blob: b32a8bc4e4d2d89f6f48f30e17409bcb78d90e10 [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#if HAVE_VALGRIND_MEMCHECK_H
#include <valgrind/memcheck.h>
#endif
#include <linux/dm-ioctl.h>
#include <linux/loop.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sys/wait.h>
#include <sysexits.h>
#include "sd-device.h"
#include "sd-id128.h"
#include "architecture.h"
#include "ask-password-api.h"
#include "blkid-util.h"
#include "blockdev-util.h"
#include "copy.h"
#include "cryptsetup-util.h"
#include "def.h"
#include "device-nodes.h"
#include "device-util.h"
#include "dissect-image.h"
#include "dm-util.h"
#include "env-file.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "fsck-util.h"
#include "gpt.h"
#include "hexdecoct.h"
#include "hostname-util.h"
#include "id128-util.h"
#include "mkdir.h"
#include "mount-util.h"
#include "mountpoint-util.h"
#include "namespace-util.h"
#include "nulstr-util.h"
#include "os-util.h"
#include "path-util.h"
#include "process-util.h"
#include "raw-clone.h"
#include "signal-util.h"
#include "stat-util.h"
#include "stdio-util.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "tmpfile-util.h"
#include "udev-util.h"
#include "user-util.h"
#include "xattr-util.h"
/* how many times to wait for the device nodes to appear */
#define N_DEVICE_NODE_LIST_ATTEMPTS 10
int probe_filesystem(const char *node, char **ret_fstype) {
/* Try to find device content type and return it in *ret_fstype. If nothing is found,
* 0/NULL will be returned. -EUCLEAN will be returned for ambiguous results, and an
* different error otherwise. */
#if HAVE_BLKID
_cleanup_(blkid_free_probep) blkid_probe b = NULL;
const char *fstype;
int r;
errno = 0;
b = blkid_new_probe_from_filename(node);
if (!b)
return errno_or_else(ENOMEM);
blkid_probe_enable_superblocks(b, 1);
blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE);
errno = 0;
r = blkid_do_safeprobe(b);
if (r == 1) {
log_debug("No type detected on partition %s", node);
goto not_found;
}
if (r == -2)
return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN),
"Results ambiguous for partition %s", node);
if (r != 0)
return errno_or_else(EIO);
(void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
if (fstype) {
char *t;
t = strdup(fstype);
if (!t)
return -ENOMEM;
*ret_fstype = t;
return 1;
}
not_found:
*ret_fstype = NULL;
return 0;
#else
return -EOPNOTSUPP;
#endif
}
#if HAVE_BLKID
static int enumerator_for_parent(sd_device *d, sd_device_enumerator **ret) {
_cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
int r;
assert(d);
assert(ret);
r = sd_device_enumerator_new(&e);
if (r < 0)
return r;
r = sd_device_enumerator_allow_uninitialized(e);
if (r < 0)
return r;
r = sd_device_enumerator_add_match_parent(e, d);
if (r < 0)
return r;
*ret = TAKE_PTR(e);
return 0;
}
static int device_is_partition(sd_device *d, blkid_partition pp) {
blkid_loff_t bsize, bstart;
uint64_t size, start;
int partno, bpartno, r;
const char *ss, *v;
assert(d);
assert(pp);
r = sd_device_get_subsystem(d, &ss);
if (r < 0)
return r;
if (!streq(ss, "block"))
return false;
r = sd_device_get_sysattr_value(d, "partition", &v);
if (r == -ENOENT) /* Not a partition device */
return false;
if (r < 0)
return r;
r = safe_atoi(v, &partno);
if (r < 0)
return r;
errno = 0;
bpartno = blkid_partition_get_partno(pp);
if (bpartno < 0)
return errno_or_else(EIO);
if (partno != bpartno)
return false;
r = sd_device_get_sysattr_value(d, "start", &v);
if (r < 0)
return r;
r = safe_atou64(v, &start);
if (r < 0)
return r;
errno = 0;
bstart = blkid_partition_get_start(pp);
if (bstart < 0)
return errno_or_else(EIO);
if (start != (uint64_t) bstart)
return false;
r = sd_device_get_sysattr_value(d, "size", &v);
if (r < 0)
return r;
r = safe_atou64(v, &size);
if (r < 0)
return r;
errno = 0;
bsize = blkid_partition_get_size(pp);
if (bsize < 0)
return errno_or_else(EIO);
if (size != (uint64_t) bsize)
return false;
return true;
}
static int find_partition(
sd_device *parent,
blkid_partition pp,
sd_device **ret) {
_cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
sd_device *q;
int r;
assert(parent);
assert(pp);
assert(ret);
r = enumerator_for_parent(parent, &e);
if (r < 0)
return r;
FOREACH_DEVICE(e, q) {
r = device_is_partition(q, pp);
if (r < 0)
return r;
if (r > 0) {
*ret = sd_device_ref(q);
return 0;
}
}
return -ENXIO;
}
struct wait_data {
sd_device *parent_device;
blkid_partition blkidp;
sd_device *found;
};
static inline void wait_data_done(struct wait_data *d) {
sd_device_unref(d->found);
}
static int device_monitor_handler(sd_device_monitor *monitor, sd_device *device, void *userdata) {
const char *parent1_path, *parent2_path;
struct wait_data *w = userdata;
sd_device *pp;
int r;
assert(w);
if (device_for_action(device, DEVICE_ACTION_REMOVE))
return 0;
r = sd_device_get_parent(device, &pp);
if (r < 0)
return 0; /* Doesn't have a parent? No relevant to us */
r = sd_device_get_syspath(pp, &parent1_path); /* Check parent of device of this action */
if (r < 0)
goto finish;
r = sd_device_get_syspath(w->parent_device, &parent2_path); /* Check parent of device we are looking for */
if (r < 0)
goto finish;
if (!path_equal(parent1_path, parent2_path))
return 0; /* Has a different parent than what we need, not interesting to us */
r = device_is_partition(device, w->blkidp);
if (r < 0)
goto finish;
if (r == 0) /* Not the one we need */
return 0;
/* It's the one we need! Yay! */
assert(!w->found);
w->found = sd_device_ref(device);
r = 0;
finish:
return sd_event_exit(sd_device_monitor_get_event(monitor), r);
}
static int wait_for_partition_device(
sd_device *parent,
blkid_partition pp,
usec_t deadline,
sd_device **ret) {
_cleanup_(sd_event_source_unrefp) sd_event_source *timeout_source = NULL;
_cleanup_(sd_device_monitor_unrefp) sd_device_monitor *monitor = NULL;
_cleanup_(sd_event_unrefp) sd_event *event = NULL;
int r;
assert(parent);
assert(pp);
assert(ret);
r = find_partition(parent, pp, ret);
if (r != -ENXIO)
return r;
r = sd_event_new(&event);
if (r < 0)
return r;
r = sd_device_monitor_new(&monitor);
if (r < 0)
return r;
r = sd_device_monitor_filter_add_match_subsystem_devtype(monitor, "block", "partition");
if (r < 0)
return r;
r = sd_device_monitor_attach_event(monitor, event);
if (r < 0)
return r;
_cleanup_(wait_data_done) struct wait_data w = {
.parent_device = parent,
.blkidp = pp,
};
r = sd_device_monitor_start(monitor, device_monitor_handler, &w);
if (r < 0)
return r;
/* Check again, the partition might have appeared in the meantime */
r = find_partition(parent, pp, ret);
if (r != -ENXIO)
return r;
if (deadline != USEC_INFINITY) {
r = sd_event_add_time(
event, &timeout_source,
CLOCK_MONOTONIC, deadline, 0,
NULL, INT_TO_PTR(-ETIMEDOUT));
if (r < 0)
return r;
}
r = sd_event_loop(event);
if (r < 0)
return r;
assert(w.found);
*ret = TAKE_PTR(w.found);
return 0;
}
static void check_partition_flags(
const char *node,
unsigned long long pflags,
unsigned long long supported) {
assert(node);
/* Mask away all flags supported by this partition's type and the three flags the UEFI spec defines generically */
pflags &= ~(supported | GPT_FLAG_REQUIRED_PARTITION | GPT_FLAG_NO_BLOCK_IO_PROTOCOL | GPT_FLAG_LEGACY_BIOS_BOOTABLE);
if (pflags == 0)
return;
/* If there are other bits set, then log about it, to make things discoverable */
for (unsigned i = 0; i < sizeof(pflags) * 8; i++) {
unsigned long long bit = 1ULL << i;
if (!FLAGS_SET(pflags, bit))
continue;
log_debug("Unexpected partition flag %llu set on %s!", bit, node);
}
}
static int device_wait_for_initialization_harder(
