blob: 9d834d4069dbe04c719f511eb7ce91a0c92fcddf [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1+ */
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "sd-messages.h"
#include "alloc-util.h"
#include "async.h"
#include "bus-error.h"
#include "bus-kernel.h"
#include "bus-util.h"
#include "dbus-service.h"
#include "dbus-unit.h"
#include "def.h"
#include "env-util.h"
#include "escape.h"
#include "exit-status.h"
#include "fd-util.h"
#include "fileio.h"
#include "format-util.h"
#include "fs-util.h"
#include "load-dropin.h"
#include "load-fragment.h"
#include "log.h"
#include "manager.h"
#include "parse-util.h"
#include "path-util.h"
#include "process-util.h"
#include "serialize.h"
#include "service.h"
#include "signal-util.h"
#include "special.h"
#include "stdio-util.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "unit-name.h"
#include "unit.h"
#include "utf8.h"
#include "util.h"
static const UnitActiveState state_translation_table[_SERVICE_STATE_MAX] = {
[SERVICE_DEAD] = UNIT_INACTIVE,
[SERVICE_CONDITION] = UNIT_ACTIVATING,
[SERVICE_START_PRE] = UNIT_ACTIVATING,
[SERVICE_START] = UNIT_ACTIVATING,
[SERVICE_START_POST] = UNIT_ACTIVATING,
[SERVICE_RUNNING] = UNIT_ACTIVE,
[SERVICE_EXITED] = UNIT_ACTIVE,
[SERVICE_RELOAD] = UNIT_RELOADING,
[SERVICE_STOP] = UNIT_DEACTIVATING,
[SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING,
[SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING,
[SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING,
[SERVICE_STOP_POST] = UNIT_DEACTIVATING,
[SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING,
[SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING,
[SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING,
[SERVICE_FAILED] = UNIT_FAILED,
[SERVICE_AUTO_RESTART] = UNIT_ACTIVATING,
[SERVICE_CLEANING] = UNIT_MAINTENANCE,
};
/* For Type=idle we never want to delay any other jobs, hence we
* consider idle jobs active as soon as we start working on them */
static const UnitActiveState state_translation_table_idle[_SERVICE_STATE_MAX] = {
[SERVICE_DEAD] = UNIT_INACTIVE,
[SERVICE_CONDITION] = UNIT_ACTIVE,
[SERVICE_START_PRE] = UNIT_ACTIVE,
[SERVICE_START] = UNIT_ACTIVE,
[SERVICE_START_POST] = UNIT_ACTIVE,
[SERVICE_RUNNING] = UNIT_ACTIVE,
[SERVICE_EXITED] = UNIT_ACTIVE,
[SERVICE_RELOAD] = UNIT_RELOADING,
[SERVICE_STOP] = UNIT_DEACTIVATING,
[SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING,
[SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING,
[SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING,
[SERVICE_STOP_POST] = UNIT_DEACTIVATING,
[SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING,
[SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING,
[SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING,
[SERVICE_FAILED] = UNIT_FAILED,
[SERVICE_AUTO_RESTART] = UNIT_ACTIVATING,
[SERVICE_CLEANING] = UNIT_MAINTENANCE,
};
static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata);
static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata);
static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata);
static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata);
static void service_enter_signal(Service *s, ServiceState state, ServiceResult f);
static void service_enter_reload_by_notify(Service *s);
static void service_init(Unit *u) {
Service *s = SERVICE(u);
assert(u);
assert(u->load_state == UNIT_STUB);
s->timeout_start_usec = u->manager->default_timeout_start_usec;
s->timeout_stop_usec = u->manager->default_timeout_stop_usec;
s->timeout_abort_usec = u->manager->default_timeout_abort_usec;
s->timeout_abort_set = u->manager->default_timeout_abort_set;
s->restart_usec = u->manager->default_restart_usec;
s->runtime_max_usec = USEC_INFINITY;
s->type = _SERVICE_TYPE_INVALID;
s->socket_fd = -1;
s->stdin_fd = s->stdout_fd = s->stderr_fd = -1;
s->guess_main_pid = true;
s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
s->exec_context.keyring_mode = MANAGER_IS_SYSTEM(u->manager) ?
EXEC_KEYRING_PRIVATE : EXEC_KEYRING_INHERIT;
s->watchdog_original_usec = USEC_INFINITY;
s->oom_policy = _OOM_POLICY_INVALID;
}
static void service_unwatch_control_pid(Service *s) {
assert(s);
if (s->control_pid <= 0)
return;
unit_unwatch_pid(UNIT(s), s->control_pid);
s->control_pid = 0;
}
static void service_unwatch_main_pid(Service *s) {
assert(s);
if (s->main_pid <= 0)
return;
unit_unwatch_pid(UNIT(s), s->main_pid);
s->main_pid = 0;
}
static void service_unwatch_pid_file(Service *s) {
if (!s->pid_file_pathspec)
return;
log_unit_debug(UNIT(s), "Stopping watch for PID file %s", s->pid_file_pathspec->path);
path_spec_unwatch(s->pid_file_pathspec);
path_spec_done(s->pid_file_pathspec);
s->pid_file_pathspec = mfree(s->pid_file_pathspec);
}
static int service_set_main_pid(Service *s, pid_t pid) {
assert(s);
if (pid <= 1)
return -EINVAL;
if (pid == getpid_cached())
return -EINVAL;
if (s->main_pid == pid && s->main_pid_known)
return 0;
if (s->main_pid != pid) {
service_unwatch_main_pid(s);
exec_status_start(&s->main_exec_status, pid);
}
s->main_pid = pid;
s->main_pid_known = true;
s->main_pid_alien = pid_is_my_child(pid) == 0;
if (s->main_pid_alien)
log_unit_warning(UNIT(s), "Supervising process "PID_FMT" which is not our child. We'll most likely not notice when it exits.", pid);
return 0;
}
void service_close_socket_fd(Service *s) {
assert(s);
/* Undo the effect of service_set_socket_fd(). */
s->socket_fd = asynchronous_close(s->socket_fd);
if (UNIT_ISSET(s->accept_socket)) {
socket_connection_unref(SOCKET(UNIT_DEREF(s->accept_socket)));
unit_ref_unset(&s->accept_socket);
}
}
static void service_stop_watchdog(Service *s) {
assert(s);
s->watchdog_event_source = sd_event_source_unref(s->watchdog_event_source);
s->watchdog_timestamp = DUAL_TIMESTAMP_NULL;
}
static void service_start_watchdog(Service *s) {
usec_t watchdog_usec;
int r;
assert(s);
watchdog_usec = service_get_watchdog_usec(s);
if (IN_SET(watchdog_usec, 0, USEC_INFINITY)) {
service_stop_watchdog(s);
return;
}
if (s->watchdog_event_source) {
r = sd_event_source_set_time(s->watchdog_event_source, usec_add(s->watchdog_timestamp.monotonic, watchdog_usec));
if (r < 0) {
log_unit_warning_errno(UNIT(s), r, "Failed to reset watchdog timer: %m");
return;
}
r = sd_event_source_set_enabled(s->watchdog_event_source, SD_EVENT_ONESHOT);
} else {
r = sd_event_add_time(
UNIT(s)->manager->event,
&s->watchdog_event_source,
CLOCK_MONOTONIC,
usec_add(s->watchdog_timestamp.monotonic, watchdog_usec), 0,
service_dispatch_watchdog, s);
if (r < 0) {
log_unit_warning_errno(UNIT(s), r, "Failed to add watchdog timer: %m");
return;
}
(void) sd_event_source_set_description(s->watchdog_event_source, "service-watchdog");
/* Let's process everything else which might be a sign
* of living before we consider a service died. */
r = sd_event_source_set_priority(s->watchdog_event_source, SD_EVENT_PRIORITY_IDLE);
}
if (r < 0)
log_unit_warning_errno(UNIT(s), r, "Failed to install watchdog timer: %m");
}
static void service_extend_event_source_timeout(Service *s, sd_event_source *source, usec_t extended) {
usec_t current;
int r;
assert(s);
/* Extends the specified event source timer to at least the specified time, unless it is already later
* anyway. */
if (!source)
return;
r = sd_event_source_get_time(source, &current);
if (r < 0) {
const char *desc;
(void) sd_event_source_get_description(s->timer_event_source, &desc);
log_unit_warning_errno(UNIT(s), r, "Failed to retrieve timeout time for event source '%s', ignoring: %m", strna(desc));
return;
}
if (current >= extended) /* Current timeout is already longer, ignore this. */
return;
r = sd_event_source_set_time(source, extended);
if (r < 0) {
const char *desc;
(void) sd_event_source_get_description(s->timer_event_source, &desc);
log_unit_warning_errno(UNIT(s), r, "Failed to set timeout time for even source '%s', ignoring %m", strna(desc));
}
}
static void service_extend_timeout(Service *s, usec_t extend_timeout_usec) {
usec_t extended;
assert(s);
if (IN_SET(extend_timeout_usec, 0, USEC_INFINITY))
return;
extended = usec_add(now(CLOCK_MONOTONIC), extend_timeout_usec);
service_extend_event_source_timeout(s, s->timer_event_source, extended);
service_extend_event_source_timeout(s, s->watchdog_event_source, extended);
}
static void service_reset_watchdog(Service *s) {
assert(s);
dual_timestamp_get(&s->watchdog_timestamp);
service_start_watchdog(s);
}
static void service_override_watchdog_timeout(Service *s, usec_t watchdog_override_usec) {
assert(s);
s->watchdog_override_enable = true;
s->watchdog_override_usec = watchdog_override_usec;
service_reset_watchdog(s);
log_unit_debug(UNIT(s), "watchdog_usec="USEC_FMT, s->watchdog_usec);
log_unit_debug(UNIT(s), "watchdog_override_usec="USEC_FMT, s->watchdog_override_usec);
}
static void service_fd_store_unlink(ServiceFDStore *fs) {
if (!fs)
return;
if (fs->service) {
assert(fs->service->n_fd_store > 0);
LIST_REMOVE(fd_store, fs->service->fd_store, fs);
fs->service->n_fd_store--;
}
sd_event_source_disable_unref(fs->event_source);
free(fs->fdname);
safe_close(fs->fd);
free(fs);
}
static void service_release_fd_store(Service *s) {
assert(s);
if (s->n_keep_fd_store > 0)
return;
log_unit_debug(UNIT(s), "Releasing all stored fds");
while (s->fd_store)
service_fd_store_unlink(s->fd_store);
assert(s->n_fd_store == 0);
}
static void service_release_resources(Unit *u) {
Service *s = SERVICE(u);
assert(s);
if (!s->fd_store && s->stdin_fd < 0 && s->stdout_fd < 0 && s->stderr_fd < 0)
return;
log_unit_debug(u, "Releasing resources.");
s->stdin_fd = safe_close(s->stdin_fd);
s->stdout_fd = safe_close(s->stdout_fd);
s->stderr_fd = safe_close(s->stderr_fd);
service_release_fd_store(s);
}
static void service_done(Unit *u) {
Service *s = SERVICE(u);
assert(s);
s->pid_file = mfree(s->pid_file);
s->status_text = mfree(s->status_text);
s->exec_runtime = exec_runtime_unref(s->exec_runtime, false);
exec_command_free_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX);
s->control_command = NULL;
s->main_command = NULL;
dynamic_creds_unref(&s->dynamic_creds);
exit_status_set_free(&s->restart_prevent_status);
exit_status_set_free(&s->restart_force_status);
exit_status_set_free(&s->success_status);
/* This will leak a process, but at least no memory or any of
* our resources */
service_unwatch_main_pid(s);
service_unwatch_control_pid(s);
service_unwatch_pid_file(s);
if (s->bus_name) {
unit_unwatch_bus_name(u, s->bus_name);
s->bus_name = mfree(s->bus_name);
}
s->bus_name_owner = mfree(s->bus_name_owner);
s->usb_function_descriptors = mfree(s->usb_function_descriptors);
s->usb_function_strings = mfree(s->usb_function_strings);
service_close_socket_fd(s);
s->peer = socket_peer_unref(s->peer);
unit_ref_unset(&s->accept_socket);
service_stop_watchdog(s);
s->timer_event_source = sd_event_source_unref(s->timer_event_source);
s->exec_fd_event_source = sd_event_source_unref(s->exec_fd_event_source);
service_release_resources(u);
}
static int on_fd_store_io(sd_event_source *e, int fd, uint32_t revents, void *userdata) {
ServiceFDStore *fs = userdata;
assert(e);
assert(fs);
/* If we get either EPOLLHUP or EPOLLERR, it's time to remove this entry from the fd store */
log_unit_debug(UNIT(fs->service),
"Received %s on stored fd %d (%s), closing.",
revents & EPOLLERR ? "EPOLLERR" : "EPOLLHUP",
fs->fd, strna(fs->fdname));
service_fd_store_unlink(fs);
return 0;
}
static int service_add_fd_store(Service *s, int fd, const char *name, bool do_poll) {
ServiceFDStore *fs;
int r;
/* fd is always consumed if we return >= 0 */
assert(s);
assert(fd >= 0);
if (s->n_fd_store >= s->n_fd_store_max)
return -EXFULL; /* Our store is full.
* Use this errno rather than E[NM]FILE to distinguish from
* the case where systemd itself hits the file limit. */
LIST_FOREACH(fd_store, fs, s->fd_store) {
r = same_fd(fs->fd, fd);
if (r < 0)
return r;
if (r > 0) {
safe_close(fd);
return 0; /* fd already included */
}
}
fs = new(ServiceFDStore, 1);
if (!fs)
return -ENOMEM;
*fs = (ServiceFDStore) {
.fd = fd,
.service = s,
.do_poll = do_poll,
.fdname = strdup(name ?: "stored"),
};
if (!fs->fdname) {
free(fs);
return -ENOMEM;
}
if (do_poll) {
r = sd_event_add_io(UNIT(s)->manager->event, &fs->event_source, fd, 0, on_fd_store_io, fs);
if (r < 0 && r != -EPERM) { /* EPERM indicates fds that aren't pollable, which is OK */
free(fs->fdname);
free(fs);
return r;
} else if (r >= 0)
(void) sd_event_source_set_description(fs->event_source, "service-fd-store");
}
LIST_PREPEND(fd_store, s->fd_store, fs);
s->n_fd_store++;
return 1; /* fd newly stored */
}
static int service_add_fd_store_set(Service *s, FDSet *fds, const char *name, bool do_poll) {
int r;
assert(s);
while (fdset_size(fds) > 0) {
_cleanup_close_ int fd = -1;
fd = fdset_steal_first(fds);
if (fd < 0)
break;
r = service_add_fd_store(s, fd, name, do_poll);
if (r == -EXFULL)
return log_unit_warning_errno(UNIT(s), r,
"Cannot store more fds than FileDescriptorStoreMax=%u, closing remaining.",
s->n_fd_store_max);
if (r < 0)
return log_unit_error_errno(UNIT(s), r, "Failed to add fd to store: %m");
if (r > 0)
log_unit_debug(UNIT(s), "Added fd %u (%s) to fd store.", fd, strna(name));
fd = -1;
}
return 0;
}
static void service_remove_fd_store(Service *s, const char *name) {
ServiceFDStore *fs, *n;
assert(s);
assert(name);
LIST_FOREACH_SAFE(fd_store, fs, n, s->fd_store) {
if (!streq(fs->fdname, name))
continue;
log_unit_debug(UNIT(s), "Got explicit request to remove fd %i (%s), closing.", fs->fd, name);
service_fd_store_unlink(fs);
}
}
static int service_arm_timer(Service *s, usec_t usec) {
int r;
assert(s);
if (s->timer_event_source) {
r = sd_event_source_set_time(s->timer_event_source, usec);
if (r < 0)
return r;
return sd_event_source_set_enabled(s->timer_event_source, SD_EVENT_ONESHOT);
}
if (usec == USEC_INFINITY)
return 0;
r = sd_event_add_time(
UNIT(s)->manager->event,
&s->timer_event_source,
CLOCK_MONOTONIC,
usec, 0,
service_dispatch_timer, s);
if (r < 0)
return r;
(void) sd_event_source_set_description(s->timer_event_source, "service-timer");
return 0;
}
static int service_verify(Service *s) {
assert(s);
assert(UNIT(s)->load_state == UNIT_LOADED);
if (!s->exec_command[SERVICE_EXEC_START] && !s->exec_command[SERVICE_EXEC_STOP]
&& UNIT(s)->success_action == EMERGENCY_ACTION_NONE) {
/* FailureAction= only makes sense if one of the start or stop commands is specified.
