| /* SPDX-License-Identifier: LGPL-2.1-or-later */ |
| |
| #if HAVE_VALGRIND_MEMCHECK_H |
| #include <valgrind/memcheck.h> |
| #endif |
| |
| #include <linux/dm-ioctl.h> |
| #include <linux/loop.h> |
| #include <sys/mount.h> |
| #include <sys/prctl.h> |
| #include <sys/wait.h> |
| #include <sysexits.h> |
| |
| #include "sd-device.h" |
| #include "sd-id128.h" |
| |
| #include "architecture.h" |
| #include "ask-password-api.h" |
| #include "blkid-util.h" |
| #include "blockdev-util.h" |
| #include "copy.h" |
| #include "cryptsetup-util.h" |
| #include "def.h" |
| #include "device-nodes.h" |
| #include "device-util.h" |
| #include "dissect-image.h" |
| #include "dm-util.h" |
| #include "env-file.h" |
| #include "fd-util.h" |
| #include "fileio.h" |
| #include "fs-util.h" |
| #include "fsck-util.h" |
| #include "gpt.h" |
| #include "hexdecoct.h" |
| #include "hostname-util.h" |
| #include "id128-util.h" |
| #include "mkdir.h" |
| #include "mount-util.h" |
| #include "mountpoint-util.h" |
| #include "namespace-util.h" |
| #include "nulstr-util.h" |
| #include "os-util.h" |
| #include "path-util.h" |
| #include "process-util.h" |
| #include "raw-clone.h" |
| #include "signal-util.h" |
| #include "stat-util.h" |
| #include "stdio-util.h" |
| #include "string-table.h" |
| #include "string-util.h" |
| #include "strv.h" |
| #include "tmpfile-util.h" |
| #include "udev-util.h" |
| #include "user-util.h" |
| #include "xattr-util.h" |
| |
| /* how many times to wait for the device nodes to appear */ |
| #define N_DEVICE_NODE_LIST_ATTEMPTS 10 |
| |
| int probe_filesystem(const char *node, char **ret_fstype) { |
| /* Try to find device content type and return it in *ret_fstype. If nothing is found, |
| * 0/NULL will be returned. -EUCLEAN will be returned for ambiguous results, and an |
| * different error otherwise. */ |
| |
| #if HAVE_BLKID |
| _cleanup_(blkid_free_probep) blkid_probe b = NULL; |
| const char *fstype; |
| int r; |
| |
| errno = 0; |
| b = blkid_new_probe_from_filename(node); |
| if (!b) |
| return errno_or_else(ENOMEM); |
| |
| blkid_probe_enable_superblocks(b, 1); |
| blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE); |
| |
| errno = 0; |
| r = blkid_do_safeprobe(b); |
| if (r == 1) { |
| log_debug("No type detected on partition %s", node); |
| goto not_found; |
| } |
| if (r == -2) |
| return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN), |
| "Results ambiguous for partition %s", node); |
| if (r != 0) |
| return errno_or_else(EIO); |
| |
| (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL); |
| |
| if (fstype) { |
| char *t; |
| |
| t = strdup(fstype); |
| if (!t) |
| return -ENOMEM; |
| |
| *ret_fstype = t; |
| return 1; |
| } |
| |
| not_found: |
| *ret_fstype = NULL; |
| return 0; |
| #else |
| return -EOPNOTSUPP; |
| #endif |
| } |
| |
| #if HAVE_BLKID |
| static int enumerator_for_parent(sd_device *d, sd_device_enumerator **ret) { |
| _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL; |
| int r; |
| |
| assert(d); |
| assert(ret); |
| |
| r = sd_device_enumerator_new(&e); |
| if (r < 0) |
| return r; |
| |
| r = sd_device_enumerator_allow_uninitialized(e); |
| if (r < 0) |
| return r; |
| |
| r = sd_device_enumerator_add_match_parent(e, d); |
| if (r < 0) |
| return r; |
| |
| *ret = TAKE_PTR(e); |
| return 0; |
| } |
| |
| static int device_is_partition(sd_device *d, blkid_partition pp) { |
| blkid_loff_t bsize, bstart; |
| uint64_t size, start; |
| int partno, bpartno, r; |
| const char *ss, *v; |
| |
| assert(d); |
| assert(pp); |
| |
| r = sd_device_get_subsystem(d, &ss); |
| if (r < 0) |
| return r; |
| if (!streq(ss, "block")) |
| return false; |
| |
| r = sd_device_get_sysattr_value(d, "partition", &v); |
| if (r == -ENOENT) /* Not a partition device */ |
| return false; |
| if (r < 0) |
| return r; |
| r = safe_atoi(v, &partno); |
| if (r < 0) |
| return r; |
| |
| errno = 0; |
| bpartno = blkid_partition_get_partno(pp); |
| if (bpartno < 0) |
| return errno_or_else(EIO); |
| |
| if (partno != bpartno) |
| return false; |
| |
| r = sd_device_get_sysattr_value(d, "start", &v); |
| if (r < 0) |
| return r; |
| r = safe_atou64(v, &start); |
| if (r < 0) |
| return r; |
| |
| errno = 0; |
| bstart = blkid_partition_get_start(pp); |
| if (bstart < 0) |
| return errno_or_else(EIO); |
| |
| if (start != (uint64_t) bstart) |
| return false; |
| |
| r = sd_device_get_sysattr_value(d, "size", &v); |
| if (r < 0) |
| return r; |
| r = safe_atou64(v, &size); |
| if (r < 0) |
| return r; |
| |
| errno = 0; |
| bsize = blkid_partition_get_size(pp); |
| if (bsize < 0) |
| return errno_or_else(EIO); |
| |
| if (size != (uint64_t) bsize) |
| return false; |
| |
| return true; |
| } |
| |
| static int find_partition( |
| sd_device *parent, |
| blkid_partition pp, |
| sd_device **ret) { |
| |
| _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL; |
| sd_device *q; |
| int r; |
| |
| assert(parent); |
| assert(pp); |
| assert(ret); |
| |
| r = enumerator_for_parent(parent, &e); |
| if (r < 0) |
| return r; |
| |
| FOREACH_DEVICE(e, q) { |
| r = device_is_partition(q, pp); |
| if (r < 0) |
| return r; |
| if (r > 0) { |
| *ret = sd_device_ref(q); |
| return 0; |
| } |
| } |
| |
| return -ENXIO; |
| } |
| |
| struct wait_data { |
| sd_device *parent_device; |
| blkid_partition blkidp; |
| sd_device *found; |
| }; |
| |
| static inline void wait_data_done(struct wait_data *d) { |
| sd_device_unref(d->found); |
| } |
| |
| static int device_monitor_handler(sd_device_monitor *monitor, sd_device *device, void *userdata) { |
| const char *parent1_path, *parent2_path; |
| struct wait_data *w = userdata; |
| sd_device *pp; |
| int r; |
| |
| assert(w); |
| |
| if (device_for_action(device, DEVICE_ACTION_REMOVE)) |
| return 0; |
| |
| r = sd_device_get_parent(device, &pp); |
| if (r < 0) |
| return 0; /* Doesn't have a parent? No relevant to us */ |
| |
| r = sd_device_get_syspath(pp, &parent1_path); /* Check parent of device of this action */ |
| if (r < 0) |
| goto finish; |
| |
| r = sd_device_get_syspath(w->parent_device, &parent2_path); /* Check parent of device we are looking for */ |
| if (r < 0) |
| goto finish; |
| |
| if (!path_equal(parent1_path, parent2_path)) |
| return 0; /* Has a different parent than what we need, not interesting to us */ |
| |
| r = device_is_partition(device, w->blkidp); |
| if (r < 0) |
| goto finish; |
| if (r == 0) /* Not the one we need */ |
| return 0; |
| |
| /* It's the one we need! Yay! */ |
| assert(!w->found); |
| w->found = sd_device_ref(device); |
| r = 0; |
| |
| finish: |
| return sd_event_exit(sd_device_monitor_get_event(monitor), r); |
| } |
| |
| static int wait_for_partition_device( |
| sd_device *parent, |
| blkid_partition pp, |
| usec_t deadline, |
| sd_device **ret) { |
| |
| _cleanup_(sd_event_source_unrefp) sd_event_source *timeout_source = NULL; |
| _cleanup_(sd_device_monitor_unrefp) sd_device_monitor *monitor = NULL; |
| _cleanup_(sd_event_unrefp) sd_event *event = NULL; |
| int r; |
| |
| assert(parent); |
| assert(pp); |
| assert(ret); |
| |
| r = find_partition(parent, pp, ret); |
| if (r != -ENXIO) |
| return r; |
| |
| r = sd_event_new(&event); |
| if (r < 0) |
| return r; |
| |
| r = sd_device_monitor_new(&monitor); |
| if (r < 0) |
| return r; |
| |
| r = sd_device_monitor_filter_add_match_subsystem_devtype(monitor, "block", "partition"); |
| if (r < 0) |
| return r; |
| |
| r = sd_device_monitor_attach_event(monitor, event); |
| if (r < 0) |
| return r; |
| |
| _cleanup_(wait_data_done) struct wait_data w = { |
| .parent_device = parent, |
| .blkidp = pp, |
| }; |
| |
| r = sd_device_monitor_start(monitor, device_monitor_handler, &w); |
| if (r < 0) |
| return r; |
| |
| /* Check again, the partition might have appeared in the meantime */ |
| r = find_partition(parent, pp, ret); |
| if (r != -ENXIO) |
| return r; |
| |
| if (deadline != USEC_INFINITY) { |
| r = sd_event_add_time( |
| event, &timeout_source, |
| CLOCK_MONOTONIC, deadline, 0, |
| NULL, INT_TO_PTR(-ETIMEDOUT)); |
| if (r < 0) |
| return r; |
| } |
| |
| r = sd_event_loop(event); |
| if (r < 0) |
| return r; |
| |
| assert(w.found); |
| *ret = TAKE_PTR(w.found); |
| return 0; |
| } |
| |
| static void check_partition_flags( |
| const char *node, |
| unsigned long long pflags, |
| unsigned long long supported) { |
| |
| assert(node); |
| |
| /* Mask away all flags supported by this partition's type and the three flags the UEFI spec defines generically */ |
| pflags &= ~(supported | GPT_FLAG_REQUIRED_PARTITION | GPT_FLAG_NO_BLOCK_IO_PROTOCOL | GPT_FLAG_LEGACY_BIOS_BOOTABLE); |
| |
| if (pflags == 0) |
| return; |
| |
| /* If there are other bits set, then log about it, to make things discoverable */ |
| for (unsigned i = 0; i < sizeof(pflags) * 8; i++) { |
| unsigned long long bit = 1ULL << i; |
| if (!FLAGS_SET(pflags, bit)) |
| continue; |
| |
| log_debug("Unexpected partition flag %llu set on %s!", bit, node); |
| } |
| } |
| |
| static int device_wait_for_initialization_harder( |
