| /* SPDX-License-Identifier: LGPL-2.1+ */ |
| |
| #if HAVE_VALGRIND_MEMCHECK_H |
| #include <valgrind/memcheck.h> |
| #endif |
| |
| #include <fcntl.h> |
| #include <getopt.h> |
| #include <libfdisk.h> |
| #include <linux/fs.h> |
| #include <linux/loop.h> |
| #include <sys/file.h> |
| #include <sys/ioctl.h> |
| #include <sys/stat.h> |
| |
| #include <openssl/hmac.h> |
| #include <openssl/sha.h> |
| |
| #include "sd-id128.h" |
| |
| #include "alloc-util.h" |
| #include "blkid-util.h" |
| #include "blockdev-util.h" |
| #include "btrfs-util.h" |
| #include "conf-files.h" |
| #include "conf-parser.h" |
| #include "def.h" |
| #include "efivars.h" |
| #include "errno-util.h" |
| #include "fd-util.h" |
| #include "format-table.h" |
| #include "format-util.h" |
| #include "fs-util.h" |
| #include "gpt.h" |
| #include "id128-util.h" |
| #include "list.h" |
| #include "locale-util.h" |
| #include "main-func.h" |
| #include "parse-util.h" |
| #include "path-util.h" |
| #include "pretty-print.h" |
| #include "proc-cmdline.h" |
| #include "sort-util.h" |
| #include "stat-util.h" |
| #include "stdio-util.h" |
| #include "string-util.h" |
| #include "strv.h" |
| #include "terminal-util.h" |
| #include "utf8.h" |
| |
| /* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks |
| * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B |
| * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll |
| * waste 3K per partition, which is probably fine. */ |
| |
| static enum { |
| EMPTY_REFUSE, /* refuse empty disks, never create a partition table */ |
| EMPTY_ALLOW, /* allow empty disks, create partition table if necessary */ |
| EMPTY_REQUIRE, /* require an empty disk, create a partition table */ |
| EMPTY_FORCE, /* make disk empty, erase everything, create a partition table always */ |
| } arg_empty = EMPTY_REFUSE; |
| |
| static bool arg_dry_run = true; |
| static const char *arg_node = NULL; |
| static char *arg_root = NULL; |
| static char *arg_definitions = NULL; |
| static bool arg_discard = true; |
| static bool arg_can_factory_reset = false; |
| static int arg_factory_reset = -1; |
| static sd_id128_t arg_seed = SD_ID128_NULL; |
| static bool arg_randomize = false; |
| static int arg_pretty = -1; |
| |
| STATIC_DESTRUCTOR_REGISTER(arg_root, freep); |
| STATIC_DESTRUCTOR_REGISTER(arg_definitions, freep); |
| |
| typedef struct Partition Partition; |
| typedef struct FreeArea FreeArea; |
| typedef struct Context Context; |
| |
| struct Partition { |
| char *definition_path; |
| |
| sd_id128_t type_uuid; |
| sd_id128_t current_uuid, new_uuid; |
| char *current_label, *new_label; |
| |
| bool dropped; |
| bool factory_reset; |
| int32_t priority; |
| |
| uint32_t weight, padding_weight; |
| |
| uint64_t current_size, new_size; |
| uint64_t size_min, size_max; |
| |
| uint64_t current_padding, new_padding; |
| uint64_t padding_min, padding_max; |
| |
| uint64_t partno; |
| uint64_t offset; |
| |
| struct fdisk_partition *current_partition; |
| struct fdisk_partition *new_partition; |
| FreeArea *padding_area; |
| FreeArea *allocated_to_area; |
| |
| LIST_FIELDS(Partition, partitions); |
| }; |
| |
| #define PARTITION_IS_FOREIGN(p) (!(p)->definition_path) |
| #define PARTITION_EXISTS(p) (!!(p)->current_partition) |
| |
| struct FreeArea { |
| Partition *after; |
| uint64_t size; |
| uint64_t allocated; |
| }; |
| |
| struct Context { |
| LIST_HEAD(Partition, partitions); |
| size_t n_partitions; |
| |
| FreeArea **free_areas; |
| size_t n_free_areas, n_allocated_free_areas; |
| |
| uint64_t start, end, total; |
| |
| struct fdisk_context *fdisk_context; |
| |
| sd_id128_t seed; |
| }; |
| |
| static uint64_t round_down_size(uint64_t v, uint64_t p) { |
| return (v / p) * p; |
| } |
| |