* SuccessAction= will be executed unconditionally if no commands are specified. Hence,
* either a command or SuccessAction= are required. */
log_unit_error(UNIT(s), "Service has no ExecStart=, ExecStop=, or SuccessAction=. Refusing.");
return -ENOEXEC;
}
if (s->type != SERVICE_ONESHOT && !s->exec_command[SERVICE_EXEC_START]) {
log_unit_error(UNIT(s), "Service has no ExecStart= setting, which is only allowed for Type=oneshot services. Refusing.");
return -ENOEXEC;
}
if (!s->remain_after_exit && !s->exec_command[SERVICE_EXEC_START] && UNIT(s)->success_action == EMERGENCY_ACTION_NONE) {
log_unit_error(UNIT(s), "Service has no ExecStart= and no SuccessAction= settings and does not have RemainAfterExit=yes set. Refusing.");
return -ENOEXEC;
}
if (s->type != SERVICE_ONESHOT && s->exec_command[SERVICE_EXEC_START]->command_next) {
log_unit_error(UNIT(s), "Service has more than one ExecStart= setting, which is only allowed for Type=oneshot services. Refusing.");
return -ENOEXEC;
}
if (s->type == SERVICE_ONESHOT
&& !IN_SET(s->restart, SERVICE_RESTART_NO, SERVICE_RESTART_ON_FAILURE, SERVICE_RESTART_ON_ABNORMAL, SERVICE_RESTART_ON_WATCHDOG, SERVICE_RESTART_ON_ABORT)) {
log_unit_error(UNIT(s), "Service has Restart= set to either always or on-success, which isn't allowed for Type=oneshot services. Refusing.");
return -ENOEXEC;
}
if (s->type == SERVICE_ONESHOT && !exit_status_set_is_empty(&s->restart_force_status)) {
log_unit_error(UNIT(s), "Service has RestartForceStatus= set, which isn't allowed for Type=oneshot services. Refusing.");
return -ENOEXEC;
}
if (s->type == SERVICE_DBUS && !s->bus_name) {
log_unit_error(UNIT(s), "Service is of type D-Bus but no D-Bus service name has been specified. Refusing.");
return -ENOEXEC;
}
if (s->exec_context.pam_name && !IN_SET(s->kill_context.kill_mode, KILL_CONTROL_GROUP, KILL_MIXED)) {
log_unit_error(UNIT(s), "Service has PAM enabled. Kill mode must be set to 'control-group' or 'mixed'. Refusing.");
return -ENOEXEC;
}
if (s->usb_function_descriptors && !s->usb_function_strings)
log_unit_warning(UNIT(s), "Service has USBFunctionDescriptors= setting, but no USBFunctionStrings=. Ignoring.");
if (!s->usb_function_descriptors && s->usb_function_strings)
log_unit_warning(UNIT(s), "Service has USBFunctionStrings= setting, but no USBFunctionDescriptors=. Ignoring.");
if (s->runtime_max_usec != USEC_INFINITY && s->type == SERVICE_ONESHOT)
log_unit_warning(UNIT(s), "RuntimeMaxSec= has no effect in combination with Type=oneshot. Ignoring.");
return 0;
}
static int service_add_default_dependencies(Service *s) {
int r;
assert(s);
if (!UNIT(s)->default_dependencies)
return 0;
/* Add a number of automatic dependencies useful for the
* majority of services. */
if (MANAGER_IS_SYSTEM(UNIT(s)->manager)) {
/* First, pull in the really early boot stuff, and
* require it, so that we fail if we can't acquire
* it. */
r = unit_add_two_dependencies_by_name(UNIT(s), UNIT_AFTER, UNIT_REQUIRES, SPECIAL_SYSINIT_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
if (r < 0)
return r;
} else {
/* In the --user instance there's no sysinit.target,
* in that case require basic.target instead. */
r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
if (r < 0)
return r;
}
/* Second, if the rest of the base system is in the same
* transaction, order us after it, but do not pull it in or
* even require it. */
r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
if (r < 0)
return r;
/* Third, add us in for normal shutdown. */
return unit_add_two_dependencies_by_name(UNIT(s), UNIT_BEFORE, UNIT_CONFLICTS, SPECIAL_SHUTDOWN_TARGET, true, UNIT_DEPENDENCY_DEFAULT);
}
static void service_fix_stdio(Service *s) {
assert(s);
/* Note that EXEC_INPUT_NULL and EXEC_OUTPUT_INHERIT play a special role here: they are both the
* default value that is subject to automatic overriding triggered by other settings and an explicit
* choice the user can make. We don't distinguish between these cases currently. */
if (s->exec_context.std_input == EXEC_INPUT_NULL &&
s->exec_context.stdin_data_size > 0)
s->exec_context.std_input = EXEC_INPUT_DATA;
if (IN_SET(s->exec_context.std_input,
EXEC_INPUT_TTY,
EXEC_INPUT_TTY_FORCE,
EXEC_INPUT_TTY_FAIL,
EXEC_INPUT_SOCKET,
EXEC_INPUT_NAMED_FD))
return;
/* We assume these listed inputs refer to bidirectional streams, and hence duplicating them from
* stdin to stdout/stderr makes sense and hence leaving EXEC_OUTPUT_INHERIT in place makes sense,
* too. Outputs such as regular files or sealed data memfds otoh don't really make sense to be
* duplicated for both input and output at the same time (since they then would cause a feedback
* loop), hence override EXEC_OUTPUT_INHERIT with the default stderr/stdout setting. */
if (s->exec_context.std_error == EXEC_OUTPUT_INHERIT &&
s->exec_context.std_output == EXEC_OUTPUT_INHERIT)
s->exec_context.std_error = UNIT(s)->manager->default_std_error;
if (s->exec_context.std_output == EXEC_OUTPUT_INHERIT)
s->exec_context.std_output = UNIT(s)->manager->default_std_output;
}
static int service_setup_bus_name(Service *s) {
int r;
assert(s);
if (s->type != SERVICE_DBUS)
return 0;
r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE);
if (r < 0)
return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on " SPECIAL_DBUS_SOCKET ": %m");
/* We always want to be ordered against dbus.socket if both are in the transaction. */
r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE);
if (r < 0)
return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on " SPECIAL_DBUS_SOCKET ": %m");
r = unit_watch_bus_name(UNIT(s), s->bus_name);
if (r == -EEXIST)
return log_unit_error_errno(UNIT(s), r, "Two services allocated for the same bus name %s, refusing operation.", s->bus_name);
if (r < 0)
return log_unit_error_errno(UNIT(s), r, "Cannot watch bus name %s: %m", s->bus_name);
return 0;
}
static int service_add_extras(Service *s) {
int r;
assert(s);
if (s->type == _SERVICE_TYPE_INVALID) {
/* Figure out a type automatically */
if (s->bus_name)
s->type = SERVICE_DBUS;
else if (s->exec_command[SERVICE_EXEC_START])
s->type = SERVICE_SIMPLE;
else
s->type = SERVICE_ONESHOT;
}
/* Oneshot services have disabled start timeout by default */
if (s->type == SERVICE_ONESHOT && !s->start_timeout_defined)
s->timeout_start_usec = USEC_INFINITY;
service_fix_stdio(s);
r = unit_patch_contexts(UNIT(s));
if (r < 0)
return r;
r = unit_add_exec_dependencies(UNIT(s), &s->exec_context);
if (r < 0)
return r;
r = unit_set_default_slice(UNIT(s));
if (r < 0)
return r;
/* If the service needs the notify socket, let's enable it automatically. */
if (s->notify_access == NOTIFY_NONE &&
(s->type == SERVICE_NOTIFY || s->watchdog_usec > 0 || s->n_fd_store_max > 0))
s->notify_access = NOTIFY_MAIN;
/* If no OOM policy was explicitly set, then default to the configure default OOM policy. Except when
* delegation is on, in that case it we assume the payload knows better what to do and can process
* things in a more focused way. */
if (s->oom_policy < 0)
s->oom_policy = s->cgroup_context.delegate ? OOM_CONTINUE : UNIT(s)->manager->default_oom_policy;
/* Let the kernel do the killing if that's requested. */
s->cgroup_context.memory_oom_group = s->oom_policy == OOM_KILL;
r = service_add_default_dependencies(s);
if (r < 0)
return r;
r = service_setup_bus_name(s);
if (r < 0)
return r;
return 0;
}
static int service_load(Unit *u) {
Service *s = SERVICE(u);
int r;
r = unit_load_fragment_and_dropin(u, true);
if (r < 0)
return r;
if (u->load_state != UNIT_LOADED)
return 0;
/* This is a new unit? Then let's add in some extras */
r = service_add_extras(s);
if (r < 0)
return r;
return service_verify(s);
}
static void service_dump(Unit *u, FILE *f, const char *prefix) {
char buf_restart[FORMAT_TIMESPAN_MAX], buf_start[FORMAT_TIMESPAN_MAX], buf_stop[FORMAT_TIMESPAN_MAX],
buf_runtime[FORMAT_TIMESPAN_MAX], buf_watchdog[FORMAT_TIMESPAN_MAX], buf_abort[FORMAT_TIMESPAN_MAX];
ServiceExecCommand c;
Service *s = SERVICE(u);
const char *prefix2;
assert(s);
prefix = strempty(prefix);
prefix2 = strjoina(prefix, "\t");
fprintf(f,
"%sService State: %s\n"
"%sResult: %s\n"
"%sReload Result: %s\n"
"%sClean Result: %s\n"
"%sPermissionsStartOnly: %s\n"
"%sRootDirectoryStartOnly: %s\n"
"%sRemainAfterExit: %s\n"
"%sGuessMainPID: %s\n"
"%sType: %s\n"
"%sRestart: %s\n"
"%sNotifyAccess: %s\n"
"%sNotifyState: %s\n"
"%sOOMPolicy: %s\n",
prefix, service_state_to_string(s->state),
prefix, service_result_to_string(s->result),
prefix, service_result_to_string(s->reload_result),
prefix, service_result_to_string(s->clean_result),
prefix, yes_no(s->permissions_start_only),
prefix, yes_no(s->root_directory_start_only),
prefix, yes_no(s->remain_after_exit),
prefix, yes_no(s->guess_main_pid),
prefix, service_type_to_string(s->type),
prefix, service_restart_to_string(s->restart),
prefix, notify_access_to_string(s->notify_access),
prefix, notify_state_to_string(s->notify_state),
prefix, oom_policy_to_string(s->oom_policy));
if (s->control_pid > 0)
fprintf(f,
"%sControl PID: "PID_FMT"\n",
prefix, s->control_pid);
if (s->main_pid > 0)
fprintf(f,
"%sMain PID: "PID_FMT"\n"
"%sMain PID Known: %s\n"
"%sMain PID Alien: %s\n",
prefix, s->main_pid,
prefix, yes_no(s->main_pid_known),
prefix, yes_no(s->main_pid_alien));
if (s->pid_file)
fprintf(f,
"%sPIDFile: %s\n",
prefix, s->pid_file);
if (s->bus_name)
fprintf(f,
"%sBusName: %s\n"
"%sBus Name Good: %s\n",
prefix, s->bus_name,
prefix, yes_no(s->bus_name_good));
if (UNIT_ISSET(s->accept_socket))
fprintf(f,
"%sAccept Socket: %s\n",
prefix, UNIT_DEREF(s->accept_socket)->id);
fprintf(f,
"%sRestartSec: %s\n"
"%sTimeoutStartSec: %s\n"
"%sTimeoutStopSec: %s\n"
"%sTimeoutStartFailureMode: %s\n"
"%sTimeoutStopFailureMode: %s\n",
prefix, format_timespan(buf_restart, sizeof(buf_restart), s->restart_usec, USEC_PER_SEC),
prefix, format_timespan(buf_start, sizeof(buf_start), s->timeout_start_usec, USEC_PER_SEC),
prefix, format_timespan(buf_stop, sizeof(buf_stop), s->timeout_stop_usec, USEC_PER_SEC),
prefix, service_timeout_failure_mode_to_string(s->timeout_start_failure_mode),
prefix, service_timeout_failure_mode_to_string(s->timeout_stop_failure_mode));
if (s->timeout_abort_set)
fprintf(f,
"%sTimeoutAbortSec: %s\n",
prefix, format_timespan(buf_abort, sizeof(buf_abort), s->timeout_abort_usec, USEC_PER_SEC));
fprintf(f,
"%sRuntimeMaxSec: %s\n"
"%sWatchdogSec: %s\n",
prefix, format_timespan(buf_runtime, sizeof(buf_runtime), s->runtime_max_usec, USEC_PER_SEC),
prefix, format_timespan(buf_watchdog, sizeof(buf_watchdog), s->watchdog_usec, USEC_PER_SEC));
kill_context_dump(&s->kill_context, f, prefix);
exec_context_dump(&s->exec_context, f, prefix);
for (c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++) {
if (!s->exec_command[c])
continue;
fprintf(f, "%s-> %s:\n",
prefix, service_exec_command_to_string(c));
exec_command_dump_list(s->exec_command[c], f, prefix2);
}
if (s->status_text)
fprintf(f, "%sStatus Text: %s\n",
prefix, s->status_text);
if (s->n_fd_store_max > 0)
fprintf(f,
"%sFile Descriptor Store Max: %u\n"
"%sFile Descriptor Store Current: %zu\n",
prefix, s->n_fd_store_max,
prefix, s->n_fd_store);
cgroup_context_dump(UNIT(s), f, prefix);
}
static int service_is_suitable_main_pid(Service *s, pid_t pid, int prio) {
Unit *owner;
assert(s);
assert(pid_is_valid(pid));
/* Checks whether the specified PID is suitable as main PID for this service. returns negative if not, 0 if the
* PID is questionnable but should be accepted if the source of configuration is trusted. > 0 if the PID is
* good */
if (pid == getpid_cached() || pid == 1) {
log_unit_full(UNIT(s), prio, "New main PID "PID_FMT" is the manager, refusing.", pid);
return -EPERM;
}
if (pid == s->control_pid) {
log_unit_full(UNIT(s), prio, "New main PID "PID_FMT" is the control process, refusing.", pid);
return -EPERM;
}
if (!pid_is_alive(pid)) {
log_unit_full(UNIT(s), prio, "New main PID "PID_FMT" does not exist or is a zombie.", pid);
return -ESRCH;
}
owner = manager_get_unit_by_pid(UNIT(s)->manager, pid);
if (owner == UNIT(s)) {
log_unit_debug(UNIT(s), "New main PID "PID_FMT" belongs to service, we are happy.", pid);
return 1; /* Yay, it's definitely a good PID */
}
return 0; /* Hmm it's a suspicious PID, let's accept it if configuration source is trusted */
}
static int service_load_pid_file(Service *s, bool may_warn) {
char procfs[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
bool questionable_pid_file = false;
_cleanup_free_ char *k = NULL;
_cleanup_close_ int fd = -1;
int r, prio;
pid_t pid;
assert(s);
if (!s->pid_file)
return -ENOENT;
prio = may_warn ? LOG_INFO : LOG_DEBUG;
r = chase_symlinks(s->pid_file, NULL, CHASE_SAFE, NULL, &fd);
if (r == -ENOLINK) {
log_unit_debug_errno(UNIT(s), r,
"Potentially unsafe symlink chain, will now retry with relaxed checks: %s", s->pid_file);
questionable_pid_file = true;
r = chase_symlinks(s->pid_file, NULL, 0, NULL, &fd);
}
if (r < 0)
return log_unit_full_errno(UNIT(s), prio, fd,
"Can't open PID file %s (yet?) after %s: %m", s->pid_file, service_state_to_string(s->state));
/* Let's read the PID file now that we chased it down. But we need to convert the O_PATH fd
* chase_symlinks() returned us into a proper fd first. */
xsprintf(procfs, "/proc/self/fd/%i", fd);
r = read_one_line_file(procfs, &k);
if (r < 0)
return log_unit_error_errno(UNIT(s), r,
"Can't convert PID files %s O_PATH file descriptor to proper file descriptor: %m",
s->pid_file);
r = parse_pid(k, &pid);
if (r < 0)
return log_unit_full_errno(UNIT(s), prio, r, "Failed to parse PID from file %s: %m", s->pid_file);
if (s->main_pid_known && pid == s->main_pid)
return 0;
r = service_is_suitable_main_pid(s, pid, prio);
if (r < 0)
return r;
if (r == 0) {
struct stat st;
if (questionable_pid_file) {
log_unit_error(UNIT(s), "Refusing to accept PID outside of service control group, acquired through unsafe symlink chain: %s", s->pid_file);
return -EPERM;
}
/* Hmm, it's not clear if the new main PID is safe. Let's allow this if the PID file is owned by root */
if (fstat(fd, &st) < 0)
return log_unit_error_errno(UNIT(s), errno, "Failed to fstat() PID file O_PATH fd: %m");
if (st.st_uid != 0) {
log_unit_error(UNIT(s), "New main PID "PID_FMT" does not belong to service, and PID file is not owned by root. Refusing.", pid);
return -EPERM;
}