| sd_device *device, |
| const char *subsystem, |
| usec_t deadline, |
| sd_device **ret) { |
| |
| _cleanup_free_ char *uevent = NULL; |
| usec_t start, left, retrigger_timeout; |
| int r; |
| |
| start = now(CLOCK_MONOTONIC); |
| left = usec_sub_unsigned(deadline, start); |
| |
| if (DEBUG_LOGGING) { |
| char buf[FORMAT_TIMESPAN_MAX]; |
| const char *sn = NULL; |
| |
| (void) sd_device_get_sysname(device, &sn); |
| log_debug("Waiting for device '%s' to initialize for %s.", strna(sn), format_timespan(buf, sizeof(buf), left, 0)); |
| } |
| |
| if (left != USEC_INFINITY) |
| retrigger_timeout = CLAMP(left / 4, 1 * USEC_PER_SEC, 5 * USEC_PER_SEC); /* A fourth of the total timeout, but let's clamp to 1s…5s range */ |
| else |
| retrigger_timeout = 2 * USEC_PER_SEC; |
| |
| for (;;) { |
| usec_t local_deadline, n; |
| bool last_try; |
| |
| n = now(CLOCK_MONOTONIC); |
| assert(n >= start); |
| |
| /* Find next deadline, when we'll retrigger */ |
| local_deadline = start + |
| DIV_ROUND_UP(n - start, retrigger_timeout) * retrigger_timeout; |
| |
| if (deadline != USEC_INFINITY && deadline <= local_deadline) { |
| local_deadline = deadline; |
| last_try = true; |
| } else |
| last_try = false; |
| |
| r = device_wait_for_initialization(device, subsystem, local_deadline, ret); |
| if (r >= 0 && DEBUG_LOGGING) { |
| char buf[FORMAT_TIMESPAN_MAX]; |
| const char *sn = NULL; |
| |
| (void) sd_device_get_sysname(device, &sn); |
| log_debug("Successfully waited for device '%s' to initialize for %s.", strna(sn), format_timespan(buf, sizeof(buf), usec_sub_unsigned(now(CLOCK_MONOTONIC), start), 0)); |
| |
| } |
| if (r != -ETIMEDOUT || last_try) |
| return r; |
| |
| if (!uevent) { |
| const char *syspath; |
| |
| r = sd_device_get_syspath(device, &syspath); |
| if (r < 0) |
| return r; |
| |
| uevent = path_join(syspath, "uevent"); |
| if (!uevent) |
| return -ENOMEM; |
| } |
| |
| if (DEBUG_LOGGING) { |
| char buf[FORMAT_TIMESPAN_MAX]; |
| |
| log_debug("Device didn't initialize within %s, assuming lost event. Retriggering device through %s.", |
| format_timespan(buf, sizeof(buf), usec_sub_unsigned(now(CLOCK_MONOTONIC), start), 0), |
| uevent); |
| } |
| |
| r = write_string_file(uevent, "change", WRITE_STRING_FILE_DISABLE_BUFFER); |
| if (r < 0) |
| return r; |
| } |
| } |
| #endif |
| |
| #define DEVICE_TIMEOUT_USEC (45 * USEC_PER_SEC) |
| |
| int dissect_image( |
| int fd, |
| const VeritySettings *verity, |
| const MountOptions *mount_options, |
| DissectImageFlags flags, |
| DissectedImage **ret) { |
| |
| #if HAVE_BLKID |
| sd_id128_t root_uuid = SD_ID128_NULL, root_verity_uuid = SD_ID128_NULL, |
| usr_uuid = SD_ID128_NULL, usr_verity_uuid = SD_ID128_NULL; |
| bool is_gpt, is_mbr, generic_rw, multiple_generic = false; |
| _cleanup_(sd_device_unrefp) sd_device *d = NULL; |
| _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL; |
| _cleanup_(blkid_free_probep) blkid_probe b = NULL; |
| _cleanup_free_ char *generic_node = NULL; |
| sd_id128_t generic_uuid = SD_ID128_NULL; |
| const char *pttype = NULL; |
| blkid_partlist pl; |
| int r, generic_nr, n_partitions; |
| struct stat st; |
| usec_t deadline; |
| |
| assert(fd >= 0); |
| assert(ret); |
| assert(!verity || verity->root_hash || verity->root_hash_size == 0); |
| assert(!((flags & DISSECT_IMAGE_GPT_ONLY) && (flags & DISSECT_IMAGE_NO_PARTITION_TABLE))); |
| |
| /* Probes a disk image, and returns information about what it found in *ret. |
| * |
| * Returns -ENOPKG if no suitable partition table or file system could be found. |
| * Returns -EADDRNOTAVAIL if a root hash was specified but no matching root/verity partitions found. */ |
| |
| if (verity && verity->root_hash) { |
| sd_id128_t fsuuid, vuuid; |
| |
| /* If a root hash is supplied, then we use the root partition that has a UUID that match the |
| * first 128bit of the root hash. And we use the verity partition that has a UUID that match |
| * the final 128bit. */ |
| |
| if (verity->root_hash_size < sizeof(sd_id128_t)) |
| return -EINVAL; |
| |
| memcpy(&fsuuid, verity->root_hash, sizeof(sd_id128_t)); |
| memcpy(&vuuid, (const uint8_t*) verity->root_hash + verity->root_hash_size - sizeof(sd_id128_t), sizeof(sd_id128_t)); |
| |
| if (sd_id128_is_null(fsuuid)) |
| return -EINVAL; |
| if (sd_id128_is_null(vuuid)) |
| return -EINVAL; |
| |
| /* If the verity data declares it's for the /usr partition, then search for that, in all |
| * other cases assume it's for the root partition. */ |
| if (verity->designator == PARTITION_USR) { |
| usr_uuid = fsuuid; |
| usr_verity_uuid = vuuid; |
| } else { |
| root_uuid = fsuuid; |
| root_verity_uuid = vuuid; |
| } |
| } |
| |
| if (fstat(fd, &st) < 0) |
| return -errno; |
| |
| if (!S_ISBLK(st.st_mode)) |
| return -ENOTBLK; |
| |
| r = sd_device_new_from_devnum(&d, 'b', st.st_rdev); |
| if (r < 0) |
| return r; |
| |
| if (!FLAGS_SET(flags, DISSECT_IMAGE_NO_UDEV)) { |
| _cleanup_(sd_device_unrefp) sd_device *initialized = NULL; |
| |
| /* If udev support is enabled, then let's wait for the device to be initialized before we doing anything. */ |
| |
| r = device_wait_for_initialization_harder( |
| d, |
| "block", |
| usec_add(now(CLOCK_MONOTONIC), DEVICE_TIMEOUT_USEC), |
| &initialized); |
| if (r < 0) |
| return r; |
| |
| sd_device_unref(d); |
| d = TAKE_PTR(initialized); |
| } |
| |
| b = blkid_new_probe(); |
| if (!b) |
| return -ENOMEM; |
| |
| errno = 0; |
| r = blkid_probe_set_device(b, fd, 0, 0); |
| if (r != 0) |
| return errno_or_else(ENOMEM); |
| |
| if ((flags & DISSECT_IMAGE_GPT_ONLY) == 0) { |
| /* Look for file system superblocks, unless we only shall look for GPT partition tables */ |
| blkid_probe_enable_superblocks(b, 1); |
| blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE|BLKID_SUBLKS_USAGE); |
| } |
| |
| blkid_probe_enable_partitions(b, 1); |
| blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS); |
| |
| errno = 0; |
| r = blkid_do_safeprobe(b); |
| if (IN_SET(r, -2, 1)) |
| return log_debug_errno(SYNTHETIC_ERRNO(ENOPKG), "Failed to identify any partition table."); |
| if (r != 0) |
| return errno_or_else(EIO); |
| |
| m = new0(DissectedImage, 1); |
| if (!m) |
| return -ENOMEM; |
| |
| if ((!(flags & DISSECT_IMAGE_GPT_ONLY) && |
| (flags & DISSECT_IMAGE_REQUIRE_ROOT)) || |
| (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)) { |
| const char *usage = NULL; |
| |
| /* If flags permit this, also allow using non-partitioned single-filesystem images */ |
| |
| (void) blkid_probe_lookup_value(b, "USAGE", &usage, NULL); |
| if (STRPTR_IN_SET(usage, "filesystem", "crypto")) { |
| const char *fstype = NULL, *options = NULL, *devname = NULL; |
| _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL; |
| |
| /* OK, we have found a file system, that's our root partition then. */ |
| (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL); |
| |
| if (fstype) { |
| t = strdup(fstype); |
| if (!t) |
| return -ENOMEM; |
| } |
| |
| r = sd_device_get_devname(d, &devname); |
| if (r < 0) |
| return r; |
| |
| n = strdup(devname); |
| if (!n) |
| return -ENOMEM; |
| |
| m->single_file_system = true; |
| m->verity = verity && verity->root_hash && verity->data_path && (verity->designator < 0 || verity->designator == PARTITION_ROOT); |
| m->can_verity = verity && verity->data_path; |
| |
| options = mount_options_from_designator(mount_options, PARTITION_ROOT); |
| if (options) { |
| o = strdup(options); |
| if (!o) |
| return -ENOMEM; |
| } |
| |
| m->partitions[PARTITION_ROOT] = (DissectedPartition) { |
| .found = true, |
| .rw = !m->verity, |
| .partno = -1, |
| .architecture = _ARCHITECTURE_INVALID, |
| .fstype = TAKE_PTR(t), |
| .node = TAKE_PTR(n), |
| .mount_options = TAKE_PTR(o), |
| }; |
| |
| m->encrypted = streq_ptr(fstype, "crypto_LUKS"); |
| |
| *ret = TAKE_PTR(m); |
| return 0; |
| } |
| } |
| |
| (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL); |
| if (!pttype) |
| return -ENOPKG; |
| |
| is_gpt = streq_ptr(pttype, "gpt"); |
| is_mbr = streq_ptr(pttype, "dos"); |
| |
| if (!is_gpt && ((flags & DISSECT_IMAGE_GPT_ONLY) || !is_mbr)) |
| return -ENOPKG; |
| |
| /* Safety check: refuse block devices that carry a partition table but for which the kernel doesn't |
| * do partition scanning. */ |
| r = blockdev_partscan_enabled(fd); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| return -EPROTONOSUPPORT; |
| |
| errno = 0; |
| pl = blkid_probe_get_partitions(b); |
| if (!pl) |
| return errno_or_else(ENOMEM); |
| |
| errno = 0; |
| n_partitions = blkid_partlist_numof_partitions(pl); |
| if (n_partitions < 0) |
| return errno_or_else(EIO); |
| |
| deadline = usec_add(now(CLOCK_MONOTONIC), DEVICE_TIMEOUT_USEC); |
| for (int i = 0; i < n_partitions; i++) { |
| _cleanup_(sd_device_unrefp) sd_device *q = NULL; |
| unsigned long long pflags; |
| blkid_partition pp; |
| const char *node; |
| int nr; |
| |
| errno = 0; |
| pp = blkid_partlist_get_partition(pl, i); |
| if (!pp) |
| return errno_or_else(EIO); |
| |
| r = wait_for_partition_device(d, pp, deadline, &q); |