| static uint64_t round_up_size(uint64_t v, uint64_t p) { |
| |
| v = DIV_ROUND_UP(v, p); |
| |
| if (v > UINT64_MAX / p) |
| return UINT64_MAX; /* overflow */ |
| |
| return v * p; |
| } |
| |
| static Partition *partition_new(void) { |
| Partition *p; |
| |
| p = new(Partition, 1); |
| if (!p) |
| return NULL; |
| |
| *p = (Partition) { |
| .weight = 1000, |
| .padding_weight = 0, |
| .current_size = UINT64_MAX, |
| .new_size = UINT64_MAX, |
| .size_min = UINT64_MAX, |
| .size_max = UINT64_MAX, |
| .current_padding = UINT64_MAX, |
| .new_padding = UINT64_MAX, |
| .padding_min = UINT64_MAX, |
| .padding_max = UINT64_MAX, |
| .partno = UINT64_MAX, |
| .offset = UINT64_MAX, |
| }; |
| |
| return p; |
| } |
| |
| static Partition* partition_free(Partition *p) { |
| if (!p) |
| return NULL; |
| |
| free(p->current_label); |
| free(p->new_label); |
| free(p->definition_path); |
| |
| if (p->current_partition) |
| fdisk_unref_partition(p->current_partition); |
| if (p->new_partition) |
| fdisk_unref_partition(p->new_partition); |
| |
| return mfree(p); |
| } |
| |
| static Partition* partition_unlink_and_free(Context *context, Partition *p) { |
| if (!p) |
| return NULL; |
| |
| LIST_REMOVE(partitions, context->partitions, p); |
| |
| assert(context->n_partitions > 0); |
| context->n_partitions--; |
| |
| return partition_free(p); |
| } |
| |
| DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free); |
| |
| static Context *context_new(sd_id128_t seed) { |
| Context *context; |
| |
| context = new(Context, 1); |
| if (!context) |
| return NULL; |
| |
| *context = (Context) { |
| .start = UINT64_MAX, |
| .end = UINT64_MAX, |
| .total = UINT64_MAX, |
| .seed = seed, |
| }; |
| |
| return context; |
| } |
| |
| static void context_free_free_areas(Context *context) { |
| assert(context); |
| |
| for (size_t i = 0; i < context->n_free_areas; i++) |
| free(context->free_areas[i]); |
| |
| context->free_areas = mfree(context->free_areas); |
| context->n_free_areas = 0; |
| context->n_allocated_free_areas = 0; |
| } |
| |
| static Context *context_free(Context *context) { |
| if (!context) |
| return NULL; |
| |
| while (context->partitions) |
| partition_unlink_and_free(context, context->partitions); |
| assert(context->n_partitions == 0); |
| |
| context_free_free_areas(context); |
| |
| if (context->fdisk_context) |
| fdisk_unref_context(context->fdisk_context); |
| |
| return mfree(context); |
| } |
| |
| DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free); |
| |
| static int context_add_free_area( |
| Context *context, |
| uint64_t size, |
| Partition *after) { |
| |
| FreeArea *a; |
| |
| assert(context); |
| assert(!after || !after->padding_area); |
| |
| if (!GREEDY_REALLOC(context->free_areas, context->n_allocated_free_areas, context->n_free_areas + 1)) |
| return -ENOMEM; |
| |
| a = new(FreeArea, 1); |
| if (!a) |
| return -ENOMEM; |
| |
| *a = (FreeArea) { |
| .size = size, |
| .after = after, |
| }; |
| |
| context->free_areas[context->n_free_areas++] = a; |
| |
| if (after) |
| after->padding_area = a; |
| |
| return 0; |
| } |
| |
| static bool context_drop_one_priority(Context *context) { |
| int32_t priority = 0; |
| Partition *p; |
| bool exists = false; |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| if (p->dropped) |
| continue; |
| if (p->priority < priority) |
| continue; |
| if (p->priority == priority) { |
| exists = exists || PARTITION_EXISTS(p); |
| continue; |
| } |
| |
| priority = p->priority; |
| exists = PARTITION_EXISTS(p); |
| } |
| |
| /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at |
| * least one existing priority */ |
| if (priority <= 0 || exists) |
| return false; |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| if (p->priority < priority) |