log_unit_debug(UNIT(s), "New main PID "PID_FMT" does not belong to service, but we'll accept it since PID file is owned by root.", pid);
}
if (s->main_pid_known) {
log_unit_debug(UNIT(s), "Main PID changing: "PID_FMT" -> "PID_FMT, s->main_pid, pid);
service_unwatch_main_pid(s);
s->main_pid_known = false;
} else
log_unit_debug(UNIT(s), "Main PID loaded: "PID_FMT, pid);
r = service_set_main_pid(s, pid);
if (r < 0)
return r;
r = unit_watch_pid(UNIT(s), pid, false);
if (r < 0) /* FIXME: we need to do something here */
return log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" for service: %m", pid);
return 1;
}
static void service_search_main_pid(Service *s) {
pid_t pid = 0;
int r;
assert(s);
/* If we know it anyway, don't ever fall back to unreliable
* heuristics */
if (s->main_pid_known)
return;
if (!s->guess_main_pid)
return;
assert(s->main_pid <= 0);
if (unit_search_main_pid(UNIT(s), &pid) < 0)
return;
log_unit_debug(UNIT(s), "Main PID guessed: "PID_FMT, pid);
if (service_set_main_pid(s, pid) < 0)
return;
r = unit_watch_pid(UNIT(s), pid, false);
if (r < 0)
/* FIXME: we need to do something here */
log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" from: %m", pid);
}
static void service_set_state(Service *s, ServiceState state) {
ServiceState old_state;
const UnitActiveState *table;
assert(s);
if (s->state != state)
bus_unit_send_pending_change_signal(UNIT(s), false);
table = s->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table;
old_state = s->state;
s->state = state;
service_unwatch_pid_file(s);
if (!IN_SET(state,
SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST,
SERVICE_RUNNING,
SERVICE_RELOAD,
SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL,
SERVICE_AUTO_RESTART,
SERVICE_CLEANING))
s->timer_event_source = sd_event_source_unref(s->timer_event_source);
if (!IN_SET(state,
SERVICE_START, SERVICE_START_POST,
SERVICE_RUNNING, SERVICE_RELOAD,
SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL)) {
service_unwatch_main_pid(s);
s->main_command = NULL;
}
if (!IN_SET(state,
SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST,
SERVICE_RELOAD,
SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL,
SERVICE_CLEANING)) {
service_unwatch_control_pid(s);
s->control_command = NULL;
s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
}
if (IN_SET(state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_AUTO_RESTART)) {
unit_unwatch_all_pids(UNIT(s));
unit_dequeue_rewatch_pids(UNIT(s));
}
if (!IN_SET(state,
SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST,
SERVICE_RUNNING, SERVICE_RELOAD,
SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL) &&
!(state == SERVICE_DEAD && UNIT(s)->job))
service_close_socket_fd(s);
if (state != SERVICE_START)
s->exec_fd_event_source = sd_event_source_unref(s->exec_fd_event_source);
if (!IN_SET(state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD))
service_stop_watchdog(s);
/* For the inactive states unit_notify() will trim the cgroup,
* but for exit we have to do that ourselves... */
if (state == SERVICE_EXITED && !MANAGER_IS_RELOADING(UNIT(s)->manager))
unit_prune_cgroup(UNIT(s));
if (old_state != state)
log_unit_debug(UNIT(s), "Changed %s -> %s", service_state_to_string(old_state), service_state_to_string(state));
unit_notify(UNIT(s), table[old_state], table[state],
(s->reload_result == SERVICE_SUCCESS ? 0 : UNIT_NOTIFY_RELOAD_FAILURE) |
(s->will_auto_restart ? UNIT_NOTIFY_WILL_AUTO_RESTART : 0) |
(s->result == SERVICE_SKIP_CONDITION ? UNIT_NOTIFY_SKIP_CONDITION : 0));
}
static usec_t service_coldplug_timeout(Service *s) {
assert(s);
switch (s->deserialized_state) {
case SERVICE_CONDITION:
case SERVICE_START_PRE:
case SERVICE_START:
case SERVICE_START_POST:
case SERVICE_RELOAD:
return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_start_usec);
case SERVICE_RUNNING:
return usec_add(UNIT(s)->active_enter_timestamp.monotonic, s->runtime_max_usec);
case SERVICE_STOP:
case SERVICE_STOP_SIGTERM:
case SERVICE_STOP_SIGKILL:
case SERVICE_STOP_POST:
case SERVICE_FINAL_SIGTERM:
case SERVICE_FINAL_SIGKILL:
return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_stop_usec);
case SERVICE_STOP_WATCHDOG:
case SERVICE_FINAL_WATCHDOG:
return usec_add(UNIT(s)->state_change_timestamp.monotonic, service_timeout_abort_usec(s));
case SERVICE_AUTO_RESTART:
return usec_add(UNIT(s)->inactive_enter_timestamp.monotonic, s->restart_usec);
case SERVICE_CLEANING:
return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->exec_context.timeout_clean_usec);
default:
return USEC_INFINITY;
}
}
static int service_coldplug(Unit *u) {
Service *s = SERVICE(u);
int r;
assert(s);
assert(s->state == SERVICE_DEAD);
if (s->deserialized_state == s->state)
return 0;
r = service_arm_timer(s, service_coldplug_timeout(s));
if (r < 0)
return r;
if (s->main_pid > 0 &&
pid_is_unwaited(s->main_pid) &&
(IN_SET(s->deserialized_state,
SERVICE_START, SERVICE_START_POST,
SERVICE_RUNNING, SERVICE_RELOAD,
SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL))) {
r = unit_watch_pid(UNIT(s), s->main_pid, false);
if (r < 0)
return r;
}
if (s->control_pid > 0 &&
pid_is_unwaited(s->control_pid) &&
IN_SET(s->deserialized_state,
SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST,
SERVICE_RELOAD,
SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL,
SERVICE_CLEANING)) {
r = unit_watch_pid(UNIT(s), s->control_pid, false);
if (r < 0)
return r;
}
if (!IN_SET(s->deserialized_state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_AUTO_RESTART, SERVICE_CLEANING)) {
(void) unit_enqueue_rewatch_pids(u);
(void) unit_setup_dynamic_creds(u);
(void) unit_setup_exec_runtime(u);
}
if (IN_SET(s->deserialized_state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD))
service_start_watchdog(s);
if (UNIT_ISSET(s->accept_socket)) {
Socket* socket = SOCKET(UNIT_DEREF(s->accept_socket));
if (socket->max_connections_per_source > 0) {
SocketPeer *peer;
/* Make a best-effort attempt at bumping the connection count */
if (socket_acquire_peer(socket, s->socket_fd, &peer) > 0) {
socket_peer_unref(s->peer);
s->peer = peer;
}
}
}
service_set_state(s, s->deserialized_state);
return 0;
}
static int service_collect_fds(
Service *s,
int **fds,
char ***fd_names,
size_t *n_socket_fds,
size_t *n_storage_fds) {
_cleanup_strv_free_ char **rfd_names = NULL;
_cleanup_free_ int *rfds = NULL;
size_t rn_socket_fds = 0, rn_storage_fds = 0;
int r;
assert(s);
assert(fds);
assert(fd_names);
assert(n_socket_fds);
assert(n_storage_fds);
if (s->socket_fd >= 0) {
/* Pass the per-connection socket */
rfds = new(int, 1);
if (!rfds)
return -ENOMEM;
rfds[0] = s->socket_fd;
rfd_names = strv_new("connection");
if (!rfd_names)
return -ENOMEM;
rn_socket_fds = 1;
} else {
void *v;
Unit *u;
/* Pass all our configured sockets for singleton services */
HASHMAP_FOREACH_KEY(v, u, UNIT(s)->dependencies[UNIT_TRIGGERED_BY]) {
_cleanup_free_ int *cfds = NULL;
Socket *sock;
int cn_fds;
if (u->type != UNIT_SOCKET)
continue;
sock = SOCKET(u);
cn_fds = socket_collect_fds(sock, &cfds);
if (cn_fds < 0)
return cn_fds;
if (cn_fds <= 0)
continue;
if (!rfds) {
rfds = TAKE_PTR(cfds);
rn_socket_fds = cn_fds;
} else {
int *t;
t = reallocarray(rfds, rn_socket_fds + cn_fds, sizeof(int));
if (!t)
return -ENOMEM;
memcpy(t + rn_socket_fds, cfds, cn_fds * sizeof(int));
rfds = t;
rn_socket_fds += cn_fds;
}
r = strv_extend_n(&rfd_names, socket_fdname(sock), cn_fds);
if (r < 0)
return r;
}
}
if (s->n_fd_store > 0) {
ServiceFDStore *fs;
size_t n_fds;
char **nl;
int *t;
t = reallocarray(rfds, rn_socket_fds + s->n_fd_store, sizeof(int));
if (!t)
return -ENOMEM;
rfds = t;
nl = reallocarray(rfd_names, rn_socket_fds + s->n_fd_store + 1, sizeof(char *));
if (!nl)
return -ENOMEM;
rfd_names = nl;
n_fds = rn_socket_fds;
LIST_FOREACH(fd_store, fs, s->fd_store) {
rfds[n_fds] = fs->fd;
rfd_names[n_fds] = strdup(strempty(fs->fdname));
if (!rfd_names[n_fds])
return -ENOMEM;
rn_storage_fds++;
n_fds++;
}
rfd_names[n_fds] = NULL;
}
*fds = TAKE_PTR(rfds);
*fd_names = TAKE_PTR(rfd_names);
*n_socket_fds = rn_socket_fds;
*n_storage_fds = rn_storage_fds;
return 0;
}
static int service_allocate_exec_fd_event_source(
Service *s,
int fd,
sd_event_source **ret_event_source) {
_cleanup_(sd_event_source_unrefp) sd_event_source *source = NULL;
int r;
assert(s);
assert(fd >= 0);
assert(ret_event_source);
r = sd_event_add_io(UNIT(s)->manager->event, &source, fd, 0, service_dispatch_exec_io, s);
if (r < 0)
return log_unit_error_errno(UNIT(s), r, "Failed to allocate exec_fd event source: %m");
/* This is a bit lower priority than SIGCHLD, as that carries a lot more interesting failure information */
r = sd_event_source_set_priority(source, SD_EVENT_PRIORITY_NORMAL-3);
if (r < 0)
return log_unit_error_errno(UNIT(s), r, "Failed to adjust priority of exec_fd event source: %m");
(void) sd_event_source_set_description(source, "service event_fd");
r = sd_event_source_set_io_fd_own(source, true);
if (r < 0)
return log_unit_error_errno(UNIT(s), r, "Failed to pass ownership of fd to event source: %m");
*ret_event_source = TAKE_PTR(source);
return 0;
}
static int service_allocate_exec_fd(
Service *s,
sd_event_source **ret_event_source,
int* ret_exec_fd) {
_cleanup_close_pair_ int p[2] = { -1, -1 };
int r;
assert(s);
assert(ret_event_source);
assert(ret_exec_fd);
if (pipe2(p, O_CLOEXEC|O_NONBLOCK) < 0)
return log_unit_error_errno(UNIT(s), errno, "Failed to allocate exec_fd pipe: %m");
r = service_allocate_exec_fd_event_source(s, p[0], ret_event_source);
if (r < 0)
return r;
p[0] = -1;
*ret_exec_fd = TAKE_FD(p[1]);
return 0;
}
static bool service_exec_needs_notify_socket(Service *s, ExecFlags flags) {
assert(s);
/* Notifications are accepted depending on the process and
* the access setting of the service:
* process: \ access: NONE MAIN EXEC ALL
* main no yes yes yes
* control no no yes yes
* other (forked) no no no yes */
if (flags & EXEC_IS_CONTROL)
/* A control process */
return IN_SET(s->notify_access, NOTIFY_EXEC, NOTIFY_ALL);
/* We only spawn main processes and control processes, so any
* process that is not a control process is a main process */
return s->notify_access != NOTIFY_NONE;
}
static int service_spawn(
Service *s,
ExecCommand *c,
usec_t timeout,
ExecFlags flags,
pid_t *_pid) {
_cleanup_(exec_params_clear) ExecParameters exec_params = {
.flags = flags,
.stdin_fd = -1,
.stdout_fd = -1,
.stderr_fd = -1,
.exec_fd = -1,
};
_cleanup_(sd_event_source_unrefp) sd_event_source *exec_fd_source = NULL;
_cleanup_strv_free_ char **final_env = NULL, **our_env = NULL;
size_t n_env = 0;
pid_t pid;
int r;
assert(s);
assert(c);
assert(_pid);
r = unit_prepare_exec(UNIT(s)); /* This realizes the cgroup, among other things */
if (r < 0)
return r;
if (flags & EXEC_IS_CONTROL) {
/* If this is a control process, mask the permissions/chroot application if this is requested. */
if (s->permissions_start_only)
exec_params.flags &= ~EXEC_APPLY_SANDBOXING;
if (s->root_directory_start_only)
exec_params.flags &= ~EXEC_APPLY_CHROOT;
}
if ((flags & EXEC_PASS_FDS) ||
s->exec_context.std_input == EXEC_INPUT_SOCKET ||
s->exec_context.std_output == EXEC_OUTPUT_SOCKET ||
s->exec_context.std_error == EXEC_OUTPUT_SOCKET) {
r = service_collect_fds(s,
&exec_params.fds,
&exec_params.fd_names,
&exec_params.n_socket_fds,
&exec_params.n_storage_fds);
if (r < 0)
return r;
log_unit_debug(UNIT(s), "Passing %zu fds to service", exec_params.n_socket_fds + exec_params.n_storage_fds);
}
if (!FLAGS_SET(flags, EXEC_IS_CONTROL) && s->type == SERVICE_EXEC) {
assert(!s->exec_fd_event_source);
r = service_allocate_exec_fd(s, &exec_fd_source, &exec_params.exec_fd);
if (r < 0)
return r;
}
r = service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), timeout));
if (r < 0)
return r;
our_env = new0(char*, 10);
if (!our_env)
return -ENOMEM;
if (service_exec_needs_notify_socket(s, flags))
if (asprintf(our_env + n_env++, "NOTIFY_SOCKET=%s", UNIT(s)->manager->notify_socket) < 0)
return -ENOMEM;
if (s->main_pid > 0)
if (asprintf(our_env + n_env++, "MAINPID="PID_FMT, s->main_pid) < 0)
return -ENOMEM;
if (MANAGER_IS_USER(UNIT(s)->manager))
if (asprintf(our_env + n_env++, "MANAGERPID="PID_FMT, getpid_cached()) < 0)
return -ENOMEM;
if (s->pid_file)
if (asprintf(our_env + n_env++, "PIDFILE=%s", s->pid_file) < 0)
return -ENOMEM;
if (s->socket_fd >= 0) {
union sockaddr_union sa;
socklen_t salen = sizeof(sa);
/* If this is a per-connection service instance, let's set $REMOTE_ADDR and $REMOTE_PORT to something
* useful. Note that we do this only when we are still connected at this point in time, which we might
* very well not be. Hence we ignore all errors when retrieving peer information (as that might result
* in ENOTCONN), and just use whate we can use. */
if (getpeername(s->socket_fd, &sa.sa, &salen) >= 0 &&
IN_SET(sa.sa.sa_family, AF_INET, AF_INET6, AF_VSOCK)) {
_cleanup_free_ char *addr = NULL;
char *t;
unsigned port;
r = sockaddr_pretty(&sa.sa, salen, true, false, &addr);
if (r < 0)
return r;
t = strjoin("REMOTE_ADDR=", addr);
if (!t)
return -ENOMEM;
our_env[n_env++] = t;
r = sockaddr_port(&sa.sa, &port);
if (r < 0)
return r;
if (asprintf(&t, "REMOTE_PORT=%u", port) < 0)
return -ENOMEM;
our_env[n_env++] = t;
}
}
if (flags & EXEC_SETENV_RESULT) {
if (asprintf(our_env + n_env++, "SERVICE_RESULT=%s", service_result_to_string(s->result)) < 0)
return -ENOMEM;
if (s->main_exec_status.pid > 0 &&
dual_timestamp_is_set(&s->main_exec_status.exit_timestamp)) {
if (asprintf(our_env + n_env++, "EXIT_CODE=%s", sigchld_code_to_string(s->main_exec_status.code)) < 0)
return -ENOMEM;
if (s->main_exec_status.code == CLD_EXITED)
r = asprintf(our_env + n_env++, "EXIT_STATUS=%i", s->main_exec_status.status);
else
r = asprintf(our_env + n_env++, "EXIT_STATUS=%s", signal_to_string(s->main_exec_status.status));
if (r < 0)
return -ENOMEM;
}
}
r = unit_set_exec_params(UNIT(s), &exec_params);
if (r < 0)
return r;
final_env = strv_env_merge(2, exec_params.environment, our_env, NULL);
if (!final_env)
return -ENOMEM;
/* System D-Bus needs nss-systemd disabled, so that we don't deadlock */
SET_FLAG(exec_params.flags, EXEC_NSS_BYPASS_BUS,
MANAGER_IS_SYSTEM(UNIT(s)->manager) && unit_has_name(UNIT(s), SPECIAL_DBUS_SERVICE));
strv_free_and_replace(exec_params.environment, final_env);
exec_params.watchdog_usec = service_get_watchdog_usec(s);
exec_params.selinux_context_net = s->socket_fd_selinux_context_net;