| if (r < 0) |
| return r; |
| |
| r = sd_device_get_devname(q, &node); |
| if (r < 0) |
| return r; |
| |
| pflags = blkid_partition_get_flags(pp); |
| |
| errno = 0; |
| nr = blkid_partition_get_partno(pp); |
| if (nr < 0) |
| return errno_or_else(EIO); |
| |
| if (is_gpt) { |
| PartitionDesignator designator = _PARTITION_DESIGNATOR_INVALID; |
| int architecture = _ARCHITECTURE_INVALID; |
| const char *stype, *sid, *fstype = NULL; |
| sd_id128_t type_id, id; |
| bool rw = true; |
| |
| sid = blkid_partition_get_uuid(pp); |
| if (!sid) |
| continue; |
| if (sd_id128_from_string(sid, &id) < 0) |
| continue; |
| |
| stype = blkid_partition_get_type_string(pp); |
| if (!stype) |
| continue; |
| if (sd_id128_from_string(stype, &type_id) < 0) |
| continue; |
| |
| if (sd_id128_equal(type_id, GPT_HOME)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| designator = PARTITION_HOME; |
| rw = !(pflags & GPT_FLAG_READ_ONLY); |
| |
| } else if (sd_id128_equal(type_id, GPT_SRV)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| designator = PARTITION_SRV; |
| rw = !(pflags & GPT_FLAG_READ_ONLY); |
| |
| } else if (sd_id128_equal(type_id, GPT_ESP)) { |
| |
| /* Note that we don't check the GPT_FLAG_NO_AUTO flag for the ESP, as it is |
| * not defined there. We instead check the GPT_FLAG_NO_BLOCK_IO_PROTOCOL, as |
| * recommended by the UEFI spec (See "12.3.3 Number and Location of System |
| * Partitions"). */ |
| |
| if (pflags & GPT_FLAG_NO_BLOCK_IO_PROTOCOL) |
| continue; |
| |
| designator = PARTITION_ESP; |
| fstype = "vfat"; |
| |
| } else if (sd_id128_equal(type_id, GPT_XBOOTLDR)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| designator = PARTITION_XBOOTLDR; |
| rw = !(pflags & GPT_FLAG_READ_ONLY); |
| } |
| #ifdef GPT_ROOT_NATIVE |
| else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| /* If a root ID is specified, ignore everything but the root id */ |
| if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id)) |
| continue; |
| |
| designator = PARTITION_ROOT; |
| architecture = native_architecture(); |
| rw = !(pflags & GPT_FLAG_READ_ONLY); |
| |
| } else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE_VERITY)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| m->can_verity = true; |
| |
| /* Ignore verity unless a root hash is specified */ |
| if (sd_id128_is_null(root_verity_uuid) || !sd_id128_equal(root_verity_uuid, id)) |
| continue; |
| |
| designator = PARTITION_ROOT_VERITY; |
| fstype = "DM_verity_hash"; |
| architecture = native_architecture(); |
| rw = false; |
| } |
| #endif |
| #ifdef GPT_ROOT_SECONDARY |
| else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| /* If a root ID is specified, ignore everything but the root id */ |
| if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id)) |
| continue; |
| |
| designator = PARTITION_ROOT_SECONDARY; |
| architecture = SECONDARY_ARCHITECTURE; |
| rw = !(pflags & GPT_FLAG_READ_ONLY); |
| |
| } else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY_VERITY)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| m->can_verity = true; |
| |
| /* Ignore verity unless root has is specified */ |
| if (sd_id128_is_null(root_verity_uuid) || !sd_id128_equal(root_verity_uuid, id)) |
| continue; |
| |
| designator = PARTITION_ROOT_SECONDARY_VERITY; |
| fstype = "DM_verity_hash"; |
| architecture = SECONDARY_ARCHITECTURE; |
| rw = false; |
| } |
| #endif |
| #ifdef GPT_USR_NATIVE |
| else if (sd_id128_equal(type_id, GPT_USR_NATIVE)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| /* If a usr ID is specified, ignore everything but the usr id */ |
| if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id)) |
| continue; |
| |
| designator = PARTITION_USR; |
| architecture = native_architecture(); |
| rw = !(pflags & GPT_FLAG_READ_ONLY); |
| |
| } else if (sd_id128_equal(type_id, GPT_USR_NATIVE_VERITY)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| m->can_verity = true; |
| |
| /* Ignore verity unless a usr hash is specified */ |
| if (sd_id128_is_null(usr_verity_uuid) || !sd_id128_equal(usr_verity_uuid, id)) |
| continue; |
| |
| designator = PARTITION_USR_VERITY; |
| fstype = "DM_verity_hash"; |
| architecture = native_architecture(); |
| rw = false; |
| } |
| #endif |
| #ifdef GPT_USR_SECONDARY |
| else if (sd_id128_equal(type_id, GPT_USR_SECONDARY)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| /* If a usr ID is specified, ignore everything but the usr id */ |
| if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id)) |
| continue; |
| |
| designator = PARTITION_USR_SECONDARY; |
| architecture = SECONDARY_ARCHITECTURE; |
| rw = !(pflags & GPT_FLAG_READ_ONLY); |
| |
| } else if (sd_id128_equal(type_id, GPT_USR_SECONDARY_VERITY)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| m->can_verity = true; |
| |
| /* Ignore verity unless usr has is specified */ |
| if (sd_id128_is_null(usr_verity_uuid) || !sd_id128_equal(usr_verity_uuid, id)) |
| continue; |
| |
| designator = PARTITION_USR_SECONDARY_VERITY; |
| fstype = "DM_verity_hash"; |
| architecture = SECONDARY_ARCHITECTURE; |
| rw = false; |
| } |
| #endif |
| else if (sd_id128_equal(type_id, GPT_SWAP)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| designator = PARTITION_SWAP; |
| fstype = "swap"; |
| |
| } else if (sd_id128_equal(type_id, GPT_LINUX_GENERIC)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| if (generic_node) |
| multiple_generic = true; |
| else { |
| generic_nr = nr; |
| generic_rw = !(pflags & GPT_FLAG_READ_ONLY); |
| generic_uuid = id; |
| generic_node = strdup(node); |
| if (!generic_node) |
| return -ENOMEM; |
| } |
| |
| } else if (sd_id128_equal(type_id, GPT_TMP)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| designator = PARTITION_TMP; |
| rw = !(pflags & GPT_FLAG_READ_ONLY); |
| |
| } else if (sd_id128_equal(type_id, GPT_VAR)) { |
| |
| check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY); |
| |
| if (pflags & GPT_FLAG_NO_AUTO) |
| continue; |
| |
| if (!FLAGS_SET(flags, DISSECT_IMAGE_RELAX_VAR_CHECK)) { |
| sd_id128_t var_uuid; |
| |
| /* For /var we insist that the uuid of the partition matches the |
| * HMAC-SHA256 of the /var GPT partition type uuid, keyed by machine |
| * ID. Why? Unlike the other partitions /var is inherently |
| * installation specific, hence we need to be careful not to mount it |
| * in the wrong installation. By hashing the partition UUID from |
| * /etc/machine-id we can securely bind the partition to the |
| * installation. */ |
| |
| r = sd_id128_get_machine_app_specific(GPT_VAR, &var_uuid); |
| if (r < 0) |
| return r; |
| |
| if (!sd_id128_equal(var_uuid, id)) { |
| log_debug("Found a /var/ partition, but its UUID didn't match our expectations, ignoring."); |
| continue; |
| } |
| } |
| |
| designator = PARTITION_VAR; |
| rw = !(pflags & GPT_FLAG_READ_ONLY); |
| } |
| |
| if (designator != _PARTITION_DESIGNATOR_INVALID) { |
| _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL; |
| const char *options = NULL; |
| |
| /* First one wins */ |
| if (m->partitions[designator].found) |
| continue; |
| |
| if (fstype) { |
| t = strdup(fstype); |
| if (!t) |
| return -ENOMEM; |
| } |
| |
| n = strdup(node); |
| if (!n) |
| return -ENOMEM; |
| |
| options = mount_options_from_designator(mount_options, designator); |
| if (options) { |
| o = strdup(options); |
| if (!o) |
| return -ENOMEM; |
| } |
| |
| m->partitions[designator] = (DissectedPartition) { |
| .found = true, |
| .partno = nr, |
| .rw = rw, |
| .architecture = architecture, |
| .node = TAKE_PTR(n), |
| .fstype = TAKE_PTR(t), |
| .uuid = id, |
| .mount_options = TAKE_PTR(o), |
| }; |
| } |
| |
| } else if (is_mbr) { |
| |
| switch (blkid_partition_get_type(pp)) { |
| |
| case 0x83: /* Linux partition */ |
| |
| if (pflags != 0x80) /* Bootable flag */ |
| continue; |
| |
| if (generic_node) |
| multiple_generic = true; |
| else { |
| generic_nr = nr; |
| generic_rw = true; |
| generic_node = strdup(node); |
| if (!generic_node) |
| return -ENOMEM; |
| } |
| |
| break; |
| |
| case 0xEA: { /* Boot Loader Spec extended $BOOT partition */ |
| _cleanup_free_ char *n = NULL, *o = NULL; |
| sd_id128_t id = SD_ID128_NULL; |
| const char *sid, *options = NULL; |
| |
| /* First one wins */ |
| if (m->partitions[PARTITION_XBOOTLDR].found) |
| continue; |
| |
| sid = blkid_partition_get_uuid(pp); |
| if (sid) |
| (void) sd_id128_from_string(sid, &id); |
| |
| n = strdup(node); |
| if (!n) |
| return -ENOMEM; |
| |
| options = mount_options_from_designator(mount_options, PARTITION_XBOOTLDR); |
| if (options) { |
| o = strdup(options); |
| if (!o) |
| return -ENOMEM; |
| } |
| |
| m->partitions[PARTITION_XBOOTLDR] = (DissectedPartition) { |
| .found = true, |
| .partno = nr, |
| .rw = true, |
| .architecture = _ARCHITECTURE_INVALID, |
| .node = TAKE_PTR(n), |
| .uuid = id, |
| .mount_options = TAKE_PTR(o), |
| }; |
| |
| break; |
| }} |
| } |
| } |
| |
| if (m->partitions[PARTITION_ROOT].found) { |