| continue; |
| |
| if (p->dropped) |
| continue; |
| |
| p->dropped = true; |
| log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.", p->definition_path, p->priority); |
| } |
| |
| return true; |
| } |
| |
| static uint64_t partition_min_size(const Partition *p) { |
| uint64_t sz; |
| |
| /* Calculate the disk space we really need at minimum for this partition. If the partition already |
| * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less |
| * than 4K. */ |
| |
| if (PARTITION_IS_FOREIGN(p)) { |
| /* Don't allow changing size of partitions not managed by us */ |
| assert(p->current_size != UINT64_MAX); |
| return p->current_size; |
| } |
| |
| sz = p->current_size != UINT64_MAX ? p->current_size : 4096; |
| if (p->size_min != UINT64_MAX) |
| return MAX(p->size_min, sz); |
| |
| return sz; |
| } |
| |
| static uint64_t partition_max_size(const Partition *p) { |
| /* Calculate how large the partition may become at max. This is generally the configured maximum |
| * size, except when it already exists and is larger than that. In that case it's the existing size, |
| * since we never want to shrink partitions. */ |
| |
| if (PARTITION_IS_FOREIGN(p)) { |
| /* Don't allow changing size of partitions not managed by us */ |
| assert(p->current_size != UINT64_MAX); |
| return p->current_size; |
| } |
| |
| if (p->current_size != UINT64_MAX) |
| return MAX(p->current_size, p->size_max); |
| |
| return p->size_max; |
| } |
| |
| static uint64_t partition_min_size_with_padding(const Partition *p) { |
| uint64_t sz; |
| |
| /* Calculate the disk space we need for this partition plus any free space coming after it. This |
| * takes user configured padding into account as well as any additional whitespace needed to align |
| * the next partition to 4K again. */ |
| |
| sz = partition_min_size(p); |
| |
| if (p->padding_min != UINT64_MAX) |
| sz += p->padding_min; |
| |
| if (PARTITION_EXISTS(p)) { |
| /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */ |
| assert(p->offset != UINT64_MAX); |
| return round_up_size(p->offset + sz, 4096) - p->offset; |
| } |
| |
| /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */ |
| return round_up_size(sz, 4096); |
| } |
| |
| static uint64_t free_area_available(const FreeArea *a) { |
| assert(a); |
| |
| /* Determines how much of this free area is not allocated yet */ |
| |
| assert(a->size >= a->allocated); |
| return a->size - a->allocated; |
| } |
| |
| static uint64_t free_area_available_for_new_partitions(const FreeArea *a) { |
| uint64_t avail; |
| |
| /* Similar to free_area_available(), but takes into account that the required size and padding of the |
| * preceeding partition is honoured. */ |
| |
| avail = free_area_available(a); |
| if (a->after) { |
| uint64_t need, space; |
| |
| need = partition_min_size_with_padding(a->after); |
| |
| assert(a->after->offset != UINT64_MAX); |
| assert(a->after->current_size != UINT64_MAX); |
| |
| space = round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset + avail; |
| if (need >= space) |
| return 0; |
| |
| return space - need; |
| } |
| |
| return avail; |
| } |
| |
| static int free_area_compare(FreeArea *const *a, FreeArea *const*b) { |
| return CMP(free_area_available_for_new_partitions(*a), |
| free_area_available_for_new_partitions(*b)); |
| } |
| |
| static uint64_t charge_size(uint64_t total, uint64_t amount) { |
| uint64_t rounded; |
| |
| assert(amount <= total); |
| |
| /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */ |
| rounded = round_up_size(amount, 4096); |
| if (rounded >= total) |
| return 0; |
| |
| return total - rounded; |
| } |
| |
| static uint64_t charge_weight(uint64_t total, uint64_t amount) { |
