blob: 9de5e454a6b1f41c585b6cbda8c3e3809d030aab [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1+ */
#include <endian.h>
#include <netdb.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <unistd.h>
#include "sd-bus.h"
#include "alloc-util.h"
#include "bus-container.h"
#include "bus-control.h"
#include "bus-internal.h"
#include "bus-kernel.h"
#include "bus-label.h"
#include "bus-message.h"
#include "bus-objects.h"
#include "bus-protocol.h"
#include "bus-slot.h"
#include "bus-socket.h"
#include "bus-track.h"
#include "bus-type.h"
#include "bus-util.h"
#include "cgroup-util.h"
#include "def.h"
#include "errno-util.h"
#include "fd-util.h"
#include "hexdecoct.h"
#include "hostname-util.h"
#include "macro.h"
#include "memory-util.h"
#include "missing_syscall.h"
#include "parse-util.h"
#include "path-util.h"
#include "process-util.h"
#include "string-util.h"
#include "strv.h"
#define log_debug_bus_message(m) \
do { \
sd_bus_message *_mm = (m); \
log_debug("Got message type=%s sender=%s destination=%s path=%s interface=%s member=%s cookie=%" PRIu64 " reply_cookie=%" PRIu64 " signature=%s error-name=%s error-message=%s", \
bus_message_type_to_string(_mm->header->type), \
strna(sd_bus_message_get_sender(_mm)), \
strna(sd_bus_message_get_destination(_mm)), \
strna(sd_bus_message_get_path(_mm)), \
strna(sd_bus_message_get_interface(_mm)), \
strna(sd_bus_message_get_member(_mm)), \
BUS_MESSAGE_COOKIE(_mm), \
_mm->reply_cookie, \
strna(_mm->root_container.signature), \
strna(_mm->error.name), \
strna(_mm->error.message)); \
} while (false)
static int bus_poll(sd_bus *bus, bool need_more, uint64_t timeout_usec);
static void bus_detach_io_events(sd_bus *b);
static void bus_detach_inotify_event(sd_bus *b);
static thread_local sd_bus *default_system_bus = NULL;
static thread_local sd_bus *default_user_bus = NULL;
static thread_local sd_bus *default_starter_bus = NULL;
static sd_bus **bus_choose_default(int (**bus_open)(sd_bus **)) {
const char *e;
/* Let's try our best to reuse another cached connection. If
* the starter bus type is set, connect via our normal
* connection logic, ignoring $DBUS_STARTER_ADDRESS, so that
* we can share the connection with the user/system default
* bus. */
e = secure_getenv("DBUS_STARTER_BUS_TYPE");
if (e) {
if (streq(e, "system")) {
if (bus_open)
*bus_open = sd_bus_open_system;
return &default_system_bus;
} else if (STR_IN_SET(e, "user", "session")) {
if (bus_open)
*bus_open = sd_bus_open_user;
return &default_user_bus;
}
}
/* No type is specified, so we have not other option than to
* use the starter address if it is set. */
e = secure_getenv("DBUS_STARTER_ADDRESS");
if (e) {
if (bus_open)
*bus_open = sd_bus_open;
return &default_starter_bus;
}
/* Finally, if nothing is set use the cached connection for
* the right scope */
if (cg_pid_get_owner_uid(0, NULL) >= 0) {
if (bus_open)
*bus_open = sd_bus_open_user;
return &default_user_bus;
} else {
if (bus_open)
*bus_open = sd_bus_open_system;
return &default_system_bus;
}
}
sd_bus *bus_resolve(sd_bus *bus) {
switch ((uintptr_t) bus) {
case (uintptr_t) SD_BUS_DEFAULT:
return *(bus_choose_default(NULL));
case (uintptr_t) SD_BUS_DEFAULT_USER:
return default_user_bus;
case (uintptr_t) SD_BUS_DEFAULT_SYSTEM:
return default_system_bus;
default:
return bus;
}
}
void bus_close_io_fds(sd_bus *b) {
assert(b);
bus_detach_io_events(b);
if (b->input_fd != b->output_fd)
safe_close(b->output_fd);
b->output_fd = b->input_fd = safe_close(b->input_fd);
}
void bus_close_inotify_fd(sd_bus *b) {
assert(b);
bus_detach_inotify_event(b);
b->inotify_fd = safe_close(b->inotify_fd);
b->inotify_watches = mfree(b->inotify_watches);
b->n_inotify_watches = 0;
}
static void bus_reset_queues(sd_bus *b) {
assert(b);
while (b->rqueue_size > 0)
bus_message_unref_queued(b->rqueue[--b->rqueue_size], b);
b->rqueue = mfree(b->rqueue);
b->rqueue_allocated = 0;
while (b->wqueue_size > 0)
bus_message_unref_queued(b->wqueue[--b->wqueue_size], b);
b->wqueue = mfree(b->wqueue);
b->wqueue_allocated = 0;
}
static sd_bus* bus_free(sd_bus *b) {
sd_bus_slot *s;
assert(b);
assert(!b->track_queue);
assert(!b->tracks);
b->state = BUS_CLOSED;
sd_bus_detach_event(b);
while ((s = b->slots)) {
/* At this point only floating slots can still be
* around, because the non-floating ones keep a
* reference to the bus, and we thus couldn't be
* destructing right now... We forcibly disconnect the
* slots here, so that they still can be referenced by
* apps, but are dead. */
assert(s->floating);
bus_slot_disconnect(s, true);
}
if (b->default_bus_ptr)
*b->default_bus_ptr = NULL;
bus_close_io_fds(b);
bus_close_inotify_fd(b);
free(b->label);
free(b->groups);
free(b->rbuffer);
free(b->unique_name);
free(b->auth_buffer);
free(b->address);
free(b->machine);
free(b->description);
free(b->patch_sender);
free(b->exec_path);
strv_free(b->exec_argv);
close_many(b->fds, b->n_fds);
free(b->fds);
bus_reset_queues(b);
ordered_hashmap_free_free(b->reply_callbacks);
prioq_free(b->reply_callbacks_prioq);
assert(b->match_callbacks.type == BUS_MATCH_ROOT);
bus_match_free(&b->match_callbacks);
hashmap_free_free(b->vtable_methods);
hashmap_free_free(b->vtable_properties);
assert(hashmap_isempty(b->nodes));
hashmap_free(b->nodes);
bus_flush_memfd(b);
assert_se(pthread_mutex_destroy(&b->memfd_cache_mutex) == 0);
return mfree(b);
}
DEFINE_TRIVIAL_CLEANUP_FUNC(sd_bus*, bus_free);
_public_ int sd_bus_new(sd_bus **ret) {
_cleanup_free_ sd_bus *b = NULL;
assert_return(ret, -EINVAL);
b = new(sd_bus, 1);
if (!b)
return -ENOMEM;
*b = (sd_bus) {
.n_ref = 1,
.input_fd = -1,
.output_fd = -1,
.inotify_fd = -1,
.message_version = 1,
.creds_mask = SD_BUS_CREDS_WELL_KNOWN_NAMES|SD_BUS_CREDS_UNIQUE_NAME,
.accept_fd = true,
.original_pid = getpid_cached(),
.n_groups = (size_t) -1,
.close_on_exit = true,
};
/* We guarantee that wqueue always has space for at least one entry */
if (!GREEDY_REALLOC(b->wqueue, b->wqueue_allocated, 1))
return -ENOMEM;
assert_se(pthread_mutex_init(&b->memfd_cache_mutex, NULL) == 0);
*ret = TAKE_PTR(b);
return 0;
}
_public_ int sd_bus_set_address(sd_bus *bus, const char *address) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(address, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
return free_and_strdup(&bus->address, address);
}
_public_ int sd_bus_set_fd(sd_bus *bus, int input_fd, int output_fd) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(input_fd >= 0, -EBADF);
assert_return(output_fd >= 0, -EBADF);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->input_fd = input_fd;
bus->output_fd = output_fd;
return 0;
}
_public_ int sd_bus_set_exec(sd_bus *bus, const char *path, char *const *argv) {
_cleanup_strv_free_ char **a = NULL;
int r;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(path, -EINVAL);
assert_return(!strv_isempty(argv), -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
a = strv_copy(argv);
if (!a)
return -ENOMEM;
r = free_and_strdup(&bus->exec_path, path);
if (r < 0)
return r;
return strv_free_and_replace(bus->exec_argv, a);
}
_public_ int sd_bus_set_bus_client(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus->patch_sender, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->bus_client = !!b;
return 0;
}
_public_ int sd_bus_set_monitor(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->is_monitor = !!b;
return 0;
}
_public_ int sd_bus_negotiate_fds(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->accept_fd = !!b;
return 0;
}
_public_ int sd_bus_negotiate_timestamp(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!IN_SET(bus->state, BUS_CLOSING, BUS_CLOSED), -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
/* This is not actually supported by any of our transports these days, but we do honour it for synthetic
* replies, and maybe one day classic D-Bus learns this too */
bus->attach_timestamp = !!b;
return 0;
}
_public_ int sd_bus_negotiate_creds(sd_bus *bus, int b, uint64_t mask) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(mask <= _SD_BUS_CREDS_ALL, -EINVAL);
assert_return(!IN_SET(bus->state, BUS_CLOSING, BUS_CLOSED), -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
SET_FLAG(bus->creds_mask, mask, b);
/* The well knowns we need unconditionally, so that matches can work */
bus->creds_mask |= SD_BUS_CREDS_WELL_KNOWN_NAMES|SD_BUS_CREDS_UNIQUE_NAME;
return 0;
}
_public_ int sd_bus_set_server(sd_bus *bus, int b, sd_id128_t server_id) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(b || sd_id128_equal(server_id, SD_ID128_NULL), -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->is_server = !!b;
bus->server_id = server_id;
return 0;
}
_public_ int sd_bus_set_anonymous(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->anonymous_auth = !!b;
return 0;
}
_public_ int sd_bus_set_trusted(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->trusted = !!b;
return 0;
}
_public_ int sd_bus_set_description(sd_bus *bus, const char *description) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
return free_and_strdup(&bus->description, description);
}
_public_ int sd_bus_set_allow_interactive_authorization(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->allow_interactive_authorization = !!b;
return 0;
}
_public_ int sd_bus_get_allow_interactive_authorization(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->allow_interactive_authorization;
}
_public_ int sd_bus_set_watch_bind(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->watch_bind = !!b;
return 0;
}
_public_ int sd_bus_get_watch_bind(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->watch_bind;
}
_public_ int sd_bus_set_connected_signal(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->connected_signal = !!b;
return 0;
}
_public_ int sd_bus_get_connected_signal(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->connected_signal;
}
static int synthesize_connected_signal(sd_bus *bus) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
int r;
assert(bus);
/* If enabled, synthesizes a local "Connected" signal mirroring the local "Disconnected" signal. This is called
* whenever we fully established a connection, i.e. after the authorization phase, and after receiving the
* Hello() reply. Or in other words, whenever we enter BUS_RUNNING state.