sd_device *device,
const char *subsystem,
usec_t deadline,
sd_device **ret) {
_cleanup_free_ char *uevent = NULL;
usec_t start, left, retrigger_timeout;
int r;
start = now(CLOCK_MONOTONIC);
left = usec_sub_unsigned(deadline, start);
if (DEBUG_LOGGING) {
char buf[FORMAT_TIMESPAN_MAX];
const char *sn = NULL;
(void) sd_device_get_sysname(device, &sn);
log_debug("Waiting for device '%s' to initialize for %s.", strna(sn), format_timespan(buf, sizeof(buf), left, 0));
}
if (left != USEC_INFINITY)
retrigger_timeout = CLAMP(left / 4, 1 * USEC_PER_SEC, 5 * USEC_PER_SEC); /* A fourth of the total timeout, but let's clamp to 1s…5s range */
else
retrigger_timeout = 2 * USEC_PER_SEC;
for (;;) {
usec_t local_deadline, n;
bool last_try;
n = now(CLOCK_MONOTONIC);
assert(n >= start);
/* Find next deadline, when we'll retrigger */
local_deadline = start +
DIV_ROUND_UP(n - start, retrigger_timeout) * retrigger_timeout;
if (deadline != USEC_INFINITY && deadline <= local_deadline) {
local_deadline = deadline;
last_try = true;
} else
last_try = false;
r = device_wait_for_initialization(device, subsystem, local_deadline, ret);
if (r >= 0 && DEBUG_LOGGING) {
char buf[FORMAT_TIMESPAN_MAX];
const char *sn = NULL;
(void) sd_device_get_sysname(device, &sn);
log_debug("Successfully waited for device '%s' to initialize for %s.", strna(sn), format_timespan(buf, sizeof(buf), usec_sub_unsigned(now(CLOCK_MONOTONIC), start), 0));
}
if (r != -ETIMEDOUT || last_try)
return r;
if (!uevent) {
const char *syspath;
r = sd_device_get_syspath(device, &syspath);
if (r < 0)
return r;
uevent = path_join(syspath, "uevent");
if (!uevent)
return -ENOMEM;
}
if (DEBUG_LOGGING) {
char buf[FORMAT_TIMESPAN_MAX];
log_debug("Device didn't initialize within %s, assuming lost event. Retriggering device through %s.",
format_timespan(buf, sizeof(buf), usec_sub_unsigned(now(CLOCK_MONOTONIC), start), 0),
uevent);
}
r = write_string_file(uevent, "change", WRITE_STRING_FILE_DISABLE_BUFFER);
if (r < 0)
return r;
}
}
#endif
#define DEVICE_TIMEOUT_USEC (45 * USEC_PER_SEC)
int dissect_image(
int fd,
const VeritySettings *verity,
const MountOptions *mount_options,
DissectImageFlags flags,
DissectedImage **ret) {
#if HAVE_BLKID
sd_id128_t root_uuid = SD_ID128_NULL, root_verity_uuid = SD_ID128_NULL,
usr_uuid = SD_ID128_NULL, usr_verity_uuid = SD_ID128_NULL;
bool is_gpt, is_mbr, generic_rw, multiple_generic = false;
_cleanup_(sd_device_unrefp) sd_device *d = NULL;
_cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
_cleanup_(blkid_free_probep) blkid_probe b = NULL;
_cleanup_free_ char *generic_node = NULL;
sd_id128_t generic_uuid = SD_ID128_NULL;
const char *pttype = NULL;
blkid_partlist pl;
int r, generic_nr, n_partitions;
struct stat st;
usec_t deadline;
assert(fd >= 0);
assert(ret);
assert(!verity || verity->root_hash || verity->root_hash_size == 0);
assert(!((flags & DISSECT_IMAGE_GPT_ONLY) && (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)));
/* Probes a disk image, and returns information about what it found in *ret.
*
* Returns -ENOPKG if no suitable partition table or file system could be found.
* Returns -EADDRNOTAVAIL if a root hash was specified but no matching root/verity partitions found. */
if (verity && verity->root_hash) {
sd_id128_t fsuuid, vuuid;
/* If a root hash is supplied, then we use the root partition that has a UUID that match the
* first 128bit of the root hash. And we use the verity partition that has a UUID that match
* the final 128bit. */
if (verity->root_hash_size < sizeof(sd_id128_t))
return -EINVAL;
memcpy(&fsuuid, verity->root_hash, sizeof(sd_id128_t));
memcpy(&vuuid, (const uint8_t*) verity->root_hash + verity->root_hash_size - sizeof(sd_id128_t), sizeof(sd_id128_t));
if (sd_id128_is_null(fsuuid))
return -EINVAL;
if (sd_id128_is_null(vuuid))
return -EINVAL;
/* If the verity data declares it's for the /usr partition, then search for that, in all
* other cases assume it's for the root partition. */
if (verity->designator == PARTITION_USR) {
usr_uuid = fsuuid;
usr_verity_uuid = vuuid;
} else {
root_uuid = fsuuid;
root_verity_uuid = vuuid;
}
}
if (fstat(fd, &st) < 0)
return -errno;
if (!S_ISBLK(st.st_mode))
return -ENOTBLK;
r = sd_device_new_from_devnum(&d, 'b', st.st_rdev);
if (r < 0)
return r;
if (!FLAGS_SET(flags, DISSECT_IMAGE_NO_UDEV)) {
_cleanup_(sd_device_unrefp) sd_device *initialized = NULL;
/* If udev support is enabled, then let's wait for the device to be initialized before we doing anything. */
r = device_wait_for_initialization_harder(
d,
"block",
usec_add(now(CLOCK_MONOTONIC), DEVICE_TIMEOUT_USEC),
&initialized);
if (r < 0)
return r;
sd_device_unref(d);
d = TAKE_PTR(initialized);
}
b = blkid_new_probe();
if (!b)
return -ENOMEM;
errno = 0;
r = blkid_probe_set_device(b, fd, 0, 0);
if (r != 0)
return errno_or_else(ENOMEM);
if ((flags & DISSECT_IMAGE_GPT_ONLY) == 0) {
/* Look for file system superblocks, unless we only shall look for GPT partition tables */
blkid_probe_enable_superblocks(b, 1);
blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE|BLKID_SUBLKS_USAGE);
}
blkid_probe_enable_partitions(b, 1);
blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS);
errno = 0;
r = blkid_do_safeprobe(b);
if (IN_SET(r, -2, 1))
return log_debug_errno(SYNTHETIC_ERRNO(ENOPKG), "Failed to identify any partition table.");
if (r != 0)
return errno_or_else(EIO);
m = new0(DissectedImage, 1);
if (!m)
return -ENOMEM;
if ((!(flags & DISSECT_IMAGE_GPT_ONLY) &&
(flags & DISSECT_IMAGE_REQUIRE_ROOT)) ||
(flags & DISSECT_IMAGE_NO_PARTITION_TABLE)) {
const char *usage = NULL;
/* If flags permit this, also allow using non-partitioned single-filesystem images */
(void) blkid_probe_lookup_value(b, "USAGE", &usage, NULL);
if (STRPTR_IN_SET(usage, "filesystem", "crypto")) {
const char *fstype = NULL, *options = NULL, *devname = NULL;
_cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
/* OK, we have found a file system, that's our root partition then. */
(void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
if (fstype) {
t = strdup(fstype);
if (!t)
return -ENOMEM;
}
r = sd_device_get_devname(d, &devname);
if (r < 0)
return r;
n = strdup(devname);
if (!n)
return -ENOMEM;
m->single_file_system = true;
m->verity = verity && verity->root_hash && verity->data_path && (verity->designator < 0 || verity->designator == PARTITION_ROOT);
m->can_verity = verity && verity->data_path;
options = mount_options_from_designator(mount_options, PARTITION_ROOT);
if (options) {
o = strdup(options);
if (!o)
return -ENOMEM;
}
m->partitions[PARTITION_ROOT] = (DissectedPartition) {
.found = true,
.rw = !m->verity,
.partno = -1,
.architecture = _ARCHITECTURE_INVALID,
.fstype = TAKE_PTR(t),
.node = TAKE_PTR(n),
.mount_options = TAKE_PTR(o),
};
m->encrypted = streq_ptr(fstype, "crypto_LUKS");
*ret = TAKE_PTR(m);
return 0;
}
}
(void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL);
if (!pttype)
return -ENOPKG;
is_gpt = streq_ptr(pttype, "gpt");
is_mbr = streq_ptr(pttype, "dos");
if (!is_gpt && ((flags & DISSECT_IMAGE_GPT_ONLY) || !is_mbr))
return -ENOPKG;
/* Safety check: refuse block devices that carry a partition table but for which the kernel doesn't
* do partition scanning. */
r = blockdev_partscan_enabled(fd);
if (r < 0)
return r;
if (r == 0)
return -EPROTONOSUPPORT;
errno = 0;
pl = blkid_probe_get_partitions(b);
if (!pl)
return errno_or_else(ENOMEM);
errno = 0;
n_partitions = blkid_partlist_numof_partitions(pl);
if (n_partitions < 0)
return errno_or_else(EIO);