| assert(amount <= total); |
| return total - amount; |
| } |
| |
| static bool context_allocate_partitions(Context *context) { |
| Partition *p; |
| |
| assert(context); |
| |
| /* A simple first-fit algorithm, assuming the array of free areas is sorted by size in decreasing |
| * order. */ |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| bool fits = false; |
| uint64_t required; |
| FreeArea *a = NULL; |
| |
| /* Skip partitions we already dropped or that already exist */ |
| if (p->dropped || PARTITION_EXISTS(p)) |
| continue; |
| |
| /* Sort by size */ |
| typesafe_qsort(context->free_areas, context->n_free_areas, free_area_compare); |
| |
| /* How much do we need to fit? */ |
| required = partition_min_size_with_padding(p); |
| assert(required % 4096 == 0); |
| |
| for (size_t i = 0; i < context->n_free_areas; i++) { |
| a = context->free_areas[i]; |
| |
| if (free_area_available_for_new_partitions(a) >= required) { |
| fits = true; |
| break; |
| } |
| } |
| |
| if (!fits) |
| return false; /* 😢 Oh no! We can't fit this partition into any free area! */ |
| |
| /* Assign the partition to this free area */ |
| p->allocated_to_area = a; |
| |
| /* Budget the minimal partition size */ |
| a->allocated += required; |
| } |
| |
| return true; |
| } |
| |
| static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) { |
| uint64_t weight_sum = 0; |
| Partition *p; |
| |
| assert(context); |
| assert(a); |
| assert(ret); |
| |
| /* Determine the sum of the weights of all partitions placed in or before the specified free area */ |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| if (p->padding_area != a && p->allocated_to_area != a) |
| continue; |
| |
| if (p->weight > UINT64_MAX - weight_sum) |
| goto overflow_sum; |
| weight_sum += p->weight; |
| |
| if (p->padding_weight > UINT64_MAX - weight_sum) |
| goto overflow_sum; |
| weight_sum += p->padding_weight; |
| } |
| |
| *ret = weight_sum; |
| return 0; |
| |
| overflow_sum: |
| return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64bit range, refusing."); |
| } |
| |
| static int scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum, uint64_t *ret) { |
| assert(weight_sum >= weight); |
| assert(ret); |
| |
| if (weight == 0) { |
| *ret = 0; |
| return 0; |
| } |
| |
| if (value > UINT64_MAX / weight) |
| return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Scaling by weight of partition exceeds unsigned 64bit range, refusing."); |
| |
| *ret = value * weight / weight_sum; |
| return 0; |
| } |
| |
| typedef enum GrowPartitionPhase { |
| /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */ |
| PHASE_OVERCHARGE, |
| |
| /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */ |
| PHASE_UNDERCHARGE, |
| |
| /* The third phase: we distribute what remains among the remaining partitions, according to the weights */ |
| PHASE_DISTRIBUTE, |
| } GrowPartitionPhase; |
| |
| static int context_grow_partitions_phase( |
| Context *context, |
| FreeArea *a, |
| GrowPartitionPhase phase, |
| uint64_t *span, |
| uint64_t *weight_sum) { |
| |
| Partition *p; |
| int r; |
| |
| assert(context); |
| assert(a); |
| |
| /* Now let's look at the intended weights and adjust them taking the minimum space assignments into |
| * account. i.e. if a partition has a small weight but a high minimum space value set it should not |
| * get any additional room from the left-overs. Similar, if two partitions have the same weight they |
| * should get the same space if possible, even if one has a smaller minimum size than the other. */ |
| LIST_FOREACH(partitions, p, context->partitions) { |
| |
| /* Look only at partitions associated with this free area, i.e. immediately |
| * preceeding it, or allocated into it */ |