*
* This is useful so that clients can start doing stuff whenever the connection is fully established in a way
* that works independently from whether we connected to a full bus or just a direct connection. */
if (!bus->connected_signal)
return 0;
r = sd_bus_message_new_signal(
bus,
&m,
"/org/freedesktop/DBus/Local",
"org.freedesktop.DBus.Local",
"Connected");
if (r < 0)
return r;
bus_message_set_sender_local(bus, m);
m->read_counter = ++bus->read_counter;
r = bus_seal_synthetic_message(bus, m);
if (r < 0)
return r;
r = bus_rqueue_make_room(bus);
if (r < 0)
return r;
/* Insert at the very front */
memmove(bus->rqueue + 1, bus->rqueue, sizeof(sd_bus_message*) * bus->rqueue_size);
bus->rqueue[0] = bus_message_ref_queued(m, bus);
bus->rqueue_size++;
return 0;
}
void bus_set_state(sd_bus *bus, enum bus_state state) {
static const char * const table[_BUS_STATE_MAX] = {
[BUS_UNSET] = "UNSET",
[BUS_WATCH_BIND] = "WATCH_BIND",
[BUS_OPENING] = "OPENING",
[BUS_AUTHENTICATING] = "AUTHENTICATING",
[BUS_HELLO] = "HELLO",
[BUS_RUNNING] = "RUNNING",
[BUS_CLOSING] = "CLOSING",
[BUS_CLOSED] = "CLOSED",
};
assert(bus);
assert(state < _BUS_STATE_MAX);
if (state == bus->state)
return;
log_debug("Bus %s: changing state %s → %s", strna(bus->description), table[bus->state], table[state]);
bus->state = state;
}
static int hello_callback(sd_bus_message *reply, void *userdata, sd_bus_error *error) {
const char *s;
sd_bus *bus;
int r;
assert(reply);
bus = reply->bus;
assert(bus);
assert(IN_SET(bus->state, BUS_HELLO, BUS_CLOSING));
r = sd_bus_message_get_errno(reply);
if (r > 0) {
r = -r;
goto fail;
}
r = sd_bus_message_read(reply, "s", &s);
if (r < 0)
goto fail;
if (!service_name_is_valid(s) || s[0] != ':') {
r = -EBADMSG;
goto fail;
}
r = free_and_strdup(&bus->unique_name, s);
if (r < 0)
goto fail;
if (bus->state == BUS_HELLO) {
bus_set_state(bus, BUS_RUNNING);
r = synthesize_connected_signal(bus);
if (r < 0)
goto fail;
}
return 1;
fail:
/* When Hello() failed, let's propagate this in two ways: first we return the error immediately here,
* which is the propagated up towards the event loop. Let's also invalidate the connection, so that
* if the user then calls back into us again we won't wait any longer. */
bus_set_state(bus, BUS_CLOSING);
return r;
}
static int bus_send_hello(sd_bus *bus) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
int r;
assert(bus);
if (!bus->bus_client)
return 0;
r = sd_bus_message_new_method_call(
bus,
&m,
"org.freedesktop.DBus",
"/org/freedesktop/DBus",
"org.freedesktop.DBus",
"Hello");
if (r < 0)
return r;
return sd_bus_call_async(bus, NULL, m, hello_callback, NULL, 0);
}
int bus_start_running(sd_bus *bus) {
struct reply_callback *c;
Iterator i;
usec_t n;
int r;
assert(bus);
assert(bus->state < BUS_HELLO);
/* We start all method call timeouts when we enter BUS_HELLO or BUS_RUNNING mode. At this point let's convert
* all relative to absolute timestamps. Note that we do not reshuffle the reply callback priority queue since
* adding a fixed value to all entries should not alter the internal order. */
n = now(CLOCK_MONOTONIC);
ORDERED_HASHMAP_FOREACH(c, bus->reply_callbacks, i) {
if (c->timeout_usec == 0)
continue;
c->timeout_usec = usec_add(n, c->timeout_usec);
}
if (bus->bus_client) {
bus_set_state(bus, BUS_HELLO);
return 1;
}
bus_set_state(bus, BUS_RUNNING);
r = synthesize_connected_signal(bus);
if (r < 0)
return r;
return 1;
}
static int parse_address_key(const char **p, const char *key, char **value) {
size_t l, n = 0, allocated = 0;
_cleanup_free_ char *r = NULL;
const char *a;
assert(p);
assert(*p);
assert(value);
if (key) {
l = strlen(key);
if (strncmp(*p, key, l) != 0)
return 0;
if ((*p)[l] != '=')
return 0;
if (*value)
return -EINVAL;
a = *p + l + 1;
} else
a = *p;
while (!IN_SET(*a, ';', ',', 0)) {
char c;
if (*a == '%') {
int x, y;
x = unhexchar(a[1]);
if (x < 0)
return x;
y = unhexchar(a[2]);
if (y < 0)
return y;
c = (char) ((x << 4) | y);
a += 3;
} else {
c = *a;
a++;
}
if (!GREEDY_REALLOC(r, allocated, n + 2))
return -ENOMEM;
r[n++] = c;
}
if (!r) {
r = strdup("");
if (!r)
return -ENOMEM;
} else
r[n] = 0;
if (*a == ',')
a++;
*p = a;
free_and_replace(*value, r);
return 1;
}
static void skip_address_key(const char **p) {
assert(p);
assert(*p);
*p += strcspn(*p, ",");
if (**p == ',')
(*p)++;
}
static int parse_unix_address(sd_bus *b, const char **p, char **guid) {
_cleanup_free_ char *path = NULL, *abstract = NULL;
size_t l;
int r;
assert(b);
assert(p);
assert(*p);
assert(guid);
while (!IN_SET(**p, 0, ';')) {
r = parse_address_key(p, "guid", guid);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "path", &path);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "abstract", &abstract);
if (r < 0)
return r;
else if (r > 0)
continue;
skip_address_key(p);
}
if (!path && !abstract)
return -EINVAL;
if (path && abstract)
return -EINVAL;
if (path) {
l = strlen(path);
if (l >= sizeof(b->sockaddr.un.sun_path)) /* We insist on NUL termination */
return -E2BIG;
b->sockaddr.un = (struct sockaddr_un) {
.sun_family = AF_UNIX,
};
memcpy(b->sockaddr.un.sun_path, path, l);
b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + l + 1;
} else {
assert(abstract);
l = strlen(abstract);
if (l >= sizeof(b->sockaddr.un.sun_path) - 1) /* We insist on NUL termination */
return -E2BIG;
b->sockaddr.un = (struct sockaddr_un) {
.sun_family = AF_UNIX,
};
memcpy(b->sockaddr.un.sun_path+1, abstract, l);
b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + 1 + l;
}
b->is_local = true;
return 0;
}
static int parse_tcp_address(sd_bus *b, const char **p, char **guid) {
_cleanup_free_ char *host = NULL, *port = NULL, *family = NULL;
int r;
struct addrinfo *result, hints = {
.ai_socktype = SOCK_STREAM,
.ai_flags = AI_ADDRCONFIG,
};
assert(b);
assert(p);
assert(*p);
assert(guid);
while (!IN_SET(**p, 0, ';')) {
r = parse_address_key(p, "guid", guid);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "host", &host);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "port", &port);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "family", &family);
if (r < 0)
return r;
else if (r > 0)
continue;
skip_address_key(p);
}
if (!host || !port)
return -EINVAL;
if (family) {
if (streq(family, "ipv4"))
hints.ai_family = AF_INET;
else if (streq(family, "ipv6"))
hints.ai_family = AF_INET6;
else
return -EINVAL;
}
r = getaddrinfo(host, port, &hints, &result);
if (r == EAI_SYSTEM)
return -errno;
else if (r != 0)
return -EADDRNOTAVAIL;
memcpy(&b->sockaddr, result->ai_addr, result->ai_addrlen);
b->sockaddr_size = result->ai_addrlen;
freeaddrinfo(result);
b->is_local = false;
return 0;
}
static int parse_exec_address(sd_bus *b, const char **p, char **guid) {
char *path = NULL;
unsigned n_argv = 0, j;
char **argv = NULL;
size_t allocated = 0;
int r;
assert(b);
assert(p);
assert(*p);
assert(guid);
while (!IN_SET(**p, 0, ';')) {
r = parse_address_key(p, "guid", guid);
if (r < 0)
goto fail;
else if (r > 0)
continue;
r = parse_address_key(p, "path", &path);
if (r < 0)
goto fail;
else if (r > 0)
continue;
if (startswith(*p, "argv")) {
unsigned ul;
errno = 0;
ul = strtoul(*p + 4, (char**) p, 10);
if (errno > 0 || **p != '=' || ul > 256) {
r = -EINVAL;
goto fail;
}
(*p)++;
if (ul >= n_argv) {
if (!GREEDY_REALLOC0(argv, allocated, ul + 2)) {
r = -ENOMEM;
goto fail;
}
n_argv = ul + 1;
}
r = parse_address_key(p, NULL, argv + ul);
if (r < 0)
goto fail;
continue;
}
skip_address_key(p);
}
if (!path) {
r = -EINVAL;
goto fail;
}
/* Make sure there are no holes in the array, with the
* exception of argv[0] */
for (j = 1; j < n_argv; j++)
if (!argv[j]) {
r = -EINVAL;
goto fail;
}
if (argv && argv[0] == NULL) {
argv[0] = strdup(path);
if (!argv[0]) {
r = -ENOMEM;
goto fail;
}
}
b->exec_path = path;
b->exec_argv = argv;
b->is_local = false;
return 0;
fail:
for (j = 0; j < n_argv; j++)
free(argv[j]);
free(argv);
free(path);
return r;
}
static int parse_container_unix_address(sd_bus *b, const char **p, char **guid) {
_cleanup_free_ char *machine = NULL, *pid = NULL;
int r;
assert(b);
assert(p);
assert(*p);
assert(guid);
while (!IN_SET(**p, 0, ';')) {
r = parse_address_key(p, "guid", guid);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "machine", &machine);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "pid", &pid);
if (r < 0)
return r;
else if (r > 0)
continue;
skip_address_key(p);
}
if (!machine == !pid)
return -EINVAL;
if (machine) {
if (!streq(machine, ".host") && !machine_name_is_valid(machine))
return -EINVAL;
free_and_replace(b->machine, machine);
} else
b->machine = mfree(b->machine);
if (pid) {
r = parse_pid(pid, &b->nspid);
if (r < 0)
return r;
} else
b->nspid = 0;
b->sockaddr.un = (struct sockaddr_un) {
.sun_family = AF_UNIX,
/* Note that we use the old /var/run prefix here, to increase compatibility with really old containers */
.sun_path = "/var/run/dbus/system_bus_socket",
};
b->sockaddr_size = SOCKADDR_UN_LEN(b->sockaddr.un);
b->is_local = false;
return 0;
}
static void bus_reset_parsed_address(sd_bus *b) {
assert(b);
zero(b->sockaddr);
b->sockaddr_size = 0;
b->exec_argv = strv_free(b->exec_argv);
b->exec_path = mfree(b->exec_path);
b->server_id = SD_ID128_NULL;
b->machine = mfree(b->machine);
b->nspid = 0;
}
static int bus_parse_next_address(sd_bus *b) {
_cleanup_free_ char *guid = NULL;
const char *a;
int r;
assert(b);
if (!b->address)
return 0;
if (b->address[b->address_index] == 0)
return 0;
bus_reset_parsed_address(b);
a = b->address + b->address_index;
while (*a != 0) {
if (*a == ';') {
a++;
continue;
}
if (startswith(a, "unix:")) {
a += 5;
r = parse_unix_address(b, &a, &guid);
if (r < 0)
return r;
break;
} else if (startswith(a, "tcp:")) {
a += 4;
r = parse_tcp_address(b, &a, &guid);
if (r < 0)
return r;
break;
} else if (startswith(a, "unixexec:")) {
a += 9;
r = parse_exec_address(b, &a, &guid);
if (r < 0)
return r;
break;
} else if (startswith(a, "x-machine-unix:")) {
a += 15;
r = parse_container_unix_address(b, &a, &guid);
if (r < 0)
return r;
break;
}
a = strchr(a, ';');
if (!a)
return 0;
}
if (guid) {
r = sd_id128_from_string(guid, &b->server_id);
if (r < 0)
return r;
}
b->address_index = a - b->address;
return 1;
}
static void bus_kill_exec(sd_bus *bus) {
if (pid_is_valid(bus->busexec_pid) > 0) {
sigterm_wait(bus->busexec_pid);
bus->busexec_pid = 0;
}
}
static int bus_start_address(sd_bus *b) {
int r;
assert(b);
for (;;) {
bus_close_io_fds(b);
bus_close_inotify_fd(b);
bus_kill_exec(b);
/* If you provide multiple different bus-addresses, we
* try all of them in order and use the first one that
* succeeds. */
if (b->exec_path)
r = bus_socket_exec(b);
else if ((b->nspid > 0 || b->machine) && b->sockaddr.sa.sa_family != AF_UNSPEC)
