second - - the two 28 bits halfs of the result |
| * - third - selects the 7 bits actually used of each byte |
| * |
| * The result is kept with 28 bit per 32 bit with the 4 most significant |
| * bits zero. |
| */ |
| static ufc_long do_pc1[8][2][128]; |
| |
| /* |
| * do_pc2: permform pc2 permutation in the key schedule generation. |
| * |
| * The first index is the septet number in the two 28 bit intermediate values |
| * - second - - - septet values |
| * |
| * Knowledge of the structure of the pc2 permutation is used. |
| * |
| * The result is kept with 28 bit per 32 bit with the 4 most significant |
| * bits zero. |
| */ |
| static ufc_long do_pc2[8][128]; |
| |
| /* |
| * eperm32tab: do 32 bit permutation and E selection |
| * |
| * The first index is the byte number in the 32 bit value to be permuted |
| * - second - is the value of this byte |
| * - third - selects the two 32 bit values |
| * |
| * The table is used and generated internally in init_des to speed it up |
| */ |
| static ufc_long eperm32tab[4][256][2]; |
| |
| /* |
| * efp: undo an extra e selection and do final |
| * permutation giving the DES result. |
| * |
| * Invoked 6 bit a time on two 48 bit values |
| * giving two 32 bit longs. |
| */ |
| static ufc_long efp[16][64][2]; |
| |
| /* |
| * For use by the old, non-reentrant routines |
| * (crypt/encrypt/setkey) |
| */ |
| struct crypt_data _ufc_foobar; |
| |
| #ifdef __GNU_LIBRARY__ |
| #include <bits/libc-lock.h> |
| |
| __libc_lock_define_initialized (static, _ufc_tables_lock) |
| #endif |
| |
| #ifdef DEBUG |
| |
| void |
| _ufc_prbits(a, n) |
| ufc_long *a; |
| int n; |
| { |
| ufc_long i, j, t, tmp; |
| n /= 8; |
| for(i = 0; i < n; i++) { |
| tmp=0; |
| for(j = 0; j < 8; j++) { |
| t=8*i+j; |
| tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0; |
| } |
| (void)printf("%02x ",tmp); |
| } |
| printf(" "); |
| } |
| |
| static void |
| _ufc_set_bits(v, b) |
| ufc_long v; |
| ufc_long *b; |
| { |
| ufc_long i; |
| *b = 0; |
| for(i = 0; i < 24; i++) { |
| if(v & longmask[8 + i]) |
| *b |= BITMASK[i]; |
| } |
| } |
| |
| #endif |
| |
| #ifndef __GNU_LIBRARY__ |
| /* |
| * Silly rewrites of 'bzero'/'memset'. I do so |
| * because some machines don't have |
| * bzero and some don't have memset. |
| */ |
| |
| void |
| _ufc_clearmem(start, cnt) |
| char *start; |
| int cnt; |
| { |
| while(cnt--) |
| *start++ = '\0'; |
| } |
| |
| void |
| _ufc_copymem(from, to, cnt) |
| char *from, *to; |
| int cnt; |
| { |
| while(cnt--) |
| *to++ = *from++; |
| } |
| #else |
| #define _ufc_clearmem(start, cnt) memset(start, 0, cnt) |
| #define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt) |
| #endif |
| |
| /* lookup a 6 bit value in sbox */ |
| |
| #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf]; |
| |
| /* |
| * Initialize unit - may be invoked directly |
| * by fcrypt users. |
| */ |
| |
| void |
| __init_des_r(__data) |
| struct crypt_data * __restrict __data; |
| { |
| int comes_from_bit; |
| int bit, sg; |
| ufc_long j; |
| ufc_long mask1, mask2; |
| int e_inverse[64]; |
| static volatile int small_tables_initialized = 0; |
| |
| #ifdef _UFC_32_ |
| long32 *sb[4]; |
| sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1; |
| sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3; |
| #endif |
| #ifdef _UFC_64_ |
| long64 *sb[4]; |
| sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1; |
| sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3; |
| #endif |
| |
| if(small_tables_initialized == 0) { |
| #ifdef __GNU_LIBRARY__ |