| if (p->allocated_to_area != a && p->padding_area != a) |
| continue; |
| |
| if (p->new_size == UINT64_MAX) { |
| bool charge = false, try_again = false; |
| uint64_t share, rsz, xsz; |
| |
| /* Calculate how much this space this partition needs if everyone would get |
| * the weight based share */ |
| r = scale_by_weight(*span, p->weight, *weight_sum, &share); |
| if (r < 0) |
| return r; |
| |
| rsz = partition_min_size(p); |
| xsz = partition_max_size(p); |
| |
| if (phase == PHASE_OVERCHARGE && rsz > share) { |
| /* This partition needs more than its calculated share. Let's assign |
| * it that, and take this partition out of all calculations and start |
| * again. */ |
| |
| p->new_size = rsz; |
| charge = try_again = true; |
| |
| } else if (phase == PHASE_UNDERCHARGE && xsz != UINT64_MAX && xsz < share) { |
| /* This partition accepts less than its calculated |
| * share. Let's assign it that, and take this partition out |
| * of all calculations and start again. */ |
| |
| p->new_size = xsz; |
| charge = try_again = true; |
| |
| } else if (phase == PHASE_DISTRIBUTE) { |
| /* This partition can accept its calculated share. Let's |
| * assign it. There's no need to restart things here since |
| * assigning this shouldn't impact the shares of the other |
| * partitions. */ |
| |
| if (PARTITION_IS_FOREIGN(p)) |
| /* Never change of foreign partitions (i.e. those we don't manage) */ |
| p->new_size = p->current_size; |
| else |
| p->new_size = MAX(round_down_size(share, 4096), rsz); |
| |
| charge = true; |
| } |
| |
| if (charge) { |
| *span = charge_size(*span, p->new_size); |
| *weight_sum = charge_weight(*weight_sum, p->weight); |
| } |
| |
| if (try_again) |
| return 0; /* try again */ |
| } |
| |
| if (p->new_padding == UINT64_MAX) { |
| bool charge = false, try_again = false; |
| uint64_t share; |
| |
| r = scale_by_weight(*span, p->padding_weight, *weight_sum, &share); |
| if (r < 0) |
| return r; |
| |
| if (phase == PHASE_OVERCHARGE && p->padding_min != UINT64_MAX && p->padding_min > share) { |
| p->new_padding = p->padding_min; |
| charge = try_again = true; |
| } else if (phase == PHASE_UNDERCHARGE && p->padding_max != UINT64_MAX && p->padding_max < share) { |
| p->new_padding = p->padding_max; |
| charge = try_again = true; |
| } else if (phase == PHASE_DISTRIBUTE) { |
| |
| p->new_padding = round_down_size(share, 4096); |
| if (p->padding_min != UINT64_MAX && p->new_padding < p->padding_min) |
| p->new_padding = p->padding_min; |
| |
| charge = true; |
| } |
| |
| if (charge) { |
| *span = charge_size(*span, p->new_padding); |
| *weight_sum = charge_weight(*weight_sum, p->padding_weight); |
| } |
| |
| if (try_again) |
| return 0; /* try again */ |
| } |
| } |
| |
| return 1; /* done */ |
| } |
| |
| static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) { |
| uint64_t weight_sum = 0, span; |
| int r; |
| |
| assert(context); |
| assert(a); |
| |
| r = context_sum_weights(context, a, &weight_sum); |
| if (r < 0) |
| return r; |
| |
| /* Let's calculate the total area covered by this free area and the partition before it */ |
| span = a->size; |
| if (a->after) { |
| assert(a->after->offset != UINT64_MAX); |
| assert(a->after->current_size != UINT64_MAX); |
| |
| span += round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset; |
| } |
| |
| GrowPartitionPhase phase = PHASE_OVERCHARGE; |
| for (;;) { |
| r = context_grow_partitions_phase(context, a, phase, &span, &weight_sum); |
| if (r < 0) |
| return r; |
| if (r == 0) /* not done yet, re-run this phase */ |
| continue; |
| |
| if (phase == PHASE_OVERCHARGE) |
| phase = PHASE_UNDERCHARGE; |
| else if (phase == PHASE_UNDERCHARGE) |
| phase = PHASE_DISTRIBUTE; |
| else if (phase == PHASE_DISTRIBUTE) |
| break; |