if (s->type == SERVICE_IDLE)
exec_params.idle_pipe = UNIT(s)->manager->idle_pipe;
exec_params.stdin_fd = s->stdin_fd;
exec_params.stdout_fd = s->stdout_fd;
exec_params.stderr_fd = s->stderr_fd;
r = exec_spawn(UNIT(s),
c,
&s->exec_context,
&exec_params,
s->exec_runtime,
&s->dynamic_creds,
&pid);
if (r < 0)
return r;
s->exec_fd_event_source = TAKE_PTR(exec_fd_source);
s->exec_fd_hot = false;
r = unit_watch_pid(UNIT(s), pid, true);
if (r < 0)
return r;
*_pid = pid;
return 0;
}
static int main_pid_good(Service *s) {
assert(s);
/* Returns 0 if the pid is dead, > 0 if it is good, < 0 if we don't know */
/* If we know the pid file, then let's just check if it is
* still valid */
if (s->main_pid_known) {
/* If it's an alien child let's check if it is still
* alive ... */
if (s->main_pid_alien && s->main_pid > 0)
return pid_is_alive(s->main_pid);
/* .. otherwise assume we'll get a SIGCHLD for it,
* which we really should wait for to collect exit
* status and code */
return s->main_pid > 0;
}
/* We don't know the pid */
return -EAGAIN;
}
static int control_pid_good(Service *s) {
assert(s);
/* Returns 0 if the control PID is dead, > 0 if it is good. We never actually return < 0 here, but in order to
* make this function as similar as possible to main_pid_good() and cgroup_good(), we pretend that < 0 also
* means: we can't figure it out. */
return s->control_pid > 0;
}
static int cgroup_good(Service *s) {
int r;
assert(s);
/* Returns 0 if the cgroup is empty or doesn't exist, > 0 if it is exists and is populated, < 0 if we can't
* figure it out */
if (!UNIT(s)->cgroup_path)
return 0;
r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, UNIT(s)->cgroup_path);
if (r < 0)
return r;
return r == 0;
}
static bool service_shall_restart(Service *s, const char **reason) {
assert(s);
/* Don't restart after manual stops */
if (s->forbid_restart) {
*reason = "manual stop";
return false;
}
/* Never restart if this is configured as special exception */
if (exit_status_set_test(&s->restart_prevent_status, s->main_exec_status.code, s->main_exec_status.status)) {
*reason = "prevented by exit status";
return false;
}
/* Restart if the exit code/status are configured as restart triggers */
if (exit_status_set_test(&s->restart_force_status, s->main_exec_status.code, s->main_exec_status.status)) {
*reason = "forced by exit status";
return true;
}
*reason = "restart setting";
switch (s->restart) {
case SERVICE_RESTART_NO:
return false;
case SERVICE_RESTART_ALWAYS:
return true;
case SERVICE_RESTART_ON_SUCCESS:
return s->result == SERVICE_SUCCESS;
case SERVICE_RESTART_ON_FAILURE:
return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_SKIP_CONDITION);
case SERVICE_RESTART_ON_ABNORMAL:
return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_FAILURE_EXIT_CODE, SERVICE_SKIP_CONDITION);
case SERVICE_RESTART_ON_WATCHDOG:
return s->result == SERVICE_FAILURE_WATCHDOG;
case SERVICE_RESTART_ON_ABORT:
return IN_SET(s->result, SERVICE_FAILURE_SIGNAL, SERVICE_FAILURE_CORE_DUMP);
default:
assert_not_reached("unknown restart setting");
}
}
static bool service_will_restart(Unit *u) {
Service *s = SERVICE(u);
assert(s);
if (s->will_auto_restart)
return true;
if (s->state == SERVICE_AUTO_RESTART)
return true;
return unit_will_restart_default(u);
}
static void service_enter_dead(Service *s, ServiceResult f, bool allow_restart) {
ServiceState end_state;
int r;
assert(s);
/* If there's a stop job queued before we enter the DEAD state, we shouldn't act on Restart=, in order to not
* undo what has already been enqueued. */
if (unit_stop_pending(UNIT(s)))
allow_restart = false;
if (s->result == SERVICE_SUCCESS)
s->result = f;
if (s->result == SERVICE_SUCCESS) {
unit_log_success(UNIT(s));
end_state = SERVICE_DEAD;
} else if (s->result == SERVICE_SKIP_CONDITION) {
unit_log_skip(UNIT(s), service_result_to_string(s->result));
end_state = SERVICE_DEAD;
} else {
unit_log_failure(UNIT(s), service_result_to_string(s->result));
end_state = SERVICE_FAILED;
}
unit_warn_leftover_processes(UNIT(s), unit_log_leftover_process_stop);
if (!allow_restart)
log_unit_debug(UNIT(s), "Service restart not allowed.");
else {
const char *reason;
bool shall_restart;
shall_restart = service_shall_restart(s, &reason);
log_unit_debug(UNIT(s), "Service will %srestart (%s)",
shall_restart ? "" : "not ",
reason);
if (shall_restart)
s->will_auto_restart = true;
}
/* Make sure service_release_resources() doesn't destroy our FD store, while we are changing through
* SERVICE_FAILED/SERVICE_DEAD before entering into SERVICE_AUTO_RESTART. */
s->n_keep_fd_store ++;
service_set_state(s, end_state);
if (s->will_auto_restart) {
s->will_auto_restart = false;
r = service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), s->restart_usec));
if (r < 0) {
s->n_keep_fd_store--;
goto fail;
}
service_set_state(s, SERVICE_AUTO_RESTART);
} else
/* If we shan't restart, then flush out the restart counter. But don't do that immediately, so that the
* user can still introspect the counter. Do so on the next start. */
s->flush_n_restarts = true;
/* The new state is in effect, let's decrease the fd store ref counter again. Let's also re-add us to the GC
* queue, so that the fd store is possibly gc'ed again */
s->n_keep_fd_store--;
unit_add_to_gc_queue(UNIT(s));
/* The next restart might not be a manual stop, hence reset the flag indicating manual stops */
s->forbid_restart = false;
/* We want fresh tmpdirs in case service is started again immediately */
s->exec_runtime = exec_runtime_unref(s->exec_runtime, true);
/* Also, remove the runtime directory */
unit_destroy_runtime_data(UNIT(s), &s->exec_context);
/* Get rid of the IPC bits of the user */
unit_unref_uid_gid(UNIT(s), true);
/* Release the user, and destroy it if we are the only remaining owner */
dynamic_creds_destroy(&s->dynamic_creds);
/* Try to delete the pid file. At this point it will be
* out-of-date, and some software might be confused by it, so
* let's remove it. */
if (s->pid_file)
(void) unlink(s->pid_file);
/* Reset TTY ownership if necessary */
exec_context_revert_tty(&s->exec_context);
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to run install restart timer: %m");
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, false);
}
static void service_enter_stop_post(Service *s, ServiceResult f) {
int r;
assert(s);
if (s->result == SERVICE_SUCCESS)
s->result = f;
service_unwatch_control_pid(s);
(void) unit_enqueue_rewatch_pids(UNIT(s));
s->control_command = s->exec_command[SERVICE_EXEC_STOP_POST];
if (s->control_command) {
s->control_command_id = SERVICE_EXEC_STOP_POST;
r = service_spawn(s,
s->control_command,
s->timeout_stop_usec,
EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_IS_CONTROL|EXEC_SETENV_RESULT|EXEC_CONTROL_CGROUP,
&s->control_pid);
if (r < 0)
goto fail;
service_set_state(s, SERVICE_STOP_POST);
} else
service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_SUCCESS);
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to run 'stop-post' task: %m");
service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_RESOURCES);
}
static int state_to_kill_operation(Service *s, ServiceState state) {
switch (state) {
case SERVICE_STOP_WATCHDOG:
case SERVICE_FINAL_WATCHDOG:
return KILL_WATCHDOG;
case SERVICE_STOP_SIGTERM:
if (unit_has_job_type(UNIT(s), JOB_RESTART))
return KILL_RESTART;
_fallthrough_;
case SERVICE_FINAL_SIGTERM:
return KILL_TERMINATE;
case SERVICE_STOP_SIGKILL:
case SERVICE_FINAL_SIGKILL:
return KILL_KILL;
default:
return _KILL_OPERATION_INVALID;
}
}
static void service_enter_signal(Service *s, ServiceState state, ServiceResult f) {
int kill_operation, r;
assert(s);
if (s->result == SERVICE_SUCCESS)
s->result = f;
/* Before sending any signal, make sure we track all members of this cgroup */
(void) unit_watch_all_pids(UNIT(s));
/* Also, enqueue a job that we recheck all our PIDs a bit later, given that it's likely some processes have
* died now */
(void) unit_enqueue_rewatch_pids(UNIT(s));
kill_operation = state_to_kill_operation(s, state);
r = unit_kill_context(
UNIT(s),
&s->kill_context,
kill_operation,
s->main_pid,
s->control_pid,
s->main_pid_alien);
if (r < 0)
goto fail;
if (r > 0) {
r = service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC),
kill_operation == KILL_WATCHDOG ? service_timeout_abort_usec(s) : s->timeout_stop_usec));
if (r < 0)
goto fail;
service_set_state(s, state);
} else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM) && s->kill_context.send_sigkill)
service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_SUCCESS);
else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL))
service_enter_stop_post(s, SERVICE_SUCCESS);
else if (IN_SET(state, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM) && s->kill_context.send_sigkill)
service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS);
else
service_enter_dead(s, SERVICE_SUCCESS, true);
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to kill processes: %m");
if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL))
service_enter_stop_post(s, SERVICE_FAILURE_RESOURCES);
else
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
}
static void service_enter_stop_by_notify(Service *s) {
assert(s);
(void) unit_enqueue_rewatch_pids(UNIT(s));
service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), s->timeout_stop_usec));
/* The service told us it's stopping, so it's as if we SIGTERM'd it. */
service_set_state(s, SERVICE_STOP_SIGTERM);
}
static void service_enter_stop(Service *s, ServiceResult f) {
int r;
assert(s);
if (s->result == SERVICE_SUCCESS)
s->result = f;
service_unwatch_control_pid(s);
(void) unit_enqueue_rewatch_pids(UNIT(s));
s->control_command = s->exec_command[SERVICE_EXEC_STOP];
if (s->control_command) {
s->control_command_id = SERVICE_EXEC_STOP;
r = service_spawn(s,
s->control_command,
s->timeout_stop_usec,
EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_SETENV_RESULT|EXEC_CONTROL_CGROUP,
&s->control_pid);
if (r < 0)
goto fail;
service_set_state(s, SERVICE_STOP);
} else
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS);
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to run 'stop' task: %m");
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
}
static bool service_good(Service *s) {
int main_pid_ok;
assert(s);
if (s->type == SERVICE_DBUS && !s->bus_name_good)
return false;
main_pid_ok = main_pid_good(s);
if (main_pid_ok > 0) /* It's alive */
return true;
if (main_pid_ok == 0) /* It's dead */
return false;
/* OK, we don't know anything about the main PID, maybe
* because there is none. Let's check the control group
* instead. */
return cgroup_good(s) != 0;
}
static void service_enter_running(Service *s, ServiceResult f) {
assert(s);
if (s->result == SERVICE_SUCCESS)
s->result = f;
service_unwatch_control_pid(s);
if (s->result != SERVICE_SUCCESS)
service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
else if (service_good(s)) {
/* If there are any queued up sd_notify() notifications, process them now */
if (s->notify_state == NOTIFY_RELOADING)
service_enter_reload_by_notify(s);
else if (s->notify_state == NOTIFY_STOPPING)
service_enter_stop_by_notify(s);
else {
service_set_state(s, SERVICE_RUNNING);
service_arm_timer(s, usec_add(UNIT(s)->active_enter_timestamp.monotonic, s->runtime_max_usec));
}
} else if (s->remain_after_exit)
service_set_state(s, SERVICE_EXITED);
else
service_enter_stop(s, SERVICE_SUCCESS);
}
static void service_enter_start_post(Service *s) {
int r;
assert(s);
service_unwatch_control_pid(s);
service_reset_watchdog(s);
s->control_command = s->exec_command[SERVICE_EXEC_START_POST];
if (s->control_command) {
s->control_command_id = SERVICE_EXEC_START_POST;
r = service_spawn(s,
s->control_command,
s->timeout_start_usec,
EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_CONTROL_CGROUP,
&s->control_pid);
if (r < 0)
goto fail;
service_set_state(s, SERVICE_START_POST);
} else
service_enter_running(s, SERVICE_SUCCESS);
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to run 'start-post' task: %m");
service_enter_stop(s, SERVICE_FAILURE_RESOURCES);
}
static void service_kill_control_process(Service *s) {
int r;
assert(s);
if (s->control_pid <= 0)
return;
r = kill_and_sigcont(s->control_pid, SIGKILL);
if (r < 0) {
_cleanup_free_ char *comm = NULL;
(void) get_process_comm(s->control_pid, &comm);
log_unit_debug_errno(UNIT(s), r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m",
s->control_pid, strna(comm));
}
}
static int service_adverse_to_leftover_processes(Service *s) {
assert(s);
/* KillMode=mixed and control group are used to indicate that all process should be killed off.
* SendSIGKILL= is used for services that require a clean shutdown. These are typically database
* service where a SigKilled process would result in a lengthy recovery and who's shutdown or startup
* time is quite variable (so Timeout settings aren't of use).
*
* Here we take these two factors and refuse to start a service if there are existing processes
* within a control group. Databases, while generally having some protection against multiple
* instances running, lets not stress the rigor of these. Also ExecStartPre= parts of the service
* aren't as rigoriously written to protect aganst against multiple use. */
if (unit_warn_leftover_processes(UNIT(s), unit_log_leftover_process_start) > 0 &&
IN_SET(s->kill_context.kill_mode, KILL_MIXED, KILL_CONTROL_GROUP) &&
!s->kill_context.send_sigkill)
return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EBUSY),
"Will not start SendSIGKILL=no service of type KillMode=control-group or mixed while processes exist");
return 0;
}
static void service_enter_start(Service *s) {
ExecCommand *c;
usec_t timeout;
pid_t pid;
int r;
assert(s);
service_unwatch_control_pid(s);
service_unwatch_main_pid(s);
r = service_adverse_to_leftover_processes(s);
if (r < 0)
goto fail;
if (s->type == SERVICE_FORKING) {
s->control_command_id = SERVICE_EXEC_START;
c = s->control_command = s->exec_command[SERVICE_EXEC_START];
s->main_command = NULL;
} else {
s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
s->control_command = NULL;
c = s->main_command = s->exec_command[SERVICE_EXEC_START];
}
if (!c) {
if (s->type != SERVICE_ONESHOT) {
/* There's no command line configured for the main command? Hmm, that is strange.