deadline = usec_add(now(CLOCK_MONOTONIC), DEVICE_TIMEOUT_USEC);
for (int i = 0; i < n_partitions; i++) {
_cleanup_(sd_device_unrefp) sd_device *q = NULL;
unsigned long long pflags;
blkid_partition pp;
const char *node;
int nr;
errno = 0;
pp = blkid_partlist_get_partition(pl, i);
if (!pp)
return errno_or_else(EIO);
r = wait_for_partition_device(d, pp, deadline, &q);
if (r < 0)
return r;
r = sd_device_get_devname(q, &node);
if (r < 0)
return r;
pflags = blkid_partition_get_flags(pp);
errno = 0;
nr = blkid_partition_get_partno(pp);
if (nr < 0)
return errno_or_else(EIO);
if (is_gpt) {
PartitionDesignator designator = _PARTITION_DESIGNATOR_INVALID;
int architecture = _ARCHITECTURE_INVALID;
const char *stype, *sid, *fstype = NULL;
sd_id128_t type_id, id;
bool rw = true;
sid = blkid_partition_get_uuid(pp);
if (!sid)
continue;
if (sd_id128_from_string(sid, &id) < 0)
continue;
stype = blkid_partition_get_type_string(pp);
if (!stype)
continue;
if (sd_id128_from_string(stype, &type_id) < 0)
continue;
if (sd_id128_equal(type_id, GPT_HOME)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
designator = PARTITION_HOME;
rw = !(pflags & GPT_FLAG_READ_ONLY);
} else if (sd_id128_equal(type_id, GPT_SRV)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
designator = PARTITION_SRV;
rw = !(pflags & GPT_FLAG_READ_ONLY);
} else if (sd_id128_equal(type_id, GPT_ESP)) {
/* Note that we don't check the GPT_FLAG_NO_AUTO flag for the ESP, as it is
* not defined there. We instead check the GPT_FLAG_NO_BLOCK_IO_PROTOCOL, as
* recommended by the UEFI spec (See "12.3.3 Number and Location of System
* Partitions"). */
if (pflags & GPT_FLAG_NO_BLOCK_IO_PROTOCOL)
continue;
designator = PARTITION_ESP;
fstype = "vfat";
} else if (sd_id128_equal(type_id, GPT_XBOOTLDR)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
designator = PARTITION_XBOOTLDR;
rw = !(pflags & GPT_FLAG_READ_ONLY);
}
#ifdef GPT_ROOT_NATIVE
else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
/* If a root ID is specified, ignore everything but the root id */
if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
continue;
designator = PARTITION_ROOT;
architecture = native_architecture();
rw = !(pflags & GPT_FLAG_READ_ONLY);
} else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE_VERITY)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
m->can_verity = true;
/* Ignore verity unless a root hash is specified */
if (sd_id128_is_null(root_verity_uuid) || !sd_id128_equal(root_verity_uuid, id))
continue;
designator = PARTITION_ROOT_VERITY;
fstype = "DM_verity_hash";
architecture = native_architecture();
rw = false;
}
#endif
#ifdef GPT_ROOT_SECONDARY
else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
/* If a root ID is specified, ignore everything but the root id */
if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
continue;
designator = PARTITION_ROOT_SECONDARY;
architecture = SECONDARY_ARCHITECTURE;
rw = !(pflags & GPT_FLAG_READ_ONLY);
} else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY_VERITY)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
m->can_verity = true;
/* Ignore verity unless root has is specified */
if (sd_id128_is_null(root_verity_uuid) || !sd_id128_equal(root_verity_uuid, id))
continue;
designator = PARTITION_ROOT_SECONDARY_VERITY;
fstype = "DM_verity_hash";
architecture = SECONDARY_ARCHITECTURE;
rw = false;
}
#endif
#ifdef GPT_USR_NATIVE
else if (sd_id128_equal(type_id, GPT_USR_NATIVE)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
/* If a usr ID is specified, ignore everything but the usr id */
if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id))
continue;
designator = PARTITION_USR;
architecture = native_architecture();
rw = !(pflags & GPT_FLAG_READ_ONLY);
} else if (sd_id128_equal(type_id, GPT_USR_NATIVE_VERITY)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
m->can_verity = true;
/* Ignore verity unless a usr hash is specified */
if (sd_id128_is_null(usr_verity_uuid) || !sd_id128_equal(usr_verity_uuid, id))
continue;
designator = PARTITION_USR_VERITY;
fstype = "DM_verity_hash";
architecture = native_architecture();
rw = false;
}
#endif
#ifdef GPT_USR_SECONDARY
else if (sd_id128_equal(type_id, GPT_USR_SECONDARY)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
/* If a usr ID is specified, ignore everything but the usr id */
if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id))
continue;
designator = PARTITION_USR_SECONDARY;
architecture = SECONDARY_ARCHITECTURE;
rw = !(pflags & GPT_FLAG_READ_ONLY);
} else if (sd_id128_equal(type_id, GPT_USR_SECONDARY_VERITY)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
m->can_verity = true;
/* Ignore verity unless usr has is specified */
if (sd_id128_is_null(usr_verity_uuid) || !sd_id128_equal(usr_verity_uuid, id))
continue;
designator = PARTITION_USR_SECONDARY_VERITY;
fstype = "DM_verity_hash";
architecture = SECONDARY_ARCHITECTURE;
rw = false;
}
#endif
else if (sd_id128_equal(type_id, GPT_SWAP)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
designator = PARTITION_SWAP;
fstype = "swap";
} else if (sd_id128_equal(type_id, GPT_LINUX_GENERIC)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
if (generic_node)
multiple_generic = true;
else {
generic_nr = nr;
generic_rw = !(pflags & GPT_FLAG_READ_ONLY);
generic_uuid = id;
generic_node = strdup(node);
if (!generic_node)
return -ENOMEM;
}
} else if (sd_id128_equal(type_id, GPT_TMP)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
designator = PARTITION_TMP;
rw = !(pflags & GPT_FLAG_READ_ONLY);
} else if (sd_id128_equal(type_id, GPT_VAR)) {
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
if (pflags & GPT_FLAG_NO_AUTO)
continue;
if (!FLAGS_SET(flags, DISSECT_IMAGE_RELAX_VAR_CHECK)) {
sd_id128_t var_uuid;
/* For /var we insist that the uuid of the partition matches the
* HMAC-SHA256 of the /var GPT partition type uuid, keyed by machine
* ID. Why? Unlike the other partitions /var is inherently
* installation specific, hence we need to be careful not to mount it
* in the wrong installation. By hashing the partition UUID from
* /etc/machine-id we can securely bind the partition to the
* installation. */
r = sd_id128_get_machine_app_specific(GPT_VAR, &var_uuid);
if (r < 0)
return r;
if (!sd_id128_equal(var_uuid, id)) {
log_debug("Found a /var/ partition, but its UUID didn't match our expectations, ignoring.");
continue;
}
}
designator = PARTITION_VAR;
rw = !(pflags & GPT_FLAG_READ_ONLY);
}
if (designator != _PARTITION_DESIGNATOR_INVALID) {
_cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
const char *options = NULL;
/* First one wins */
if (m->partitions[designator].found)
continue;
if (fstype) {
t = strdup(fstype);
if (!t)
return -ENOMEM;
}
n = strdup(node);
if (!n)
return -ENOMEM;
options = mount_options_from_designator(mount_options, designator);
if (options) {
o = strdup(options);
if (!o)
return -ENOMEM;
}
m->partitions[designator] = (DissectedPartition) {
.found = true,
.partno = nr,
.rw = rw,
.architecture = architecture,
.node = TAKE_PTR(n),
.fstype = TAKE_PTR(t),
.uuid = id,
.mount_options = TAKE_PTR(o),
};
}
} else if (is_mbr) {
switch (blkid_partition_get_type(pp)) {
case 0x83: /* Linux partition */
if (pflags != 0x80) /* Bootable flag */
continue;
if (generic_node)
multiple_generic = true;
else {
generic_nr = nr;
generic_rw = true;
generic_node = strdup(node);
if (!generic_node)
return -ENOMEM;
}
break;
case 0xEA: { /* Boot Loader Spec extended $BOOT partition */
_cleanup_free_ char *n = NULL, *o = NULL;
sd_id128_t id = SD_ID128_NULL;