r = bus_container_connect_socket(b);
else if (b->sockaddr.sa.sa_family != AF_UNSPEC)
r = bus_socket_connect(b);
else
goto next;
if (r >= 0) {
int q;
q = bus_attach_io_events(b);
if (q < 0)
return q;
q = bus_attach_inotify_event(b);
if (q < 0)
return q;
return r;
}
b->last_connect_error = -r;
next:
r = bus_parse_next_address(b);
if (r < 0)
return r;
if (r == 0)
return b->last_connect_error > 0 ? -b->last_connect_error : -ECONNREFUSED;
}
}
int bus_next_address(sd_bus *b) {
assert(b);
bus_reset_parsed_address(b);
return bus_start_address(b);
}
static int bus_start_fd(sd_bus *b) {
struct stat st;
int r;
assert(b);
assert(b->input_fd >= 0);
assert(b->output_fd >= 0);
r = fd_nonblock(b->input_fd, true);
if (r < 0)
return r;
r = fd_cloexec(b->input_fd, true);
if (r < 0)
return r;
if (b->input_fd != b->output_fd) {
r = fd_nonblock(b->output_fd, true);
if (r < 0)
return r;
r = fd_cloexec(b->output_fd, true);
if (r < 0)
return r;
}
if (fstat(b->input_fd, &st) < 0)
return -errno;
return bus_socket_take_fd(b);
}
_public_ int sd_bus_start(sd_bus *bus) {
int r;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus_set_state(bus, BUS_OPENING);
if (bus->is_server && bus->bus_client)
return -EINVAL;
if (bus->input_fd >= 0)
r = bus_start_fd(bus);
else if (bus->address || bus->sockaddr.sa.sa_family != AF_UNSPEC || bus->exec_path || bus->machine)
r = bus_start_address(bus);
else
return -EINVAL;
if (r < 0) {
sd_bus_close(bus);
return r;
}
return bus_send_hello(bus);
}
_public_ int sd_bus_open_with_description(sd_bus **ret, const char *description) {
const char *e;
_cleanup_(bus_freep) sd_bus *b = NULL;
int r;
assert_return(ret, -EINVAL);
/* Let's connect to the starter bus if it is set, and
* otherwise to the bus that is appropriate for the scope
* we are running in */
e = secure_getenv("DBUS_STARTER_BUS_TYPE");
if (e) {
if (streq(e, "system"))
return sd_bus_open_system_with_description(ret, description);
else if (STR_IN_SET(e, "session", "user"))
return sd_bus_open_user_with_description(ret, description);
}
e = secure_getenv("DBUS_STARTER_ADDRESS");
if (!e) {
if (cg_pid_get_owner_uid(0, NULL) >= 0)
return sd_bus_open_user_with_description(ret, description);
else
return sd_bus_open_system_with_description(ret, description);
}
r = sd_bus_new(&b);
if (r < 0)
return r;
r = sd_bus_set_address(b, e);
if (r < 0)
return r;
b->bus_client = true;
/* We don't know whether the bus is trusted or not, so better
* be safe, and authenticate everything */
b->trusted = false;
b->is_local = false;
b->creds_mask |= SD_BUS_CREDS_UID | SD_BUS_CREDS_EUID | SD_BUS_CREDS_EFFECTIVE_CAPS;
r = sd_bus_start(b);
if (r < 0)
return r;
*ret = TAKE_PTR(b);
return 0;
}
_public_ int sd_bus_open(sd_bus **ret) {
return sd_bus_open_with_description(ret, NULL);
}
int bus_set_address_system(sd_bus *b) {
const char *e;
int r;
assert(b);
e = secure_getenv("DBUS_SYSTEM_BUS_ADDRESS");
r = sd_bus_set_address(b, e ?: DEFAULT_SYSTEM_BUS_ADDRESS);
if (r >= 0)
b->is_system = true;
return r;
}
_public_ int sd_bus_open_system_with_description(sd_bus **ret, const char *description) {
_cleanup_(bus_freep) sd_bus *b = NULL;
int r;
assert_return(ret, -EINVAL);
r = sd_bus_new(&b);
if (r < 0)
return r;
if (description) {
r = sd_bus_set_description(b, description);
if (r < 0)
return r;
}
r = bus_set_address_system(b);
if (r < 0)
return r;
b->bus_client = true;
/* Let's do per-method access control on the system bus. We
* need the caller's UID and capability set for that. */
b->trusted = false;
b->creds_mask |= SD_BUS_CREDS_UID | SD_BUS_CREDS_EUID | SD_BUS_CREDS_EFFECTIVE_CAPS;
b->is_local = true;
r = sd_bus_start(b);
if (r < 0)
return r;
*ret = TAKE_PTR(b);
return 0;
}
_public_ int sd_bus_open_system(sd_bus **ret) {
return sd_bus_open_system_with_description(ret, NULL);
}
int bus_set_address_user(sd_bus *b) {
const char *a;
_cleanup_free_ char *_a = NULL;
int r;
assert(b);
a = secure_getenv("DBUS_SESSION_BUS_ADDRESS");
if (!a) {
const char *e;
_cleanup_free_ char *ee = NULL;
e = secure_getenv("XDG_RUNTIME_DIR");
if (!e)
return -ENOENT;
ee = bus_address_escape(e);
if (!ee)
return -ENOMEM;
if (asprintf(&_a, DEFAULT_USER_BUS_ADDRESS_FMT, ee) < 0)
return -ENOMEM;
a = _a;
}
r = sd_bus_set_address(b, a);
if (r >= 0)
b->is_user = true;
return r;
}
_public_ int sd_bus_open_user_with_description(sd_bus **ret, const char *description) {
_cleanup_(bus_freep) sd_bus *b = NULL;
int r;
assert_return(ret, -EINVAL);
r = sd_bus_new(&b);
if (r < 0)
return r;
if (description) {
r = sd_bus_set_description(b, description);
if (r < 0)
return r;
}
r = bus_set_address_user(b);
if (r < 0)
return r;
b->bus_client = true;
/* We don't do any per-method access control on the user bus. */
b->trusted = true;
b->is_local = true;
r = sd_bus_start(b);
if (r < 0)
return r;
*ret = TAKE_PTR(b);
return 0;
}
_public_ int sd_bus_open_user(sd_bus **ret) {
return sd_bus_open_user_with_description(ret, NULL);
}
int bus_set_address_system_remote(sd_bus *b, const char *host) {
_cleanup_free_ char *e = NULL;
char *m = NULL, *c = NULL, *a, *rbracket = NULL, *p = NULL;
assert(b);
assert(host);
/* Skip ":"s in ipv6 addresses */
if (*host == '[') {
char *t;
rbracket = strchr(host, ']');
if (!rbracket)
return -EINVAL;
t = strndupa(host + 1, rbracket - host - 1);
e = bus_address_escape(t);
if (!e)
return -ENOMEM;
} else if ((a = strchr(host, '@'))) {
if (*(a + 1) == '[') {
_cleanup_free_ char *t = NULL;
rbracket = strchr(a + 1, ']');
if (!rbracket)
return -EINVAL;
t = new0(char, strlen(host));
if (!t)
return -ENOMEM;
strncat(t, host, a - host + 1);
strncat(t, a + 2, rbracket - a - 2);
e = bus_address_escape(t);
if (!e)
return -ENOMEM;
} else if (*(a + 1) == '\0' || strchr(a + 1, '@'))
return -EINVAL;
}
/* Let's see if a port was given */
m = strchr(rbracket ? rbracket + 1 : host, ':');
if (m) {
char *t;
bool got_forward_slash = false;
p = m + 1;
t = strchr(p, '/');
if (t) {
p = strndupa(p, t - p);
got_forward_slash = true;
}
if (!in_charset(p, "0123456789") || *p == '\0') {
if (!machine_name_is_valid(p) || got_forward_slash)
return -EINVAL;
m = TAKE_PTR(p);
goto interpret_port_as_machine_old_syntax;
}
}
/* Let's see if a machine was given */
m = strchr(rbracket ? rbracket + 1 : host, '/');
if (m) {
m++;
interpret_port_as_machine_old_syntax:
/* Let's make sure this is not a port of some kind,
* and is a valid machine name. */
if (!in_charset(m, "0123456789") && machine_name_is_valid(m))
c = strjoina(",argv", p ? "7" : "5", "=--machine=", m);
}
if (!e) {
char *t;
t = strndupa(host, strcspn(host, ":/"));
e = bus_address_escape(t);
if (!e)
return -ENOMEM;
}
a = strjoin("unixexec:path=ssh,argv1=-xT", p ? ",argv2=-p,argv3=" : "", strempty(p),
",argv", p ? "4" : "2", "=--,argv", p ? "5" : "3", "=", e,
",argv", p ? "6" : "4", "=systemd-stdio-bridge", c);
if (!a)
return -ENOMEM;
return free_and_replace(b->address, a);
}
_public_ int sd_bus_open_system_remote(sd_bus **ret, const char *host) {
_cleanup_(bus_freep) sd_bus *b = NULL;
int r;
assert_return(host, -EINVAL);
assert_return(ret, -EINVAL);
r = sd_bus_new(&b);
if (r < 0)
return r;
r = bus_set_address_system_remote(b, host);
if (r < 0)
return r;
b->bus_client = true;
b->trusted = false;
b->is_system = true;
b->is_local = false;
r = sd_bus_start(b);
if (r < 0)
return r;
*ret = TAKE_PTR(b);
return 0;
}
int bus_set_address_system_machine(sd_bus *b, const char *machine) {
_cleanup_free_ char *e = NULL;
char *a;
assert(b);
assert(machine);
e = bus_address_escape(machine);
if (!e)
return -ENOMEM;
a = strjoin("x-machine-unix:machine=", e);
if (!a)
return -ENOMEM;
return free_and_replace(b->address, a);
}
_public_ int sd_bus_open_system_machine(sd_bus **ret, const char *machine) {
_cleanup_(bus_freep) sd_bus *b = NULL;
int r;
assert_return(machine, -EINVAL);
assert_return(ret, -EINVAL);
assert_return(streq(machine, ".host") || machine_name_is_valid(machine), -EINVAL);
r = sd_bus_new(&b);
if (r < 0)
return r;
r = bus_set_address_system_machine(b, machine);
if (r < 0)
return r;
b->bus_client = true;
b->trusted = false;
b->is_system = true;
b->is_local = false;
r = sd_bus_start(b);
if (r < 0)
return r;
*ret = TAKE_PTR(b);
return 0;
}
_public_ void sd_bus_close(sd_bus *bus) {
if (!bus)
return;
if (bus->state == BUS_CLOSED)
return;
if (bus_pid_changed(bus))
return;
/* Don't leave ssh hanging around */
bus_kill_exec(bus);
bus_set_state(bus, BUS_CLOSED);
sd_bus_detach_event(bus);
/* Drop all queued messages so that they drop references to
* the bus object and the bus may be freed */
bus_reset_queues(bus);
bus_close_io_fds(bus);
bus_close_inotify_fd(bus);
}
_public_ sd_bus *sd_bus_close_unref(sd_bus *bus) {
if (!bus)
return NULL;
sd_bus_close(bus);
return sd_bus_unref(bus);
}
_public_ sd_bus* sd_bus_flush_close_unref(sd_bus *bus) {
if (!bus)
return NULL;
/* Have to do this before flush() to prevent hang */
bus_kill_exec(bus);
sd_bus_flush(bus);
return sd_bus_close_unref(bus);
}
void bus_enter_closing(sd_bus *bus) {
assert(bus);
if (!IN_SET(bus->state, BUS_WATCH_BIND, BUS_OPENING, BUS_AUTHENTICATING, BUS_HELLO, BUS_RUNNING))
return;
bus_set_state(bus, BUS_CLOSING);
}
DEFINE_PUBLIC_TRIVIAL_REF_UNREF_FUNC(sd_bus, sd_bus, bus_free);
_public_ int sd_bus_is_open(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return BUS_IS_OPEN(bus->state);
}
_public_ int sd_bus_is_ready(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->state == BUS_RUNNING;
}
_public_ int sd_bus_can_send(sd_bus *bus, char type) {
int r;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->state != BUS_UNSET, -ENOTCONN);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->is_monitor)
return 0;
if (type == SD_BUS_TYPE_UNIX_FD) {
if (!bus->accept_fd)
return 0;
r = bus_ensure_running(bus);
if (r < 0)
return r;
return bus->can_fds;
}
return bus_type_is_valid(type);
}
_public_ int sd_bus_get_bus_id(sd_bus *bus, sd_id128_t *id) {
int r;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(id, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
r = bus_ensure_running(bus);
if (r < 0)
return r;
*id = bus->server_id;
return 0;
}
#define COOKIE_CYCLED (UINT32_C(1) << 31)
static uint64_t cookie_inc(uint64_t cookie) {
/* Stay within the 32bit range, since classic D-Bus can't deal with more */
if (cookie >= UINT32_MAX)
return COOKIE_CYCLED; /* Don't go back to zero, but use the highest bit for checking
* whether we are looping. */
return cookie + 1;
}
static int next_cookie(sd_bus *b) {
uint64_t new_cookie;
assert(b);
new_cookie = cookie_inc(b->cookie);
/* Small optimization: don't bother with checking for cookie reuse until we overran cookiespace at
* least once, but then do it thorougly. */
if (FLAGS_SET(new_cookie, COOKIE_CYCLED)) {
uint32_t i;