| /* If we found the primary arch, then invalidate the secondary arch to avoid any ambiguities, |
| * since we never want to mount the secondary arch in this case. */ |
| m->partitions[PARTITION_ROOT_SECONDARY].found = false; |
| m->partitions[PARTITION_ROOT_SECONDARY_VERITY].found = false; |
| m->partitions[PARTITION_USR_SECONDARY].found = false; |
| m->partitions[PARTITION_USR_SECONDARY_VERITY].found = false; |
| } else { |
| /* No root partition found? Then let's see if ther's one for the secondary architecture. And if not |
| * either, then check if there's a single generic one, and use that. */ |
| |
| if (m->partitions[PARTITION_ROOT_VERITY].found) |
| return -EADDRNOTAVAIL; |
| |
| /* We didn't find a primary architecture root, but we found a primary architecture /usr? Refuse that for now. */ |
| if (m->partitions[PARTITION_USR].found || m->partitions[PARTITION_USR_VERITY].found) |
| return -EADDRNOTAVAIL; |
| |
| if (m->partitions[PARTITION_ROOT_SECONDARY].found) { |
| /* Upgrade secondary arch to first */ |
| m->partitions[PARTITION_ROOT] = m->partitions[PARTITION_ROOT_SECONDARY]; |
| zero(m->partitions[PARTITION_ROOT_SECONDARY]); |
| m->partitions[PARTITION_ROOT_VERITY] = m->partitions[PARTITION_ROOT_SECONDARY_VERITY]; |
| zero(m->partitions[PARTITION_ROOT_SECONDARY_VERITY]); |
| |
| m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_SECONDARY]; |
| zero(m->partitions[PARTITION_USR_SECONDARY]); |
| m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_SECONDARY_VERITY]; |
| zero(m->partitions[PARTITION_USR_SECONDARY_VERITY]); |
| |
| } else if (flags & DISSECT_IMAGE_REQUIRE_ROOT) { |
| _cleanup_free_ char *o = NULL; |
| const char *options = NULL; |
| |
| /* If the root hash was set, then we won't fall back to a generic node, because the |
| * root hash decides. */ |
| if (verity && verity->root_hash) |
| return -EADDRNOTAVAIL; |
| |
| /* If we didn't find a generic node, then we can't fix this up either */ |
| if (!generic_node) |
| return -ENXIO; |
| |
| /* If we didn't find a properly marked root partition, but we did find a single suitable |
| * generic Linux partition, then use this as root partition, if the caller asked for it. */ |
| if (multiple_generic) |
| return -ENOTUNIQ; |
| |
| options = mount_options_from_designator(mount_options, PARTITION_ROOT); |
| if (options) { |
| o = strdup(options); |
| if (!o) |
| return -ENOMEM; |
| } |
| |
| m->partitions[PARTITION_ROOT] = (DissectedPartition) { |
| .found = true, |
| .rw = generic_rw, |
| .partno = generic_nr, |
| .architecture = _ARCHITECTURE_INVALID, |
| .node = TAKE_PTR(generic_node), |
| .uuid = generic_uuid, |
| .mount_options = TAKE_PTR(o), |
| }; |
| } |
| } |
| |
| /* Refuse if we found a verity partition for /usr but no matching file system partition */ |
| if (!m->partitions[PARTITION_USR].found && m->partitions[PARTITION_USR_VERITY].found) |
| return -EADDRNOTAVAIL; |
| |
| /* Combinations of verity /usr with verity-less root is OK, but the reverse is not */ |
| if (m->partitions[PARTITION_ROOT_VERITY].found && m->partitions[PARTITION_USR].found && !m->partitions[PARTITION_USR_VERITY].found) |
| return -EADDRNOTAVAIL; |
| |
| if (verity && verity->root_hash) { |
| if (verity->designator < 0 || verity->designator == PARTITION_ROOT) { |
| if (!m->partitions[PARTITION_ROOT_VERITY].found || !m->partitions[PARTITION_ROOT].found) |
| return -EADDRNOTAVAIL; |
| |
| /* If we found a verity setup, then the root partition is necessarily read-only. */ |
| m->partitions[PARTITION_ROOT].rw = false; |
| m->verity = true; |
| } |
| |
| if (verity->designator == PARTITION_USR) { |
| if (!m->partitions[PARTITION_USR_VERITY].found || !m->partitions[PARTITION_USR].found) |
| return -EADDRNOTAVAIL; |
| |
| m->partitions[PARTITION_USR].rw = false; |
| m->verity = true; |
| } |
| } |
| |
| blkid_free_probe(b); |
| b = NULL; |
| |
| /* Fill in file system types if we don't know them yet. */ |
| for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) { |
| DissectedPartition *p = m->partitions + i; |
| |
| if (!p->found) |
| continue; |
| |
| if (!p->fstype && p->node) { |
| r = probe_filesystem(p->node, &p->fstype); |
| if (r < 0 && r != -EUCLEAN) |
| return r; |
| } |
| |
| if (streq_ptr(p->fstype, "crypto_LUKS")) |
| m->encrypted = true; |
| |
| if (p->fstype && fstype_is_ro(p->fstype)) |
| p->rw = false; |
| } |
| |
| *ret = TAKE_PTR(m); |
| return 0; |
| #else |
| return -EOPNOTSUPP; |
| #endif |
| } |
| |
| DissectedImage* dissected_image_unref(DissectedImage *m) { |
| if (!m) |
| return NULL; |
| |
| for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) { |
| free(m->partitions[i].fstype); |
| free(m->partitions[i].node); |
| free(m->partitions[i].decrypted_fstype); |
| free(m->partitions[i].decrypted_node); |
| free(m->partitions[i].mount_options); |
| } |
| |
| free(m->hostname); |
| strv_free(m->machine_info); |
| strv_free(m->os_release); |
| |
| return mfree(m); |
| } |
| |
| static int is_loop_device(const char *path) { |
| char s[SYS_BLOCK_PATH_MAX("/../loop/")]; |
| struct stat st; |
| |
| assert(path); |
| |
| if (stat(path, &st) < 0) |
| return -errno; |
| |
| if (!S_ISBLK(st.st_mode)) |
| return -ENOTBLK; |
| |
| xsprintf_sys_block_path(s, "/loop/", st.st_dev); |
| if (access(s, F_OK) < 0) { |
| if (errno != ENOENT) |
| return -errno; |
| |
| /* The device itself isn't a loop device, but maybe it's a partition and its parent is? */ |
| xsprintf_sys_block_path(s, "/../loop/", st.st_dev); |
| if (access(s, F_OK) < 0) |
| return errno == ENOENT ? false : -errno; |
| } |
| |
| return true; |
| } |
| |
| static int run_fsck(const char *node, const char *fstype) { |
| int r, exit_status; |
| pid_t pid; |
| |
| assert(node); |
| assert(fstype); |
| |
| r = fsck_exists(fstype); |
| if (r < 0) { |
| log_debug_errno(r, "Couldn't determine whether fsck for %s exists, proceeding anyway.", fstype); |
| return 0; |
| } |
| if (r == 0) { |
| log_debug("Not checking partition %s, as fsck for %s does not exist.", node, fstype); |
| return 0; |
| } |
| |
| r = safe_fork("(fsck)", FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_RLIMIT_NOFILE_SAFE|FORK_DEATHSIG|FORK_NULL_STDIO, &pid); |
| if (r < 0) |
| return log_debug_errno(r, "Failed to fork off fsck: %m"); |
| if (r == 0) { |
| /* Child */ |
| execl("/sbin/fsck", "/sbin/fsck", "-aT", node, NULL); |
| log_debug_errno(errno, "Failed to execl() fsck: %m"); |
| _exit(FSCK_OPERATIONAL_ERROR); |
| } |
| |
| exit_status = wait_for_terminate_and_check("fsck", pid, 0); |
| if (exit_status < 0) |
| return log_debug_errno(exit_status, "Failed to fork off /sbin/fsck: %m"); |
| |
| if ((exit_status & ~FSCK_ERROR_CORRECTED) != FSCK_SUCCESS) { |
| log_debug("fsck failed with exit status %i.", exit_status); |
| |
| if ((exit_status & (FSCK_SYSTEM_SHOULD_REBOOT|FSCK_ERRORS_LEFT_UNCORRECTED)) != 0) |
| return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN), "File system is corrupted, refusing."); |
| |
| log_debug("Ignoring fsck error."); |
| } |
| |
| return 0; |
| } |
| |
| static int mount_partition( |
| DissectedPartition *m, |
| const char *where, |
| const char *directory, |
| uid_t uid_shift, |
| DissectImageFlags flags) { |
| |
| _cleanup_free_ char *chased = NULL, *options = NULL; |
| const char *p, *node, *fstype; |
| bool rw; |
| int r; |
| |
| assert(m); |
| assert(where); |
| |
| /* Use decrypted node and matching fstype if available, otherwise use the original device */ |
| node = m->decrypted_node ?: m->node; |
| fstype = m->decrypted_node ? m->decrypted_fstype: m->fstype; |
| |
| if (!m->found || !node) |
| return 0; |
| if (!fstype) |
| return -EAFNOSUPPORT; |
| |
| /* We are looking at an encrypted partition? This either means stacked encryption, or the caller didn't call dissected_image_decrypt() beforehand. Let's return a recognizable error for this case. */ |
| if (streq(fstype, "crypto_LUKS")) |
| return -EUNATCH; |
| |
| rw = m->rw && !(flags & DISSECT_IMAGE_READ_ONLY); |
| |
| if (FLAGS_SET(flags, DISSECT_IMAGE_FSCK) && rw) { |
| r = run_fsck(node, fstype); |
| if (r < 0) |
| return r; |
| } |
| |
| if (directory) { |
| if (!FLAGS_SET(flags, DISSECT_IMAGE_READ_ONLY)) { |
| /* Automatically create missing mount points, if necessary. */ |
| r = mkdir_p_root(where, directory, uid_shift, (gid_t) uid_shift, 0755); |
| if (r < 0) |
| return r; |
| } |
| |
| r = chase_symlinks(directory, where, CHASE_PREFIX_ROOT, &chased, NULL); |
| if (r < 0) |
| return r; |
| |
| p = chased; |
| } else |
| p = where; |
| |
| /* If requested, turn on discard support. */ |
| if (fstype_can_discard(fstype) && |
| ((flags & DISSECT_IMAGE_DISCARD) || |
| ((flags & DISSECT_IMAGE_DISCARD_ON_LOOP) && is_loop_device(m->node) > 0))) { |
| options = strdup("discard"); |
| if (!options) |
| return -ENOMEM; |
| } |
| |
| if (uid_is_valid(uid_shift) && uid_shift != 0 && fstype_can_uid_gid(fstype)) { |
| _cleanup_free_ char *uid_option = NULL; |
| |
| if (asprintf(&uid_option, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0) |
| return -ENOMEM; |
| |