const char *sid, *options = NULL;
/* First one wins */
if (m->partitions[PARTITION_XBOOTLDR].found)
continue;
sid = blkid_partition_get_uuid(pp);
if (sid)
(void) sd_id128_from_string(sid, &id);
n = strdup(node);
if (!n)
return -ENOMEM;
options = mount_options_from_designator(mount_options, PARTITION_XBOOTLDR);
if (options) {
o = strdup(options);
if (!o)
return -ENOMEM;
}
m->partitions[PARTITION_XBOOTLDR] = (DissectedPartition) {
.found = true,
.partno = nr,
.rw = true,
.architecture = _ARCHITECTURE_INVALID,
.node = TAKE_PTR(n),
.uuid = id,
.mount_options = TAKE_PTR(o),
};
break;
}}
}
}
if (m->partitions[PARTITION_ROOT].found) {
/* If we found the primary arch, then invalidate the secondary arch to avoid any ambiguities,
* since we never want to mount the secondary arch in this case. */
m->partitions[PARTITION_ROOT_SECONDARY].found = false;
m->partitions[PARTITION_ROOT_SECONDARY_VERITY].found = false;
m->partitions[PARTITION_USR_SECONDARY].found = false;
m->partitions[PARTITION_USR_SECONDARY_VERITY].found = false;
} else {
/* No root partition found? Then let's see if ther's one for the secondary architecture. And if not
* either, then check if there's a single generic one, and use that. */
if (m->partitions[PARTITION_ROOT_VERITY].found)
return -EADDRNOTAVAIL;
/* We didn't find a primary architecture root, but we found a primary architecture /usr? Refuse that for now. */
if (m->partitions[PARTITION_USR].found || m->partitions[PARTITION_USR_VERITY].found)
return -EADDRNOTAVAIL;
if (m->partitions[PARTITION_ROOT_SECONDARY].found) {
/* Upgrade secondary arch to first */
m->partitions[PARTITION_ROOT] = m->partitions[PARTITION_ROOT_SECONDARY];
zero(m->partitions[PARTITION_ROOT_SECONDARY]);
m->partitions[PARTITION_ROOT_VERITY] = m->partitions[PARTITION_ROOT_SECONDARY_VERITY];
zero(m->partitions[PARTITION_ROOT_SECONDARY_VERITY]);
m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_SECONDARY];
zero(m->partitions[PARTITION_USR_SECONDARY]);
m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_SECONDARY_VERITY];
zero(m->partitions[PARTITION_USR_SECONDARY_VERITY]);
} else if (flags & DISSECT_IMAGE_REQUIRE_ROOT) {
_cleanup_free_ char *o = NULL;
const char *options = NULL;
/* If the root hash was set, then we won't fall back to a generic node, because the
* root hash decides. */
if (verity && verity->root_hash)
return -EADDRNOTAVAIL;
/* If we didn't find a generic node, then we can't fix this up either */
if (!generic_node)
return -ENXIO;
/* If we didn't find a properly marked root partition, but we did find a single suitable
* generic Linux partition, then use this as root partition, if the caller asked for it. */
if (multiple_generic)
return -ENOTUNIQ;
options = mount_options_from_designator(mount_options, PARTITION_ROOT);
if (options) {
o = strdup(options);
if (!o)
return -ENOMEM;
}
m->partitions[PARTITION_ROOT] = (DissectedPartition) {
.found = true,
.rw = generic_rw,
.partno = generic_nr,
.architecture = _ARCHITECTURE_INVALID,
.node = TAKE_PTR(generic_node),
.uuid = generic_uuid,
.mount_options = TAKE_PTR(o),
};
}
}
/* Refuse if we found a verity partition for /usr but no matching file system partition */
if (!m->partitions[PARTITION_USR].found && m->partitions[PARTITION_USR_VERITY].found)
return -EADDRNOTAVAIL;
/* Combinations of verity /usr with verity-less root is OK, but the reverse is not */
if (m->partitions[PARTITION_ROOT_VERITY].found && m->partitions[PARTITION_USR].found && !m->partitions[PARTITION_USR_VERITY].found)
return -EADDRNOTAVAIL;
if (verity && verity->root_hash) {
if (verity->designator < 0 || verity->designator == PARTITION_ROOT) {
if (!m->partitions[PARTITION_ROOT_VERITY].found || !m->partitions[PARTITION_ROOT].found)
return -EADDRNOTAVAIL;
/* If we found a verity setup, then the root partition is necessarily read-only. */
m->partitions[PARTITION_ROOT].rw = false;
m->verity = true;
}
if (verity->designator == PARTITION_USR) {
if (!m->partitions[PARTITION_USR_VERITY].found || !m->partitions[PARTITION_USR].found)
return -EADDRNOTAVAIL;
m->partitions[PARTITION_USR].rw = false;
m->verity = true;
}
}
blkid_free_probe(b);
b = NULL;
/* Fill in file system types if we don't know them yet. */
for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
DissectedPartition *p = m->partitions + i;
if (!p->found)
continue;
if (!p->fstype && p->node) {
r = probe_filesystem(p->node, &p->fstype);
if (r < 0 && r != -EUCLEAN)
return r;
}
if (streq_ptr(p->fstype, "crypto_LUKS"))
m->encrypted = true;
if (p->fstype && fstype_is_ro(p->fstype))
p->rw = false;
}
*ret = TAKE_PTR(m);
return 0;
#else
return -EOPNOTSUPP;
#endif
}
DissectedImage* dissected_image_unref(DissectedImage *m) {
if (!m)
return NULL;
for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
free(m->partitions[i].fstype);
free(m->partitions[i].node);
free(m->partitions[i].decrypted_fstype);
free(m->partitions[i].decrypted_node);
free(m->partitions[i].mount_options);
}
free(m->hostname);
strv_free(m->machine_info);
strv_free(m->os_release);
return mfree(m);
}
static int is_loop_device(const char *path) {
char s[SYS_BLOCK_PATH_MAX("/../loop/")];
struct stat st;
assert(path);
if (stat(path, &st) < 0)
return -errno;
if (!S_ISBLK(st.st_mode))
return -ENOTBLK;
xsprintf_sys_block_path(s, "/loop/", st.st_dev);
if (access(s, F_OK) < 0) {
if (errno != ENOENT)
return -errno;
/* The device itself isn't a loop device, but maybe it's a partition and its parent is? */
xsprintf_sys_block_path(s, "/../loop/", st.st_dev);
if (access(s, F_OK) < 0)
return errno == ENOENT ? false : -errno;
}
return true;
}
static int run_fsck(const char *node, const char *fstype) {
int r, exit_status;
pid_t pid;
assert(node);
assert(fstype);
r = fsck_exists(fstype);
if (r < 0) {
log_debug_errno(r, "Couldn't determine whether fsck for %s exists, proceeding anyway.", fstype);
return 0;
}
if (r == 0) {
log_debug("Not checking partition %s, as fsck for %s does not exist.", node, fstype);
return 0;
}
r = safe_fork("(fsck)", FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_RLIMIT_NOFILE_SAFE|FORK_DEATHSIG|FORK_NULL_STDIO, &pid);
if (r < 0)
return log_debug_errno(r, "Failed to fork off fsck: %m");
if (r == 0) {
/* Child */
execl("/sbin/fsck", "/sbin/fsck", "-aT", node, NULL);
log_debug_errno(errno, "Failed to execl() fsck: %m");
_exit(FSCK_OPERATIONAL_ERROR);
}
exit_status = wait_for_terminate_and_check("fsck", pid, 0);
if (exit_status < 0)
return log_debug_errno(exit_status, "Failed to fork off /sbin/fsck: %m");
if ((exit_status & ~FSCK_ERROR_CORRECTED) != FSCK_SUCCESS) {
log_debug("fsck failed with exit status %i.", exit_status);
if ((exit_status & (FSCK_SYSTEM_SHOULD_REBOOT|FSCK_ERRORS_LEFT_UNCORRECTED)) != 0)
return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN), "File system is corrupted, refusing.");
log_debug("Ignoring fsck error.");
}
return 0;
}
static int mount_partition(
DissectedPartition *m,
const char *where,
const char *directory,
uid_t uid_shift,
DissectImageFlags flags) {
_cleanup_free_ char *chased = NULL, *options = NULL;
const char *p, *node, *fstype;
bool rw;
int r;
assert(m);
assert(where);
/* Use decrypted node and matching fstype if available, otherwise use the original device */
node = m->decrypted_node ?: m->node;
fstype = m->decrypted_node ? m->decrypted_fstype: m->fstype;
if (!m->found || !node)
return 0;
if (!fstype)
return -EAFNOSUPPORT;
/* We are looking at an encrypted partition? This either means stacked encryption, or the caller didn't call dissected_image_decrypt() beforehand. Let's return a recognizable error for this case. */