/* Check if the cookie is currently in use. If so, pick the next one */
for (i = 0; i < COOKIE_CYCLED; i++) {
if (!ordered_hashmap_contains(b->reply_callbacks, &new_cookie))
goto good;
new_cookie = cookie_inc(new_cookie);
}
/* Can't fulfill request */
return -EBUSY;
}
good:
b->cookie = new_cookie;
return 0;
}
static int bus_seal_message(sd_bus *b, sd_bus_message *m, usec_t timeout) {
int r;
assert(b);
assert(m);
if (m->sealed) {
/* If we copy the same message to multiple
* destinations, avoid using the same cookie
* numbers. */
b->cookie = MAX(b->cookie, BUS_MESSAGE_COOKIE(m));
return 0;
}
if (timeout == 0) {
r = sd_bus_get_method_call_timeout(b, &timeout);
if (r < 0)
return r;
}
if (!m->sender && b->patch_sender) {
r = sd_bus_message_set_sender(m, b->patch_sender);
if (r < 0)
return r;
}
r = next_cookie(b);
if (r < 0)
return r;
return sd_bus_message_seal(m, b->cookie, timeout);
}
static int bus_remarshal_message(sd_bus *b, sd_bus_message **m) {
bool remarshal = false;
assert(b);
/* wrong packet version */
if (b->message_version != 0 && b->message_version != (*m)->header->version)
remarshal = true;
/* wrong packet endianness */
if (b->message_endian != 0 && b->message_endian != (*m)->header->endian)
remarshal = true;
return remarshal ? bus_message_remarshal(b, m) : 0;
}
int bus_seal_synthetic_message(sd_bus *b, sd_bus_message *m) {
assert(b);
assert(m);
/* Fake some timestamps, if they were requested, and not
* already initialized */
if (b->attach_timestamp) {
if (m->realtime <= 0)
m->realtime = now(CLOCK_REALTIME);
if (m->monotonic <= 0)
m->monotonic = now(CLOCK_MONOTONIC);
}
/* The bus specification says the serial number cannot be 0,
* hence let's fill something in for synthetic messages. Since
* synthetic messages might have a fake sender and we don't
* want to interfere with the real sender's serial numbers we
* pick a fixed, artificial one. We use (uint32_t) -1 rather
* than (uint64_t) -1 since dbus1 only had 32bit identifiers,
* even though kdbus can do 64bit. */
return sd_bus_message_seal(m, 0xFFFFFFFFULL, 0);
}
static int bus_write_message(sd_bus *bus, sd_bus_message *m, size_t *idx) {
int r;
assert(bus);
assert(m);
r = bus_socket_write_message(bus, m, idx);
if (r <= 0)
return r;
if (*idx >= BUS_MESSAGE_SIZE(m))
log_debug("Sent message type=%s sender=%s destination=%s path=%s interface=%s member=%s cookie=%" PRIu64 " reply_cookie=%" PRIu64 " signature=%s error-name=%s error-message=%s",
bus_message_type_to_string(m->header->type),
strna(sd_bus_message_get_sender(m)),
strna(sd_bus_message_get_destination(m)),
strna(sd_bus_message_get_path(m)),
strna(sd_bus_message_get_interface(m)),
strna(sd_bus_message_get_member(m)),
BUS_MESSAGE_COOKIE(m),
m->reply_cookie,
strna(m->root_container.signature),
strna(m->error.name),
strna(m->error.message));
return r;
}
static int dispatch_wqueue(sd_bus *bus) {
int r, ret = 0;
assert(bus);
assert(IN_SET(bus->state, BUS_RUNNING, BUS_HELLO));
while (bus->wqueue_size > 0) {
r = bus_write_message(bus, bus->wqueue[0], &bus->windex);
if (r < 0)
return r;
else if (r == 0)
/* Didn't do anything this time */
return ret;
else if (bus->windex >= BUS_MESSAGE_SIZE(bus->wqueue[0])) {
/* Fully written. Let's drop the entry from
* the queue.
*
* This isn't particularly optimized, but
* well, this is supposed to be our worst-case
* buffer only, and the socket buffer is
* supposed to be our primary buffer, and if
* it got full, then all bets are off
* anyway. */
bus->wqueue_size--;
bus_message_unref_queued(bus->wqueue[0], bus);
memmove(bus->wqueue, bus->wqueue + 1, sizeof(sd_bus_message*) * bus->wqueue_size);
bus->windex = 0;
ret = 1;
}
}
return ret;
}
static int bus_read_message(sd_bus *bus) {
assert(bus);
return bus_socket_read_message(bus);
}
int bus_rqueue_make_room(sd_bus *bus) {
assert(bus);
if (bus->rqueue_size >= BUS_RQUEUE_MAX)
return -ENOBUFS;
if (!GREEDY_REALLOC(bus->rqueue, bus->rqueue_allocated, bus->rqueue_size + 1))
return -ENOMEM;
return 0;
}
static void rqueue_drop_one(sd_bus *bus, size_t i) {
assert(bus);
assert(i < bus->rqueue_size);
bus_message_unref_queued(bus->rqueue[i], bus);
memmove(bus->rqueue + i, bus->rqueue + i + 1, sizeof(sd_bus_message*) * (bus->rqueue_size - i - 1));
bus->rqueue_size--;
}
static int dispatch_rqueue(sd_bus *bus, sd_bus_message **m) {
int r, ret = 0;
assert(bus);
assert(m);
assert(IN_SET(bus->state, BUS_RUNNING, BUS_HELLO));
for (;;) {
if (bus->rqueue_size > 0) {
/* Dispatch a queued message */
*m = sd_bus_message_ref(bus->rqueue[0]);
rqueue_drop_one(bus, 0);
return 1;
}
/* Try to read a new message */
r = bus_read_message(bus);
if (r < 0)
return r;
if (r == 0) {
*m = NULL;
return ret;
}
ret = 1;
}
}
_public_ int sd_bus_send(sd_bus *bus, sd_bus_message *_m, uint64_t *cookie) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = sd_bus_message_ref(_m);
int r;
assert_return(m, -EINVAL);
if (bus)
assert_return(bus = bus_resolve(bus), -ENOPKG);
else
assert_return(bus = m->bus, -ENOTCONN);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
if (m->n_fds > 0) {
r = sd_bus_can_send(bus, SD_BUS_TYPE_UNIX_FD);
if (r < 0)
return r;
if (r == 0)
return -EOPNOTSUPP;
}
/* If the cookie number isn't kept, then we know that no reply
* is expected */
if (!cookie && !m->sealed)
m->header->flags |= BUS_MESSAGE_NO_REPLY_EXPECTED;
r = bus_seal_message(bus, m, 0);
if (r < 0)
return r;
/* Remarshall if we have to. This will possibly unref the
* message and place a replacement in m */
r = bus_remarshal_message(bus, &m);
if (r < 0)
return r;
/* If this is a reply and no reply was requested, then let's
* suppress this, if we can */
if (m->dont_send)
goto finish;
if (IN_SET(bus->state, BUS_RUNNING, BUS_HELLO) && bus->wqueue_size <= 0) {
size_t idx = 0;
r = bus_write_message(bus, m, &idx);
if (r < 0) {
if (ERRNO_IS_DISCONNECT(r)) {
bus_enter_closing(bus);
return -ECONNRESET;
}
return r;
}
if (idx < BUS_MESSAGE_SIZE(m)) {
/* Wasn't fully written. So let's remember how
* much was written. Note that the first entry
* of the wqueue array is always allocated so
* that we always can remember how much was
* written. */
bus->wqueue[0] = bus_message_ref_queued(m, bus);
bus->wqueue_size = 1;
bus->windex = idx;
}
} else {
/* Just append it to the queue. */
if (bus->wqueue_size >= BUS_WQUEUE_MAX)
return -ENOBUFS;
if (!GREEDY_REALLOC(bus->wqueue, bus->wqueue_allocated, bus->wqueue_size + 1))
return -ENOMEM;
bus->wqueue[bus->wqueue_size++] = bus_message_ref_queued(m, bus);
}
finish:
if (cookie)
*cookie = BUS_MESSAGE_COOKIE(m);
return 1;
}
_public_ int sd_bus_send_to(sd_bus *bus, sd_bus_message *m, const char *destination, uint64_t *cookie) {
int r;
assert_return(m, -EINVAL);
if (bus)
assert_return(bus = bus_resolve(bus), -ENOPKG);
else
assert_return(bus = m->bus, -ENOTCONN);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
if (!streq_ptr(m->destination, destination)) {
if (!destination)
return -EEXIST;
r = sd_bus_message_set_destination(m, destination);
if (r < 0)
return r;
}
return sd_bus_send(bus, m, cookie);
}
static usec_t calc_elapse(sd_bus *bus, uint64_t usec) {
assert(bus);
if (usec == (uint64_t) -1)
return 0;
/* We start all timeouts the instant we enter BUS_HELLO/BUS_RUNNING state, so that the don't run in parallel
* with any connection setup states. Hence, if a method callback is started earlier than that we just store the
* relative timestamp, and afterwards the absolute one. */
if (IN_SET(bus->state, BUS_WATCH_BIND, BUS_OPENING, BUS_AUTHENTICATING))
return usec;
else
return now(CLOCK_MONOTONIC) + usec;
}
static int timeout_compare(const void *a, const void *b) {
const struct reply_callback *x = a, *y = b;
if (x->timeout_usec != 0 && y->timeout_usec == 0)
return -1;
if (x->timeout_usec == 0 && y->timeout_usec != 0)
return 1;
return CMP(x->timeout_usec, y->timeout_usec);
}
_public_ int sd_bus_call_async(
sd_bus *bus,
sd_bus_slot **slot,
sd_bus_message *_m,
sd_bus_message_handler_t callback,
void *userdata,
uint64_t usec) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = sd_bus_message_ref(_m);
_cleanup_(sd_bus_slot_unrefp) sd_bus_slot *s = NULL;
int r;
assert_return(m, -EINVAL);
assert_return(m->header->type == SD_BUS_MESSAGE_METHOD_CALL, -EINVAL);
assert_return(!m->sealed || (!!callback == !(m->header->flags & BUS_MESSAGE_NO_REPLY_EXPECTED)), -EINVAL);
if (bus)
assert_return(bus = bus_resolve(bus), -ENOPKG);
else
assert_return(bus = m->bus, -ENOTCONN);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
/* If no callback is specified and there's no interest in a slot, then there's no reason to ask for a reply */
if (!callback && !slot && !m->sealed)
m->header->flags |= BUS_MESSAGE_NO_REPLY_EXPECTED;
r = ordered_hashmap_ensure_allocated(&bus->reply_callbacks, &uint64_hash_ops);
if (r < 0)
return r;
r = prioq_ensure_allocated(&bus->reply_callbacks_prioq, timeout_compare);
if (r < 0)
return r;
r = bus_seal_message(bus, m, usec);
if (r < 0)
return r;
r = bus_remarshal_message(bus, &m);
if (r < 0)
return r;
if (slot || callback) {
s = bus_slot_allocate(bus, !slot, BUS_REPLY_CALLBACK, sizeof(struct reply_callback), userdata);
if (!s)
return -ENOMEM;
s->reply_callback.callback = callback;
s->reply_callback.cookie = BUS_MESSAGE_COOKIE(m);
r = ordered_hashmap_put(bus->reply_callbacks, &s->reply_callback.cookie, &s->reply_callback);
if (r < 0) {
s->reply_callback.cookie = 0;
return r;
}
s->reply_callback.timeout_usec = calc_elapse(bus, m->timeout);
if (s->reply_callback.timeout_usec != 0) {
r = prioq_put(bus->reply_callbacks_prioq, &s->reply_callback, &s->reply_callback.prioq_idx);
if (r < 0) {
s->reply_callback.timeout_usec = 0;
return r;
}
}
}
r = sd_bus_send(bus, m, s ? &s->reply_callback.cookie : NULL);
if (r < 0)
return r;
if (slot)
*slot = s;
s = NULL;
return r;
}
int bus_ensure_running(sd_bus *bus) {
int r;
assert(bus);
if (IN_SET(bus->state, BUS_UNSET, BUS_CLOSED, BUS_CLOSING))
return -ENOTCONN;
if (bus->state == BUS_RUNNING)
return 1;
for (;;) {
r = sd_bus_process(bus, NULL);
if (r < 0)
return r;
if (bus->state == BUS_RUNNING)
return 1;
if (r > 0)
continue;
r = sd_bus_wait(bus, (uint64_t) -1);
if (r < 0)
return r;
}
}
_public_ int sd_bus_call(
sd_bus *bus,
sd_bus_message *_m,
uint64_t usec,
sd_bus_error *error,
sd_bus_message **reply) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = sd_bus_message_ref(_m);
usec_t timeout;
uint64_t cookie;
size_t i;
int r;
bus_assert_return(m, -EINVAL, error);
bus_assert_return(m->header->type == SD_BUS_MESSAGE_METHOD_CALL, -EINVAL, error);
bus_assert_return(!(m->header->flags & BUS_MESSAGE_NO_REPLY_EXPECTED), -EINVAL, error);
bus_assert_return(!bus_error_is_dirty(error), -EINVAL, error);
if (bus)
assert_return(bus = bus_resolve(bus), -ENOPKG);
else
assert_return(bus = m->bus, -ENOTCONN);