* This can only happen if the configuration changes at runtime. In this case,
* let's enter a failure state. */
log_unit_error(UNIT(s), "There's no 'start' task anymore we could start.");
r = -ENXIO;
goto fail;
}
/* We force a fake state transition here. Otherwise, the unit would go directly from
* SERVICE_DEAD to SERVICE_DEAD without SERVICE_ACTIVATING or SERVICE_ACTIVE
* in between. This way we can later trigger actions that depend on the state
* transition, including SuccessAction=. */
service_set_state(s, SERVICE_START);
service_enter_start_post(s);
return;
}
if (IN_SET(s->type, SERVICE_SIMPLE, SERVICE_IDLE))
/* For simple + idle this is the main process. We don't apply any timeout here, but
* service_enter_running() will later apply the .runtime_max_usec timeout. */
timeout = USEC_INFINITY;
else
timeout = s->timeout_start_usec;
r = service_spawn(s,
c,
timeout,
EXEC_PASS_FDS|EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_SET_WATCHDOG|EXEC_WRITE_CREDENTIALS,
&pid);
if (r < 0)
goto fail;
if (IN_SET(s->type, SERVICE_SIMPLE, SERVICE_IDLE)) {
/* For simple services we immediately start
* the START_POST binaries. */
service_set_main_pid(s, pid);
service_enter_start_post(s);
} else if (s->type == SERVICE_FORKING) {
/* For forking services we wait until the start
* process exited. */
s->control_pid = pid;
service_set_state(s, SERVICE_START);
} else if (IN_SET(s->type, SERVICE_ONESHOT, SERVICE_DBUS, SERVICE_NOTIFY, SERVICE_EXEC)) {
/* For oneshot services we wait until the start process exited, too, but it is our main process. */
/* For D-Bus services we know the main pid right away, but wait for the bus name to appear on the
* bus. 'notify' and 'exec' services are similar. */
service_set_main_pid(s, pid);
service_set_state(s, SERVICE_START);
} else
assert_not_reached("Unknown service type");
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to run 'start' task: %m");
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
}
static void service_enter_start_pre(Service *s) {
int r;
assert(s);
service_unwatch_control_pid(s);
s->control_command = s->exec_command[SERVICE_EXEC_START_PRE];
if (s->control_command) {
r = service_adverse_to_leftover_processes(s);
if (r < 0)
goto fail;
s->control_command_id = SERVICE_EXEC_START_PRE;
r = service_spawn(s,
s->control_command,
s->timeout_start_usec,
EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_APPLY_TTY_STDIN,
&s->control_pid);
if (r < 0)
goto fail;
service_set_state(s, SERVICE_START_PRE);
} else
service_enter_start(s);
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to run 'start-pre' task: %m");
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
}
static void service_enter_condition(Service *s) {
int r;
assert(s);
service_unwatch_control_pid(s);
s->control_command = s->exec_command[SERVICE_EXEC_CONDITION];
if (s->control_command) {
r = service_adverse_to_leftover_processes(s);
if (r < 0)
goto fail;
s->control_command_id = SERVICE_EXEC_CONDITION;
r = service_spawn(s,
s->control_command,
s->timeout_start_usec,
EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_APPLY_TTY_STDIN,
&s->control_pid);
if (r < 0)
goto fail;
service_set_state(s, SERVICE_CONDITION);
} else
service_enter_start_pre(s);
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to run 'exec-condition' task: %m");
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
}
static void service_enter_restart(Service *s) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
int r;
assert(s);
if (unit_has_job_type(UNIT(s), JOB_STOP)) {
/* Don't restart things if we are going down anyway */
log_unit_info(UNIT(s), "Stop job pending for unit, delaying automatic restart.");
r = service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), s->restart_usec));
if (r < 0)
goto fail;
return;
}
/* Any units that are bound to this service must also be
* restarted. We use JOB_RESTART (instead of the more obvious
* JOB_START) here so that those dependency jobs will be added
* as well. */
r = manager_add_job(UNIT(s)->manager, JOB_RESTART, UNIT(s), JOB_REPLACE, NULL, &error, NULL);
if (r < 0)
goto fail;
/* Count the jobs we enqueue for restarting. This counter is maintained as long as the unit isn't fully
* stopped, i.e. as long as it remains up or remains in auto-start states. The use can reset the counter
* explicitly however via the usual "systemctl reset-failure" logic. */
s->n_restarts ++;
s->flush_n_restarts = false;
log_struct(LOG_INFO,
"MESSAGE_ID=" SD_MESSAGE_UNIT_RESTART_SCHEDULED_STR,
LOG_UNIT_ID(UNIT(s)),
LOG_UNIT_INVOCATION_ID(UNIT(s)),
LOG_UNIT_MESSAGE(UNIT(s), "Scheduled restart job, restart counter is at %u.", s->n_restarts),
"N_RESTARTS=%u", s->n_restarts);
/* Notify clients about changed restart counter */
unit_add_to_dbus_queue(UNIT(s));
/* Note that we stay in the SERVICE_AUTO_RESTART state here,
* it will be canceled as part of the service_stop() call that
* is executed as part of JOB_RESTART. */
return;
fail:
log_unit_warning(UNIT(s), "Failed to schedule restart job: %s", bus_error_message(&error, r));
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, false);
}
static void service_enter_reload_by_notify(Service *s) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
int r;
assert(s);
service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), s->timeout_start_usec));
service_set_state(s, SERVICE_RELOAD);
/* service_enter_reload_by_notify is never called during a reload, thus no loops are possible. */
r = manager_propagate_reload(UNIT(s)->manager, UNIT(s), JOB_FAIL, &error);
if (r < 0)
log_unit_warning(UNIT(s), "Failed to schedule propagation of reload: %s", bus_error_message(&error, r));
}
static void service_enter_reload(Service *s) {
int r;
assert(s);
service_unwatch_control_pid(s);
s->reload_result = SERVICE_SUCCESS;
s->control_command = s->exec_command[SERVICE_EXEC_RELOAD];
if (s->control_command) {
s->control_command_id = SERVICE_EXEC_RELOAD;
r = service_spawn(s,
s->control_command,
s->timeout_start_usec,
EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|EXEC_CONTROL_CGROUP,
&s->control_pid);
if (r < 0)
goto fail;
service_set_state(s, SERVICE_RELOAD);
} else
service_enter_running(s, SERVICE_SUCCESS);
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to run 'reload' task: %m");
s->reload_result = SERVICE_FAILURE_RESOURCES;
service_enter_running(s, SERVICE_SUCCESS);
}
static void service_run_next_control(Service *s) {
usec_t timeout;
int r;
assert(s);
assert(s->control_command);
assert(s->control_command->command_next);
assert(s->control_command_id != SERVICE_EXEC_START);
s->control_command = s->control_command->command_next;
service_unwatch_control_pid(s);
if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD))
timeout = s->timeout_start_usec;
else
timeout = s->timeout_stop_usec;
r = service_spawn(s,
s->control_command,
timeout,
EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_IS_CONTROL|
(IN_SET(s->control_command_id, SERVICE_EXEC_CONDITION, SERVICE_EXEC_START_PRE, SERVICE_EXEC_STOP_POST) ? EXEC_APPLY_TTY_STDIN : 0)|
(IN_SET(s->control_command_id, SERVICE_EXEC_STOP, SERVICE_EXEC_STOP_POST) ? EXEC_SETENV_RESULT : 0)|
(IN_SET(s->control_command_id, SERVICE_EXEC_START_POST, SERVICE_EXEC_RELOAD, SERVICE_EXEC_STOP, SERVICE_EXEC_STOP_POST) ? EXEC_CONTROL_CGROUP : 0),
&s->control_pid);
if (r < 0)
goto fail;
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to run next control task: %m");
if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START_POST, SERVICE_STOP))
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
else if (s->state == SERVICE_STOP_POST)
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
else if (s->state == SERVICE_RELOAD) {
s->reload_result = SERVICE_FAILURE_RESOURCES;
service_enter_running(s, SERVICE_SUCCESS);
} else
service_enter_stop(s, SERVICE_FAILURE_RESOURCES);
}
static void service_run_next_main(Service *s) {
pid_t pid;
int r;
assert(s);
assert(s->main_command);
assert(s->main_command->command_next);
assert(s->type == SERVICE_ONESHOT);
s->main_command = s->main_command->command_next;
service_unwatch_main_pid(s);
r = service_spawn(s,
s->main_command,
s->timeout_start_usec,
EXEC_PASS_FDS|EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT|EXEC_APPLY_TTY_STDIN|EXEC_SET_WATCHDOG,
&pid);
if (r < 0)
goto fail;
service_set_main_pid(s, pid);
return;
fail:
log_unit_warning_errno(UNIT(s), r, "Failed to run next main task: %m");
service_enter_stop(s, SERVICE_FAILURE_RESOURCES);
}
static int service_start(Unit *u) {
Service *s = SERVICE(u);
int r;
assert(s);
/* We cannot fulfill this request right now, try again later
* please! */
if (IN_SET(s->state,
SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, SERVICE_CLEANING))
return -EAGAIN;
/* Already on it! */
if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST))
return 0;
/* A service that will be restarted must be stopped first to
* trigger BindsTo and/or OnFailure dependencies. If a user
* does not want to wait for the holdoff time to elapse, the
* service should be manually restarted, not started. We
* simply return EAGAIN here, so that any start jobs stay
* queued, and assume that the auto restart timer will
* eventually trigger the restart. */
if (s->state == SERVICE_AUTO_RESTART)
return -EAGAIN;
assert(IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED));
/* Make sure we don't enter a busy loop of some kind. */
r = unit_test_start_limit(u);
if (r < 0) {
service_enter_dead(s, SERVICE_FAILURE_START_LIMIT_HIT, false);
return r;
}
r = unit_acquire_invocation_id(u);
if (r < 0)
return r;
s->result = SERVICE_SUCCESS;
s->reload_result = SERVICE_SUCCESS;
s->main_pid_known = false;
s->main_pid_alien = false;
s->forbid_restart = false;
s->status_text = mfree(s->status_text);
s->status_errno = 0;
s->notify_state = NOTIFY_UNKNOWN;
s->watchdog_original_usec = s->watchdog_usec;
s->watchdog_override_enable = false;
s->watchdog_override_usec = USEC_INFINITY;
exec_command_reset_status_list_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX);
exec_status_reset(&s->main_exec_status);
/* This is not an automatic restart? Flush the restart counter then */
if (s->flush_n_restarts) {
s->n_restarts = 0;
s->flush_n_restarts = false;
}
u->reset_accounting = true;
service_enter_condition(s);
return 1;
}
static int service_stop(Unit *u) {
Service *s = SERVICE(u);
assert(s);
/* Don't create restart jobs from manual stops. */
s->forbid_restart = true;
/* Already on it */
if (IN_SET(s->state,
SERVICE_STOP, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST,
SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL))
return 0;
/* A restart will be scheduled or is in progress. */
if (s->state == SERVICE_AUTO_RESTART) {
service_set_state(s, SERVICE_DEAD);
return 0;
}
/* If there's already something running we go directly into
* kill mode. */
if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RELOAD, SERVICE_STOP_WATCHDOG)) {
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS);
return 0;
}
/* If we are currently cleaning, then abort it, brutally. */
if (s->state == SERVICE_CLEANING) {
service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS);
return 0;
}
assert(IN_SET(s->state, SERVICE_RUNNING, SERVICE_EXITED));
service_enter_stop(s, SERVICE_SUCCESS);
return 1;
}
static int service_reload(Unit *u) {
Service *s = SERVICE(u);
assert(s);
assert(IN_SET(s->state, SERVICE_RUNNING, SERVICE_EXITED));
service_enter_reload(s);
return 1;
}
_pure_ static bool service_can_reload(Unit *u) {
Service *s = SERVICE(u);
assert(s);
return !!s->exec_command[SERVICE_EXEC_RELOAD];
}
static unsigned service_exec_command_index(Unit *u, ServiceExecCommand id, ExecCommand *current) {
Service *s = SERVICE(u);
unsigned idx = 0;
ExecCommand *first, *c;
assert(s);
assert(id >= 0);
assert(id < _SERVICE_EXEC_COMMAND_MAX);
first = s->exec_command[id];
/* Figure out where we are in the list by walking back to the beginning */
for (c = current; c != first; c = c->command_prev)
idx++;
return idx;
}
static int service_serialize_exec_command(Unit *u, FILE *f, ExecCommand *command) {
_cleanup_free_ char *args = NULL, *p = NULL;
size_t allocated = 0, length = 0;
Service *s = SERVICE(u);
const char *type, *key;
ServiceExecCommand id;
unsigned idx;
char **arg;
assert(s);
assert(f);
if (!command)
return 0;
if (command == s->control_command) {
type = "control";
id = s->control_command_id;
} else {
type = "main";
id = SERVICE_EXEC_START;
}
idx = service_exec_command_index(u, id, command);
STRV_FOREACH(arg, command->argv) {
_cleanup_free_ char *e = NULL;
size_t n;
e = cescape(*arg);
if (!e)
return log_oom();
n = strlen(e);
if (!GREEDY_REALLOC(args, allocated, length + 2 + n + 2))
return log_oom();
if (length > 0)
args[length++] = ' ';
args[length++] = '"';
memcpy(args + length, e, n);
length += n;
args[length++] = '"';
}
if (!GREEDY_REALLOC(args, allocated, length + 1))
return log_oom();
args[length++] = 0;
p = cescape(command->path);
if (!p)
return log_oom();
key = strjoina(type, "-command");
(void) serialize_item_format(f, key, "%s %u %s %s", service_exec_command_to_string(id), idx, p, args);
return 0;
}
static int service_serialize(Unit *u, FILE *f, FDSet *fds) {
Service *s = SERVICE(u);
ServiceFDStore *fs;
int r;
assert(u);
assert(f);
assert(fds);
(void) serialize_item(f, "state", service_state_to_string(s->state));
(void) serialize_item(f, "result", service_result_to_string(s->result));
(void) serialize_item(f, "reload-result", service_result_to_string(s->reload_result));
if (s->control_pid > 0)
(void) serialize_item_format(f, "control-pid", PID_FMT, s->control_pid);
if (s->main_pid_known && s->main_pid > 0)
(void) serialize_item_format(f, "main-pid", PID_FMT, s->main_pid);
(void) serialize_bool(f, "main-pid-known", s->main_pid_known);
(void) serialize_bool(f, "bus-name-good", s->bus_name_good);
(void) serialize_bool(f, "bus-name-owner", s->bus_name_owner);
(void) serialize_item_format(f, "n-restarts", "%u", s->n_restarts);
(void) serialize_bool(f, "flush-n-restarts", s->flush_n_restarts);
r = serialize_item_escaped(f, "status-text", s->status_text);
if (r < 0)
return r;
service_serialize_exec_command(u, f, s->control_command);
service_serialize_exec_command(u, f, s->main_command);
r = serialize_fd(f, fds, "stdin-fd", s->stdin_fd);
if (r < 0)
return r;
r = serialize_fd(f, fds, "stdout-fd", s->stdout_fd);
if (r < 0)
return r;
r = serialize_fd(f, fds, "stderr-fd", s->stderr_fd);
if (r < 0)
return r;
if (s->exec_fd_event_source) {
r = serialize_fd(f, fds, "exec-fd", sd_event_source_get_io_fd(s->exec_fd_event_source));
if (r < 0)
return r;
(void) serialize_bool(f, "exec-fd-hot", s->exec_fd_hot);
}
if (UNIT_ISSET(s->accept_socket)) {
r = serialize_item(f, "accept-socket", UNIT_DEREF(s->accept_socket)->id);
if (r < 0)
return r;
}
r = serialize_fd(f, fds, "socket-fd", s->socket_fd);
if (r < 0)
return r;
LIST_FOREACH(fd_store, fs, s->fd_store) {
_cleanup_free_ char *c = NULL;
int copy;
copy = fdset_put_dup(fds, fs->fd);
if (copy < 0)
return log_error_errno(copy, "Failed to copy file descriptor for serialization: %m");
c = cescape(fs->fdname);
if (!c)
return log_oom();
(void) serialize_item_format(f, "fd-store-fd", "%i \"%s\" %i", copy, c, fs->do_poll);
}
if (s->main_exec_status.pid > 0) {
(void) serialize_item_format(f, "main-exec-status-pid", PID_FMT, s->main_exec_status.pid);
(void) serialize_dual_timestamp(f, "main-exec-status-start", &s->main_exec_status.start_timestamp);
(void) serialize_dual_timestamp(f, "main-exec-status-exit", &s->main_exec_status.exit_timestamp);
if (dual_timestamp_is_set(&s->main_exec_status.exit_timestamp)) {
(void) serialize_item_format(f, "main-exec-status-code", "%i", s->main_exec_status.code);
(void) serialize_item_format(f, "main-exec-status-status", "%i", s->main_exec_status.status);
}
}
(void) serialize_dual_timestamp(f, "watchdog-timestamp", &s->watchdog_timestamp);
(void) serialize_bool(f, "forbid-restart", s->forbid_restart);
if (s->watchdog_override_enable)
(void) serialize_item_format(f, "watchdog-override-usec", USEC_FMT, s->watchdog_override_usec);
if (s->watchdog_original_usec != USEC_INFINITY)
(void) serialize_item_format(f, "watchdog-original-usec", USEC_FMT, s->watchdog_original_usec);
return 0;
}
static int service_deserialize_exec_command(
Unit *u,
const char *key,
const char *value) {
Service *s = SERVICE(u);
int r;
unsigned idx = 0, i;
bool control, found = false;
ServiceExecCommand id = _SERVICE_EXEC_COMMAND_INVALID;
ExecCommand *command = NULL;
_cleanup_free_ char *path = NULL;
_cleanup_strv_free_ char **argv = NULL;
enum ExecCommandState {
STATE_EXEC_COMMAND_TYPE,
STATE_EXEC_COMMAND_INDEX,
STATE_EXEC_COMMAND_PATH,
STATE_EXEC_COMMAND_ARGS,
_STATE_EXEC_COMMAND_MAX,
_STATE_EXEC_COMMAND_INVALID = -1,
} state;
assert(s);
assert(key);
assert(value);
control = streq(key, "control-command");
state = STATE_EXEC_COMMAND_TYPE;
for (;;) {
_cleanup_free_ char *arg = NULL;
r = extract_first_word(&value, &arg, NULL, EXTRACT_CUNESCAPE | EXTRACT_UNQUOTE);