if (streq(fstype, "crypto_LUKS"))
return -EUNATCH;
rw = m->rw && !(flags & DISSECT_IMAGE_READ_ONLY);
if (FLAGS_SET(flags, DISSECT_IMAGE_FSCK) && rw) {
r = run_fsck(node, fstype);
if (r < 0)
return r;
}
if (directory) {
if (!FLAGS_SET(flags, DISSECT_IMAGE_READ_ONLY)) {
/* Automatically create missing mount points, if necessary. */
r = mkdir_p_root(where, directory, uid_shift, (gid_t) uid_shift, 0755);
if (r < 0)
return r;
}
r = chase_symlinks(directory, where, CHASE_PREFIX_ROOT, &chased, NULL);
if (r < 0)
return r;
p = chased;
} else
p = where;
/* If requested, turn on discard support. */
if (fstype_can_discard(fstype) &&
((flags & DISSECT_IMAGE_DISCARD) ||
((flags & DISSECT_IMAGE_DISCARD_ON_LOOP) && is_loop_device(m->node) > 0))) {
options = strdup("discard");
if (!options)
return -ENOMEM;
}
if (uid_is_valid(uid_shift) && uid_shift != 0 && fstype_can_uid_gid(fstype)) {
_cleanup_free_ char *uid_option = NULL;
if (asprintf(&uid_option, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
return -ENOMEM;
if (!strextend_with_separator(&options, ",", uid_option, NULL))
return -ENOMEM;
}
if (!isempty(m->mount_options))
if (!strextend_with_separator(&options, ",", m->mount_options, NULL))
return -ENOMEM;
if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
r = mkdir_p(p, 0755);
if (r < 0)
return r;
}
r = mount_nofollow_verbose(LOG_DEBUG, node, p, fstype, MS_NODEV|(rw ? 0 : MS_RDONLY), options);
if (r < 0)
return r;
return 1;
}
int dissected_image_mount(DissectedImage *m, const char *where, uid_t uid_shift, DissectImageFlags flags) {
int r, xbootldr_mounted;
assert(m);
assert(where);
/* Returns:
*
* -ENXIO → No root partition found
* -EMEDIUMTYPE → DISSECT_IMAGE_VALIDATE_OS set but no os-release file found
* -EUNATCH → Encrypted partition found for which no dm-crypt was set up yet
* -EUCLEAN → fsck for file system failed
* -EBUSY → File system already mounted/used elsewhere (kernel)
* -EAFNOSUPPORT → File system type not supported or not known
*/
if (!m->partitions[PARTITION_ROOT].found)
return -ENXIO;
if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) {
r = mount_partition(m->partitions + PARTITION_ROOT, where, NULL, uid_shift, flags);
if (r < 0)
return r;
}
/* Mask DISSECT_IMAGE_MKDIR for all subdirs: the idea is that only the top-level mount point is
* created if needed, but the image itself not modified. */
flags &= ~DISSECT_IMAGE_MKDIR;
if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) {
/* For us mounting root always means mounting /usr as well */
r = mount_partition(m->partitions + PARTITION_USR, where, "/usr", uid_shift, flags);
if (r < 0)
return r;
if (flags & DISSECT_IMAGE_VALIDATE_OS) {
r = path_is_os_tree(where);
if (r < 0)
return r;
if (r == 0)
return -EMEDIUMTYPE;
}
}
if (flags & DISSECT_IMAGE_MOUNT_ROOT_ONLY)
return 0;
r = mount_partition(m->partitions + PARTITION_HOME, where, "/home", uid_shift, flags);
if (r < 0)
return r;
r = mount_partition(m->partitions + PARTITION_SRV, where, "/srv", uid_shift, flags);
if (r < 0)
return r;
r = mount_partition(m->partitions + PARTITION_VAR, where, "/var", uid_shift, flags);
if (r < 0)
return r;
r = mount_partition(m->partitions + PARTITION_TMP, where, "/var/tmp", uid_shift, flags);
if (r < 0)
return r;
xbootldr_mounted = mount_partition(m->partitions + PARTITION_XBOOTLDR, where, "/boot", uid_shift, flags);
if (xbootldr_mounted < 0)
return xbootldr_mounted;
if (m->partitions[PARTITION_ESP].found) {
int esp_done = false;
/* Mount the ESP to /efi if it exists. If it doesn't exist, use /boot instead, but only if it
* exists and is empty, and we didn't already mount the XBOOTLDR partition into it. */
r = chase_symlinks("/efi", where, CHASE_PREFIX_ROOT, NULL, NULL);
if (r < 0) {
if (r != -ENOENT)
return r;
/* /efi doesn't exist. Let's see if /boot is suitable then */
if (!xbootldr_mounted) {
_cleanup_free_ char *p = NULL;
r = chase_symlinks("/boot", where, CHASE_PREFIX_ROOT, &p, NULL);
if (r < 0) {
if (r != -ENOENT)
return r;
} else if (dir_is_empty(p) > 0) {
/* It exists and is an empty directory. Let's mount the ESP there. */
r = mount_partition(m->partitions + PARTITION_ESP, where, "/boot", uid_shift, flags);
if (r < 0)
return r;
esp_done = true;
}
}
}
if (!esp_done) {
/* OK, let's mount the ESP now to /efi (possibly creating the dir if missing) */
r = mount_partition(m->partitions + PARTITION_ESP, where, "/efi", uid_shift, flags);
if (r < 0)
return r;
}
}
return 0;
}
int dissected_image_mount_and_warn(DissectedImage *m, const char *where, uid_t uid_shift, DissectImageFlags flags) {
int r;
assert(m);
assert(where);
r = dissected_image_mount(m, where, uid_shift, flags);
if (r == -ENXIO)
return log_error_errno(r, "Not root file system found in image.");
if (r == -EMEDIUMTYPE)
return log_error_errno(r, "No suitable os-release file in image found.");
if (r == -EUNATCH)
return log_error_errno(r, "Encrypted file system discovered, but decryption not requested.");
if (r == -EUCLEAN)
return log_error_errno(r, "File system check on image failed.");
if (r == -EBUSY)
return log_error_errno(r, "File system already mounted elsewhere.");
if (r == -EAFNOSUPPORT)
return log_error_errno(r, "File system type not supported or not known.");
if (r < 0)
return log_error_errno(r, "Failed to mount image: %m");
return r;
}
#if HAVE_LIBCRYPTSETUP
typedef struct DecryptedPartition {
struct crypt_device *device;
char *name;
bool relinquished;
} DecryptedPartition;
struct DecryptedImage {
DecryptedPartition *decrypted;
size_t n_decrypted;
size_t n_allocated;
};
#endif
DecryptedImage* decrypted_image_unref(DecryptedImage* d) {
#if HAVE_LIBCRYPTSETUP
size_t i;
int r;
if (!d)
return NULL;
for (i = 0; i < d->n_decrypted; i++) {
DecryptedPartition *p = d->decrypted + i;
if (p->device && p->name && !p->relinquished) {
r = sym_crypt_deactivate_by_name(p->device, p->name, 0);
if (r < 0)
log_debug_errno(r, "Failed to deactivate encrypted partition %s", p->name);
}
if (p->device)
sym_crypt_free(p->device);
free(p->name);
}
free(d);
#endif
return NULL;
}
#if HAVE_LIBCRYPTSETUP
static int make_dm_name_and_node(const void *original_node, const char *suffix, char **ret_name, char **ret_node) {
_cleanup_free_ char *name = NULL, *node = NULL;
const char *base;
assert(original_node);
assert(suffix);
assert(ret_name);
assert(ret_node);
base = strrchr(original_node, '/');
if (!base)
base = original_node;
else
base++;
if (isempty(base))
return -EINVAL;
name = strjoin(base, suffix);
if (!name)
return -ENOMEM;
if (!filename_is_valid(name))
return -EINVAL;
node = path_join(sym_crypt_get_dir(), name);
if (!node)
return -ENOMEM;
*ret_name = TAKE_PTR(name);
*ret_node = TAKE_PTR(node);
return 0;
}
static int decrypt_partition(
DissectedPartition *m,
const char *passphrase,
DissectImageFlags flags,
DecryptedImage *d) {
_cleanup_free_ char *node = NULL, *name = NULL;
_cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
int r;
assert(m);
assert(d);
if (!m->found || !m->node || !m->fstype)
return 0;
if (!streq(m->fstype, "crypto_LUKS"))
return 0;
if (!passphrase)
return -ENOKEY;
r = dlopen_cryptsetup();
if (r < 0)
return r;
r = make_dm_name_and_node(m->node, "-decrypted", &name, &node);
if (r < 0)
return r;
if (!GREEDY_REALLOC0(d->decrypted, d->n_allocated, d->n_decrypted + 1))
return -ENOMEM;
r = sym_crypt_init(&cd, m->node);
if (r < 0)
return log_debug_errno(r, "Failed to initialize dm-crypt: %m");
cryptsetup_enable_logging(cd);
r = sym_crypt_load(cd, CRYPT_LUKS, NULL);
if (r < 0)
return log_debug_errno(r, "Failed to load LUKS metadata: %m");