| __libc_lock_lock (_ufc_tables_lock); |
| if(small_tables_initialized) |
| goto small_tables_done; |
| #endif |
| |
| /* |
| * Create the do_pc1 table used |
| * to affect pc1 permutation |
| * when generating keys |
| */ |
| _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1)); |
| for(bit = 0; bit < 56; bit++) { |
| comes_from_bit = pc1[bit] - 1; |
| mask1 = bytemask[comes_from_bit % 8 + 1]; |
| mask2 = longmask[bit % 28 + 4]; |
| for(j = 0; j < 128; j++) { |
| if(j & mask1) |
| do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2; |
| } |
| } |
| |
| /* |
| * Create the do_pc2 table used |
| * to affect pc2 permutation when |
| * generating keys |
| */ |
| _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2)); |
| for(bit = 0; bit < 48; bit++) { |
| comes_from_bit = pc2[bit] - 1; |
| mask1 = bytemask[comes_from_bit % 7 + 1]; |
| mask2 = BITMASK[bit % 24]; |
| for(j = 0; j < 128; j++) { |
| if(j & mask1) |
| do_pc2[comes_from_bit / 7][j] |= mask2; |
| } |
| } |
| |
| /* |
| * Now generate the table used to do combined |
| * 32 bit permutation and e expansion |
| * |
| * We use it because we have to permute 16384 32 bit |
| * longs into 48 bit in order to initialize sb. |
| * |
| * Looping 48 rounds per permutation becomes |
| * just too slow... |
| * |
| */ |
| |
| _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab)); |
| for(bit = 0; bit < 48; bit++) { |
| ufc_long mask1,comes_from; |
| comes_from = perm32[esel[bit]-1]-1; |
| mask1 = bytemask[comes_from % 8]; |
| for(j = 256; j--;) { |
| if(j & mask1) |
| eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24]; |
| } |
| } |
| |
| /* |
| * Create an inverse matrix for esel telling |
| * where to plug out bits if undoing it |
| */ |
| for(bit=48; bit--;) { |
| e_inverse[esel[bit] - 1 ] = bit; |
| e_inverse[esel[bit] - 1 + 32] = bit + 48; |
| } |
| |
| /* |
| * create efp: the matrix used to |
| * undo the E expansion and effect final permutation |
| */ |
| _ufc_clearmem((char*)efp, (int)sizeof efp); |
| for(bit = 0; bit < 64; bit++) { |
| int o_bit, o_long; |
| ufc_long word_value, mask1, mask2; |
| int comes_from_f_bit, comes_from_e_bit; |
| int comes_from_word, bit_within_word; |
| |
| /* See where bit i belongs in the two 32 bit long's */ |
| o_long = bit / 32; /* 0..1 */ |
| o_bit = bit % 32; /* 0..31 */ |
| |
| /* |
| * And find a bit in the e permutated value setting this bit. |
| * |
| * Note: the e selection may have selected the same bit several |
| * times. By the initialization of e_inverse, we only look |
| * for one specific instance. |
| */ |
| comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */ |
| comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ |
| comes_from_word = comes_from_e_bit / 6; /* 0..15 */ |
| bit_within_word = comes_from_e_bit % 6; /* 0..5 */ |
| |
| mask1 = longmask[bit_within_word + 26]; |
| mask2 = longmask[o_bit]; |
| |
| for(word_value = 64; word_value--;) { |
| if(word_value & mask1) |
| efp[comes_from_word][word_value][o_long] |= mask2; |
| } |
| } |
| atomic_write_barrier (); |
| small_tables_initialized = 1; |
| #ifdef __GNU_LIBRARY__ |
| small_tables_done: |
| __libc_lock_unlock(_ufc_tables_lock); |
| #endif |
| } |
| |
| /* |
| * Create the sb tables: |
| * |
| * For each 12 bit segment of an 48 bit intermediate |
| * result, the sb table precomputes the two 4 bit |
| * values of the sbox lookups done with the two 6 |
| * bit halves, shifts them to their proper place, |
| * sends them through perm32 and finally E expands |
| * them so that they are ready for the next |