bus_assert_return(!bus_pid_changed(bus), -ECHILD, error);
if (!BUS_IS_OPEN(bus->state)) {
r = -ENOTCONN;
goto fail;
}
r = bus_ensure_running(bus);
if (r < 0)
goto fail;
i = bus->rqueue_size;
r = bus_seal_message(bus, m, usec);
if (r < 0)
goto fail;
r = bus_remarshal_message(bus, &m);
if (r < 0)
goto fail;
r = sd_bus_send(bus, m, &cookie);
if (r < 0)
goto fail;
timeout = calc_elapse(bus, m->timeout);
for (;;) {
usec_t left;
while (i < bus->rqueue_size) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *incoming = NULL;
incoming = sd_bus_message_ref(bus->rqueue[i]);
if (incoming->reply_cookie == cookie) {
/* Found a match! */
rqueue_drop_one(bus, i);
log_debug_bus_message(incoming);
if (incoming->header->type == SD_BUS_MESSAGE_METHOD_RETURN) {
if (incoming->n_fds <= 0 || bus->accept_fd) {
if (reply)
*reply = TAKE_PTR(incoming);
return 1;
}
return sd_bus_error_setf(error, SD_BUS_ERROR_INCONSISTENT_MESSAGE, "Reply message contained file descriptors which I couldn't accept. Sorry.");
} else if (incoming->header->type == SD_BUS_MESSAGE_METHOD_ERROR)
return sd_bus_error_copy(error, &incoming->error);
else {
r = -EIO;
goto fail;
}
} else if (BUS_MESSAGE_COOKIE(incoming) == cookie &&
bus->unique_name &&
incoming->sender &&
streq(bus->unique_name, incoming->sender)) {
rqueue_drop_one(bus, i);
/* Our own message? Somebody is trying to send its own client a message,
* let's not dead-lock, let's fail immediately. */
r = -ELOOP;
goto fail;
}
/* Try to read more, right-away */
i++;
}
r = bus_read_message(bus);
if (r < 0) {
if (ERRNO_IS_DISCONNECT(r)) {
bus_enter_closing(bus);
r = -ECONNRESET;
}
goto fail;
}
if (r > 0)
continue;
if (timeout > 0) {
usec_t n;
n = now(CLOCK_MONOTONIC);
if (n >= timeout) {
r = -ETIMEDOUT;
goto fail;
}
left = timeout - n;
} else
left = (uint64_t) -1;
r = bus_poll(bus, true, left);
if (r < 0)
goto fail;
if (r == 0) {
r = -ETIMEDOUT;
goto fail;
}
r = dispatch_wqueue(bus);
if (r < 0) {
if (ERRNO_IS_DISCONNECT(r)) {
bus_enter_closing(bus);
r = -ECONNRESET;
}
goto fail;
}
}
fail:
return sd_bus_error_set_errno(error, r);
}
_public_ int sd_bus_get_fd(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(bus->input_fd == bus->output_fd, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->state == BUS_CLOSED)
return -ENOTCONN;
if (bus->inotify_fd >= 0)
return bus->inotify_fd;
if (bus->input_fd >= 0)
return bus->input_fd;
return -ENOTCONN;
}
_public_ int sd_bus_get_events(sd_bus *bus) {
int flags = 0;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
switch (bus->state) {
case BUS_UNSET:
case BUS_CLOSED:
return -ENOTCONN;
case BUS_WATCH_BIND:
flags |= POLLIN;
break;
case BUS_OPENING:
flags |= POLLOUT;
break;
case BUS_AUTHENTICATING:
if (bus_socket_auth_needs_write(bus))
flags |= POLLOUT;
flags |= POLLIN;
break;
case BUS_RUNNING:
case BUS_HELLO:
if (bus->rqueue_size <= 0)
flags |= POLLIN;
if (bus->wqueue_size > 0)
flags |= POLLOUT;
break;
case BUS_CLOSING:
break;
default:
assert_not_reached("Unknown state");
}
return flags;
}
_public_ int sd_bus_get_timeout(sd_bus *bus, uint64_t *timeout_usec) {
struct reply_callback *c;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(timeout_usec, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (!BUS_IS_OPEN(bus->state) && bus->state != BUS_CLOSING)
return -ENOTCONN;
if (bus->track_queue) {
*timeout_usec = 0;
return 1;
}
switch (bus->state) {
case BUS_AUTHENTICATING:
*timeout_usec = bus->auth_timeout;
return 1;
case BUS_RUNNING:
case BUS_HELLO:
if (bus->rqueue_size > 0) {
*timeout_usec = 0;
return 1;
}
c = prioq_peek(bus->reply_callbacks_prioq);
if (!c) {
*timeout_usec = (uint64_t) -1;
return 0;
}
if (c->timeout_usec == 0) {
*timeout_usec = (uint64_t) -1;
return 0;
}
*timeout_usec = c->timeout_usec;
return 1;
case BUS_CLOSING:
*timeout_usec = 0;
return 1;
case BUS_WATCH_BIND:
case BUS_OPENING:
*timeout_usec = (uint64_t) -1;
return 0;
default:
assert_not_reached("Unknown or unexpected stat");
}
}
static int process_timeout(sd_bus *bus) {
_cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL;
_cleanup_(sd_bus_message_unrefp) sd_bus_message* m = NULL;
struct reply_callback *c;
sd_bus_slot *slot;
bool is_hello;
usec_t n;
int r;
assert(bus);
assert(IN_SET(bus->state, BUS_RUNNING, BUS_HELLO));
c = prioq_peek(bus->reply_callbacks_prioq);
if (!c)
return 0;
n = now(CLOCK_MONOTONIC);
if (c->timeout_usec > n)
return 0;
r = bus_message_new_synthetic_error(
bus,
c->cookie,
&SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_NO_REPLY, "Method call timed out"),
&m);
if (r < 0)
return r;
m->read_counter = ++bus->read_counter;
r = bus_seal_synthetic_message(bus, m);
if (r < 0)
return r;
assert_se(prioq_pop(bus->reply_callbacks_prioq) == c);
c->timeout_usec = 0;
ordered_hashmap_remove(bus->reply_callbacks, &c->cookie);
c->cookie = 0;
slot = container_of(c, sd_bus_slot, reply_callback);
bus->iteration_counter++;
is_hello = bus->state == BUS_HELLO && c->callback == hello_callback;
bus->current_message = m;
bus->current_slot = sd_bus_slot_ref(slot);
bus->current_handler = c->callback;
bus->current_userdata = slot->userdata;
r = c->callback(m, slot->userdata, &error_buffer);
bus->current_userdata = NULL;
bus->current_handler = NULL;
bus->current_slot = NULL;
bus->current_message = NULL;
if (slot->floating)
bus_slot_disconnect(slot, true);
sd_bus_slot_unref(slot);
/* When this is the hello message and it timed out, then make sure to propagate the error up, don't just log
* and ignore the callback handler's return value. */
if (is_hello)
return r;
return bus_maybe_reply_error(m, r, &error_buffer);
}
static int process_hello(sd_bus *bus, sd_bus_message *m) {
assert(bus);
assert(m);
if (bus->state != BUS_HELLO)
return 0;
/* Let's make sure the first message on the bus is the HELLO
* reply. But note that we don't actually parse the message
* here (we leave that to the usual handling), we just verify
* we don't let any earlier msg through. */
if (!IN_SET(m->header->type, SD_BUS_MESSAGE_METHOD_RETURN, SD_BUS_MESSAGE_METHOD_ERROR))
return -EIO;
if (m->reply_cookie != 1)
return -EIO;
return 0;
}
static int process_reply(sd_bus *bus, sd_bus_message *m) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *synthetic_reply = NULL;
_cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL;
struct reply_callback *c;
sd_bus_slot *slot;
bool is_hello;
int r;
assert(bus);
assert(m);
if (!IN_SET(m->header->type, SD_BUS_MESSAGE_METHOD_RETURN, SD_BUS_MESSAGE_METHOD_ERROR))
return 0;
if (m->destination && bus->unique_name && !streq_ptr(m->destination, bus->unique_name))
return 0;
c = ordered_hashmap_remove(bus->reply_callbacks, &m->reply_cookie);
if (!c)
return 0;
c->cookie = 0;
slot = container_of(c, sd_bus_slot, reply_callback);
if (m->n_fds > 0 && !bus->accept_fd) {
/* If the reply contained a file descriptor which we
* didn't want we pass an error instead. */
r = bus_message_new_synthetic_error(
bus,
m->reply_cookie,
&SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_INCONSISTENT_MESSAGE, "Reply message contained file descriptor"),
&synthetic_reply);
if (r < 0)
return r;
/* Copy over original timestamp */
synthetic_reply->realtime = m->realtime;
synthetic_reply->monotonic = m->monotonic;
synthetic_reply->seqnum = m->seqnum;
synthetic_reply->read_counter = m->read_counter;
r = bus_seal_synthetic_message(bus, synthetic_reply);
if (r < 0)
return r;
m = synthetic_reply;
} else {
r = sd_bus_message_rewind(m, true);
if (r < 0)
return r;
}
if (c->timeout_usec != 0) {
prioq_remove(bus->reply_callbacks_prioq, c, &c->prioq_idx);
c->timeout_usec = 0;
}
is_hello = bus->state == BUS_HELLO && c->callback == hello_callback;
bus->current_slot = sd_bus_slot_ref(slot);
bus->current_handler = c->callback;
bus->current_userdata = slot->userdata;
r = c->callback(m, slot->userdata, &error_buffer);
bus->current_userdata = NULL;
bus->current_handler = NULL;
bus->current_slot = NULL;
if (slot->floating)
bus_slot_disconnect(slot, true);
sd_bus_slot_unref(slot);
/* When this is the hello message and it failed, then make sure to propagate the error up, don't just log and
* ignore the callback handler's return value. */
if (is_hello)
return r;
return bus_maybe_reply_error(m, r, &error_buffer);
}
static int process_filter(sd_bus *bus, sd_bus_message *m) {
_cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL;
struct filter_callback *l;
int r;
assert(bus);
assert(m);
do {
bus->filter_callbacks_modified = false;
LIST_FOREACH(callbacks, l, bus->filter_callbacks) {
sd_bus_slot *slot;
if (bus->filter_callbacks_modified)
break;
/* Don't run this more than once per iteration */
if (l->last_iteration == bus->iteration_counter)
continue;
l->last_iteration = bus->iteration_counter;
r = sd_bus_message_rewind(m, true);
if (r < 0)
return r;
slot = container_of(l, sd_bus_slot, filter_callback);
bus->current_slot = sd_bus_slot_ref(slot);
bus->current_handler = l->callback;
bus->current_userdata = slot->userdata;
r = l->callback(m, slot->userdata, &error_buffer);
bus->current_userdata = NULL;
bus->current_handler = NULL;
bus->current_slot = sd_bus_slot_unref(slot);
r = bus_maybe_reply_error(m, r, &error_buffer);
if (r != 0)
return r;
}
} while (bus->filter_callbacks_modified);
return 0;
}
static int process_match(sd_bus *bus, sd_bus_message *m) {
int r;
assert(bus);
assert(m);
do {
bus->match_callbacks_modified = false;
r = bus_match_run(bus, &bus->match_callbacks, m);
if (r != 0)
return r;
} while (bus->match_callbacks_modified);
return 0;
}
static int process_builtin(sd_bus *bus, sd_bus_message *m) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *reply = NULL;
int r;
assert(bus);
assert(m);
if (bus->is_monitor)
return 0;
if (bus->manual_peer_interface)
return 0;
if (m->header->type != SD_BUS_MESSAGE_METHOD_CALL)
return 0;
if (!streq_ptr(m->interface, "org.freedesktop.DBus.Peer"))
return 0;
if (m->header->flags & BUS_MESSAGE_NO_REPLY_EXPECTED)
return 1;
if (streq_ptr(m->member, "Ping"))
r = sd_bus_message_new_method_return(m, &reply);
else if (streq_ptr(m->member, "GetMachineId")) {
sd_id128_t id;
char sid[SD_ID128_STRING_MAX];
r = sd_id128_get_machine(&id);
if (r < 0)
return r;
r = sd_bus_message_new_method_return(m, &reply);
if (r < 0)
return r;
r = sd_bus_message_append(reply, "s", sd_id128_to_string(id, sid));
} else {
r = sd_bus_message_new_method_errorf(
m, &reply,
SD_BUS_ERROR_UNKNOWN_METHOD,
"Unknown method '%s' on interface '%s'.", m->member, m->interface);
}
if (r < 0)
return r;
r = sd_bus_send(bus, reply, NULL);
if (r < 0)
return r;
return 1;
}
static int process_fd_check(sd_bus *bus, sd_bus_message *m) {
assert(bus);
assert(m);
/* If we got a message with a file descriptor which we didn't