r = sym_crypt_activate_by_passphrase(cd, name, CRYPT_ANY_SLOT, passphrase, strlen(passphrase),
((flags & DISSECT_IMAGE_READ_ONLY) ? CRYPT_ACTIVATE_READONLY : 0) |
((flags & DISSECT_IMAGE_DISCARD_ON_CRYPTO) ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0));
if (r < 0) {
log_debug_errno(r, "Failed to activate LUKS device: %m");
return r == -EPERM ? -EKEYREJECTED : r;
}
d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
.name = TAKE_PTR(name),
.device = TAKE_PTR(cd),
};
m->decrypted_node = TAKE_PTR(node);
return 0;
}
static int verity_can_reuse(
const VeritySettings *verity,
const char *name,
struct crypt_device **ret_cd) {
/* If the same volume was already open, check that the root hashes match, and reuse it if they do */
_cleanup_free_ char *root_hash_existing = NULL;
_cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
struct crypt_params_verity crypt_params = {};
size_t root_hash_existing_size;
int r;
assert(verity);
assert(name);
assert(ret_cd);
r = sym_crypt_init_by_name(&cd, name);
if (r < 0)
return log_debug_errno(r, "Error opening verity device, crypt_init_by_name failed: %m");
r = sym_crypt_get_verity_info(cd, &crypt_params);
if (r < 0)
return log_debug_errno(r, "Error opening verity device, crypt_get_verity_info failed: %m");
root_hash_existing_size = verity->root_hash_size;
root_hash_existing = malloc0(root_hash_existing_size);
if (!root_hash_existing)
return -ENOMEM;
r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, root_hash_existing, &root_hash_existing_size, NULL, 0);
if (r < 0)
return log_debug_errno(r, "Error opening verity device, crypt_volume_key_get failed: %m");
if (verity->root_hash_size != root_hash_existing_size ||
memcmp(root_hash_existing, verity->root_hash, verity->root_hash_size) != 0)
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but root hashes are different.");
#if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
/* Ensure that, if signatures are supported, we only reuse the device if the previous mount used the
* same settings, so that a previous unsigned mount will not be reused if the user asks to use
* signing for the new one, and viceversa. */
if (!!verity->root_hash_sig != !!(crypt_params.flags & CRYPT_VERITY_ROOT_HASH_SIGNATURE))
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but signature settings are not the same.");
#endif
*ret_cd = TAKE_PTR(cd);
return 0;
}
static inline void dm_deferred_remove_clean(char *name) {
if (!name)
return;
(void) sym_crypt_deactivate_by_name(NULL, name, CRYPT_DEACTIVATE_DEFERRED);
free(name);
}
DEFINE_TRIVIAL_CLEANUP_FUNC(char *, dm_deferred_remove_clean);
static int verity_partition(
PartitionDesignator designator,
DissectedPartition *m,
DissectedPartition *v,
const VeritySettings *verity,
DissectImageFlags flags,
DecryptedImage *d) {
_cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
_cleanup_(dm_deferred_remove_cleanp) char *restore_deferred_remove = NULL;
_cleanup_free_ char *node = NULL, *name = NULL;
int r;
assert(m);
assert(v || (verity && verity->data_path));
if (!verity || !verity->root_hash)
return 0;
if (!((verity->designator < 0 && designator == PARTITION_ROOT) ||
(verity->designator == designator)))
return 0;
if (!m->found || !m->node || !m->fstype)
return 0;
if (!verity->data_path) {
if (!v->found || !v->node || !v->fstype)
return 0;
if (!streq(v->fstype, "DM_verity_hash"))
return 0;
}
r = dlopen_cryptsetup();
if (r < 0)
return r;
if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
/* Use the roothash, which is unique per volume, as the device node name, so that it can be reused */
_cleanup_free_ char *root_hash_encoded = NULL;
root_hash_encoded = hexmem(verity->root_hash, verity->root_hash_size);
if (!root_hash_encoded)
return -ENOMEM;
r = make_dm_name_and_node(root_hash_encoded, "-verity", &name, &node);
} else
r = make_dm_name_and_node(m->node, "-verity", &name, &node);
if (r < 0)
return r;
r = sym_crypt_init(&cd, verity->data_path ?: v->node);
if (r < 0)
return r;
cryptsetup_enable_logging(cd);
r = sym_crypt_load(cd, CRYPT_VERITY, NULL);
if (r < 0)
return r;
r = sym_crypt_set_data_device(cd, m->node);
if (r < 0)
return r;
if (!GREEDY_REALLOC0(d->decrypted, d->n_allocated, d->n_decrypted + 1))
return -ENOMEM;
/* If activating fails because the device already exists, check the metadata and reuse it if it matches.
* In case of ENODEV/ENOENT, which can happen if another process is activating at the exact same time,
* retry a few times before giving up. */
for (unsigned i = 0; i < N_DEVICE_NODE_LIST_ATTEMPTS; i++) {
if (verity->root_hash_sig) {
#if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
r = sym_crypt_activate_by_signed_key(
cd,
name,
verity->root_hash,
verity->root_hash_size,
verity->root_hash_sig,
verity->root_hash_sig_size,
CRYPT_ACTIVATE_READONLY);
#else
r = log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
"Activation of verity device with signature requested, but not supported by %s due to missing crypt_activate_by_signed_key().", program_invocation_short_name);
#endif
} else
r = sym_crypt_activate_by_volume_key(
cd,
name,
verity->root_hash,
verity->root_hash_size,
CRYPT_ACTIVATE_READONLY);
/* libdevmapper can return EINVAL when the device is already in the activation stage.
* There's no way to distinguish this situation from a genuine error due to invalid
* parameters, so immediately fall back to activating the device with a unique name.
* Improvements in libcrypsetup can ensure this never happens:
* https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/96 */
if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
if (!IN_SET(r,
0, /* Success */
-EEXIST, /* Volume is already open and ready to be used */
-EBUSY, /* Volume is being opened but not ready, crypt_init_by_name can fetch details */
-ENODEV /* Volume is being opened but not ready, crypt_init_by_name would fail, try to open again */))
return r;
if (IN_SET(r, -EEXIST, -EBUSY)) {
struct crypt_device *existing_cd = NULL;
if (!restore_deferred_remove){
/* To avoid races, disable automatic removal on umount while setting up the new device. Restore it on failure. */
r = dm_deferred_remove_cancel(name);
/* If activation returns EBUSY there might be no deferred removal to cancel, that's fine */
if (r < 0 && r != -ENXIO)
return log_debug_errno(r, "Disabling automated deferred removal for verity device %s failed: %m", node);
if (r == 0) {
restore_deferred_remove = strdup(name);
if (!restore_deferred_remove)
return -ENOMEM;
}
}
r = verity_can_reuse(verity, name, &existing_cd);
/* Same as above, -EINVAL can randomly happen when it actually means -EEXIST */
if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
if (!IN_SET(r, 0, -ENODEV, -ENOENT, -EBUSY))
return log_debug_errno(r, "Checking whether existing verity device %s can be reused failed: %m", node);
if (r == 0) {
/* devmapper might say that the device exists, but the devlink might not yet have been
* created. Check and wait for the udev event in that case. */
r = device_wait_for_devlink(node, "block", usec_add(now(CLOCK_MONOTONIC), 100 * USEC_PER_MSEC), NULL);
/* Fallback to activation with a unique device if it's taking too long */
if (r == -ETIMEDOUT)
break;
if (r < 0)
return r;
if (cd)
sym_crypt_free(cd);
cd = existing_cd;
}
}
if (r == 0)
break;
/* Device is being opened by another process, but it has not finished yet, yield for 2ms */
(void) usleep(2 * USEC_PER_MSEC);
}
/* An existing verity device was reported by libcryptsetup/libdevmapper, but we can't use it at this time.