| if (!strextend_with_separator(&options, ",", uid_option, NULL)) |
| return -ENOMEM; |
| } |
| |
| if (!isempty(m->mount_options)) |
| if (!strextend_with_separator(&options, ",", m->mount_options, NULL)) |
| return -ENOMEM; |
| |
| if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) { |
| r = mkdir_p(p, 0755); |
| if (r < 0) |
| return r; |
| } |
| |
| r = mount_nofollow_verbose(LOG_DEBUG, node, p, fstype, MS_NODEV|(rw ? 0 : MS_RDONLY), options); |
| if (r < 0) |
| return r; |
| |
| return 1; |
| } |
| |
| int dissected_image_mount(DissectedImage *m, const char *where, uid_t uid_shift, DissectImageFlags flags) { |
| int r, xbootldr_mounted; |
| |
| assert(m); |
| assert(where); |
| |
| /* Returns: |
| * |
| * -ENXIO → No root partition found |
| * -EMEDIUMTYPE → DISSECT_IMAGE_VALIDATE_OS set but no os-release file found |
| * -EUNATCH → Encrypted partition found for which no dm-crypt was set up yet |
| * -EUCLEAN → fsck for file system failed |
| * -EBUSY → File system already mounted/used elsewhere (kernel) |
| * -EAFNOSUPPORT → File system type not supported or not known |
| */ |
| |
| if (!m->partitions[PARTITION_ROOT].found) |
| return -ENXIO; |
| |
| if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) { |
| r = mount_partition(m->partitions + PARTITION_ROOT, where, NULL, uid_shift, flags); |
| if (r < 0) |
| return r; |
| } |
| |
| /* Mask DISSECT_IMAGE_MKDIR for all subdirs: the idea is that only the top-level mount point is |
| * created if needed, but the image itself not modified. */ |
| flags &= ~DISSECT_IMAGE_MKDIR; |
| |
| if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) { |
| /* For us mounting root always means mounting /usr as well */ |
| r = mount_partition(m->partitions + PARTITION_USR, where, "/usr", uid_shift, flags); |
| if (r < 0) |
| return r; |
| |
| if (flags & DISSECT_IMAGE_VALIDATE_OS) { |
| r = path_is_os_tree(where); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| return -EMEDIUMTYPE; |
| } |
| } |
| |
| if (flags & DISSECT_IMAGE_MOUNT_ROOT_ONLY) |
| return 0; |
| |
| r = mount_partition(m->partitions + PARTITION_HOME, where, "/home", uid_shift, flags); |
| if (r < 0) |
| return r; |
| |
| r = mount_partition(m->partitions + PARTITION_SRV, where, "/srv", uid_shift, flags); |
| if (r < 0) |
| return r; |
| |
| r = mount_partition(m->partitions + PARTITION_VAR, where, "/var", uid_shift, flags); |
| if (r < 0) |
| return r; |
| |
| r = mount_partition(m->partitions + PARTITION_TMP, where, "/var/tmp", uid_shift, flags); |
| if (r < 0) |
| return r; |
| |
| xbootldr_mounted = mount_partition(m->partitions + PARTITION_XBOOTLDR, where, "/boot", uid_shift, flags); |
| if (xbootldr_mounted < 0) |
| return xbootldr_mounted; |
| |
| if (m->partitions[PARTITION_ESP].found) { |
| int esp_done = false; |
| |
| /* Mount the ESP to /efi if it exists. If it doesn't exist, use /boot instead, but only if it |
| * exists and is empty, and we didn't already mount the XBOOTLDR partition into it. */ |
| |
| r = chase_symlinks("/efi", where, CHASE_PREFIX_ROOT, NULL, NULL); |
| if (r < 0) { |
| if (r != -ENOENT) |
| return r; |
| |
| /* /efi doesn't exist. Let's see if /boot is suitable then */ |
| |
| if (!xbootldr_mounted) { |
| _cleanup_free_ char *p = NULL; |
| |
| r = chase_symlinks("/boot", where, CHASE_PREFIX_ROOT, &p, NULL); |
| if (r < 0) { |
| if (r != -ENOENT) |
| return r; |
| } else if (dir_is_empty(p) > 0) { |
| /* It exists and is an empty directory. Let's mount the ESP there. */ |
| r = mount_partition(m->partitions + PARTITION_ESP, where, "/boot", uid_shift, flags); |
| if (r < 0) |
| return r; |
| |
| esp_done = true; |
| } |
| } |
| } |
| |
| if (!esp_done) { |
| /* OK, let's mount the ESP now to /efi (possibly creating the dir if missing) */ |
| |
| r = mount_partition(m->partitions + PARTITION_ESP, where, "/efi", uid_shift, flags); |
| if (r < 0) |
| return r; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int dissected_image_mount_and_warn(DissectedImage *m, const char *where, uid_t uid_shift, DissectImageFlags flags) { |
| int r; |
| |
| assert(m); |
| assert(where); |
| |
| r = dissected_image_mount(m, where, uid_shift, flags); |
| if (r == -ENXIO) |
| return log_error_errno(r, "Not root file system found in image."); |
| if (r == -EMEDIUMTYPE) |
| return log_error_errno(r, "No suitable os-release file in image found."); |
| if (r == -EUNATCH) |
| return log_error_errno(r, "Encrypted file system discovered, but decryption not requested."); |
| if (r == -EUCLEAN) |
| return log_error_errno(r, "File system check on image failed."); |
| if (r == -EBUSY) |
| return log_error_errno(r, "File system already mounted elsewhere."); |
| if (r == -EAFNOSUPPORT) |
| return log_error_errno(r, "File system type not supported or not known."); |
| if (r < 0) |
| return log_error_errno(r, "Failed to mount image: %m"); |
| |
| return r; |
| } |
| |
| #if HAVE_LIBCRYPTSETUP |
| typedef struct DecryptedPartition { |
| struct crypt_device *device; |
| char *name; |
| bool relinquished; |
| } DecryptedPartition; |
| |
| struct DecryptedImage { |
| DecryptedPartition *decrypted; |
| size_t n_decrypted; |
| size_t n_allocated; |
| }; |
| #endif |
| |
| DecryptedImage* decrypted_image_unref(DecryptedImage* d) { |
| #if HAVE_LIBCRYPTSETUP |
| size_t i; |
| int r; |
| |
| if (!d) |
| return NULL; |
| |
| for (i = 0; i < d->n_decrypted; i++) { |
| DecryptedPartition *p = d->decrypted + i; |
| |
| if (p->device && p->name && !p->relinquished) { |
| r = sym_crypt_deactivate_by_name(p->device, p->name, 0); |
| if (r < 0) |
| log_debug_errno(r, "Failed to deactivate encrypted partition %s", p->name); |
| } |
| |
| if (p->device) |
| sym_crypt_free(p->device); |
| free(p->name); |
| } |
| |
| free(d); |
| #endif |
| return NULL; |
| } |
| |
| #if HAVE_LIBCRYPTSETUP |
| |
| static int make_dm_name_and_node(const void *original_node, const char *suffix, char **ret_name, char **ret_node) { |
| _cleanup_free_ char *name = NULL, *node = NULL; |
| const char *base; |
| |
| assert(original_node); |
| assert(suffix); |
| assert(ret_name); |
| assert(ret_node); |
| |
| base = strrchr(original_node, '/'); |
| if (!base) |
| base = original_node; |
| else |
| base++; |
| if (isempty(base)) |
| return -EINVAL; |
| |
| name = strjoin(base, suffix); |
| if (!name) |
| return -ENOMEM; |
| if (!filename_is_valid(name)) |
| return -EINVAL; |
| |
| node = path_join(sym_crypt_get_dir(), name); |
| if (!node) |
| return -ENOMEM; |
| |
| *ret_name = TAKE_PTR(name); |
| *ret_node = TAKE_PTR(node); |
| |
| return 0; |
| } |
| |
| static int decrypt_partition( |
| DissectedPartition *m, |
| const char *passphrase, |
| DissectImageFlags flags, |
| DecryptedImage *d) { |
| |
| _cleanup_free_ char *node = NULL, *name = NULL; |
| _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; |
| int r; |
| |
| assert(m); |
| assert(d); |
| |
| if (!m->found || !m->node || !m->fstype) |
| return 0; |
| |
| if (!streq(m->fstype, "crypto_LUKS")) |
| return 0; |
| |
| if (!passphrase) |
| return -ENOKEY; |
| |
| r = dlopen_cryptsetup(); |
| if (r < 0) |
| return r; |
| |
| r = make_dm_name_and_node(m->node, "-decrypted", &name, &node); |
| if (r < 0) |
| return r; |
| |
| if (!GREEDY_REALLOC0(d->decrypted, d->n_allocated, d->n_decrypted + 1)) |
| return -ENOMEM; |
| |
| r = sym_crypt_init(&cd, m->node); |
| if (r < 0) |
| return log_debug_errno(r, "Failed to initialize dm-crypt: %m"); |
| |
| cryptsetup_enable_logging(cd); |
| |
| r = sym_crypt_load(cd, CRYPT_LUKS, NULL); |
| if (r < 0) |
| return log_debug_errno(r, "Failed to load LUKS metadata: %m"); |
| |
| r = sym_crypt_activate_by_passphrase(cd, name, CRYPT_ANY_SLOT, passphrase, strlen(passphrase), |
| ((flags & DISSECT_IMAGE_READ_ONLY) ? CRYPT_ACTIVATE_READONLY : 0) | |
| ((flags & DISSECT_IMAGE_DISCARD_ON_CRYPTO) ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0)); |
| if (r < 0) { |
| log_debug_errno(r, "Failed to activate LUKS device: %m"); |
| return r == -EPERM ? -EKEYREJECTED : r; |
| } |
| |
| d->decrypted[d->n_decrypted++] = (DecryptedPartition) { |
| .name = TAKE_PTR(name), |
| .device = TAKE_PTR(cd), |
| }; |
| |
| m->decrypted_node = TAKE_PTR(node); |
| |
| return 0; |
| } |
| |
| static int verity_can_reuse( |
| const VeritySettings *verity, |
| const char *name, |
| struct crypt_device **ret_cd) { |
| |
| /* If the same volume was already open, check that the root hashes match, and reuse it if they do */ |
| _cleanup_free_ char *root_hash_existing = NULL; |
| _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; |
| struct crypt_params_verity crypt_params = {}; |
| size_t root_hash_existing_size; |
| int r; |
| |
| assert(verity); |
| assert(name); |
| assert(ret_cd); |
| |
| r = sym_crypt_init_by_name(&cd, name); |
| if (r < 0) |
| return log_debug_errno(r, "Error opening verity device, crypt_init_by_name failed: %m"); |
| |
| r = sym_crypt_get_verity_info(cd, &crypt_params); |
| if (r < 0) |
| return log_debug_errno(r, "Error opening verity device, crypt_get_verity_info failed: %m"); |