* want to accept, then let's drop it. How can this even
* happen? For example, when the kernel queues a message into
* an activatable names's queue which allows fds, and then is
* delivered to us later even though we ourselves did not
* negotiate it. */
if (bus->is_monitor)
return 0;
if (m->n_fds <= 0)
return 0;
if (bus->accept_fd)
return 0;
if (m->header->type != SD_BUS_MESSAGE_METHOD_CALL)
return 1; /* just eat it up */
return sd_bus_reply_method_errorf(m, SD_BUS_ERROR_INCONSISTENT_MESSAGE, "Message contains file descriptors, which I cannot accept. Sorry.");
}
static int process_message(sd_bus *bus, sd_bus_message *m) {
int r;
assert(bus);
assert(m);
bus->current_message = m;
bus->iteration_counter++;
log_debug_bus_message(m);
r = process_hello(bus, m);
if (r != 0)
goto finish;
r = process_reply(bus, m);
if (r != 0)
goto finish;
r = process_fd_check(bus, m);
if (r != 0)
goto finish;
r = process_filter(bus, m);
if (r != 0)
goto finish;
r = process_match(bus, m);
if (r != 0)
goto finish;
r = process_builtin(bus, m);
if (r != 0)
goto finish;
r = bus_process_object(bus, m);
finish:
bus->current_message = NULL;
return r;
}
static int dispatch_track(sd_bus *bus) {
assert(bus);
if (!bus->track_queue)
return 0;
bus_track_dispatch(bus->track_queue);
return 1;
}
static int process_running(sd_bus *bus, sd_bus_message **ret) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
int r;
assert(bus);
assert(IN_SET(bus->state, BUS_RUNNING, BUS_HELLO));
r = process_timeout(bus);
if (r != 0)
goto null_message;
r = dispatch_wqueue(bus);
if (r != 0)
goto null_message;
r = dispatch_track(bus);
if (r != 0)
goto null_message;
r = dispatch_rqueue(bus, &m);
if (r < 0)
return r;
if (!m)
goto null_message;
r = process_message(bus, m);
if (r != 0)
goto null_message;
if (ret) {
r = sd_bus_message_rewind(m, true);
if (r < 0)
return r;
*ret = TAKE_PTR(m);
return 1;
}
if (m->header->type == SD_BUS_MESSAGE_METHOD_CALL) {
log_debug("Unprocessed message call sender=%s object=%s interface=%s member=%s",
strna(sd_bus_message_get_sender(m)),
strna(sd_bus_message_get_path(m)),
strna(sd_bus_message_get_interface(m)),
strna(sd_bus_message_get_member(m)));
r = sd_bus_reply_method_errorf(
m,
SD_BUS_ERROR_UNKNOWN_OBJECT,
"Unknown object '%s'.", m->path);
if (r < 0)
return r;
}
return 1;
null_message:
if (r >= 0 && ret)
*ret = NULL;
return r;
}
static int bus_exit_now(sd_bus *bus) {
assert(bus);
/* Exit due to close, if this is requested. If this is bus object is attached to an event source, invokes
* sd_event_exit(), otherwise invokes libc exit(). */
if (bus->exited) /* did we already exit? */
return 0;
if (!bus->exit_triggered) /* was the exit condition triggered? */
return 0;
if (!bus->exit_on_disconnect) /* Shall we actually exit on disconnection? */
return 0;
bus->exited = true; /* never exit more than once */
log_debug("Bus connection disconnected, exiting.");
if (bus->event)
return sd_event_exit(bus->event, EXIT_FAILURE);
else
exit(EXIT_FAILURE);
assert_not_reached("exit() didn't exit?");
}
static int process_closing_reply_callback(sd_bus *bus, struct reply_callback *c) {
_cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL;
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
sd_bus_slot *slot;
int r;
assert(bus);
assert(c);
r = bus_message_new_synthetic_error(
bus,
c->cookie,
&SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_NO_REPLY, "Connection terminated"),
&m);
if (r < 0)
return r;
m->read_counter = ++bus->read_counter;
r = bus_seal_synthetic_message(bus, m);
if (r < 0)
return r;
if (c->timeout_usec != 0) {
prioq_remove(bus->reply_callbacks_prioq, c, &c->prioq_idx);
c->timeout_usec = 0;
}
ordered_hashmap_remove(bus->reply_callbacks, &c->cookie);
c->cookie = 0;
slot = container_of(c, sd_bus_slot, reply_callback);
bus->iteration_counter++;
bus->current_message = m;
bus->current_slot = sd_bus_slot_ref(slot);
bus->current_handler = c->callback;
bus->current_userdata = slot->userdata;
r = c->callback(m, slot->userdata, &error_buffer);
bus->current_userdata = NULL;
bus->current_handler = NULL;
bus->current_slot = NULL;
bus->current_message = NULL;
if (slot->floating)
bus_slot_disconnect(slot, true);
sd_bus_slot_unref(slot);
return bus_maybe_reply_error(m, r, &error_buffer);
}
static int process_closing(sd_bus *bus, sd_bus_message **ret) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
struct reply_callback *c;
int r;
assert(bus);
assert(bus->state == BUS_CLOSING);
/* First, fail all outstanding method calls */
c = ordered_hashmap_first(bus->reply_callbacks);
if (c)
return process_closing_reply_callback(bus, c);
/* Then, fake-drop all remaining bus tracking references */
if (bus->tracks) {
bus_track_close(bus->tracks);
return 1;
}
/* Then, synthesize a Disconnected message */
r = sd_bus_message_new_signal(
bus,
&m,
"/org/freedesktop/DBus/Local",
"org.freedesktop.DBus.Local",
"Disconnected");
if (r < 0)
return r;
bus_message_set_sender_local(bus, m);
m->read_counter = ++bus->read_counter;
r = bus_seal_synthetic_message(bus, m);
if (r < 0)
return r;
sd_bus_close(bus);
bus->current_message = m;
bus->iteration_counter++;
r = process_filter(bus, m);
if (r != 0)
goto finish;
r = process_match(bus, m);
if (r != 0)
goto finish;
/* Nothing else to do, exit now, if the condition holds */
bus->exit_triggered = true;
(void) bus_exit_now(bus);
if (ret)
*ret = TAKE_PTR(m);
r = 1;
finish:
bus->current_message = NULL;
return r;
}
static int bus_process_internal(sd_bus *bus, sd_bus_message **ret) {
int r;
/* Returns 0 when we didn't do anything. This should cause the
* caller to invoke sd_bus_wait() before returning the next
* time. Returns > 0 when we did something, which possibly
* means *ret is filled in with an unprocessed message. */
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
/* We don't allow recursively invoking sd_bus_process(). */
assert_return(!bus->current_message, -EBUSY);
assert(!bus->current_slot); /* This should be NULL whenever bus->current_message is */
BUS_DONT_DESTROY(bus);
switch (bus->state) {
case BUS_UNSET:
return -ENOTCONN;
case BUS_CLOSED:
return -ECONNRESET;
case BUS_WATCH_BIND:
r = bus_socket_process_watch_bind(bus);
break;
case BUS_OPENING:
r = bus_socket_process_opening(bus);
break;
case BUS_AUTHENTICATING:
r = bus_socket_process_authenticating(bus);
break;
case BUS_RUNNING:
case BUS_HELLO:
r = process_running(bus, ret);
if (r >= 0)
return r;
/* This branch initializes *ret, hence we don't use the generic error checking below */
break;
case BUS_CLOSING:
return process_closing(bus, ret);
default:
assert_not_reached("Unknown state");
}
if (ERRNO_IS_DISCONNECT(r)) {
bus_enter_closing(bus);
r = 1;
} else if (r < 0)
return r;
if (ret)
*ret = NULL;
return r;
}
_public_ int sd_bus_process(sd_bus *bus, sd_bus_message **ret) {
return bus_process_internal(bus, ret);
}
_public_ int sd_bus_process_priority(sd_bus *bus, int64_t priority, sd_bus_message **ret) {
return bus_process_internal(bus, ret);
}
static int bus_poll(sd_bus *bus, bool need_more, uint64_t timeout_usec) {
struct pollfd p[2] = {};
int r, n;
struct timespec ts;
usec_t m = USEC_INFINITY;
assert(bus);
if (bus->state == BUS_CLOSING)
return 1;
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
if (bus->state == BUS_WATCH_BIND) {
assert(bus->inotify_fd >= 0);
p[0].events = POLLIN;
p[0].fd = bus->inotify_fd;
n = 1;
} else {
int e;
e = sd_bus_get_events(bus);
if (e < 0)
return e;
if (need_more)
/* The caller really needs some more data, he doesn't
* care about what's already read, or any timeouts
* except its own. */
e |= POLLIN;
else {
usec_t until;
/* The caller wants to process if there's something to
* process, but doesn't care otherwise */
r = sd_bus_get_timeout(bus, &until);
if (r < 0)
return r;
if (r > 0)
m = usec_sub_unsigned(until, now(CLOCK_MONOTONIC));
}
p[0].fd = bus->input_fd;
if (bus->output_fd == bus->input_fd) {
p[0].events = e;
n = 1;
} else {
p[0].events = e & POLLIN;
p[1].fd = bus->output_fd;
p[1].events = e & POLLOUT;
n = 2;
}
}
if (timeout_usec != (uint64_t) -1 && (m == USEC_INFINITY || timeout_usec < m))
m = timeout_usec;
r = ppoll(p, n, m == USEC_INFINITY ? NULL : timespec_store(&ts, m), NULL);
if (r < 0)
return -errno;
if (r == 0)
return 0;
if (p[0].revents & POLLNVAL)
return -EBADF;
if (n >= 2 && (p[1].revents & POLLNVAL))
return -EBADF;
return 1;
}
_public_ int sd_bus_wait(sd_bus *bus, uint64_t timeout_usec) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->state == BUS_CLOSING)
return 0;
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
if (bus->rqueue_size > 0)
return 0;
return bus_poll(bus, false, timeout_usec);
}
_public_ int sd_bus_flush(sd_bus *bus) {
int r;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->state == BUS_CLOSING)
return 0;
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
/* We never were connected? Don't hang in inotify for good, as there's no timeout set for it */
if (bus->state == BUS_WATCH_BIND)
return -EUNATCH;
r = bus_ensure_running(bus);
if (r < 0)
return r;
if (bus->wqueue_size <= 0)
return 0;
for (;;) {
r = dispatch_wqueue(bus);
if (r < 0) {
if (ERRNO_IS_DISCONNECT(r)) {
bus_enter_closing(bus);
return -ECONNRESET;
}
return r;
}
if (bus->wqueue_size <= 0)
return 0;
r = bus_poll(bus, false, (uint64_t) -1);
if (r < 0)
return r;
}
}
_public_ int sd_bus_add_filter(
sd_bus *bus,
sd_bus_slot **slot,
sd_bus_message_handler_t callback,
void *userdata) {
sd_bus_slot *s;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(callback, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
s = bus_slot_allocate(bus, !slot, BUS_FILTER_CALLBACK, sizeof(struct filter_callback), userdata);
if (!s)
return -ENOMEM;
s->filter_callback.callback = callback;
bus->filter_callbacks_modified = true;
LIST_PREPEND(callbacks, bus->filter_callbacks, &s->filter_callback);
if (slot)
*slot = s;
return 0;
}
static int add_match_callback(
sd_bus_message *m,
void *userdata,
sd_bus_error *ret_error) {
sd_bus_slot *match_slot = userdata;
bool failed = false;
int r;
assert(m);
assert(match_slot);
sd_bus_slot_ref(match_slot);
if (sd_bus_message_is_method_error(m, NULL)) {
log_debug_errno(sd_bus_message_get_errno(m),
"Unable to add match %s, failing connection: %s",
match_slot->match_callback.match_string,
sd_bus_message_get_error(m)->message);
failed = true;
} else
log_debug("Match %s successfully installed.", match_slot->match_callback.match_string);
if (match_slot->match_callback.install_callback) {
sd_bus *bus;
bus = sd_bus_message_get_bus(m);
/* This function has been called as slot handler, and we want to call another slot handler. Let's
* update the slot callback metadata temporarily with our own data, and then revert back to the old
* values. */
