| /* SPDX-License-Identifier: LGPL-2.1-or-later */ |
| #pragma once |
| |
| #include <alloca.h> |
| #include <stddef.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "macro.h" |
| |
| #if HAS_FEATURE_MEMORY_SANITIZER |
| # include <sanitizer/msan_interface.h> |
| #endif |
| |
| typedef void (*free_func_t)(void *p); |
| |
| /* If for some reason more than 4M are allocated on the stack, let's abort immediately. It's better than |
| * proceeding and smashing the stack limits. Note that by default RLIMIT_STACK is 8M on Linux. */ |
| #define ALLOCA_MAX (4U*1024U*1024U) |
| |
| #define new(t, n) ((t*) malloc_multiply(sizeof(t), (n))) |
| |
| #define new0(t, n) ((t*) calloc((n) ?: 1, sizeof(t))) |
| |
| #define newa(t, n) \ |
| ({ \ |
| size_t _n_ = n; \ |
| assert(!size_multiply_overflow(sizeof(t), _n_)); \ |
| assert(sizeof(t)*_n_ <= ALLOCA_MAX); \ |
| (t*) alloca((sizeof(t)*_n_) ?: 1); \ |
| }) |
| |
| #define newa0(t, n) \ |
| ({ \ |
| size_t _n_ = n; \ |
| assert(!size_multiply_overflow(sizeof(t), _n_)); \ |
| assert(sizeof(t)*_n_ <= ALLOCA_MAX); \ |
| (t*) alloca0((sizeof(t)*_n_) ?: 1); \ |
| }) |
| |
| #define newdup(t, p, n) ((t*) memdup_multiply(p, sizeof(t), (n))) |
| |
| #define newdup_suffix0(t, p, n) ((t*) memdup_suffix0_multiply(p, sizeof(t), (n))) |
| |
| #define malloc0(n) (calloc(1, (n) ?: 1)) |
| |
| static inline void *mfree(void *memory) { |
| free(memory); |
| return NULL; |
| } |
| |
| #define free_and_replace(a, b) \ |
| ({ \ |
| free(a); \ |
| (a) = (b); \ |
| (b) = NULL; \ |
| 0; \ |
| }) |
| |
| void* memdup(const void *p, size_t l) _alloc_(2); |
| void* memdup_suffix0(const void *p, size_t l); /* We can't use _alloc_() here, since we return a buffer one byte larger than the specified size */ |
| |
| #define memdupa(p, l) \ |
| ({ \ |
| void *_q_; \ |
| size_t _l_ = l; \ |
| assert(_l_ <= ALLOCA_MAX); \ |
| _q_ = alloca(_l_ ?: 1); \ |
| memcpy(_q_, p, _l_); \ |
| }) |
| |
| #define memdupa_suffix0(p, l) \ |
| ({ \ |
| void *_q_; \ |
| size_t _l_ = l; \ |
| assert(_l_ <= ALLOCA_MAX); \ |
| _q_ = alloca(_l_ + 1); \ |
| ((uint8_t*) _q_)[_l_] = 0; \ |
| memcpy(_q_, p, _l_); \ |
| }) |
| |
| static inline void freep(void *p) { |
| free(*(void**) p); |
| } |
| |
| #define _cleanup_free_ _cleanup_(freep) |
| |
| static inline bool size_multiply_overflow(size_t size, size_t need) { |
| return _unlikely_(need != 0 && size > (SIZE_MAX / need)); |
| } |
| |
| _malloc_ _alloc_(1, 2) static inline void *malloc_multiply(size_t size, size_t need) { |
| if (size_multiply_overflow(size, need)) |
| return NULL; |
| |
| return malloc(size * need ?: 1); |
| } |
| |
| #if !HAVE_REALLOCARRAY |
| _alloc_(2, 3) static inline void *reallocarray(void *p, size_t need, size_t size) { |
| if (size_multiply_overflow(size, need)) |
| return NULL; |
| |
| return realloc(p, size * need ?: 1); |
| } |
| #endif |
| |
| _alloc_(2, 3) static inline void *memdup_multiply(const void *p, size_t size, size_t need) { |
| if (size_multiply_overflow(size, need)) |
| return NULL; |
| |
| return memdup(p, size * need); |
| } |
| |
| /* Note that we can't decorate this function with _alloc_() since the returned memory area is one byte larger |
| * than the product of its parameters. */ |
| static inline void *memdup_suffix0_multiply(const void *p, size_t size, size_t need) { |
| if (size_multiply_overflow(size, need)) |
| return NULL; |
| |
| return memdup_suffix0(p, size * need); |
| } |
| |
| void* greedy_realloc(void **p, size_t *allocated, size_t need, size_t size); |
| void* greedy_realloc0(void **p, size_t *allocated, size_t need, size_t size); |
| |
| #define GREEDY_REALLOC(array, allocated, need) \ |
| greedy_realloc((void**) &(array), &(allocated), (need), sizeof((array)[0])) |
| |
| #define GREEDY_REALLOC0(array, allocated, need) \ |
| greedy_realloc0((void**) &(array), &(allocated), (need), sizeof((array)[0])) |
| |
| #define alloca0(n) \ |
| ({ \ |
| char *_new_; \ |
| size_t _len_ = n; \ |
| assert(_len_ <= ALLOCA_MAX); \ |
| _new_ = alloca(_len_ ?: 1); \ |
| (void *) memset(_new_, 0, _len_); \ |
| }) |
| |
| /* It's not clear what alignment glibc/gcc alloca() guarantee, hence provide a guaranteed safe version */ |
| #define alloca_align(size, align) \ |
| ({ \ |
| void *_ptr_; \ |
| size_t _mask_ = (align) - 1; \ |
| size_t _size_ = size; \ |
| assert(_size_ <= ALLOCA_MAX); \ |
| _ptr_ = alloca((_size_ + _mask_) ?: 1); \ |
| (void*)(((uintptr_t)_ptr_ + _mask_) & ~_mask_); \ |
| }) |
| |
| #define alloca0_align(size, align) \ |
| ({ \ |
| void *_new_; \ |
| size_t _xsize_ = (size); \ |
| _new_ = alloca_align(_xsize_, (align)); \ |
| (void*)memset(_new_, 0, _xsize_); \ |
| }) |
| |
| /* Takes inspiration from Rust's Option::take() method: reads and returns a pointer, but at the same time |
| * resets it to NULL. See: https://doc.rust-lang.org/std/option/enum.Option.html#method.take */ |
| #define TAKE_PTR(ptr) \ |
| ({ \ |
| typeof(ptr) _ptr_ = (ptr); \ |
| (ptr) = NULL; \ |
| _ptr_; \ |
| }) |
| |
| #if HAS_FEATURE_MEMORY_SANITIZER |
| # define msan_unpoison(r, s) __msan_unpoison(r, s) |
| #else |
| # define msan_unpoison(r, s) |
| #endif |