| |
| root_hash_existing_size = verity->root_hash_size; |
| root_hash_existing = malloc0(root_hash_existing_size); |
| if (!root_hash_existing) |
| return -ENOMEM; |
| |
| r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, root_hash_existing, &root_hash_existing_size, NULL, 0); |
| if (r < 0) |
| return log_debug_errno(r, "Error opening verity device, crypt_volume_key_get failed: %m"); |
| if (verity->root_hash_size != root_hash_existing_size || |
| memcmp(root_hash_existing, verity->root_hash, verity->root_hash_size) != 0) |
| return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but root hashes are different."); |
| |
| #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY |
| /* Ensure that, if signatures are supported, we only reuse the device if the previous mount used the |
| * same settings, so that a previous unsigned mount will not be reused if the user asks to use |
| * signing for the new one, and viceversa. */ |
| if (!!verity->root_hash_sig != !!(crypt_params.flags & CRYPT_VERITY_ROOT_HASH_SIGNATURE)) |
| return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but signature settings are not the same."); |
| #endif |
| |
| *ret_cd = TAKE_PTR(cd); |
| return 0; |
| } |
| |
| static inline void dm_deferred_remove_clean(char *name) { |
| if (!name) |
| return; |
| |
| (void) sym_crypt_deactivate_by_name(NULL, name, CRYPT_DEACTIVATE_DEFERRED); |
| free(name); |
| } |
| DEFINE_TRIVIAL_CLEANUP_FUNC(char *, dm_deferred_remove_clean); |
| |
| static int verity_partition( |
| PartitionDesignator designator, |
| DissectedPartition *m, |
| DissectedPartition *v, |
| const VeritySettings *verity, |
| DissectImageFlags flags, |
| DecryptedImage *d) { |
| |
| _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; |
| _cleanup_(dm_deferred_remove_cleanp) char *restore_deferred_remove = NULL; |
| _cleanup_free_ char *node = NULL, *name = NULL; |
| int r; |
| |
| assert(m); |
| assert(v || (verity && verity->data_path)); |
| |
| if (!verity || !verity->root_hash) |
| return 0; |
| if (!((verity->designator < 0 && designator == PARTITION_ROOT) || |
| (verity->designator == designator))) |
| return 0; |
| |
| if (!m->found || !m->node || !m->fstype) |
| return 0; |
| if (!verity->data_path) { |
| if (!v->found || !v->node || !v->fstype) |
| return 0; |
| |
| if (!streq(v->fstype, "DM_verity_hash")) |
| return 0; |
| } |
| |
| r = dlopen_cryptsetup(); |
| if (r < 0) |
| return r; |
| |
| if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) { |
| /* Use the roothash, which is unique per volume, as the device node name, so that it can be reused */ |
| _cleanup_free_ char *root_hash_encoded = NULL; |
| |
| root_hash_encoded = hexmem(verity->root_hash, verity->root_hash_size); |
| if (!root_hash_encoded) |
| return -ENOMEM; |
| |
| r = make_dm_name_and_node(root_hash_encoded, "-verity", &name, &node); |
| } else |
| r = make_dm_name_and_node(m->node, "-verity", &name, &node); |
| if (r < 0) |
| return r; |
| |
| r = sym_crypt_init(&cd, verity->data_path ?: v->node); |
| if (r < 0) |
| return r; |
| |
| cryptsetup_enable_logging(cd); |
| |
| r = sym_crypt_load(cd, CRYPT_VERITY, NULL); |
| if (r < 0) |
| return r; |
| |
| r = sym_crypt_set_data_device(cd, m->node); |
| if (r < 0) |
| return r; |
| |
| if (!GREEDY_REALLOC0(d->decrypted, d->n_allocated, d->n_decrypted + 1)) |
| return -ENOMEM; |
| |
| /* If activating fails because the device already exists, check the metadata and reuse it if it matches. |
| * In case of ENODEV/ENOENT, which can happen if another process is activating at the exact same time, |
| * retry a few times before giving up. */ |
| for (unsigned i = 0; i < N_DEVICE_NODE_LIST_ATTEMPTS; i++) { |
| if (verity->root_hash_sig) { |
| #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY |
| r = sym_crypt_activate_by_signed_key( |
| cd, |
| name, |
| verity->root_hash, |
| verity->root_hash_size, |
| verity->root_hash_sig, |
| verity->root_hash_sig_size, |
| CRYPT_ACTIVATE_READONLY); |
| #else |
| r = log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), |
| "Activation of verity device with signature requested, but not supported by %s due to missing crypt_activate_by_signed_key().", program_invocation_short_name); |
| #endif |
| } else |
| r = sym_crypt_activate_by_volume_key( |
| cd, |
| name, |
| verity->root_hash, |
| verity->root_hash_size, |
| CRYPT_ACTIVATE_READONLY); |
| /* libdevmapper can return EINVAL when the device is already in the activation stage. |
| * There's no way to distinguish this situation from a genuine error due to invalid |
| * parameters, so immediately fall back to activating the device with a unique name. |
| * Improvements in libcrypsetup can ensure this never happens: |
| * https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/96 */ |
| if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) |
| return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d); |
| if (!IN_SET(r, |
| 0, /* Success */ |
| -EEXIST, /* Volume is already open and ready to be used */ |
| -EBUSY, /* Volume is being opened but not ready, crypt_init_by_name can fetch details */ |
| -ENODEV /* Volume is being opened but not ready, crypt_init_by_name would fail, try to open again */)) |
| return r; |
| if (IN_SET(r, -EEXIST, -EBUSY)) { |
| struct crypt_device *existing_cd = NULL; |
| |
| if (!restore_deferred_remove){ |
| /* To avoid races, disable automatic removal on umount while setting up the new device. Restore it on failure. */ |
| r = dm_deferred_remove_cancel(name); |
| /* If activation returns EBUSY there might be no deferred removal to cancel, that's fine */ |
| if (r < 0 && r != -ENXIO) |
| return log_debug_errno(r, "Disabling automated deferred removal for verity device %s failed: %m", node); |
| if (r == 0) { |
| restore_deferred_remove = strdup(name); |
| if (!restore_deferred_remove) |
| return -ENOMEM; |
| } |
| } |
| |
| r = verity_can_reuse(verity, name, &existing_cd); |
| /* Same as above, -EINVAL can randomly happen when it actually means -EEXIST */ |
| if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) |
| return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d); |
| if (!IN_SET(r, 0, -ENODEV, -ENOENT, -EBUSY)) |
| return log_debug_errno(r, "Checking whether existing verity device %s can be reused failed: %m", node); |
| if (r == 0) { |
| /* devmapper might say that the device exists, but the devlink might not yet have been |
| * created. Check and wait for the udev event in that case. */ |
| r = device_wait_for_devlink(node, "block", usec_add(now(CLOCK_MONOTONIC), 100 * USEC_PER_MSEC), NULL); |
| /* Fallback to activation with a unique device if it's taking too long */ |
| if (r == -ETIMEDOUT) |
| break; |
| if (r < 0) |
| return r; |
| |
| if (cd) |
| sym_crypt_free(cd); |
| cd = existing_cd; |
| } |
| } |
| if (r == 0) |
| break; |
| |
| /* Device is being opened by another process, but it has not finished yet, yield for 2ms */ |
| (void) usleep(2 * USEC_PER_MSEC); |
| } |
| |
| /* An existing verity device was reported by libcryptsetup/libdevmapper, but we can't use it at this time. |
| * Fall back to activating it with a unique device name. */ |
| if (r != 0 && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) |
| return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d); |
| |
| /* Everything looks good and we'll be able to mount the device, so deferred remove will be re-enabled at that point. */ |
| restore_deferred_remove = mfree(restore_deferred_remove); |
| |
| d->decrypted[d->n_decrypted++] = (DecryptedPartition) { |
| .name = TAKE_PTR(name), |
| .device = TAKE_PTR(cd), |
| }; |
| |
| m->decrypted_node = TAKE_PTR(node); |
| |
| return 0; |
| } |
| #endif |
| |
| int dissected_image_decrypt( |
| DissectedImage *m, |
| const char *passphrase, |
| const VeritySettings *verity, |
| DissectImageFlags flags, |
| DecryptedImage **ret) { |
| |
| #if HAVE_LIBCRYPTSETUP |
| _cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL; |
| int r; |
| #endif |
| |
| assert(m); |
| assert(!verity || verity->root_hash || verity->root_hash_size == 0); |
| |
| /* Returns: |
| * |
| * = 0 → There was nothing to decrypt |
| * > 0 → Decrypted successfully |
| * -ENOKEY → There's something to decrypt but no key was supplied |
| * -EKEYREJECTED → Passed key was not correct |
| */ |
| |
| if (verity && verity->root_hash && verity->root_hash_size < sizeof(sd_id128_t)) |
| return -EINVAL; |
| |
| if (!m->encrypted && !m->verity) { |
| *ret = NULL; |
| return 0; |
| } |
| |
| #if HAVE_LIBCRYPTSETUP |
| d = new0(DecryptedImage, 1); |
| if (!d) |
| return -ENOMEM; |
| |
| for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) { |
| DissectedPartition *p = m->partitions + i; |
| PartitionDesignator k; |
| |
| if (!p->found) |
| continue; |
| |
| r = decrypt_partition(p, passphrase, flags, d); |
| if (r < 0) |
| return r; |
| |
| k = PARTITION_VERITY_OF(i); |
| if (k >= 0) { |
| r = verity_partition(i, p, m->partitions + k, verity, flags | DISSECT_IMAGE_VERITY_SHARE, d); |