assert(bus->current_slot == match_slot->match_callback.install_slot);
assert(bus->current_handler == add_match_callback);
assert(bus->current_userdata == userdata);
bus->current_slot = match_slot;
bus->current_handler = match_slot->match_callback.install_callback;
bus->current_userdata = match_slot->userdata;
r = match_slot->match_callback.install_callback(m, match_slot->userdata, ret_error);
bus->current_slot = match_slot->match_callback.install_slot;
bus->current_handler = add_match_callback;
bus->current_userdata = userdata;
} else {
if (failed) /* Generic failure handling: destroy the connection */
bus_enter_closing(sd_bus_message_get_bus(m));
r = 1;
}
/* We don't need the install method reply slot anymore, let's free it */
match_slot->match_callback.install_slot = sd_bus_slot_unref(match_slot->match_callback.install_slot);
if (failed && match_slot->floating)
bus_slot_disconnect(match_slot, true);
sd_bus_slot_unref(match_slot);
return r;
}
static int bus_add_match_full(
sd_bus *bus,
sd_bus_slot **slot,
bool asynchronous,
const char *match,
sd_bus_message_handler_t callback,
sd_bus_message_handler_t install_callback,
void *userdata) {
struct bus_match_component *components = NULL;
unsigned n_components = 0;
sd_bus_slot *s = NULL;
int r = 0;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(match, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
r = bus_match_parse(match, &components, &n_components);
if (r < 0)
goto finish;
s = bus_slot_allocate(bus, !slot, BUS_MATCH_CALLBACK, sizeof(struct match_callback), userdata);
if (!s) {
r = -ENOMEM;
goto finish;
}
s->match_callback.callback = callback;
s->match_callback.install_callback = install_callback;
if (bus->bus_client) {
enum bus_match_scope scope;
scope = bus_match_get_scope(components, n_components);
/* Do not install server-side matches for matches against the local service, interface or bus path. */
if (scope != BUS_MATCH_LOCAL) {
/* We store the original match string, so that we can use it to remove the match again. */
s->match_callback.match_string = strdup(match);
if (!s->match_callback.match_string) {
r = -ENOMEM;
goto finish;
}
if (asynchronous) {
r = bus_add_match_internal_async(bus,
&s->match_callback.install_slot,
s->match_callback.match_string,
add_match_callback,
s);
if (r < 0)
return r;
/* Make the slot of the match call floating now. We need the reference, but we don't
* want that this match pins the bus object, hence we first create it non-floating, but
* then make it floating. */
r = sd_bus_slot_set_floating(s->match_callback.install_slot, true);
} else
r = bus_add_match_internal(bus, s->match_callback.match_string, &s->match_callback.after);
if (r < 0)
goto finish;
s->match_added = true;
}
}
bus->match_callbacks_modified = true;
r = bus_match_add(&bus->match_callbacks, components, n_components, &s->match_callback);
if (r < 0)
goto finish;
if (slot)
*slot = s;
s = NULL;
finish:
bus_match_parse_free(components, n_components);
sd_bus_slot_unref(s);
return r;
}
_public_ int sd_bus_add_match(
sd_bus *bus,
sd_bus_slot **slot,
const char *match,
sd_bus_message_handler_t callback,
void *userdata) {
return bus_add_match_full(bus, slot, false, match, callback, NULL, userdata);
}
_public_ int sd_bus_add_match_async(
sd_bus *bus,
sd_bus_slot **slot,
const char *match,
sd_bus_message_handler_t callback,
sd_bus_message_handler_t install_callback,
void *userdata) {
return bus_add_match_full(bus, slot, true, match, callback, install_callback, userdata);
}
bool bus_pid_changed(sd_bus *bus) {
assert(bus);
/* We don't support people creating a bus connection and
* keeping it around over a fork(). Let's complain. */
return bus->original_pid != getpid_cached();
}
static int io_callback(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
sd_bus *bus = userdata;
int r;
assert(bus);
/* Note that this is called both on input_fd, output_fd as well as inotify_fd events */
r = sd_bus_process(bus, NULL);
if (r < 0) {
log_debug_errno(r, "Processing of bus failed, closing down: %m");
bus_enter_closing(bus);
}
return 1;
}
static int time_callback(sd_event_source *s, uint64_t usec, void *userdata) {
sd_bus *bus = userdata;
int r;
assert(bus);
r = sd_bus_process(bus, NULL);
if (r < 0) {
log_debug_errno(r, "Processing of bus failed, closing down: %m");
bus_enter_closing(bus);
}
return 1;
}
static int prepare_callback(sd_event_source *s, void *userdata) {
sd_bus *bus = userdata;
int r, e;
usec_t until;
assert(s);
assert(bus);
e = sd_bus_get_events(bus);
if (e < 0) {
r = e;
goto fail;
}
if (bus->output_fd != bus->input_fd) {
r = sd_event_source_set_io_events(bus->input_io_event_source, e & POLLIN);
if (r < 0)
goto fail;
r = sd_event_source_set_io_events(bus->output_io_event_source, e & POLLOUT);
} else
r = sd_event_source_set_io_events(bus->input_io_event_source, e);
if (r < 0)
goto fail;
r = sd_bus_get_timeout(bus, &until);
if (r < 0)
goto fail;
if (r > 0) {
int j;
j = sd_event_source_set_time(bus->time_event_source, until);
if (j < 0) {
r = j;
goto fail;
}
}
r = sd_event_source_set_enabled(bus->time_event_source, r > 0);
if (r < 0)
goto fail;
return 1;
fail:
log_debug_errno(r, "Preparing of bus events failed, closing down: %m");
bus_enter_closing(bus);
return 1;
}
static int quit_callback(sd_event_source *event, void *userdata) {
sd_bus *bus = userdata;
assert(event);
if (bus->close_on_exit) {
sd_bus_flush(bus);
sd_bus_close(bus);
}
return 1;
}
int bus_attach_io_events(sd_bus *bus) {
int r;
assert(bus);
if (bus->input_fd < 0)
return 0;
if (!bus->event)
return 0;
if (!bus->input_io_event_source) {
r = sd_event_add_io(bus->event, &bus->input_io_event_source, bus->input_fd, 0, io_callback, bus);
if (r < 0)
return r;
r = sd_event_source_set_prepare(bus->input_io_event_source, prepare_callback);
if (r < 0)
return r;
r = sd_event_source_set_priority(bus->input_io_event_source, bus->event_priority);
if (r < 0)
return r;
r = sd_event_source_set_description(bus->input_io_event_source, "bus-input");
} else
r = sd_event_source_set_io_fd(bus->input_io_event_source, bus->input_fd);
if (r < 0)
return r;
if (bus->output_fd != bus->input_fd) {
assert(bus->output_fd >= 0);
if (!bus->output_io_event_source) {
r = sd_event_add_io(bus->event, &bus->output_io_event_source, bus->output_fd, 0, io_callback, bus);
if (r < 0)
return r;
r = sd_event_source_set_priority(bus->output_io_event_source, bus->event_priority);
if (r < 0)
return r;
r = sd_event_source_set_description(bus->input_io_event_source, "bus-output");
} else
r = sd_event_source_set_io_fd(bus->output_io_event_source, bus->output_fd);
if (r < 0)
return r;
}
return 0;
}
static void bus_detach_io_events(sd_bus *bus) {
assert(bus);
if (bus->input_io_event_source) {
sd_event_source_set_enabled(bus->input_io_event_source, SD_EVENT_OFF);
bus->input_io_event_source = sd_event_source_unref(bus->input_io_event_source);
}
if (bus->output_io_event_source) {
sd_event_source_set_enabled(bus->output_io_event_source, SD_EVENT_OFF);
bus->output_io_event_source = sd_event_source_unref(bus->output_io_event_source);
}
}
int bus_attach_inotify_event(sd_bus *bus) {
int r;
assert(bus);
if (bus->inotify_fd < 0)
return 0;
if (!bus->event)
return 0;
if (!bus->inotify_event_source) {
r = sd_event_add_io(bus->event, &bus->inotify_event_source, bus->inotify_fd, EPOLLIN, io_callback, bus);
if (r < 0)
return r;
r = sd_event_source_set_priority(bus->inotify_event_source, bus->event_priority);
if (r < 0)
return r;
r = sd_event_source_set_description(bus->inotify_event_source, "bus-inotify");
} else
r = sd_event_source_set_io_fd(bus->inotify_event_source, bus->inotify_fd);
if (r < 0)
return r;
return 0;
}
static void bus_detach_inotify_event(sd_bus *bus) {
assert(bus);
if (bus->inotify_event_source) {
sd_event_source_set_enabled(bus->inotify_event_source, SD_EVENT_OFF);
bus->inotify_event_source = sd_event_source_unref(bus->inotify_event_source);
}
}
_public_ int sd_bus_attach_event(sd_bus *bus, sd_event *event, int priority) {
int r;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus->event, -EBUSY);
assert(!bus->input_io_event_source);
assert(!bus->output_io_event_source);
assert(!bus->time_event_source);
if (event)
bus->event = sd_event_ref(event);
else {
r = sd_event_default(&bus->event);
if (r < 0)
return r;
}
bus->event_priority = priority;
r = sd_event_add_time(bus->event, &bus->time_event_source, CLOCK_MONOTONIC, 0, 0, time_callback, bus);
if (r < 0)
goto fail;
r = sd_event_source_set_priority(bus->time_event_source, priority);
if (r < 0)
goto fail;
r = sd_event_source_set_description(bus->time_event_source, "bus-time");
if (r < 0)
goto fail;
r = sd_event_add_exit(bus->event, &bus->quit_event_source, quit_callback, bus);
if (r < 0)
goto fail;
r = sd_event_source_set_description(bus->quit_event_source, "bus-exit");
if (r < 0)
goto fail;
r = bus_attach_io_events(bus);
if (r < 0)
goto fail;
r = bus_attach_inotify_event(bus);
if (r < 0)
goto fail;
return 0;
fail:
sd_bus_detach_event(bus);
return r;
}
_public_ int sd_bus_detach_event(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
if (!bus->event)
return 0;
bus_detach_io_events(bus);
bus_detach_inotify_event(bus);
if (bus->time_event_source) {
sd_event_source_set_enabled(bus->time_event_source, SD_EVENT_OFF);
bus->time_event_source = sd_event_source_unref(bus->time_event_source);
}
if (bus->quit_event_source) {
sd_event_source_set_enabled(bus->quit_event_source, SD_EVENT_OFF);
bus->quit_event_source = sd_event_source_unref(bus->quit_event_source);
}
bus->event = sd_event_unref(bus->event);
return 1;
}
_public_ sd_event* sd_bus_get_event(sd_bus *bus) {
assert_return(bus = bus_resolve(bus), NULL);
return bus->event;
}
_public_ sd_bus_message* sd_bus_get_current_message(sd_bus *bus) {
assert_return(bus = bus_resolve(bus), NULL);
return bus->current_message;
}
_public_ sd_bus_slot* sd_bus_get_current_slot(sd_bus *bus) {
assert_return(bus = bus_resolve(bus), NULL);
return bus->current_slot;
}
_public_ sd_bus_message_handler_t sd_bus_get_current_handler(sd_bus *bus) {
assert_return(bus = bus_resolve(bus), NULL);
return bus->current_handler;
}
_public_ void* sd_bus_get_current_userdata(sd_bus *bus) {
assert_return(bus = bus_resolve(bus), NULL);
return bus->current_userdata;
}
static int bus_default(int (*bus_open)(sd_bus **), sd_bus **default_bus, sd_bus **ret) {
sd_bus *b = NULL;
int r;
assert(bus_open);
assert(default_bus);
if (!ret)
return !!*default_bus;
if (*default_bus) {
*ret = sd_bus_ref(*default_bus);
return 0;
}
r = bus_open(&b);
if (r < 0)
return r;
b->default_bus_ptr = default_bus;
b->tid = gettid();
*default_bus = b;
*ret = b;
return 1;
}
_public_ int sd_bus_default_system(sd_bus **ret) {
return bus_default(sd_bus_open_system, &default_system_bus, ret);