| * DES round. |
| * |
| */ |
| |
| _ufc_clearmem((char*)__data->sb0, (int)sizeof(__data->sb0)); |
| _ufc_clearmem((char*)__data->sb1, (int)sizeof(__data->sb1)); |
| _ufc_clearmem((char*)__data->sb2, (int)sizeof(__data->sb2)); |
| _ufc_clearmem((char*)__data->sb3, (int)sizeof(__data->sb3)); |
| |
| for(sg = 0; sg < 4; sg++) { |
| int j1, j2; |
| int s1, s2; |
| |
| for(j1 = 0; j1 < 64; j1++) { |
| s1 = s_lookup(2 * sg, j1); |
| for(j2 = 0; j2 < 64; j2++) { |
| ufc_long to_permute, inx; |
| |
| s2 = s_lookup(2 * sg + 1, j2); |
| to_permute = (((ufc_long)s1 << 4) | |
| (ufc_long)s2) << (24 - 8 * (ufc_long)sg); |
| |
| #ifdef _UFC_32_ |
| inx = ((j1 << 6) | j2) << 1; |
| sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0]; |
| sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1]; |
| sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; |
| sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; |
| sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0]; |
| sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1]; |
| sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0]; |
| sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1]; |
| #endif |
| #ifdef _UFC_64_ |
| inx = ((j1 << 6) | j2); |
| sb[sg][inx] = |
| ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) | |
| (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1]; |
| sb[sg][inx] |= |
| ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) | |
| (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1]; |
| sb[sg][inx] |= |
| ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) | |
| (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1]; |
| sb[sg][inx] |= |
| ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) | |
| (long64)eperm32tab[3][(to_permute) & 0xff][1]; |
| #endif |
| } |
| } |
| } |
| |
| __data->current_saltbits = 0; |
| __data->current_salt[0] = 0; |
| __data->current_salt[1] = 0; |
| __data->initialized++; |
| } |
| |
| void |
| __init_des() |
| { |
| __init_des_r(&_ufc_foobar); |
| } |
| |
| /* |
| * Process the elements of the sb table permuting the |
| * bits swapped in the expansion by the current salt. |
| */ |
| |
| #ifdef _UFC_32_ |
| STATIC void |
| shuffle_sb(k, saltbits) |
| long32 *k; |
| ufc_long saltbits; |
| { |
| ufc_long j; |
| long32 x; |
| for(j=4096; j--;) { |
| x = (k[0] ^ k[1]) & (long32)saltbits; |
| *k++ ^= x; |
| *k++ ^= x; |
| } |
| } |
| #endif |
| |
| #ifdef _UFC_64_ |
| STATIC void |
| shuffle_sb(k, saltbits) |
| long64 *k; |
| ufc_long saltbits; |
| { |
| ufc_long j; |
| long64 x; |
| for(j=4096; j--;) { |
| x = ((*k >> 32) ^ *k) & (long64)saltbits; |
| *k++ ^= (x << 32) | x; |
| } |
| } |
| #endif |
| |
| /* |
| * Setup the unit for a new salt |
| * Hopefully we'll not see a new salt in each crypt call. |
| */ |
| |
| void |
| _ufc_setup_salt_r(s, __data) |
| __const char *s; |
| struct crypt_data * __restrict __data; |
| { |
| ufc_long i, j, saltbits; |
| |
| if(__data->initialized == 0) |
| __init_des_r(__data); |
| |
| if(s[0] == __data->current_salt[0] && s[1] == __data->current_salt[1]) |
| return; |
| __data->current_salt[0] = s[0]; __data->current_salt[1] = s[1]; |
| |
| /* |
| * This is the only crypt change to DES: |
| * entries are swapped in the expansion table |
| * according to the bits set in the salt. |
| */ |
| saltbits = 0; |
| for(i = 0; i < 2; i++) { |
| long c=ascii_to_bin(s[i]); |
| for(j = 0; j < 6; j++) { |
| if((c >> j) & 0x1) |
| saltbits |= BITMASK[6 * i + j]; |
| } |
| } |
| |
| /* |
| * Permute the sb table values |
| * to reflect the changed e |