| if (r < 0) |
| return r; |
| } |
| |
| if (!p->decrypted_fstype && p->decrypted_node) { |
| r = probe_filesystem(p->decrypted_node, &p->decrypted_fstype); |
| if (r < 0 && r != -EUCLEAN) |
| return r; |
| } |
| } |
| |
| *ret = TAKE_PTR(d); |
| |
| return 1; |
| #else |
| return -EOPNOTSUPP; |
| #endif |
| } |
| |
| int dissected_image_decrypt_interactively( |
| DissectedImage *m, |
| const char *passphrase, |
| const VeritySettings *verity, |
| DissectImageFlags flags, |
| DecryptedImage **ret) { |
| |
| _cleanup_strv_free_erase_ char **z = NULL; |
| int n = 3, r; |
| |
| if (passphrase) |
| n--; |
| |
| for (;;) { |
| r = dissected_image_decrypt(m, passphrase, verity, flags, ret); |
| if (r >= 0) |
| return r; |
| if (r == -EKEYREJECTED) |
| log_error_errno(r, "Incorrect passphrase, try again!"); |
| else if (r != -ENOKEY) |
| return log_error_errno(r, "Failed to decrypt image: %m"); |
| |
| if (--n < 0) |
| return log_error_errno(SYNTHETIC_ERRNO(EKEYREJECTED), |
| "Too many retries."); |
| |
| z = strv_free(z); |
| |
| r = ask_password_auto("Please enter image passphrase:", NULL, "dissect", "dissect", USEC_INFINITY, 0, &z); |
| if (r < 0) |
| return log_error_errno(r, "Failed to query for passphrase: %m"); |
| |
| passphrase = z[0]; |
| } |
| } |
| |
| int decrypted_image_relinquish(DecryptedImage *d) { |
| |
| #if HAVE_LIBCRYPTSETUP |
| size_t i; |
| int r; |
| #endif |
| |
| assert(d); |
| |
| /* Turns on automatic removal after the last use ended for all DM devices of this image, and sets a boolean so |
| * that we don't clean it up ourselves either anymore */ |
| |
| #if HAVE_LIBCRYPTSETUP |
| for (i = 0; i < d->n_decrypted; i++) { |
| DecryptedPartition *p = d->decrypted + i; |
| |
| if (p->relinquished) |
| continue; |
| |
| r = sym_crypt_deactivate_by_name(NULL, p->name, CRYPT_DEACTIVATE_DEFERRED); |
| if (r < 0) |
| return log_debug_errno(r, "Failed to mark %s for auto-removal: %m", p->name); |
| |
| p->relinquished = true; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static char *build_auxiliary_path(const char *image, const char *suffix) { |
| const char *e; |
| char *n; |
| |
| assert(image); |
| assert(suffix); |
| |
| e = endswith(image, ".raw"); |
| if (!e) |
| return strjoin(e, suffix); |
| |
| n = new(char, e - image + strlen(suffix) + 1); |
| if (!n) |
| return NULL; |
| |
| strcpy(mempcpy(n, image, e - image), suffix); |
| return n; |
| } |
| |
| void verity_settings_done(VeritySettings *v) { |
| assert(v); |
| |
| v->root_hash = mfree(v->root_hash); |
| v->root_hash_size = 0; |
| |
| v->root_hash_sig = mfree(v->root_hash_sig); |
| v->root_hash_sig_size = 0; |
| |
| v->data_path = mfree(v->data_path); |
| } |
| |
| int verity_settings_load( |
| VeritySettings *verity, |
| const char *image, |
| const char *root_hash_path, |
| const char *root_hash_sig_path) { |
| |
| _cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL; |
| size_t root_hash_size = 0, root_hash_sig_size = 0; |
| _cleanup_free_ char *verity_data_path = NULL; |
| PartitionDesignator designator; |
| int r; |
| |
| assert(verity); |
| assert(image); |
| assert(verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR)); |
| |
| /* If we are asked to load the root hash for a device node, exit early */ |
| if (is_device_path(image)) |
| return 0; |
| |
| designator = verity->designator; |
| |
| /* We only fill in what isn't already filled in */ |
| |
| if (!verity->root_hash) { |
| _cleanup_free_ char *text = NULL; |
| |
| if (root_hash_path) { |
| /* If explicitly specified it takes precedence */ |
| r = read_one_line_file(root_hash_path, &text); |
| if (r < 0) |
| return r; |
| |
| if (designator < 0) |
| designator = PARTITION_ROOT; |
| } else { |
| /* Otherwise look for xattr and separate file, and first for the data for root and if |
| * that doesn't exist for /usr */ |
| |
| if (designator < 0 || designator == PARTITION_ROOT) { |
| r = getxattr_malloc(image, "user.verity.roothash", &text, true); |
| if (r < 0) { |
| _cleanup_free_ char *p = NULL; |
| |
| if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r)) |
| return r; |
| |
| p = build_auxiliary_path(image, ".roothash"); |
| if (!p) |
| return -ENOMEM; |
| |
| r = read_one_line_file(p, &text); |
| if (r < 0 && r != -ENOENT) |
| return r; |
| } |
| |
| if (text) |
| designator = PARTITION_ROOT; |
| } |
| |
| if (!text && (designator < 0 || designator == PARTITION_USR)) { |
| /* So in the "roothash" xattr/file name above the "root" of course primarily |
| * refers to the root of the Verity Merkle tree. But coincidentally it also |
| * is the hash for the *root* file system, i.e. the "root" neatly refers to |
| * two distinct concepts called "root". Taking benefit of this happy |
| * coincidence we call the file with the root hash for the /usr/ file system |
| * `usrhash`, because `usrroothash` or `rootusrhash` would just be too |
| * confusing. We thus drop the reference to the root of the Merkle tree, and |
| * just indicate which file system it's about. */ |
| r = getxattr_malloc(image, "user.verity.usrhash", &text, true); |
| if (r < 0) { |
| _cleanup_free_ char *p = NULL; |
| |
| if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r)) |
| return r; |
| |
| p = build_auxiliary_path(image, ".usrhash"); |
| if (!p) |
| return -ENOMEM; |
| |
| r = read_one_line_file(p, &text); |
| if (r < 0 && r != -ENOENT) |
| return r; |
| } |
| |
| if (text) |
| designator = PARTITION_USR; |
| } |
| } |
| |
| if (text) { |
| r = unhexmem(text, strlen(text), &root_hash, &root_hash_size); |
| if (r < 0) |
| return r; |
| if (root_hash_size < sizeof(sd_id128_t)) |
| return -EINVAL; |
| } |
| } |
| |
| if (verity->root_hash && !verity->root_hash_sig) { |
| if (root_hash_sig_path) { |
| r = read_full_file_full(AT_FDCWD, root_hash_sig_path, 0, NULL, (char**) &root_hash_sig, &root_hash_sig_size); |
| if (r < 0 && r != -ENOENT) |
| return r; |
| |
| if (designator < 0) |
| designator = PARTITION_ROOT; |
| } else { |
| if (designator < 0 || designator == PARTITION_ROOT) { |
| _cleanup_free_ char *p = NULL; |
| |
| /* Follow naming convention recommended by the relevant RFC: |
| * https://tools.ietf.org/html/rfc5751#section-3.2.1 */ |
| p = build_auxiliary_path(image, ".roothash.p7s"); |
| if (!p) |
| return -ENOMEM; |
| |
| r = read_full_file_full(AT_FDCWD, p, 0, NULL, (char**) &root_hash_sig, &root_hash_sig_size); |
| if (r < 0 && r != -ENOENT) |
| return r; |
| if (r >= 0) |
| designator = PARTITION_ROOT; |
| } |
| |
| if (!root_hash_sig && (designator < 0 || designator == PARTITION_USR)) { |
| _cleanup_free_ char *p = NULL; |
| |
| p = build_auxiliary_path(image, ".usrhash.p7s"); |
| if (!p) |
| return -ENOMEM; |
| |
| r = read_full_file_full(AT_FDCWD, p, 0, NULL, (char**) &root_hash_sig, &root_hash_sig_size); |
| if (r < 0 && r != -ENOENT) |
| return r; |
| if (r >= 0) |
| designator = PARTITION_USR; |
| } |
| } |
| |
| if (root_hash_sig && root_hash_sig_size == 0) /* refuse empty size signatures */ |
| return -EINVAL; |
| } |
| |
| if (!verity->data_path) { |
| _cleanup_free_ char *p = NULL; |
| |
| p = build_auxiliary_path(image, ".verity"); |
| if (!p) |
| return -ENOMEM; |
| |
| if (access(p, F_OK) < 0) { |
| if (errno != ENOENT) |
| return -errno; |
| } else |
| verity_data_path = TAKE_PTR(p); |
| } |
| |
| if (root_hash) { |
| verity->root_hash = TAKE_PTR(root_hash); |
| verity->root_hash_size = root_hash_size; |
| } |
| |
| if (root_hash_sig) { |
| verity->root_hash_sig = TAKE_PTR(root_hash_sig); |
| verity->root_hash_sig_size = root_hash_sig_size; |
| } |
| |
| if (verity_data_path) |
| verity->data_path = TAKE_PTR(verity_data_path); |
| |
| if (verity->designator < 0) |
| verity->designator = designator; |
| |
| return 1; |
| } |
| |
| int dissected_image_acquire_metadata(DissectedImage *m) { |
| |
| enum { |
| META_HOSTNAME, |
| META_MACHINE_ID, |
| META_MACHINE_INFO, |
| META_OS_RELEASE, |
| _META_MAX, |
| }; |
| |
| static const char *const paths[_META_MAX] = { |
| [META_HOSTNAME] = "/etc/hostname\0", |
| [META_MACHINE_ID] = "/etc/machine-id\0", |
| [META_MACHINE_INFO] = "/etc/machine-info\0", |
| [META_OS_RELEASE] = "/etc/os-release\0" |
| "/usr/lib/os-release\0", |
| }; |
| |
| _cleanup_strv_free_ char **machine_info = NULL, **os_release = NULL; |
| _cleanup_close_pair_ int error_pipe[2] = { -1, -1 }; |
| _cleanup_(rmdir_and_freep) char *t = NULL; |
| _cleanup_(sigkill_waitp) pid_t child = 0; |
| sd_id128_t machine_id = SD_ID128_NULL; |
| _cleanup_free_ char *hostname = NULL; |
| unsigned n_meta_initialized = 0, k; |
| int fds[2 * _META_MAX], r, v; |
| ssize_t n; |
| |
| BLOCK_SIGNALS(SIGCHLD); |
| |
| assert(m); |
| |
| for (; n_meta_initialized < _META_MAX; n_meta_initialized ++) |
| if (pipe2(fds + 2*n_meta_initialized, O_CLOEXEC) < 0) { |
| r = -errno; |
| goto finish; |
| } |
| |
| r = mkdtemp_malloc("/tmp/dissect-XXXXXX", &t); |
| if (r < 0) |
| goto finish; |
| |
| if (pipe2(error_pipe, O_CLOEXEC) < 0) { |
| r = -errno; |
| goto finish; |
| } |
| |