* Fall back to activating it with a unique device name. */
if (r != 0 && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
/* Everything looks good and we'll be able to mount the device, so deferred remove will be re-enabled at that point. */
restore_deferred_remove = mfree(restore_deferred_remove);
d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
.name = TAKE_PTR(name),
.device = TAKE_PTR(cd),
};
m->decrypted_node = TAKE_PTR(node);
return 0;
}
#endif
int dissected_image_decrypt(
DissectedImage *m,
const char *passphrase,
const VeritySettings *verity,
DissectImageFlags flags,
DecryptedImage **ret) {
#if HAVE_LIBCRYPTSETUP
_cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
int r;
#endif
assert(m);
assert(!verity || verity->root_hash || verity->root_hash_size == 0);
/* Returns:
*
* = 0 → There was nothing to decrypt
* > 0 → Decrypted successfully
* -ENOKEY → There's something to decrypt but no key was supplied
* -EKEYREJECTED → Passed key was not correct
*/
if (verity && verity->root_hash && verity->root_hash_size < sizeof(sd_id128_t))
return -EINVAL;
if (!m->encrypted && !m->verity) {
*ret = NULL;
return 0;
}
#if HAVE_LIBCRYPTSETUP
d = new0(DecryptedImage, 1);
if (!d)
return -ENOMEM;
for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
DissectedPartition *p = m->partitions + i;
PartitionDesignator k;
if (!p->found)
continue;
r = decrypt_partition(p, passphrase, flags, d);
if (r < 0)
return r;
k = PARTITION_VERITY_OF(i);
if (k >= 0) {
r = verity_partition(i, p, m->partitions + k, verity, flags | DISSECT_IMAGE_VERITY_SHARE, d);
if (r < 0)
return r;
}
if (!p->decrypted_fstype && p->decrypted_node) {
r = probe_filesystem(p->decrypted_node, &p->decrypted_fstype);
if (r < 0 && r != -EUCLEAN)
return r;
}
}
*ret = TAKE_PTR(d);
return 1;
#else
return -EOPNOTSUPP;
#endif
}
int dissected_image_decrypt_interactively(
DissectedImage *m,
const char *passphrase,
const VeritySettings *verity,
DissectImageFlags flags,
DecryptedImage **ret) {
_cleanup_strv_free_erase_ char **z = NULL;
int n = 3, r;
if (passphrase)
n--;
for (;;) {
r = dissected_image_decrypt(m, passphrase, verity, flags, ret);
if (r >= 0)
return r;
if (r == -EKEYREJECTED)
log_error_errno(r, "Incorrect passphrase, try again!");
else if (r != -ENOKEY)
return log_error_errno(r, "Failed to decrypt image: %m");
if (--n < 0)
return log_error_errno(SYNTHETIC_ERRNO(EKEYREJECTED),
"Too many retries.");
z = strv_free(z);
r = ask_password_auto("Please enter image passphrase:", NULL, "dissect", "dissect", USEC_INFINITY, 0, &z);
if (r < 0)
return log_error_errno(r, "Failed to query for passphrase: %m");
passphrase = z[0];
}
}
int decrypted_image_relinquish(DecryptedImage *d) {
#if HAVE_LIBCRYPTSETUP
size_t i;
int r;
#endif
assert(d);
/* Turns on automatic removal after the last use ended for all DM devices of this image, and sets a boolean so
* that we don't clean it up ourselves either anymore */
#if HAVE_LIBCRYPTSETUP
for (i = 0; i < d->n_decrypted; i++) {
DecryptedPartition *p = d->decrypted + i;
if (p->relinquished)
continue;
r = sym_crypt_deactivate_by_name(NULL, p->name, CRYPT_DEACTIVATE_DEFERRED);
if (r < 0)
return log_debug_errno(r, "Failed to mark %s for auto-removal: %m", p->name);
p->relinquished = true;
}
#endif
return 0;
}
static char *build_auxiliary_path(const char *image, const char *suffix) {
const char *e;
char *n;
assert(image);
assert(suffix);
e = endswith(image, ".raw");
if (!e)
return strjoin(e, suffix);
n = new(char, e - image + strlen(suffix) + 1);
if (!n)
return NULL;
strcpy(mempcpy(n, image, e - image), suffix);
return n;
}
void verity_settings_done(VeritySettings *v) {
assert(v);
v->root_hash = mfree(v->root_hash);
v->root_hash_size = 0;
v->root_hash_sig = mfree(v->root_hash_sig);
v->root_hash_sig_size = 0;
v->data_path = mfree(v->data_path);
}
int verity_settings_load(
VeritySettings *verity,
const char *image,
const char *root_hash_path,
const char *root_hash_sig_path) {
_cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
size_t root_hash_size = 0, root_hash_sig_size = 0;
_cleanup_free_ char *verity_data_path = NULL;
PartitionDesignator designator;
int r;
assert(verity);
assert(image);
assert(verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
/* If we are asked to load the root hash for a device node, exit early */
if (is_device_path(image))
return 0;
designator = verity->designator;
/* We only fill in what isn't already filled in */
if (!verity->root_hash) {
_cleanup_free_ char *text = NULL;
if (root_hash_path) {
/* If explicitly specified it takes precedence */
r = read_one_line_file(root_hash_path, &text);
if (r < 0)
return r;
if (designator < 0)
designator = PARTITION_ROOT;
} else {
/* Otherwise look for xattr and separate file, and first for the data for root and if
* that doesn't exist for /usr */
if (designator < 0 || designator == PARTITION_ROOT) {
r = getxattr_malloc(image, "user.verity.roothash", &text, true);
if (r < 0) {
_cleanup_free_ char *p = NULL;
if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r))
return r;
p = build_auxiliary_path(image, ".roothash");
if (!p)
return -ENOMEM;
r = read_one_line_file(p, &text);
if (r < 0 && r != -ENOENT)
return r;
}
if (text)
designator = PARTITION_ROOT;
}
if (!text && (designator < 0 || designator == PARTITION_USR)) {
/* So in the "roothash" xattr/file name above the "root" of course primarily
* refers to the root of the Verity Merkle tree. But coincidentally it also
* is the hash for the *root* file system, i.e. the "root" neatly refers to
* two distinct concepts called "root". Taking benefit of this happy
* coincidence we call the file with the root hash for the /usr/ file system
* `usrhash`, because `usrroothash` or `rootusrhash` would just be too
* confusing. We thus drop the reference to the root of the Merkle tree, and
* just indicate which file system it's about. */
r = getxattr_malloc(image, "user.verity.usrhash", &text, true);
if (r < 0) {
_cleanup_free_ char *p = NULL;
if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r))
return r;
p = build_auxiliary_path(image, ".usrhash");
if (!p)
return -ENOMEM;
r = read_one_line_file(p, &text);
if (r < 0 && r != -ENOENT)
return r;
}
if (text)
designator = PARTITION_USR;
}
}
if (text) {
r = unhexmem(text, strlen(text), &root_hash, &root_hash_size);
if (r < 0)
return r;
if (root_hash_size < sizeof(sd_id128_t))
return -EINVAL;
}
}
if (verity->root_hash && !verity->root_hash_sig) {
if (root_hash_sig_path) {
r = read_full_file_full(AT_FDCWD, root_hash_sig_path, 0, NULL, (char**) &root_hash_sig, &root_hash_sig_size);
if (r < 0 && r != -ENOENT)
return r;
if (designator < 0)
designator = PARTITION_ROOT;
} else {
if (designator < 0 || designator == PARTITION_ROOT) {
_cleanup_free_ char *p = NULL;
/* Follow naming convention recommended by the relevant RFC:
* https://tools.ietf.org/html/rfc5751#section-3.2.1 */
p = build_auxiliary_path(image, ".roothash.p7s");
if (!p)
return -ENOMEM;
r = read_full_file_full(AT_FDCWD, p, 0, NULL, (char**) &root_hash_sig, &root_hash_sig_size);
if (r < 0 && r != -ENOENT)
return r;
if (r >= 0)
designator = PARTITION_ROOT;
}
if (!root_hash_sig && (designator < 0 || designator == PARTITION_USR)) {
_cleanup_free_ char *p = NULL;
p = build_auxiliary_path(image, ".usrhash.p7s");
if (!p)
return -ENOMEM;
r = read_full_file_full(AT_FDCWD, p, 0, NULL, (char**) &root_hash_sig, &root_hash_sig_size);
if (r < 0 && r != -ENOENT)
return r;
if (r >= 0)
designator = PARTITION_USR;
}
}
if (root_hash_sig && root_hash_sig_size == 0) /* refuse empty size signatures */
return -EINVAL;
}
if (!verity->data_path) {
_cleanup_free_ char *p = NULL;
p = build_auxiliary_path(image, ".verity");
if (!p)
return -ENOMEM;
if (access(p, F_OK) < 0) {
if (errno != ENOENT)
return -errno;
} else
verity_data_path = TAKE_PTR(p);
}
if (root_hash) {
verity->root_hash = TAKE_PTR(root_hash);
verity->root_hash_size = root_hash_size;
}
if (root_hash_sig) {
verity->root_hash_sig = TAKE_PTR(root_hash_sig);
verity->root_hash_sig_size = root_hash_sig_size;
}
if (verity_data_path)
verity->data_path = TAKE_PTR(verity_data_path);
if (verity->designator < 0)
verity->designator = designator;
return 1;
}
int dissected_image_acquire_metadata(DissectedImage *m) {
enum {
META_HOSTNAME,
META_MACHINE_ID,
META_MACHINE_INFO,
META_OS_RELEASE,
_META_MAX,
};
static const char *const paths[_META_MAX] = {
[META_HOSTNAME] = "/etc/hostname\0",
[META_MACHINE_ID] = "/etc/machine-id\0",
[META_MACHINE_INFO] = "/etc/machine-info\0",
[META_OS_RELEASE] = "/etc/os-release\0"
"/usr/lib/os-release\0",