| * selection table |
| */ |
| #ifdef _UFC_32_ |
| #define LONGG long32* |
| #endif |
| #ifdef _UFC_64_ |
| #define LONGG long64* |
| #endif |
| |
| shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits); |
| shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits); |
| shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits); |
| shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits); |
| |
| __data->current_saltbits = saltbits; |
| } |
| |
| void |
| _ufc_mk_keytab_r(key, __data) |
| const char *key; |
| struct crypt_data * __restrict __data; |
| { |
| ufc_long v1, v2, *k1; |
| int i; |
| #ifdef _UFC_32_ |
| long32 v, *k2; |
| k2 = (long32*)__data->keysched; |
| #endif |
| #ifdef _UFC_64_ |
| long64 v, *k2; |
| k2 = (long64*)__data->keysched; |
| #endif |
| |
| v1 = v2 = 0; k1 = &do_pc1[0][0][0]; |
| for(i = 8; i--;) { |
| v1 |= k1[*key & 0x7f]; k1 += 128; |
| v2 |= k1[*key++ & 0x7f]; k1 += 128; |
| } |
| |
| for(i = 0; i < 16; i++) { |
| k1 = &do_pc2[0][0]; |
| |
| v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i])); |
| v = k1[(v1 >> 21) & 0x7f]; k1 += 128; |
| v |= k1[(v1 >> 14) & 0x7f]; k1 += 128; |
| v |= k1[(v1 >> 7) & 0x7f]; k1 += 128; |
| v |= k1[(v1 ) & 0x7f]; k1 += 128; |
| |
| #ifdef _UFC_32_ |
| *k2++ = (v | 0x00008000); |
| v = 0; |
| #endif |
| #ifdef _UFC_64_ |
| v = (v << 32); |
| #endif |
| |
| v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i])); |
| v |= k1[(v2 >> 21) & 0x7f]; k1 += 128; |
| v |= k1[(v2 >> 14) & 0x7f]; k1 += 128; |
| v |= k1[(v2 >> 7) & 0x7f]; k1 += 128; |
| v |= k1[(v2 ) & 0x7f]; |
| |
| #ifdef _UFC_32_ |
| *k2++ = (v | 0x00008000); |
| #endif |
| #ifdef _UFC_64_ |
| *k2++ = v | 0x0000800000008000l; |
| #endif |
| } |
| |
| __data->direction = 0; |
| } |
| |
| /* |
| * Undo an extra E selection and do final permutations |
| */ |
| |
| void |
| _ufc_dofinalperm_r(res, __data) |
| ufc_long *res; |
| struct crypt_data * __restrict __data; |
| { |
| ufc_long v1, v2, x; |
| ufc_long l1,l2,r1,r2; |
| |
| l1 = res[0]; l2 = res[1]; |
| r1 = res[2]; r2 = res[3]; |
| |
| x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x; |
| x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x; |
| |
| v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; |
| |
| v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; |
| v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; |
| v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; |
| v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; |
| |
| v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; |
| v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; |
| v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; |
| v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; |
| |
| v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; |
| v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; |
| v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; |
| v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; |
| |
| v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; |
| v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; |
| v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; |
| v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; |
| |
| res[0] = v1; res[1] = v2; |
| } |
| |
| /* |
| * crypt only: convert from 64 bit to 11 bit ASCII |
| * prefixing with the salt |
| */ |
| |
| void |
| _ufc_output_conversion_r(v1, v2, salt, __data) |
| ufc_long v1, v2; |
| __const char *salt; |
| struct crypt_data * __restrict __data; |
| { |
| int i, s, shf; |