if (r < 0)
return r;
if (r == 0)
break;
switch (state) {
case STATE_EXEC_COMMAND_TYPE:
id = service_exec_command_from_string(arg);
if (id < 0)
return -EINVAL;
state = STATE_EXEC_COMMAND_INDEX;
break;
case STATE_EXEC_COMMAND_INDEX:
r = safe_atou(arg, &idx);
if (r < 0)
return -EINVAL;
state = STATE_EXEC_COMMAND_PATH;
break;
case STATE_EXEC_COMMAND_PATH:
path = TAKE_PTR(arg);
state = STATE_EXEC_COMMAND_ARGS;
if (!path_is_absolute(path))
return -EINVAL;
break;
case STATE_EXEC_COMMAND_ARGS:
r = strv_extend(&argv, arg);
if (r < 0)
return -ENOMEM;
break;
default:
assert_not_reached("Unknown error at deserialization of exec command");
break;
}
}
if (state != STATE_EXEC_COMMAND_ARGS)
return -EINVAL;
/* Let's check whether exec command on given offset matches data that we just deserialized */
for (command = s->exec_command[id], i = 0; command; command = command->command_next, i++) {
if (i != idx)
continue;
found = strv_equal(argv, command->argv) && streq(command->path, path);
break;
}
if (!found) {
/* Command at the index we serialized is different, let's look for command that exactly
* matches but is on different index. If there is no such command we will not resume execution. */
for (command = s->exec_command[id]; command; command = command->command_next)
if (strv_equal(command->argv, argv) && streq(command->path, path))
break;
}
if (command && control) {
s->control_command = command;
s->control_command_id = id;
} else if (command)
s->main_command = command;
else
log_unit_warning(u, "Current command vanished from the unit file, execution of the command list won't be resumed.");
return 0;
}
static int service_deserialize_item(Unit *u, const char *key, const char *value, FDSet *fds) {
Service *s = SERVICE(u);
int r;
assert(u);
assert(key);
assert(value);
assert(fds);
if (streq(key, "state")) {
ServiceState state;
state = service_state_from_string(value);
if (state < 0)
log_unit_debug(u, "Failed to parse state value: %s", value);
else
s->deserialized_state = state;
} else if (streq(key, "result")) {
ServiceResult f;
f = service_result_from_string(value);
if (f < 0)
log_unit_debug(u, "Failed to parse result value: %s", value);
else if (f != SERVICE_SUCCESS)
s->result = f;
} else if (streq(key, "reload-result")) {
ServiceResult f;
f = service_result_from_string(value);
if (f < 0)
log_unit_debug(u, "Failed to parse reload result value: %s", value);
else if (f != SERVICE_SUCCESS)
s->reload_result = f;
} else if (streq(key, "control-pid")) {
pid_t pid;
if (parse_pid(value, &pid) < 0)
log_unit_debug(u, "Failed to parse control-pid value: %s", value);
else
s->control_pid = pid;
} else if (streq(key, "main-pid")) {
pid_t pid;
if (parse_pid(value, &pid) < 0)
log_unit_debug(u, "Failed to parse main-pid value: %s", value);
else
(void) service_set_main_pid(s, pid);
} else if (streq(key, "main-pid-known")) {
int b;
b = parse_boolean(value);
if (b < 0)
log_unit_debug(u, "Failed to parse main-pid-known value: %s", value);
else
s->main_pid_known = b;
} else if (streq(key, "bus-name-good")) {
int b;
b = parse_boolean(value);
if (b < 0)
log_unit_debug(u, "Failed to parse bus-name-good value: %s", value);
else
s->bus_name_good = b;
} else if (streq(key, "bus-name-owner")) {
r = free_and_strdup(&s->bus_name_owner, value);
if (r < 0)
log_unit_error_errno(u, r, "Unable to deserialize current bus owner %s: %m", value);
} else if (streq(key, "status-text")) {
char *t;
r = cunescape(value, 0, &t);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to unescape status text '%s': %m", value);
else
free_and_replace(s->status_text, t);
} else if (streq(key, "accept-socket")) {
Unit *socket;
r = manager_load_unit(u->manager, value, NULL, NULL, &socket);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to load accept-socket unit '%s': %m", value);
else {
unit_ref_set(&s->accept_socket, u, socket);
SOCKET(socket)->n_connections++;
}
} else if (streq(key, "socket-fd")) {
int fd;
if (safe_atoi(value, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
log_unit_debug(u, "Failed to parse socket-fd value: %s", value);
else {
asynchronous_close(s->socket_fd);
s->socket_fd = fdset_remove(fds, fd);
}
} else if (streq(key, "fd-store-fd")) {
_cleanup_free_ char *fdv = NULL, *fdn = NULL, *fdp = NULL;
int fd;
int do_poll;
r = extract_first_word(&value, &fdv, NULL, 0);
if (r <= 0 || safe_atoi(fdv, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd)) {
log_unit_debug(u, "Failed to parse fd-store-fd value: %s", value);
return 0;
}
r = extract_first_word(&value, &fdn, NULL, EXTRACT_CUNESCAPE | EXTRACT_UNQUOTE);
if (r <= 0) {
log_unit_debug_errno(u, r, "Failed to parse fd-store-fd value \"%s\": %m", value);
return 0;
}
r = extract_first_word(&value, &fdp, NULL, 0);
if (r == 0) {
/* If the value is not present, we assume the default */
do_poll = 1;
} else if (r < 0 || safe_atoi(fdp, &do_poll) < 0) {
log_unit_debug_errno(u, r, "Failed to parse fd-store-fd value \"%s\": %m", value);
return 0;
}
r = service_add_fd_store(s, fd, fdn, do_poll);
if (r < 0)
log_unit_error_errno(u, r, "Failed to add fd to store: %m");
else
fdset_remove(fds, fd);
} else if (streq(key, "main-exec-status-pid")) {
pid_t pid;
if (parse_pid(value, &pid) < 0)
log_unit_debug(u, "Failed to parse main-exec-status-pid value: %s", value);
else
s->main_exec_status.pid = pid;
} else if (streq(key, "main-exec-status-code")) {
int i;
if (safe_atoi(value, &i) < 0)
log_unit_debug(u, "Failed to parse main-exec-status-code value: %s", value);
else
s->main_exec_status.code = i;
} else if (streq(key, "main-exec-status-status")) {
int i;
if (safe_atoi(value, &i) < 0)
log_unit_debug(u, "Failed to parse main-exec-status-status value: %s", value);
else
s->main_exec_status.status = i;
} else if (streq(key, "main-exec-status-start"))
deserialize_dual_timestamp(value, &s->main_exec_status.start_timestamp);
else if (streq(key, "main-exec-status-exit"))
deserialize_dual_timestamp(value, &s->main_exec_status.exit_timestamp);
else if (streq(key, "watchdog-timestamp"))
deserialize_dual_timestamp(value, &s->watchdog_timestamp);
else if (streq(key, "forbid-restart")) {
int b;
b = parse_boolean(value);
if (b < 0)
log_unit_debug(u, "Failed to parse forbid-restart value: %s", value);
else
s->forbid_restart = b;
} else if (streq(key, "stdin-fd")) {
int fd;
if (safe_atoi(value, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
log_unit_debug(u, "Failed to parse stdin-fd value: %s", value);
else {
asynchronous_close(s->stdin_fd);
s->stdin_fd = fdset_remove(fds, fd);
s->exec_context.stdio_as_fds = true;
}
} else if (streq(key, "stdout-fd")) {
int fd;
if (safe_atoi(value, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
log_unit_debug(u, "Failed to parse stdout-fd value: %s", value);
else {
asynchronous_close(s->stdout_fd);
s->stdout_fd = fdset_remove(fds, fd);
s->exec_context.stdio_as_fds = true;
}
} else if (streq(key, "stderr-fd")) {
int fd;
if (safe_atoi(value, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
log_unit_debug(u, "Failed to parse stderr-fd value: %s", value);
else {
asynchronous_close(s->stderr_fd);
s->stderr_fd = fdset_remove(fds, fd);
s->exec_context.stdio_as_fds = true;
}
} else if (streq(key, "exec-fd")) {
int fd;
if (safe_atoi(value, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
log_unit_debug(u, "Failed to parse exec-fd value: %s", value);
else {
s->exec_fd_event_source = sd_event_source_unref(s->exec_fd_event_source);
fd = fdset_remove(fds, fd);
if (service_allocate_exec_fd_event_source(s, fd, &s->exec_fd_event_source) < 0)
safe_close(fd);
}
} else if (streq(key, "watchdog-override-usec")) {
if (deserialize_usec(value, &s->watchdog_override_usec) < 0)
log_unit_debug(u, "Failed to parse watchdog_override_usec value: %s", value);
else
s->watchdog_override_enable = true;
} else if (streq(key, "watchdog-original-usec")) {
if (deserialize_usec(value, &s->watchdog_original_usec) < 0)
log_unit_debug(u, "Failed to parse watchdog_original_usec value: %s", value);
} else if (STR_IN_SET(key, "main-command", "control-command")) {
r = service_deserialize_exec_command(u, key, value);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to parse serialized command \"%s\": %m", value);
} else if (streq(key, "n-restarts")) {
r = safe_atou(value, &s->n_restarts);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to parse serialized restart counter '%s': %m", value);
} else if (streq(key, "flush-n-restarts")) {
r = parse_boolean(value);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to parse serialized flush restart counter setting '%s': %m", value);
else
s->flush_n_restarts = r;
} else
log_unit_debug(u, "Unknown serialization key: %s", key);
return 0;
}
_pure_ static UnitActiveState service_active_state(Unit *u) {
const UnitActiveState *table;
assert(u);
table = SERVICE(u)->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table;
return table[SERVICE(u)->state];
}
static const char *service_sub_state_to_string(Unit *u) {
assert(u);
return service_state_to_string(SERVICE(u)->state);
}
static bool service_may_gc(Unit *u) {
Service *s = SERVICE(u);
assert(s);
/* Never clean up services that still have a process around, even if the service is formally dead. Note that
* unit_may_gc() already checked our cgroup for us, we just check our two additional PIDs, too, in case they
* have moved outside of the cgroup. */
if (main_pid_good(s) > 0 ||
control_pid_good(s) > 0)
return false;
return true;
}
static int service_retry_pid_file(Service *s) {
int r;
assert(s->pid_file);
assert(IN_SET(s->state, SERVICE_START, SERVICE_START_POST));
r = service_load_pid_file(s, false);
if (r < 0)
return r;
service_unwatch_pid_file(s);
service_enter_running(s, SERVICE_SUCCESS);
return 0;
}
static int service_watch_pid_file(Service *s) {
int r;
log_unit_debug(UNIT(s), "Setting watch for PID file %s", s->pid_file_pathspec->path);
r = path_spec_watch(s->pid_file_pathspec, service_dispatch_inotify_io);
if (r < 0)
goto fail;
/* the pidfile might have appeared just before we set the watch */
log_unit_debug(UNIT(s), "Trying to read PID file %s in case it changed", s->pid_file_pathspec->path);
service_retry_pid_file(s);
return 0;
fail:
log_unit_error_errno(UNIT(s), r, "Failed to set a watch for PID file %s: %m", s->pid_file_pathspec->path);
service_unwatch_pid_file(s);
return r;
}
static int service_demand_pid_file(Service *s) {
PathSpec *ps;
assert(s->pid_file);
assert(!s->pid_file_pathspec);
ps = new0(PathSpec, 1);
if (!ps)
return -ENOMEM;
ps->unit = UNIT(s);
ps->path = strdup(s->pid_file);
if (!ps->path) {
free(ps);
return -ENOMEM;
}
path_simplify(ps->path, false);
/* PATH_CHANGED would not be enough. There are daemons (sendmail) that
* keep their PID file open all the time. */
ps->type = PATH_MODIFIED;
ps->inotify_fd = -1;
s->pid_file_pathspec = ps;
return service_watch_pid_file(s);
}
static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata) {
PathSpec *p = userdata;
Service *s;
assert(p);
s = SERVICE(p->unit);
assert(s);
assert(fd >= 0);
assert(IN_SET(s->state, SERVICE_START, SERVICE_START_POST));
assert(s->pid_file_pathspec);
assert(path_spec_owns_inotify_fd(s->pid_file_pathspec, fd));
log_unit_debug(UNIT(s), "inotify event");
if (path_spec_fd_event(p, events) < 0)
goto fail;
if (service_retry_pid_file(s) == 0)
return 0;
if (service_watch_pid_file(s) < 0)
goto fail;
return 0;
fail:
service_unwatch_pid_file(s);
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES);
return 0;
}
static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata) {
Service *s = SERVICE(userdata);
assert(s);
log_unit_debug(UNIT(s), "got exec-fd event");
/* If Type=exec is set, we'll consider a service started successfully the instant we invoked execve()
* successfully for it. We implement this through a pipe() towards the child, which the kernel automatically
* closes for us due to O_CLOEXEC on execve() in the child, which then triggers EOF on the pipe in the
* parent. We need to be careful however, as there are other reasons that we might cause the child's side of
* the pipe to be closed (for example, a simple exit()). To deal with that we'll ignore EOFs on the pipe unless
* the child signalled us first that it is about to call the execve(). It does so by sending us a simple
* non-zero byte via the pipe. We also provide the child with a way to inform us in case execve() failed: if it
* sends a zero byte we'll ignore POLLHUP on the fd again. */
for (;;) {
uint8_t x;
ssize_t n;
n = read(fd, &x, sizeof(x));
if (n < 0) {
if (errno == EAGAIN) /* O_NONBLOCK in effect → everything queued has now been processed. */
return 0;
return log_unit_error_errno(UNIT(s), errno, "Failed to read from exec_fd: %m");
}
if (n == 0) { /* EOF → the event we are waiting for */
s->exec_fd_event_source = sd_event_source_unref(s->exec_fd_event_source);
if (s->exec_fd_hot) { /* Did the child tell us to expect EOF now? */
log_unit_debug(UNIT(s), "Got EOF on exec-fd");
s->exec_fd_hot = false;
/* Nice! This is what we have been waiting for. Transition to next state. */
if (s->type == SERVICE_EXEC && s->state == SERVICE_START)
service_enter_start_post(s);
} else
log_unit_debug(UNIT(s), "Got EOF on exec-fd while it was disabled, ignoring.");
return 0;
}
/* A byte was read → this turns on/off the exec fd logic */
assert(n == sizeof(x));
s->exec_fd_hot = x;
}
return 0;
}
static void service_notify_cgroup_empty_event(Unit *u) {
Service *s = SERVICE(u);
assert(u);
log_unit_debug(u, "Control group is empty.");
switch (s->state) {
/* Waiting for SIGCHLD is usually more interesting,
* because it includes return codes/signals. Which is
* why we ignore the cgroup events for most cases,
* except when we don't know pid which to expect the
* SIGCHLD for. */
case SERVICE_START:
if (s->type == SERVICE_NOTIFY &&
main_pid_good(s) == 0 &&
control_pid_good(s) == 0) {
/* No chance of getting a ready notification anymore */
service_enter_stop_post(s, SERVICE_FAILURE_PROTOCOL);
break;
}
_fallthrough_;
case SERVICE_START_POST:
if (s->pid_file_pathspec &&
main_pid_good(s) == 0 &&
control_pid_good(s) == 0) {
/* Give up hoping for the daemon to write its PID file */
log_unit_warning(u, "Daemon never wrote its PID file. Failing.");
service_unwatch_pid_file(s);
if (s->state == SERVICE_START)
service_enter_stop_post(s, SERVICE_FAILURE_PROTOCOL);
else
service_enter_stop(s, SERVICE_FAILURE_PROTOCOL);
}
break;
case SERVICE_RUNNING:
/* service_enter_running() will figure out what to do */
service_enter_running(s, SERVICE_SUCCESS);
break;
case SERVICE_STOP_WATCHDOG:
case SERVICE_STOP_SIGTERM:
case SERVICE_STOP_SIGKILL:
if (main_pid_good(s) <= 0 && control_pid_good(s) <= 0)
service_enter_stop_post(s, SERVICE_SUCCESS);
break;
case SERVICE_STOP_POST:
case SERVICE_FINAL_WATCHDOG:
case SERVICE_FINAL_SIGTERM:
case SERVICE_FINAL_SIGKILL:
if (main_pid_good(s) <= 0 && control_pid_good(s) <= 0)
service_enter_dead(s, SERVICE_SUCCESS, true);
break;
default:
;
}
}
static void service_notify_cgroup_oom_event(Unit *u) {
Service *s = SERVICE(u);
log_unit_debug(u, "Process of control group was killed by the OOM killer.");
if (s->oom_policy == OOM_CONTINUE)
return;
switch (s->state) {
case SERVICE_CONDITION:
case SERVICE_START_PRE:
case SERVICE_START:
case SERVICE_START_POST:
case SERVICE_STOP:
if (s->oom_policy == OOM_STOP)
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_OOM_KILL);
else if (s->oom_policy == OOM_KILL)
service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL);
break;
case SERVICE_EXITED:
case SERVICE_RUNNING:
if (s->oom_policy == OOM_STOP)
service_enter_stop(s, SERVICE_FAILURE_OOM_KILL);
else if (s->oom_policy == OOM_KILL)
service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL);
break;
case SERVICE_STOP_WATCHDOG:
case SERVICE_STOP_SIGTERM:
service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL);
break;
case SERVICE_STOP_SIGKILL:
case SERVICE_FINAL_SIGKILL:
if (s->result == SERVICE_SUCCESS)
s->result = SERVICE_FAILURE_OOM_KILL;
break;
case SERVICE_STOP_POST:
case SERVICE_FINAL_SIGTERM:
service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_OOM_KILL);
break;
default:
;
}
}
static void service_sigchld_event(Unit *u, pid_t pid, int code, int status) {
bool notify_dbus = true;
Service *s = SERVICE(u);
ServiceResult f;
ExitClean clean_mode;
assert(s);
assert(pid >= 0);
/* Oneshot services and non-SERVICE_EXEC_START commands should not be
* considered daemons as they are typically not long running. */
if (s->type == SERVICE_ONESHOT || (s->control_pid == pid && s->control_command_id != SERVICE_EXEC_START))
clean_mode = EXIT_CLEAN_COMMAND;
else
clean_mode = EXIT_CLEAN_DAEMON;
if (is_clean_exit(code, status, clean_mode, &s->success_status))
f = SERVICE_SUCCESS;
else if (code == CLD_EXITED)
f = SERVICE_FAILURE_EXIT_CODE;
else if (code == CLD_KILLED)
f = SERVICE_FAILURE_SIGNAL;
else if (code == CLD_DUMPED)
f = SERVICE_FAILURE_CORE_DUMP;
else
assert_not_reached("Unknown code");
if (s->main_pid == pid) {
/* Forking services may occasionally move to a new PID.