}
_public_ int sd_bus_default_user(sd_bus **ret) {
return bus_default(sd_bus_open_user, &default_user_bus, ret);
}
_public_ int sd_bus_default(sd_bus **ret) {
int (*bus_open)(sd_bus **) = NULL;
sd_bus **busp;
busp = bus_choose_default(&bus_open);
return bus_default(bus_open, busp, ret);
}
_public_ int sd_bus_get_tid(sd_bus *b, pid_t *tid) {
assert_return(b, -EINVAL);
assert_return(tid, -EINVAL);
assert_return(!bus_pid_changed(b), -ECHILD);
if (b->tid != 0) {
*tid = b->tid;
return 0;
}
if (b->event)
return sd_event_get_tid(b->event, tid);
return -ENXIO;
}
_public_ int sd_bus_path_encode(const char *prefix, const char *external_id, char **ret_path) {
_cleanup_free_ char *e = NULL;
char *ret;
assert_return(object_path_is_valid(prefix), -EINVAL);
assert_return(external_id, -EINVAL);
assert_return(ret_path, -EINVAL);
e = bus_label_escape(external_id);
if (!e)
return -ENOMEM;
ret = path_join(prefix, e);
if (!ret)
return -ENOMEM;
*ret_path = ret;
return 0;
}
_public_ int sd_bus_path_decode(const char *path, const char *prefix, char **external_id) {
const char *e;
char *ret;
assert_return(object_path_is_valid(path), -EINVAL);
assert_return(object_path_is_valid(prefix), -EINVAL);
assert_return(external_id, -EINVAL);
e = object_path_startswith(path, prefix);
if (!e) {
*external_id = NULL;
return 0;
}
ret = bus_label_unescape(e);
if (!ret)
return -ENOMEM;
*external_id = ret;
return 1;
}
_public_ int sd_bus_path_encode_many(char **out, const char *path_template, ...) {
_cleanup_strv_free_ char **labels = NULL;
char *path, *path_pos, **label_pos;
const char *sep, *template_pos;
size_t path_length;
va_list list;
int r;
assert_return(out, -EINVAL);
assert_return(path_template, -EINVAL);
path_length = strlen(path_template);
va_start(list, path_template);
for (sep = strchr(path_template, '%'); sep; sep = strchr(sep + 1, '%')) {
const char *arg;
char *label;
arg = va_arg(list, const char *);
if (!arg) {
va_end(list);
return -EINVAL;
}
label = bus_label_escape(arg);
if (!label) {
va_end(list);
return -ENOMEM;
}
r = strv_consume(&labels, label);
if (r < 0) {
va_end(list);
return r;
}
/* add label length, but account for the format character */
path_length += strlen(label) - 1;
}
va_end(list);
path = malloc(path_length + 1);
if (!path)
return -ENOMEM;
path_pos = path;
label_pos = labels;
for (template_pos = path_template; *template_pos; ) {
sep = strchrnul(template_pos, '%');
path_pos = mempcpy(path_pos, template_pos, sep - template_pos);
if (!*sep)
break;
path_pos = stpcpy(path_pos, *label_pos++);
template_pos = sep + 1;
}
*path_pos = 0;
*out = path;
return 0;
}
_public_ int sd_bus_path_decode_many(const char *path, const char *path_template, ...) {
_cleanup_strv_free_ char **labels = NULL;
const char *template_pos, *path_pos;
char **label_pos;
va_list list;
int r;
/*
* This decodes an object-path based on a template argument. The
* template consists of a verbatim path, optionally including special
* directives:
*
* - Each occurrence of '%' in the template matches an arbitrary
* substring of a label in the given path. At most one such
* directive is allowed per label. For each such directive, the
* caller must provide an output parameter (char **) via va_arg. If
* NULL is passed, the given label is verified, but not returned.
* For each matched label, the *decoded* label is stored in the
* passed output argument, and the caller is responsible to free
* it. Note that the output arguments are only modified if the
* actually path matched the template. Otherwise, they're left
* untouched.
*
* This function returns <0 on error, 0 if the path does not match the
* template, 1 if it matched.
*/
assert_return(path, -EINVAL);
assert_return(path_template, -EINVAL);
path_pos = path;
for (template_pos = path_template; *template_pos; ) {
const char *sep;
size_t length;
char *label;
/* verify everything until the next '%' matches verbatim */
sep = strchrnul(template_pos, '%');
length = sep - template_pos;
if (strncmp(path_pos, template_pos, length))
return 0;
path_pos += length;
template_pos += length;
if (!*template_pos)
break;
/* We found the next '%' character. Everything up until here
* matched. We now skip ahead to the end of this label and make
* sure it matches the tail of the label in the path. Then we
* decode the string in-between and save it for later use. */
++template_pos; /* skip over '%' */
sep = strchrnul(template_pos, '/');
length = sep - template_pos; /* length of suffix to match verbatim */
/* verify the suffixes match */
sep = strchrnul(path_pos, '/');
if (sep - path_pos < (ssize_t)length ||
strncmp(sep - length, template_pos, length))
return 0;
template_pos += length; /* skip over matched label */
length = sep - path_pos - length; /* length of sub-label to decode */
/* store unescaped label for later use */
label = bus_label_unescape_n(path_pos, length);
if (!label)
return -ENOMEM;
r = strv_consume(&labels, label);
if (r < 0)
return r;
path_pos = sep; /* skip decoded label and suffix */
}
/* end of template must match end of path */
if (*path_pos)
return 0;
/* copy the labels over to the caller */
va_start(list, path_template);
for (label_pos = labels; label_pos && *label_pos; ++label_pos) {
char **arg;
arg = va_arg(list, char **);
if (arg)
*arg = *label_pos;
else
free(*label_pos);
}
va_end(list);
labels = mfree(labels);
return 1;
}
_public_ int sd_bus_try_close(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return -EOPNOTSUPP;
}
_public_ int sd_bus_get_description(sd_bus *bus, const char **description) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(description, -EINVAL);
assert_return(bus->description, -ENXIO);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->description)
*description = bus->description;
else if (bus->is_system)
*description = "system";
else if (bus->is_user)
*description = "user";
else
*description = NULL;
return 0;
}
_public_ int sd_bus_get_scope(sd_bus *bus, const char **scope) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(scope, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->is_user) {
*scope = "user";
return 0;
}
if (bus->is_system) {
*scope = "system";
return 0;
}
return -ENODATA;
}
_public_ int sd_bus_get_address(sd_bus *bus, const char **address) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(address, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->address) {
*address = bus->address;
return 0;
}
return -ENODATA;
}
_public_ int sd_bus_get_creds_mask(sd_bus *bus, uint64_t *mask) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(mask, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
*mask = bus->creds_mask;
return 0;
}
_public_ int sd_bus_is_bus_client(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->bus_client;
}
_public_ int sd_bus_is_server(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->is_server;
}
_public_ int sd_bus_is_anonymous(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->anonymous_auth;
}
_public_ int sd_bus_is_trusted(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->trusted;
}
_public_ int sd_bus_is_monitor(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->is_monitor;
}
static void flush_close(sd_bus *bus) {
if (!bus)
return;
/* Flushes and closes the specified bus. We take a ref before,
* to ensure the flushing does not cause the bus to be
* unreferenced. */
sd_bus_flush_close_unref(sd_bus_ref(bus));
}
_public_ void sd_bus_default_flush_close(void) {
flush_close(default_starter_bus);
flush_close(default_user_bus);
flush_close(default_system_bus);
}
_public_ int sd_bus_set_exit_on_disconnect(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
/* Turns on exit-on-disconnect, and triggers it immediately if the bus connection was already
* disconnected. Note that this is triggered exclusively on disconnections triggered by the server side, never
* from the client side. */
bus->exit_on_disconnect = b;
/* If the exit condition was triggered already, exit immediately. */
return bus_exit_now(bus);
}
_public_ int sd_bus_get_exit_on_disconnect(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
return bus->exit_on_disconnect;
}
_public_ int sd_bus_set_sender(sd_bus *bus, const char *sender) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus->bus_client, -EPERM);
assert_return(!sender || service_name_is_valid(sender), -EINVAL);
return free_and_strdup(&bus->patch_sender, sender);
}
_public_ int sd_bus_get_sender(sd_bus *bus, const char **ret) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(ret, -EINVAL);
if (!bus->patch_sender)
return -ENODATA;
*ret = bus->patch_sender;
return 0;
}
_public_ int sd_bus_get_n_queued_read(sd_bus *bus, uint64_t *ret) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
assert_return(ret, -EINVAL);
*ret = bus->rqueue_size;
return 0;
}
_public_ int sd_bus_get_n_queued_write(sd_bus *bus, uint64_t *ret) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(!bus_pid_changed(bus), -ECHILD);
assert_return(ret, -EINVAL);
*ret = bus->wqueue_size;
return 0;
}
_public_ int sd_bus_set_method_call_timeout(sd_bus *bus, uint64_t usec) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
bus->method_call_timeout = usec;
return 0;
}
_public_ int sd_bus_get_method_call_timeout(sd_bus *bus, uint64_t *ret) {
const char *e;
usec_t usec;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(ret, -EINVAL);
if (bus->method_call_timeout != 0) {
*ret = bus->method_call_timeout;
return 0;
}
e = secure_getenv("SYSTEMD_BUS_TIMEOUT");
if (e && parse_sec(e, &usec) >= 0 && usec != 0) {
/* Save the parsed value to avoid multiple parsing. To change the timeout value,
* use sd_bus_set_method_call_timeout() instead of setenv(). */
*ret = bus->method_call_timeout = usec;
return 0;
}
*ret = bus->method_call_timeout = BUS_DEFAULT_TIMEOUT;
return 0;
}
_public_ int sd_bus_set_close_on_exit(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
bus->close_on_exit = b;
return 0;
}
_public_ int sd_bus_get_close_on_exit(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
return bus->close_on_exit;
}
_public_ int sd_bus_enqueue_for_read(sd_bus *bus, sd_bus_message *m) {
int r;
assert_return(bus, -EINVAL);
assert_return(bus = bus_resolve(bus), -ENOPKG);
assert_return(m, -EINVAL);
assert_return(m->sealed, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
/* Re-enqueue a message for reading. This is primarily useful for PolicyKit-style authentication,
* where we accept a message, then determine we need to interactively authenticate the user, and then
* we want to process the message again. */
r = bus_rqueue_make_room(bus);
if (r < 0)
return r;
bus->rqueue[bus->rqueue_size++] = bus_message_ref_queued(m, bus);
return 0;
}