};
_cleanup_strv_free_ char **machine_info = NULL, **os_release = NULL;
_cleanup_close_pair_ int error_pipe[2] = { -1, -1 };
_cleanup_(rmdir_and_freep) char *t = NULL;
_cleanup_(sigkill_waitp) pid_t child = 0;
sd_id128_t machine_id = SD_ID128_NULL;
_cleanup_free_ char *hostname = NULL;
unsigned n_meta_initialized = 0, k;
int fds[2 * _META_MAX], r, v;
ssize_t n;
BLOCK_SIGNALS(SIGCHLD);
assert(m);
for (; n_meta_initialized < _META_MAX; n_meta_initialized ++)
if (pipe2(fds + 2*n_meta_initialized, O_CLOEXEC) < 0) {
r = -errno;
goto finish;
}
r = mkdtemp_malloc("/tmp/dissect-XXXXXX", &t);
if (r < 0)
goto finish;
if (pipe2(error_pipe, O_CLOEXEC) < 0) {
r = -errno;
goto finish;
}
r = safe_fork("(sd-dissect)", FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, &child);
if (r < 0)
goto finish;
if (r == 0) {
error_pipe[0] = safe_close(error_pipe[0]);
r = dissected_image_mount(m, t, UID_INVALID, DISSECT_IMAGE_READ_ONLY|DISSECT_IMAGE_MOUNT_ROOT_ONLY|DISSECT_IMAGE_VALIDATE_OS);
if (r < 0) {
/* Let parent know the error */
(void) write(error_pipe[1], &r, sizeof(r));
log_debug_errno(r, "Failed to mount dissected image: %m");
_exit(EXIT_FAILURE);
}
for (k = 0; k < _META_MAX; k++) {
_cleanup_close_ int fd = -ENOENT;
const char *p;
fds[2*k] = safe_close(fds[2*k]);
NULSTR_FOREACH(p, paths[k]) {
fd = chase_symlinks_and_open(p, t, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NOCTTY, NULL);
if (fd >= 0)
break;
}
if (fd < 0) {
log_debug_errno(fd, "Failed to read %s file of image, ignoring: %m", paths[k]);
fds[2*k+1] = safe_close(fds[2*k+1]);
continue;
}
r = copy_bytes(fd, fds[2*k+1], (uint64_t) -1, 0);
if (r < 0) {
(void) write(error_pipe[1], &r, sizeof(r));
_exit(EXIT_FAILURE);
}
fds[2*k+1] = safe_close(fds[2*k+1]);
}
_exit(EXIT_SUCCESS);
}
error_pipe[1] = safe_close(error_pipe[1]);
for (k = 0; k < _META_MAX; k++) {
_cleanup_fclose_ FILE *f = NULL;
fds[2*k+1] = safe_close(fds[2*k+1]);
f = take_fdopen(&fds[2*k], "r");
if (!f) {
r = -errno;
goto finish;
}
switch (k) {
case META_HOSTNAME:
r = read_etc_hostname_stream(f, &hostname);
if (r < 0)
log_debug_errno(r, "Failed to read /etc/hostname: %m");
break;
case META_MACHINE_ID: {
_cleanup_free_ char *line = NULL;
r = read_line(f, LONG_LINE_MAX, &line);
if (r < 0)
log_debug_errno(r, "Failed to read /etc/machine-id: %m");
else if (r == 33) {
r = sd_id128_from_string(line, &machine_id);
if (r < 0)
log_debug_errno(r, "Image contains invalid /etc/machine-id: %s", line);
} else if (r == 0)
log_debug("/etc/machine-id file is empty.");
else if (streq(line, "uninitialized"))
log_debug("/etc/machine-id file is uninitialized (likely aborted first boot).");
else
log_debug("/etc/machine-id has unexpected length %i.", r);
break;
}
case META_MACHINE_INFO:
r = load_env_file_pairs(f, "machine-info", &machine_info);
if (r < 0)
log_debug_errno(r, "Failed to read /etc/machine-info: %m");
break;
case META_OS_RELEASE:
r = load_env_file_pairs(f, "os-release", &os_release);
if (r < 0)
log_debug_errno(r, "Failed to read OS release file: %m");
break;
}
}
r = wait_for_terminate_and_check("(sd-dissect)", child, 0);
child = 0;
if (r < 0)
return r;
n = read(error_pipe[0], &v, sizeof(v));
if (n < 0)
return -errno;
if (n == sizeof(v))
return v; /* propagate error sent to us from child */
if (n != 0)
return -EIO;
if (r != EXIT_SUCCESS)
return -EPROTO;
free_and_replace(m->hostname, hostname);
m->machine_id = machine_id;
strv_free_and_replace(m->machine_info, machine_info);
strv_free_and_replace(m->os_release, os_release);
finish:
for (k = 0; k < n_meta_initialized; k++)
safe_close_pair(fds + 2*k);
return r;
}
int dissect_image_and_warn(
int fd,
const char *name,
const VeritySettings *verity,
const MountOptions *mount_options,
DissectImageFlags flags,
DissectedImage **ret) {
_cleanup_free_ char *buffer = NULL;
int r;
if (!name) {
r = fd_get_path(fd, &buffer);
if (r < 0)
return r;
name = buffer;
}
r = dissect_image(fd, verity, mount_options, flags, ret);
switch (r) {
case -EOPNOTSUPP:
return log_error_errno(r, "Dissecting images is not supported, compiled without blkid support.");
case -ENOPKG:
return log_error_errno(r, "Couldn't identify a suitable partition table or file system in '%s'.", name);
case -EADDRNOTAVAIL:
return log_error_errno(r, "No root partition for specified root hash found in '%s'.", name);
case -ENOTUNIQ:
return log_error_errno(r, "Multiple suitable root partitions found in image '%s'.", name);
case -ENXIO:
return log_error_errno(r, "No suitable root partition found in image '%s'.", name);
case -EPROTONOSUPPORT:
return log_error_errno(r, "Device '%s' is loopback block device with partition scanning turned off, please turn it on.", name);
default:
if (r < 0)
return log_error_errno(r, "Failed to dissect image '%s': %m", name);
return r;
}
}
bool dissected_image_can_do_verity(const DissectedImage *image, PartitionDesignator partition_designator) {
if (image->single_file_system)
return partition_designator == PARTITION_ROOT && image->can_verity;
return PARTITION_VERITY_OF(partition_designator) >= 0;
}
bool dissected_image_has_verity(const DissectedImage *image, PartitionDesignator partition_designator) {
int k;
if (image->single_file_system)
return partition_designator == PARTITION_ROOT && image->verity;
k = PARTITION_VERITY_OF(partition_designator);
return k >= 0 && image->partitions[k].found;
}
MountOptions* mount_options_free_all(MountOptions *options) {
MountOptions *m;
while ((m = options)) {
LIST_REMOVE(mount_options, options, m);
free(m->options);
free(m);
}
return NULL;
}
const char* mount_options_from_designator(const MountOptions *options, PartitionDesignator designator) {
const MountOptions *m;
LIST_FOREACH(mount_options, m, options)
if (designator == m->partition_designator && !isempty(m->options))
return m->options;
return NULL;
}
int mount_image_privately_interactively(
const char *image,
DissectImageFlags flags,
char **ret_directory,
LoopDevice **ret_loop_device,
DecryptedImage **ret_decrypted_image) {
_cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
_cleanup_(decrypted_image_unrefp) DecryptedImage *decrypted_image = NULL;
_cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
_cleanup_(rmdir_and_freep) char *created_dir = NULL;
_cleanup_free_ char *temp = NULL;
int r;
/* Mounts an OS image at a temporary place, inside a newly created mount namespace of our own. This
* is used by tools such as systemd-tmpfiles or systemd-firstboot to operate on some disk image
* easily. */
assert(image);
assert(ret_directory);
assert(ret_loop_device);
assert(ret_decrypted_image);
r = tempfn_random_child(NULL, program_invocation_short_name, &temp);
if (r < 0)
return log_error_errno(r, "Failed to generate temporary mount directory: %m");
r = loop_device_make_by_path(
image,
FLAGS_SET(flags, DISSECT_IMAGE_READ_ONLY) ? O_RDONLY : O_RDWR,
FLAGS_SET(flags, DISSECT_IMAGE_NO_PARTITION_TABLE) ? 0 : LO_FLAGS_PARTSCAN,
&d);
if (r < 0)
return log_error_errno(r, "Failed to set up loopback device: %m");
r = dissect_image_and_warn(d->fd, image, NULL, NULL, flags, &dissected_image);
if (r < 0)
return r;
r = dissected_image_decrypt_interactively(dissected_image, NULL, NULL, flags, &decrypted_image);
if (r < 0)
return r;
r = detach_mount_namespace();
if (r < 0)
return log_error_errno(r, "Failed to detach mount namespace: %m");
r = mkdir_p(temp, 0700);
if (r < 0)
return log_error_errno(r, "Failed to create mount point: %m");
created_dir = TAKE_PTR(temp);
r = dissected_image_mount_and_warn(dissected_image, created_dir, UID_INVALID, flags);
if (r < 0)
return r;
if (decrypted_image) {
r = decrypted_image_relinquish(decrypted_image);
if (r < 0)
return log_error_errno(r, "Failed to relinquish DM devices: %m");
}
loop_device_relinquish(d);
*ret_directory = TAKE_PTR(created_dir);
*ret_loop_device = TAKE_PTR(d);
*ret_decrypted_image = TAKE_PTR(decrypted_image);
return 0;
}
static const char *const partition_designator_table[] = {
[PARTITION_ROOT] = "root",
[PARTITION_ROOT_SECONDARY] = "root-secondary",
[PARTITION_USR] = "usr",
[PARTITION_USR_SECONDARY] = "usr-secondary",
[PARTITION_HOME] = "home",
[PARTITION_SRV] = "srv",
[PARTITION_ESP] = "esp",
[PARTITION_XBOOTLDR] = "xbootldr",
[PARTITION_SWAP] = "swap",
[PARTITION_ROOT_VERITY] = "root-verity",
[PARTITION_ROOT_SECONDARY_VERITY] = "root-secondary-verity",
[PARTITION_USR_VERITY] = "usr-verity",
[PARTITION_USR_SECONDARY_VERITY] = "usr-secondary-verity",
[PARTITION_TMP] = "tmp",
[PARTITION_VAR] = "var",
};
DEFINE_STRING_TABLE_LOOKUP(partition_designator, PartitionDesignator);