* As long as they update the PID file before exiting the old
* PID, they're fine. */
if (service_load_pid_file(s, false) > 0)
return;
s->main_pid = 0;
exec_status_exit(&s->main_exec_status, &s->exec_context, pid, code, status);
if (s->main_command) {
/* If this is not a forking service than the
* main process got started and hence we copy
* the exit status so that it is recorded both
* as main and as control process exit
* status */
s->main_command->exec_status = s->main_exec_status;
if (s->main_command->flags & EXEC_COMMAND_IGNORE_FAILURE)
f = SERVICE_SUCCESS;
} else if (s->exec_command[SERVICE_EXEC_START]) {
/* If this is a forked process, then we should
* ignore the return value if this was
* configured for the starter process */
if (s->exec_command[SERVICE_EXEC_START]->flags & EXEC_COMMAND_IGNORE_FAILURE)
f = SERVICE_SUCCESS;
}
unit_log_process_exit(
u,
"Main process",
service_exec_command_to_string(SERVICE_EXEC_START),
f == SERVICE_SUCCESS,
code, status);
if (s->result == SERVICE_SUCCESS)
s->result = f;
if (s->main_command &&
s->main_command->command_next &&
s->type == SERVICE_ONESHOT &&
f == SERVICE_SUCCESS) {
/* There is another command to *
* execute, so let's do that. */
log_unit_debug(u, "Running next main command for state %s.", service_state_to_string(s->state));
service_run_next_main(s);
} else {
/* The service exited, so the service is officially
* gone. */
s->main_command = NULL;
switch (s->state) {
case SERVICE_START_POST:
case SERVICE_RELOAD:
case SERVICE_STOP:
/* Need to wait until the operation is
* done */
break;
case SERVICE_START:
if (s->type == SERVICE_ONESHOT) {
/* This was our main goal, so let's go on */
if (f == SERVICE_SUCCESS)
service_enter_start_post(s);
else
service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
break;
} else if (s->type == SERVICE_NOTIFY) {
/* Only enter running through a notification, so that the
* SERVICE_START state signifies that no ready notification
* has been received */
if (f != SERVICE_SUCCESS)
service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
else if (!s->remain_after_exit || s->notify_access == NOTIFY_MAIN)
/* The service has never been and will never be active */
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_PROTOCOL);
break;
}
_fallthrough_;
case SERVICE_RUNNING:
service_enter_running(s, f);
break;
case SERVICE_STOP_WATCHDOG:
case SERVICE_STOP_SIGTERM:
case SERVICE_STOP_SIGKILL:
if (control_pid_good(s) <= 0)
service_enter_stop_post(s, f);
/* If there is still a control process, wait for that first */
break;
case SERVICE_STOP_POST:
if (control_pid_good(s) <= 0)
service_enter_signal(s, SERVICE_FINAL_SIGTERM, f);
break;
case SERVICE_FINAL_WATCHDOG:
case SERVICE_FINAL_SIGTERM:
case SERVICE_FINAL_SIGKILL:
if (control_pid_good(s) <= 0)
service_enter_dead(s, f, true);
break;
default:
assert_not_reached("Uh, main process died at wrong time.");
}
}
} else if (s->control_pid == pid) {
s->control_pid = 0;
/* ExecCondition= calls that exit with (0, 254] should invoke skip-like behavior instead of failing */
if (f == SERVICE_FAILURE_EXIT_CODE && s->state == SERVICE_CONDITION && status < 255)
f = SERVICE_SKIP_CONDITION;
if (s->control_command) {
exec_status_exit(&s->control_command->exec_status, &s->exec_context, pid, code, status);
if (s->control_command->flags & EXEC_COMMAND_IGNORE_FAILURE)
f = SERVICE_SUCCESS;
}
unit_log_process_exit(
u,
"Control process",
service_exec_command_to_string(s->control_command_id),
f == SERVICE_SUCCESS,
code, status);
if (s->state != SERVICE_RELOAD && s->result == SERVICE_SUCCESS)
s->result = f;
if (s->control_command &&
s->control_command->command_next &&
f == SERVICE_SUCCESS) {
/* There is another command to *
* execute, so let's do that. */
log_unit_debug(u, "Running next control command for state %s.", service_state_to_string(s->state));
service_run_next_control(s);
} else {
/* No further commands for this step, so let's
* figure out what to do next */
s->control_command = NULL;
s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
log_unit_debug(u, "Got final SIGCHLD for state %s.", service_state_to_string(s->state));
switch (s->state) {
case SERVICE_CONDITION:
if (f == SERVICE_SUCCESS)
service_enter_start_pre(s);
else
service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
break;
case SERVICE_START_PRE:
if (f == SERVICE_SUCCESS)
service_enter_start(s);
else
service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
break;
case SERVICE_START:
if (s->type != SERVICE_FORKING)
/* Maybe spurious event due to a reload that changed the type? */
break;
if (f != SERVICE_SUCCESS) {
service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
break;
}
if (s->pid_file) {
bool has_start_post;
int r;
/* Let's try to load the pid file here if we can.
* The PID file might actually be created by a START_POST
* script. In that case don't worry if the loading fails. */
has_start_post = s->exec_command[SERVICE_EXEC_START_POST];
r = service_load_pid_file(s, !has_start_post);
if (!has_start_post && r < 0) {
r = service_demand_pid_file(s);
if (r < 0 || cgroup_good(s) == 0)
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_PROTOCOL);
break;
}
} else
service_search_main_pid(s);
service_enter_start_post(s);
break;
case SERVICE_START_POST:
if (f != SERVICE_SUCCESS) {
service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
break;
}
if (s->pid_file) {
int r;
r = service_load_pid_file(s, true);
if (r < 0) {
r = service_demand_pid_file(s);
if (r < 0 || cgroup_good(s) == 0)
service_enter_stop(s, SERVICE_FAILURE_PROTOCOL);
break;
}
} else
service_search_main_pid(s);
service_enter_running(s, SERVICE_SUCCESS);
break;
case SERVICE_RELOAD:
if (f == SERVICE_SUCCESS)
if (service_load_pid_file(s, true) < 0)
service_search_main_pid(s);
s->reload_result = f;
service_enter_running(s, SERVICE_SUCCESS);
break;
case SERVICE_STOP:
service_enter_signal(s, SERVICE_STOP_SIGTERM, f);
break;
case SERVICE_STOP_WATCHDOG:
case SERVICE_STOP_SIGTERM:
case SERVICE_STOP_SIGKILL:
if (main_pid_good(s) <= 0)
service_enter_stop_post(s, f);
/* If there is still a service process around, wait until
* that one quit, too */
break;
case SERVICE_STOP_POST:
if (main_pid_good(s) <= 0)
service_enter_signal(s, SERVICE_FINAL_SIGTERM, f);
break;
case SERVICE_FINAL_WATCHDOG:
case SERVICE_FINAL_SIGTERM:
case SERVICE_FINAL_SIGKILL:
if (main_pid_good(s) <= 0)
service_enter_dead(s, f, true);
break;
case SERVICE_CLEANING:
if (s->clean_result == SERVICE_SUCCESS)
s->clean_result = f;
service_enter_dead(s, SERVICE_SUCCESS, false);
break;
default:
assert_not_reached("Uh, control process died at wrong time.");
}
}
} else /* Neither control nor main PID? If so, don't notify about anything */
notify_dbus = false;
/* Notify clients about changed exit status */
if (notify_dbus)
unit_add_to_dbus_queue(u);
/* We watch the main/control process otherwise we can't retrieve the unit they
* belong to with cgroupv1. But if they are not our direct child, we won't get a
* SIGCHLD for them. Therefore we need to look for others to watch so we can
* detect when the cgroup becomes empty. Note that the control process is always
* our child so it's pointless to watch all other processes. */
if (!control_pid_good(s))
if (!s->main_pid_known || s->main_pid_alien)
(void) unit_enqueue_rewatch_pids(u);
}
static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata) {
Service *s = SERVICE(userdata);
assert(s);
assert(source == s->timer_event_source);
switch (s->state) {
case SERVICE_CONDITION:
case SERVICE_START_PRE:
case SERVICE_START:
case SERVICE_START_POST:
switch (s->timeout_start_failure_mode) {
case SERVICE_TIMEOUT_TERMINATE:
log_unit_warning(UNIT(s), "%s operation timed out. Terminating.", service_state_to_string(s->state));
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_TIMEOUT);
break;
case SERVICE_TIMEOUT_ABORT:
log_unit_warning(UNIT(s), "%s operation timed out. Aborting.", service_state_to_string(s->state));
service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
break;
case SERVICE_TIMEOUT_KILL:
if (s->kill_context.send_sigkill) {
log_unit_warning(UNIT(s), "%s operation timed out. Killing.", service_state_to_string(s->state));
service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
} else {
log_unit_warning(UNIT(s), "%s operation timed out. Skipping SIGKILL.", service_state_to_string(s->state));
service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
}
break;
default:
assert_not_reached("unknown timeout mode");
}
break;
case SERVICE_RUNNING:
log_unit_warning(UNIT(s), "Service reached runtime time limit. Stopping.");
service_enter_stop(s, SERVICE_FAILURE_TIMEOUT);
break;
case SERVICE_RELOAD:
log_unit_warning(UNIT(s), "Reload operation timed out. Killing reload process.");
service_kill_control_process(s);
s->reload_result = SERVICE_FAILURE_TIMEOUT;
service_enter_running(s, SERVICE_SUCCESS);
break;
case SERVICE_STOP:
switch (s->timeout_stop_failure_mode) {
case SERVICE_TIMEOUT_TERMINATE:
log_unit_warning(UNIT(s), "Stopping timed out. Terminating.");
service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_TIMEOUT);
break;
case SERVICE_TIMEOUT_ABORT:
log_unit_warning(UNIT(s), "Stopping timed out. Aborting.");
service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
break;
case SERVICE_TIMEOUT_KILL:
if (s->kill_context.send_sigkill) {
log_unit_warning(UNIT(s), "Stopping timed out. Killing.");
service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
} else {
log_unit_warning(UNIT(s), "Stopping timed out. Skipping SIGKILL.");
service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
}
break;
default:
assert_not_reached("unknown timeout mode");
}
break;
case SERVICE_STOP_WATCHDOG:
if (s->kill_context.send_sigkill) {
log_unit_warning(UNIT(s), "State 'stop-watchdog' timed out. Killing.");
service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
} else {
log_unit_warning(UNIT(s), "State 'stop-watchdog' timed out. Skipping SIGKILL.");
service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
}
break;
case SERVICE_STOP_SIGTERM:
if (s->timeout_stop_failure_mode == SERVICE_TIMEOUT_ABORT) {
log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Aborting.");
service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
} else if (s->kill_context.send_sigkill) {
log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Killing.");
service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT);
} else {
log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Skipping SIGKILL.");
service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
}
break;
case SERVICE_STOP_SIGKILL:
/* Uh, we sent a SIGKILL and it is still not gone?
* Must be something we cannot kill, so let's just be
* weirded out and continue */
log_unit_warning(UNIT(s), "Processes still around after SIGKILL. Ignoring.");
service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT);
break;
case SERVICE_STOP_POST:
switch (s->timeout_stop_failure_mode) {
case SERVICE_TIMEOUT_TERMINATE:
log_unit_warning(UNIT(s), "State 'stop-post' timed out. Terminating.");
service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_TIMEOUT);
break;
case SERVICE_TIMEOUT_ABORT:
log_unit_warning(UNIT(s), "State 'stop-post' timed out. Aborting.");
service_enter_signal(s, SERVICE_FINAL_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
break;
case SERVICE_TIMEOUT_KILL:
if (s->kill_context.send_sigkill) {
log_unit_warning(UNIT(s), "State 'stop-post' timed out. Killing.");
service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT);
} else {
log_unit_warning(UNIT(s), "State 'stop-post' timed out. Skipping SIGKILL. Entering failed mode.");
service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false);
}
break;
default:
assert_not_reached("unknown timeout mode");
}
break;
case SERVICE_FINAL_WATCHDOG:
if (s->kill_context.send_sigkill) {
log_unit_warning(UNIT(s), "State 'final-watchdog' timed out. Killing.");
service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT);
} else {
log_unit_warning(UNIT(s), "State 'final-watchdog' timed out. Skipping SIGKILL. Entering failed mode.");
service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false);
}
break;
case SERVICE_FINAL_SIGTERM:
if (s->timeout_stop_failure_mode == SERVICE_TIMEOUT_ABORT) {
log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Aborting.");
service_enter_signal(s, SERVICE_FINAL_WATCHDOG, SERVICE_FAILURE_TIMEOUT);
} else if (s->kill_context.send_sigkill) {
log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Killing.");
service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT);
} else {
log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Skipping SIGKILL. Entering failed mode.");
service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false);
}
break;
case SERVICE_FINAL_SIGKILL:
log_unit_warning(UNIT(s), "Processes still around after final SIGKILL. Entering failed mode.");
service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, true);
break;
case SERVICE_AUTO_RESTART:
if (s->restart_usec > 0) {
char buf_restart[FORMAT_TIMESPAN_MAX];
log_unit_debug(UNIT(s),
"Service RestartSec=%s expired, scheduling restart.",
format_timespan(buf_restart, sizeof buf_restart, s->restart_usec, USEC_PER_SEC));
} else
log_unit_debug(UNIT(s),
"Service has no hold-off time (RestartSec=0), scheduling restart.");
service_enter_restart(s);
break;
case SERVICE_CLEANING:
log_unit_warning(UNIT(s), "Cleaning timed out. killing.");
if (s->clean_result == SERVICE_SUCCESS)
s->clean_result = SERVICE_FAILURE_TIMEOUT;
service_enter_signal(s, SERVICE_FINAL_SIGKILL, 0);
break;
default:
assert_not_reached("Timeout at wrong time.");
}
return 0;
}
static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata) {
Service *s = SERVICE(userdata);
char t[FORMAT_TIMESPAN_MAX];
usec_t watchdog_usec;
assert(s);
assert(source == s->watchdog_event_source);
watchdog_usec = service_get_watchdog_usec(s);
if (UNIT(s)->manager->service_watchdogs) {
log_unit_error(UNIT(s), "Watchdog timeout (limit %s)!",
format_timespan(t, sizeof(t), watchdog_usec, 1));
service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_WATCHDOG);
} else
log_unit_warning(UNIT(s), "Watchdog disabled! Ignoring watchdog timeout (limit %s)!",
format_timespan(t, sizeof(t), watchdog_usec, 1));
return 0;
}
static bool service_notify_message_authorized(Service *s, pid_t pid, FDSet *fds) {
assert(s);
if (s->notify_access == NOTIFY_NONE) {
log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception is disabled.", pid);
return false;
}
if (s->notify_access == NOTIFY_MAIN && pid != s->main_pid) {
if (s->main_pid != 0)
log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid, s->main_pid);
else
log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID which is currently not known", pid);
return false;
}
if (s->notify_access == NOTIFY_EXEC && pid != s->main_pid && pid != s->control_pid) {
if (s->main_pid != 0 && s->control_pid != 0)
log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT" and control PID "PID_FMT,
pid, s->main_pid, s->control_pid);
else if (s->main_pid != 0)
log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid, s->main_pid);
else if (s->control_pid != 0)
log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for control PID "PID_FMT, pid, s->control_pid);
else
log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID and control PID which are currently not known", pid);
return false;
}
return true;
}
static void service_force_watchdog(Service *s) {
if (!UNIT(s)->manager->service_watchdogs)
return;
log_unit_error(UNIT(s), "Watchdog request (last status: %s)!",
s->status_text ? s->status_text : "<unset>");
service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_WATCHDOG);
}
static void service_notify_message(
Unit *u,
const struct ucred *ucred,
char * const *tags,
FDSet *fds) {