| } |
| |
| /* We still have space left over? Donate to preceeding partition if we have one */ |
| if (span > 0 && a->after && !PARTITION_IS_FOREIGN(a->after)) { |
| uint64_t m, xsz; |
| |
| assert(a->after->new_size != UINT64_MAX); |
| m = a->after->new_size + span; |
| |
| xsz = partition_max_size(a->after); |
| if (xsz != UINT64_MAX && m > xsz) |
| m = xsz; |
| |
| span = charge_size(span, m - a->after->new_size); |
| a->after->new_size = m; |
| } |
| |
| /* What? Even still some space left (maybe because there was no preceeding partition, or it had a |
| * size limit), then let's donate it to whoever wants it. */ |
| if (span > 0) { |
| Partition *p; |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| uint64_t m, xsz; |
| |
| if (p->allocated_to_area != a) |
| continue; |
| |
| if (PARTITION_IS_FOREIGN(p)) |
| continue; |
| |
| assert(p->new_size != UINT64_MAX); |
| m = p->new_size + span; |
| |
| xsz = partition_max_size(a->after); |
| if (xsz != UINT64_MAX && m > xsz) |
| m = xsz; |
| |
| span = charge_size(span, m - p->new_size); |
| p->new_size = m; |
| |
| if (span == 0) |
| break; |
| } |
| } |
| |
| /* Yuck, still noone? Then make it padding */ |
| if (span > 0 && a->after) { |
| assert(a->after->new_padding != UINT64_MAX); |
| a->after->new_padding += span; |
| } |
| |
| return 0; |
| } |
| |
| static int context_grow_partitions(Context *context) { |
| Partition *p; |
| int r; |
| |
| assert(context); |
| |
| for (size_t i = 0; i < context->n_free_areas; i++) { |
| r = context_grow_partitions_on_free_area(context, context->free_areas[i]); |
| if (r < 0) |
| return r; |
| } |
| |
| /* All existing partitions that have no free space after them can't change size */ |
| LIST_FOREACH(partitions, p, context->partitions) { |
| if (p->dropped) |
| continue; |
| |
| if (!PARTITION_EXISTS(p) || p->padding_area) { |
| /* The algorithm above must have initialized this already */ |
| assert(p->new_size != UINT64_MAX); |
| continue; |
| } |
| |
| assert(p->new_size == UINT64_MAX); |
| p->new_size = p->current_size; |
| |
| assert(p->new_padding == UINT64_MAX); |
| p->new_padding = p->current_padding; |
| } |
| |
| return 0; |
| } |
| |
| static void context_place_partitions(Context *context) { |
| uint64_t partno = 0; |
| Partition *p; |
| |
| assert(context); |
| |
| /* Determine next partition number to assign */ |
| LIST_FOREACH(partitions, p, context->partitions) { |
| if (!PARTITION_EXISTS(p)) |
| continue; |
| |
| assert(p->partno != UINT64_MAX); |
| if (p->partno >= partno) |
| partno = p->partno + 1; |
| } |
| |
| for (size_t i = 0; i < context->n_free_areas; i++) { |
| FreeArea *a = context->free_areas[i]; |
| uint64_t start, left; |
| |
| if (a->after) { |
| assert(a->after->offset != UINT64_MAX); |
| assert(a->after->new_size != UINT64_MAX); |
| assert(a->after->new_padding != UINT64_MAX); |
| |
| start = a->after->offset + a->after->new_size + a->after->new_padding; |
| } else |
| start = context->start; |
| |
| start = round_up_size(start, 4096); |
| left = a->size; |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| if (p->allocated_to_area != a) |
| continue; |
| |
| p->offset = start; |
| p->partno = partno++; |
| |
| assert(left >= p->new_size); |
| start += p->new_size; |
| left -= p->new_size; |
| |
| assert(left >= p->new_padding); |
| start += p->new_padding; |
| left -= p->new_padding; |
| } |
| } |
| } |
| |
| static int config_parse_type( |
| const char *unit, |
| const char *filename, |
| unsigned line, |
| const char *section, |
| unsigned section_line, |
| const char *lvalue, |
| int ltype, |
| const char *rvalue, |
| void *data, |
| void *userdata) { |
| |
| sd_id128_t *type_uuid = data; |
| int r; |
| |
| assert(rvalue); |
| assert(type_uuid); |