| r = safe_fork("(sd-dissect)", FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, &child); |
| if (r < 0) |
| goto finish; |
| if (r == 0) { |
| error_pipe[0] = safe_close(error_pipe[0]); |
| |
| r = dissected_image_mount(m, t, UID_INVALID, DISSECT_IMAGE_READ_ONLY|DISSECT_IMAGE_MOUNT_ROOT_ONLY|DISSECT_IMAGE_VALIDATE_OS); |
| if (r < 0) { |
| /* Let parent know the error */ |
| (void) write(error_pipe[1], &r, sizeof(r)); |
| |
| log_debug_errno(r, "Failed to mount dissected image: %m"); |
| _exit(EXIT_FAILURE); |
| } |
| |
| for (k = 0; k < _META_MAX; k++) { |
| _cleanup_close_ int fd = -ENOENT; |
| const char *p; |
| |
| fds[2*k] = safe_close(fds[2*k]); |
| |
| NULSTR_FOREACH(p, paths[k]) { |
| fd = chase_symlinks_and_open(p, t, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NOCTTY, NULL); |
| if (fd >= 0) |
| break; |
| } |
| if (fd < 0) { |
| log_debug_errno(fd, "Failed to read %s file of image, ignoring: %m", paths[k]); |
| fds[2*k+1] = safe_close(fds[2*k+1]); |
| continue; |
| } |
| |
| r = copy_bytes(fd, fds[2*k+1], (uint64_t) -1, 0); |
| if (r < 0) { |
| (void) write(error_pipe[1], &r, sizeof(r)); |
| _exit(EXIT_FAILURE); |
| } |
| |
| fds[2*k+1] = safe_close(fds[2*k+1]); |
| } |
| |
| _exit(EXIT_SUCCESS); |
| } |
| |
| error_pipe[1] = safe_close(error_pipe[1]); |
| |
| for (k = 0; k < _META_MAX; k++) { |
| _cleanup_fclose_ FILE *f = NULL; |
| |
| fds[2*k+1] = safe_close(fds[2*k+1]); |
| |
| f = take_fdopen(&fds[2*k], "r"); |
| if (!f) { |
| r = -errno; |
| goto finish; |
| } |
| |
| switch (k) { |
| |
| case META_HOSTNAME: |
| r = read_etc_hostname_stream(f, &hostname); |
| if (r < 0) |
| log_debug_errno(r, "Failed to read /etc/hostname: %m"); |
| |
| break; |
| |
| case META_MACHINE_ID: { |
| _cleanup_free_ char *line = NULL; |
| |
| r = read_line(f, LONG_LINE_MAX, &line); |
| if (r < 0) |
| log_debug_errno(r, "Failed to read /etc/machine-id: %m"); |
| else if (r == 33) { |
| r = sd_id128_from_string(line, &machine_id); |
| if (r < 0) |
| log_debug_errno(r, "Image contains invalid /etc/machine-id: %s", line); |
| } else if (r == 0) |
| log_debug("/etc/machine-id file is empty."); |
| else if (streq(line, "uninitialized")) |
| log_debug("/etc/machine-id file is uninitialized (likely aborted first boot)."); |
| else |
| log_debug("/etc/machine-id has unexpected length %i.", r); |
| |
| break; |
| } |
| |
| case META_MACHINE_INFO: |
| r = load_env_file_pairs(f, "machine-info", &machine_info); |
| if (r < 0) |
| log_debug_errno(r, "Failed to read /etc/machine-info: %m"); |
| |
| break; |
| |
| case META_OS_RELEASE: |
| r = load_env_file_pairs(f, "os-release", &os_release); |
| if (r < 0) |
| log_debug_errno(r, "Failed to read OS release file: %m"); |
| |
| break; |
| } |
| } |
| |
| r = wait_for_terminate_and_check("(sd-dissect)", child, 0); |
| child = 0; |
| if (r < 0) |
| return r; |
| |
| n = read(error_pipe[0], &v, sizeof(v)); |
| if (n < 0) |
| return -errno; |
| if (n == sizeof(v)) |
| return v; /* propagate error sent to us from child */ |
| if (n != 0) |
| return -EIO; |
| |
| if (r != EXIT_SUCCESS) |
| return -EPROTO; |
| |
| free_and_replace(m->hostname, hostname); |
| m->machine_id = machine_id; |
| strv_free_and_replace(m->machine_info, machine_info); |
| strv_free_and_replace(m->os_release, os_release); |
| |
| finish: |
| for (k = 0; k < n_meta_initialized; k++) |
| safe_close_pair(fds + 2*k); |
| |
| return r; |
| } |
| |
| int dissect_image_and_warn( |
| int fd, |
| const char *name, |
| const VeritySettings *verity, |
| const MountOptions *mount_options, |
| DissectImageFlags flags, |
| DissectedImage **ret) { |
| |
| _cleanup_free_ char *buffer = NULL; |
| int r; |
| |
| if (!name) { |
| r = fd_get_path(fd, &buffer); |
| if (r < 0) |
| return r; |
| |
| name = buffer; |
| } |
| |
| r = dissect_image(fd, verity, mount_options, flags, ret); |
| switch (r) { |
| |
| case -EOPNOTSUPP: |
| return log_error_errno(r, "Dissecting images is not supported, compiled without blkid support."); |
| |
| case -ENOPKG: |
| return log_error_errno(r, "Couldn't identify a suitable partition table or file system in '%s'.", name); |
| |
| case -EADDRNOTAVAIL: |
| return log_error_errno(r, "No root partition for specified root hash found in '%s'.", name); |
| |
| case -ENOTUNIQ: |
| return log_error_errno(r, "Multiple suitable root partitions found in image '%s'.", name); |
| |
| case -ENXIO: |
| return log_error_errno(r, "No suitable root partition found in image '%s'.", name); |
| |
| case -EPROTONOSUPPORT: |
| return log_error_errno(r, "Device '%s' is loopback block device with partition scanning turned off, please turn it on.", name); |
| |
| default: |
| if (r < 0) |
| return log_error_errno(r, "Failed to dissect image '%s': %m", name); |
| |
| return r; |
| } |
| } |
| |
| bool dissected_image_can_do_verity(const DissectedImage *image, PartitionDesignator partition_designator) { |
| if (image->single_file_system) |
| return partition_designator == PARTITION_ROOT && image->can_verity; |
| |
| return PARTITION_VERITY_OF(partition_designator) >= 0; |
| } |
| |
| bool dissected_image_has_verity(const DissectedImage *image, PartitionDesignator partition_designator) { |
| int k; |
| |
| if (image->single_file_system) |
| return partition_designator == PARTITION_ROOT && image->verity; |
| |
| k = PARTITION_VERITY_OF(partition_designator); |
| return k >= 0 && image->partitions[k].found; |
| } |
| |
| MountOptions* mount_options_free_all(MountOptions *options) { |
| MountOptions *m; |
| |
| while ((m = options)) { |
| LIST_REMOVE(mount_options, options, m); |
| free(m->options); |
| free(m); |
| } |
| |
| return NULL; |
| } |
| |
| const char* mount_options_from_designator(const MountOptions *options, PartitionDesignator designator) { |
| const MountOptions *m; |
| |
| LIST_FOREACH(mount_options, m, options) |
| if (designator == m->partition_designator && !isempty(m->options)) |
| return m->options; |
| |
| return NULL; |
| } |
| |
| int mount_image_privately_interactively( |
| const char *image, |
| DissectImageFlags flags, |
| char **ret_directory, |
| LoopDevice **ret_loop_device, |
| DecryptedImage **ret_decrypted_image) { |
| |
| _cleanup_(loop_device_unrefp) LoopDevice *d = NULL; |
| _cleanup_(decrypted_image_unrefp) DecryptedImage *decrypted_image = NULL; |
| _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL; |
| _cleanup_(rmdir_and_freep) char *created_dir = NULL; |
| _cleanup_free_ char *temp = NULL; |
| int r; |
| |
| /* Mounts an OS image at a temporary place, inside a newly created mount namespace of our own. This |
| * is used by tools such as systemd-tmpfiles or systemd-firstboot to operate on some disk image |
| * easily. */ |
| |
| assert(image); |
| assert(ret_directory); |
| assert(ret_loop_device); |
| assert(ret_decrypted_image); |
| |
| r = tempfn_random_child(NULL, program_invocation_short_name, &temp); |
| if (r < 0) |
| return log_error_errno(r, "Failed to generate temporary mount directory: %m"); |
| |
| r = loop_device_make_by_path( |
| image, |
| FLAGS_SET(flags, DISSECT_IMAGE_READ_ONLY) ? O_RDONLY : O_RDWR, |
| FLAGS_SET(flags, DISSECT_IMAGE_NO_PARTITION_TABLE) ? 0 : LO_FLAGS_PARTSCAN, |
| &d); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set up loopback device: %m"); |
| |
| r = dissect_image_and_warn(d->fd, image, NULL, NULL, flags, &dissected_image); |
| if (r < 0) |
| return r; |
| |
| r = dissected_image_decrypt_interactively(dissected_image, NULL, NULL, flags, &decrypted_image); |
| if (r < 0) |
| return r; |
| |
| r = detach_mount_namespace(); |
| if (r < 0) |
| return log_error_errno(r, "Failed to detach mount namespace: %m"); |
| |
| r = mkdir_p(temp, 0700); |
| if (r < 0) |
| return log_error_errno(r, "Failed to create mount point: %m"); |
| |
| created_dir = TAKE_PTR(temp); |
| |
| r = dissected_image_mount_and_warn(dissected_image, created_dir, UID_INVALID, flags); |
| if (r < 0) |
| return r; |
| |
| if (decrypted_image) { |
| r = decrypted_image_relinquish(decrypted_image); |
| if (r < 0) |
| return log_error_errno(r, "Failed to relinquish DM devices: %m"); |
| } |
| |
| loop_device_relinquish(d); |
| |
| *ret_directory = TAKE_PTR(created_dir); |
| *ret_loop_device = TAKE_PTR(d); |
| *ret_decrypted_image = TAKE_PTR(decrypted_image); |
| |
| return 0; |
| } |
| |
| static const char *const partition_designator_table[] = { |
| [PARTITION_ROOT] = "root", |
| [PARTITION_ROOT_SECONDARY] = "root-secondary", |
| [PARTITION_USR] = "usr", |
| [PARTITION_USR_SECONDARY] = "usr-secondary", |
| [PARTITION_HOME] = "home", |
| [PARTITION_SRV] = "srv", |
| [PARTITION_ESP] = "esp", |
| [PARTITION_XBOOTLDR] = "xbootldr", |
| [PARTITION_SWAP] = "swap", |
| [PARTITION_ROOT_VERITY] = "root-verity", |
| [PARTITION_ROOT_SECONDARY_VERITY] = "root-secondary-verity", |
| [PARTITION_USR_VERITY] = "usr-verity", |
| [PARTITION_USR_SECONDARY_VERITY] = "usr-secondary-verity", |
| [PARTITION_TMP] = "tmp", |
| [PARTITION_VAR] = "var", |
| }; |
| |
| DEFINE_STRING_TABLE_LOOKUP(partition_designator, PartitionDesignator); |