Service *s = SERVICE(u);
bool notify_dbus = false;
const char *e;
char * const *i;
int r;
assert(u);
assert(ucred);
if (!service_notify_message_authorized(SERVICE(u), ucred->pid, fds))
return;
if (DEBUG_LOGGING) {
_cleanup_free_ char *cc = NULL;
cc = strv_join(tags, ", ");
log_unit_debug(u, "Got notification message from PID "PID_FMT" (%s)", ucred->pid, isempty(cc) ? "n/a" : cc);
}
/* Interpret MAINPID= */
e = strv_find_startswith(tags, "MAINPID=");
if (e && IN_SET(s->state, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD)) {
pid_t new_main_pid;
if (parse_pid(e, &new_main_pid) < 0)
log_unit_warning(u, "Failed to parse MAINPID= field in notification message, ignoring: %s", e);
else if (!s->main_pid_known || new_main_pid != s->main_pid) {
r = service_is_suitable_main_pid(s, new_main_pid, LOG_WARNING);
if (r == 0) {
/* The new main PID is a bit suspicious, which is OK if the sender is privileged. */
if (ucred->uid == 0) {
log_unit_debug(u, "New main PID "PID_FMT" does not belong to service, but we'll accept it as the request to change it came from a privileged process.", new_main_pid);
r = 1;
} else
log_unit_debug(u, "New main PID "PID_FMT" does not belong to service, refusing.", new_main_pid);
}
if (r > 0) {
service_set_main_pid(s, new_main_pid);
r = unit_watch_pid(UNIT(s), new_main_pid, false);
if (r < 0)
log_unit_warning_errno(UNIT(s), r, "Failed to watch new main PID "PID_FMT" for service: %m", new_main_pid);
notify_dbus = true;
}
}
}
/* Interpret READY=/STOPPING=/RELOADING=. Last one wins. */
STRV_FOREACH_BACKWARDS(i, tags) {
if (streq(*i, "READY=1")) {
s->notify_state = NOTIFY_READY;
/* Type=notify services inform us about completed
* initialization with READY=1 */
if (s->type == SERVICE_NOTIFY && s->state == SERVICE_START)
service_enter_start_post(s);
/* Sending READY=1 while we are reloading informs us
* that the reloading is complete */
if (s->state == SERVICE_RELOAD && s->control_pid == 0)
service_enter_running(s, SERVICE_SUCCESS);
notify_dbus = true;
break;
} else if (streq(*i, "RELOADING=1")) {
s->notify_state = NOTIFY_RELOADING;
if (s->state == SERVICE_RUNNING)
service_enter_reload_by_notify(s);
notify_dbus = true;
break;
} else if (streq(*i, "STOPPING=1")) {
s->notify_state = NOTIFY_STOPPING;
if (s->state == SERVICE_RUNNING)
service_enter_stop_by_notify(s);
notify_dbus = true;
break;
}
}
/* Interpret STATUS= */
e = strv_find_startswith(tags, "STATUS=");
if (e) {
_cleanup_free_ char *t = NULL;
if (!isempty(e)) {
/* Note that this size limit check is mostly paranoia: since the datagram size we are willing
* to process is already limited to NOTIFY_BUFFER_MAX, this limit here should never be hit. */
if (strlen(e) > STATUS_TEXT_MAX)
log_unit_warning(u, "Status message overly long (%zu > %u), ignoring.", strlen(e), STATUS_TEXT_MAX);
else if (!utf8_is_valid(e))
log_unit_warning(u, "Status message in notification message is not UTF-8 clean, ignoring.");
else {
t = strdup(e);
if (!t)
log_oom();
}
}
if (!streq_ptr(s->status_text, t)) {
free_and_replace(s->status_text, t);
notify_dbus = true;
}
}
/* Interpret ERRNO= */
e = strv_find_startswith(tags, "ERRNO=");
if (e) {
int status_errno;
status_errno = parse_errno(e);
if (status_errno < 0)
log_unit_warning_errno(u, status_errno,
"Failed to parse ERRNO= field value '%s' in notification message: %m", e);
else if (s->status_errno != status_errno) {
s->status_errno = status_errno;
notify_dbus = true;
}
}
/* Interpret EXTEND_TIMEOUT= */
e = strv_find_startswith(tags, "EXTEND_TIMEOUT_USEC=");
if (e) {
usec_t extend_timeout_usec;
if (safe_atou64(e, &extend_timeout_usec) < 0)
log_unit_warning(u, "Failed to parse EXTEND_TIMEOUT_USEC=%s", e);
else
service_extend_timeout(s, extend_timeout_usec);
}
/* Interpret WATCHDOG= */
e = strv_find_startswith(tags, "WATCHDOG=");
if (e) {
if (streq(e, "1"))
service_reset_watchdog(s);
else if (streq(e, "trigger"))
service_force_watchdog(s);
else
log_unit_warning(u, "Passed WATCHDOG= field is invalid, ignoring.");
}
e = strv_find_startswith(tags, "WATCHDOG_USEC=");
if (e) {
usec_t watchdog_override_usec;
if (safe_atou64(e, &watchdog_override_usec) < 0)
log_unit_warning(u, "Failed to parse WATCHDOG_USEC=%s", e);
else
service_override_watchdog_timeout(s, watchdog_override_usec);
}
/* Process FD store messages. Either FDSTOREREMOVE=1 for removal, or FDSTORE=1 for addition. In both cases,
* process FDNAME= for picking the file descriptor name to use. Note that FDNAME= is required when removing
* fds, but optional when pushing in new fds, for compatibility reasons. */
if (strv_find(tags, "FDSTOREREMOVE=1")) {
const char *name;
name = strv_find_startswith(tags, "FDNAME=");
if (!name || !fdname_is_valid(name))
log_unit_warning(u, "FDSTOREREMOVE=1 requested, but no valid file descriptor name passed, ignoring.");
else
service_remove_fd_store(s, name);
} else if (strv_find(tags, "FDSTORE=1")) {
const char *name;
name = strv_find_startswith(tags, "FDNAME=");
if (name && !fdname_is_valid(name)) {
log_unit_warning(u, "Passed FDNAME= name is invalid, ignoring.");
name = NULL;
}
(void) service_add_fd_store_set(s, fds, name, !strv_contains(tags, "FDPOLL=0"));
}
/* Notify clients about changed status or main pid */
if (notify_dbus)
unit_add_to_dbus_queue(u);
}
static int service_get_timeout(Unit *u, usec_t *timeout) {
Service *s = SERVICE(u);
uint64_t t;
int r;
if (!s->timer_event_source)
return 0;
r = sd_event_source_get_time(s->timer_event_source, &t);
if (r < 0)
return r;
if (t == USEC_INFINITY)
return 0;
*timeout = t;
return 1;
}
static void service_bus_name_owner_change(Unit *u, const char *new_owner) {
Service *s = SERVICE(u);
int r;
assert(s);
if (new_owner)
log_unit_debug(u, "D-Bus name %s now owned by %s", s->bus_name, new_owner);
else
log_unit_debug(u, "D-Bus name %s now not owned by anyone.", s->bus_name);
s->bus_name_good = new_owner;
/* Track the current owner, so we can reconstruct changes after a daemon reload */
r = free_and_strdup(&s->bus_name_owner, new_owner);
if (r < 0) {
log_unit_error_errno(u, r, "Unable to set new bus name owner %s: %m", new_owner);
return;
}
if (s->type == SERVICE_DBUS) {
/* service_enter_running() will figure out what to
* do */
if (s->state == SERVICE_RUNNING)
service_enter_running(s, SERVICE_SUCCESS);
else if (s->state == SERVICE_START && new_owner)
service_enter_start_post(s);
} else if (new_owner &&
s->main_pid <= 0 &&
IN_SET(s->state,
SERVICE_START,
SERVICE_START_POST,
SERVICE_RUNNING,
SERVICE_RELOAD)) {
_cleanup_(sd_bus_creds_unrefp) sd_bus_creds *creds = NULL;
pid_t pid;
/* Try to acquire PID from bus service */
r = sd_bus_get_name_creds(u->manager->api_bus, s->bus_name, SD_BUS_CREDS_PID, &creds);
if (r >= 0)
r = sd_bus_creds_get_pid(creds, &pid);
if (r >= 0) {
log_unit_debug(u, "D-Bus name %s is now owned by process " PID_FMT, s->bus_name, pid);
service_set_main_pid(s, pid);
unit_watch_pid(UNIT(s), pid, false);
}
}
}
int service_set_socket_fd(Service *s, int fd, Socket *sock, bool selinux_context_net) {
_cleanup_free_ char *peer = NULL;
int r;
assert(s);
assert(fd >= 0);
/* This is called by the socket code when instantiating a new service for a stream socket and the socket needs
* to be configured. We take ownership of the passed fd on success. */
if (UNIT(s)->load_state != UNIT_LOADED)
return -EINVAL;
if (s->socket_fd >= 0)
return -EBUSY;
if (s->state != SERVICE_DEAD)
return -EAGAIN;
if (getpeername_pretty(fd, true, &peer) >= 0) {
if (UNIT(s)->description) {
_cleanup_free_ char *a;
a = strjoin(UNIT(s)->description, " (", peer, ")");
if (!a)
return -ENOMEM;
r = unit_set_description(UNIT(s), a);
} else
r = unit_set_description(UNIT(s), peer);
if (r < 0)
return r;
}
r = unit_add_two_dependencies(UNIT(sock), UNIT_BEFORE, UNIT_TRIGGERS, UNIT(s), false, UNIT_DEPENDENCY_IMPLICIT);
if (r < 0)
return r;
s->socket_fd = fd;
s->socket_fd_selinux_context_net = selinux_context_net;
unit_ref_set(&s->accept_socket, UNIT(s), UNIT(sock));
return 0;
}
static void service_reset_failed(Unit *u) {
Service *s = SERVICE(u);
assert(s);
if (s->state == SERVICE_FAILED)
service_set_state(s, SERVICE_DEAD);
s->result = SERVICE_SUCCESS;
s->reload_result = SERVICE_SUCCESS;
s->clean_result = SERVICE_SUCCESS;
s->n_restarts = 0;
s->flush_n_restarts = false;
}
static int service_kill(Unit *u, KillWho who, int signo, sd_bus_error *error) {
Service *s = SERVICE(u);
assert(s);
return unit_kill_common(u, who, signo, s->main_pid, s->control_pid, error);
}
static int service_main_pid(Unit *u) {
Service *s = SERVICE(u);
assert(s);
return s->main_pid;
}
static int service_control_pid(Unit *u) {
Service *s = SERVICE(u);
assert(s);
return s->control_pid;
}
static bool service_needs_console(Unit *u) {
Service *s = SERVICE(u);
assert(s);
/* We provide our own implementation of this here, instead of relying of the generic implementation
* unit_needs_console() provides, since we want to return false if we are in SERVICE_EXITED state. */
if (!exec_context_may_touch_console(&s->exec_context))
return false;
return IN_SET(s->state,
SERVICE_CONDITION,
SERVICE_START_PRE,
SERVICE_START,
SERVICE_START_POST,
SERVICE_RUNNING,
SERVICE_RELOAD,
SERVICE_STOP,
SERVICE_STOP_WATCHDOG,
SERVICE_STOP_SIGTERM,
SERVICE_STOP_SIGKILL,
SERVICE_STOP_POST,
SERVICE_FINAL_WATCHDOG,
SERVICE_FINAL_SIGTERM,
SERVICE_FINAL_SIGKILL);
}
static int service_exit_status(Unit *u) {
Service *s = SERVICE(u);
assert(u);
if (s->main_exec_status.pid <= 0 ||
!dual_timestamp_is_set(&s->main_exec_status.exit_timestamp))
return -ENODATA;
if (s->main_exec_status.code != CLD_EXITED)
return -EBADE;
return s->main_exec_status.status;
}
static int service_clean(Unit *u, ExecCleanMask mask) {
_cleanup_strv_free_ char **l = NULL;
Service *s = SERVICE(u);
int r;
assert(s);
assert(mask != 0);
if (s->state != SERVICE_DEAD)
return -EBUSY;
r = exec_context_get_clean_directories(&s->exec_context, u->manager->prefix, mask, &l);
if (r < 0)
return r;
if (strv_isempty(l))
return -EUNATCH;
service_unwatch_control_pid(s);
s->clean_result = SERVICE_SUCCESS;
s->control_command = NULL;
s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID;
r = service_arm_timer(s, usec_add(now(CLOCK_MONOTONIC), s->exec_context.timeout_clean_usec));
if (r < 0)
goto fail;
r = unit_fork_and_watch_rm_rf(u, l, &s->control_pid);
if (r < 0)
goto fail;
service_set_state(s, SERVICE_CLEANING);
return 0;
fail:
log_unit_warning_errno(u, r, "Failed to initiate cleaning: %m");
s->clean_result = SERVICE_FAILURE_RESOURCES;
s->timer_event_source = sd_event_source_unref(s->timer_event_source);
return r;
}
static int service_can_clean(Unit *u, ExecCleanMask *ret) {
Service *s = SERVICE(u);
assert(s);
return exec_context_get_clean_mask(&s->exec_context, ret);
}
static const char *service_finished_job(Unit *u, JobType t, JobResult result) {
if (t == JOB_START && result == JOB_DONE) {
Service *s = SERVICE(u);
if (s->type == SERVICE_ONESHOT)
return "Finished %s.";
}
/* Fall back to generic */
return NULL;
}
static const char* const service_restart_table[_SERVICE_RESTART_MAX] = {
[SERVICE_RESTART_NO] = "no",
[SERVICE_RESTART_ON_SUCCESS] = "on-success",
[SERVICE_RESTART_ON_FAILURE] = "on-failure",
[SERVICE_RESTART_ON_ABNORMAL] = "on-abnormal",
[SERVICE_RESTART_ON_WATCHDOG] = "on-watchdog",
[SERVICE_RESTART_ON_ABORT] = "on-abort",
[SERVICE_RESTART_ALWAYS] = "always",
};
DEFINE_STRING_TABLE_LOOKUP(service_restart, ServiceRestart);
static const char* const service_type_table[_SERVICE_TYPE_MAX] = {
[SERVICE_SIMPLE] = "simple",
[SERVICE_FORKING] = "forking",
[SERVICE_ONESHOT] = "oneshot",
[SERVICE_DBUS] = "dbus",
[SERVICE_NOTIFY] = "notify",
[SERVICE_IDLE] = "idle",
[SERVICE_EXEC] = "exec",
};
DEFINE_STRING_TABLE_LOOKUP(service_type, ServiceType);
static const char* const service_exec_command_table[_SERVICE_EXEC_COMMAND_MAX] = {
[SERVICE_EXEC_CONDITION] = "ExecCondition",
[SERVICE_EXEC_START_PRE] = "ExecStartPre",
[SERVICE_EXEC_START] = "ExecStart",
[SERVICE_EXEC_START_POST] = "ExecStartPost",
[SERVICE_EXEC_RELOAD] = "ExecReload",
[SERVICE_EXEC_STOP] = "ExecStop",
[SERVICE_EXEC_STOP_POST] = "ExecStopPost",
};
DEFINE_STRING_TABLE_LOOKUP(service_exec_command, ServiceExecCommand);
static const char* const service_exec_ex_command_table[_SERVICE_EXEC_COMMAND_MAX] = {
[SERVICE_EXEC_CONDITION] = "ExecConditionEx",
[SERVICE_EXEC_START_PRE] = "ExecStartPreEx",
[SERVICE_EXEC_START] = "ExecStartEx",
[SERVICE_EXEC_START_POST] = "ExecStartPostEx",
[SERVICE_EXEC_RELOAD] = "ExecReloadEx",
[SERVICE_EXEC_STOP] = "ExecStopEx",
[SERVICE_EXEC_STOP_POST] = "ExecStopPostEx",
};
DEFINE_STRING_TABLE_LOOKUP(service_exec_ex_command, ServiceExecCommand);
static const char* const notify_state_table[_NOTIFY_STATE_MAX] = {
[NOTIFY_UNKNOWN] = "unknown",
[NOTIFY_READY] = "ready",
[NOTIFY_RELOADING] = "reloading",
[NOTIFY_STOPPING] = "stopping",
};
DEFINE_STRING_TABLE_LOOKUP(notify_state, NotifyState);
static const char* const service_result_table[_SERVICE_RESULT_MAX] = {
[SERVICE_SUCCESS] = "success",
[SERVICE_FAILURE_RESOURCES] = "resources",
[SERVICE_FAILURE_PROTOCOL] = "protocol",
[SERVICE_FAILURE_TIMEOUT] = "timeout",
[SERVICE_FAILURE_EXIT_CODE] = "exit-code",
[SERVICE_FAILURE_SIGNAL] = "signal",
[SERVICE_FAILURE_CORE_DUMP] = "core-dump",
[SERVICE_FAILURE_WATCHDOG] = "watchdog",
[SERVICE_FAILURE_START_LIMIT_HIT] = "start-limit-hit",
[SERVICE_FAILURE_OOM_KILL] = "oom-kill",
[SERVICE_SKIP_CONDITION] = "exec-condition",
};
DEFINE_STRING_TABLE_LOOKUP(service_result, ServiceResult);
static const char* const service_timeout_failure_mode_table[_SERVICE_TIMEOUT_FAILURE_MODE_MAX] = {
[SERVICE_TIMEOUT_TERMINATE] = "terminate",
[SERVICE_TIMEOUT_ABORT] = "abort",
[SERVICE_TIMEOUT_KILL] = "kill",
};
DEFINE_STRING_TABLE_LOOKUP(service_timeout_failure_mode, ServiceTimeoutFailureMode);
const UnitVTable service_vtable = {
.object_size = sizeof(Service),
.exec_context_offset = offsetof(Service, exec_context),
.cgroup_context_offset = offsetof(Service, cgroup_context),
.kill_context_offset = offsetof(Service, kill_context),
.exec_runtime_offset = offsetof(Service, exec_runtime),
.dynamic_creds_offset = offsetof(Service, dynamic_creds),
.sections =
"Unit\0"
"Service\0"
"Install\0",
.private_section = "Service",
.can_transient = true,
.can_delegate = true,
.can_fail = true,
.can_set_managed_oom = true,
.init = service_init,
.done = service_done,
.load = service_load,
.release_resources = service_release_resources,
.coldplug = service_coldplug,
.dump = service_dump,
.start = service_start,
.stop = service_stop,
.reload = service_reload,
.can_reload = service_can_reload,
.kill = service_kill,
.clean = service_clean,
.can_clean = service_can_clean,
.freeze = unit_freeze_vtable_common,
.thaw = unit_thaw_vtable_common,
.serialize = service_serialize,
.deserialize_item = service_deserialize_item,
.active_state = service_active_state,
.sub_state_to_string = service_sub_state_to_string,
.will_restart = service_will_restart,
.may_gc = service_may_gc,
.sigchld_event = service_sigchld_event,
.reset_failed = service_reset_failed,
.notify_cgroup_empty = service_notify_cgroup_empty_event,
.notify_cgroup_oom = service_notify_cgroup_oom_event,
.notify_message = service_notify_message,
.main_pid = service_main_pid,
.control_pid = service_control_pid,
.bus_name_owner_change = service_bus_name_owner_change,
.bus_set_property = bus_service_set_property,
.bus_commit_properties = bus_service_commit_properties,
.get_timeout = service_get_timeout,
.needs_console = service_needs_console,
.exit_status = service_exit_status,
.status_message_formats = {
.starting_stopping = {
[0] = "Starting %s...",
[1] = "Stopping %s...",
},
.finished_start_job = {
[JOB_FAILED] = "Failed to start %s.",
[JOB_SKIPPED] = "Skipped %s.",
},
.finished_stop_job = {
[JOB_DONE] = "Stopped %s.",
[JOB_FAILED] = "Stopped (with error) %s.",
},
.finished_job = service_finished_job,
},
};