| |
| __data->crypt_3_buf[0] = salt[0]; |
| __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0]; |
| |
| for(i = 0; i < 5; i++) { |
| shf = (26 - 6 * i); /* to cope with MSC compiler bug */ |
| __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f); |
| } |
| |
| s = (v2 & 0xf) << 2; |
| v2 = (v2 >> 2) | ((v1 & 0x3) << 30); |
| |
| for(i = 5; i < 10; i++) { |
| shf = (56 - 6 * i); |
| __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f); |
| } |
| |
| __data->crypt_3_buf[12] = bin_to_ascii(s); |
| __data->crypt_3_buf[13] = 0; |
| } |
| |
| |
| /* |
| * UNIX encrypt function. Takes a bitvector |
| * represented by one byte per bit and |
| * encrypt/decrypt according to edflag |
| */ |
| |
| void |
| __encrypt_r(__block, __edflag, __data) |
| char *__block; |
| int __edflag; |
| struct crypt_data * __restrict __data; |
| { |
| ufc_long l1, l2, r1, r2, res[4]; |
| int i; |
| #ifdef _UFC_32_ |
| long32 *kt; |
| kt = (long32*)__data->keysched; |
| #endif |
| #ifdef _UFC_64_ |
| long64 *kt; |
| kt = (long64*)__data->keysched; |
| #endif |
| |
| /* |
| * Undo any salt changes to E expansion |
| */ |
| _ufc_setup_salt_r("..", __data); |
| |
| /* |
| * Reverse key table if |
| * changing operation (encrypt/decrypt) |
| */ |
| if((__edflag == 0) != (__data->direction == 0)) { |
| for(i = 0; i < 8; i++) { |
| #ifdef _UFC_32_ |
| long32 x; |
| x = kt[2 * (15-i)]; |
| kt[2 * (15-i)] = kt[2 * i]; |
| kt[2 * i] = x; |
| |
| x = kt[2 * (15-i) + 1]; |
| kt[2 * (15-i) + 1] = kt[2 * i + 1]; |
| kt[2 * i + 1] = x; |
| #endif |
| #ifdef _UFC_64_ |
| long64 x; |
| x = kt[15-i]; |
| kt[15-i] = kt[i]; |
| kt[i] = x; |
| #endif |
| } |
| __data->direction = __edflag; |
| } |
| |
| /* |
| * Do initial permutation + E expansion |
| */ |
| i = 0; |
| for(l1 = 0; i < 24; i++) { |
| if(__block[initial_perm[esel[i]-1]-1]) |
| l1 |= BITMASK[i]; |
| } |
| for(l2 = 0; i < 48; i++) { |
| if(__block[initial_perm[esel[i]-1]-1]) |
| l2 |= BITMASK[i-24]; |
| } |
| |
| i = 0; |
| for(r1 = 0; i < 24; i++) { |
| if(__block[initial_perm[esel[i]-1+32]-1]) |
| r1 |= BITMASK[i]; |
| } |
| for(r2 = 0; i < 48; i++) { |
| if(__block[initial_perm[esel[i]-1+32]-1]) |
| r2 |= BITMASK[i-24]; |
| } |
| |
| /* |
| * Do DES inner loops + final conversion |
| */ |
| res[0] = l1; res[1] = l2; |
| res[2] = r1; res[3] = r2; |
| _ufc_doit_r((ufc_long)1, __data, &res[0]); |
| |
| /* |
| * Do final permutations |
| */ |
| _ufc_dofinalperm_r(res, __data); |
| |
| /* |
| * And convert to bit array |
| */ |
| l1 = res[0]; r1 = res[1]; |
| for(i = 0; i < 32; i++) { |
| *__block++ = (l1 & longmask[i]) != 0; |
| } |
| for(i = 0; i < 32; i++) { |
| *__block++ = (r1 & longmask[i]) != 0; |
| } |
| } |
| weak_alias (__encrypt_r, encrypt_r) |
| |
| void |
| encrypt(__block, __edflag) |
| char *__block; |
| int __edflag; |
| { |
| __encrypt_r(__block, __edflag, &_ufc_foobar); |
| } |
| |
| |
| /* |
| * UNIX setkey function. Take a 64 bit DES |
| * key and setup the machinery. |
| */ |
| |
| void |
| __setkey_r(__key, __data) |
| __const char *__key; |
| struct crypt_data * __restrict __data; |
| { |
| int i,j; |
| unsigned char c; |
| unsigned char ktab[8]; |
| |
| _ufc_setup_salt_r("..", __data); /* be sure we're initialized */ |
| |
| for(i = 0; i < 8; i++) { |
| for(j = 0, c = 0; j < 8; j++) |
| c = c << 1 | *__key++; |
| ktab[i] = c >> 1; |
| } |
| _ufc_mk_keytab_r((char *) ktab, __data); |
| } |
| weak_alias (__setkey_r, setkey_r) |
| |
| void |
| setkey(__key) |
| __const char *__key; |
| { |
| __setkey_r(__key, &_ufc_foobar); |
| } |