| |
| r = gpt_partition_type_uuid_from_string(rvalue, type_uuid); |
| if (r < 0) |
| return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue); |
| |
| return 0; |
| } |
| |
| static int config_parse_label( |
| const char *unit, |
| const char *filename, |
| unsigned line, |
| const char *section, |
| unsigned section_line, |
| const char *lvalue, |
| int ltype, |
| const char *rvalue, |
| void *data, |
| void *userdata) { |
| |
| _cleanup_free_ char16_t *recoded = NULL; |
| char **label = data; |
| int r; |
| |
| assert(rvalue); |
| assert(label); |
| |
| if (!utf8_is_valid(rvalue)) { |
| log_syntax(unit, LOG_WARNING, filename, line, 0, |
| "Partition label not valid UTF-8, ignoring: %s", rvalue); |
| return 0; |
| } |
| |
| recoded = utf8_to_utf16(rvalue, strlen(rvalue)); |
| if (!recoded) |
| return log_oom(); |
| |
| if (char16_strlen(recoded) > 36) { |
| log_syntax(unit, LOG_WARNING, filename, line, 0, |
| "Partition label too long for GPT table, ignoring: %s", rvalue); |
| return 0; |
| } |
| |
| r = free_and_strdup(label, rvalue); |
| if (r < 0) |
| return log_oom(); |
| |
| return 0; |
| } |
| |
| static int config_parse_weight( |
| const char *unit, |
| const char *filename, |
| unsigned line, |
| const char *section, |
| unsigned section_line, |
| const char *lvalue, |
| int ltype, |
| const char *rvalue, |
| void *data, |
| void *userdata) { |
| |
| uint32_t *priority = data, v; |
| int r; |
| |
| assert(rvalue); |
| assert(priority); |
| |
| r = safe_atou32(rvalue, &v); |
| if (r < 0) { |
| log_syntax(unit, LOG_WARNING, filename, line, r, |
| "Failed to parse weight value, ignoring: %s", rvalue); |
| return 0; |
| } |
| |
| if (v > 1000U*1000U) { |
| log_syntax(unit, LOG_WARNING, filename, line, r, |
| "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v); |
| return 0; |
| } |
| |
| *priority = v; |
| return 0; |
| } |
| |
| static int config_parse_size4096( |
| const char *unit, |
| const char *filename, |
| unsigned line, |
| const char *section, |
| unsigned section_line, |
| const char *lvalue, |
| int ltype, |
| const char *rvalue, |
| void *data, |
| void *userdata) { |
| |
| uint64_t *sz = data, parsed; |
| int r; |
| |
| assert(rvalue); |
| assert(data); |
| |
| r = parse_size(rvalue, 1024, &parsed); |
| if (r < 0) |
| return log_syntax(unit, LOG_WARNING, filename, line, r, |
| "Failed to parse size value: %s", rvalue); |
| |
| if (ltype > 0) |
| *sz = round_up_size(parsed, 4096); |
| else if (ltype < 0) |
| *sz = round_down_size(parsed, 4096); |
| else |
| *sz = parsed; |
| |
| if (*sz != parsed) |
| log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " → %" PRIu64 ", a multiple of 4096.", lvalue, parsed, *sz); |
| |
| return 0; |
| } |
| |
| static int partition_read_definition(Partition *p, const char *path) { |
| |
| ConfigTableItem table[] = { |
| { "Partition", "Type", config_parse_type, 0, &p->type_uuid }, |
| { "Partition", "Label", config_parse_label, 0, &p->new_label }, |
| { "Partition", "Priority", config_parse_int32, 0, &p->priority }, |
| { "Partition", "Weight", config_parse_weight, 0, &p->weight }, |
| { "Partition", "PaddingWeight", config_parse_weight, 0, &p->padding_weight }, |
| { "Partition", "SizeMinBytes", config_parse_size4096, 1, &p->size_min }, |
| { "Partition", "SizeMaxBytes", config_parse_size4096, -1, &p->size_max }, |
| { "Partition", "PaddingMinBytes", config_parse_size4096, 1, &p->padding_min }, |
| { "Partition", "PaddingMaxBytes", config_parse_size4096, -1, &p->padding_max }, |
| { "Partition", "FactoryReset", config_parse_bool, 0, &p->factory_reset }, |
| {} |
| }; |
| int r; |
| |
| r = config_parse(NULL, path, NULL, "Partition\0", config_item_table_lookup, table, CONFIG_PARSE_WARN, p); |
| if (r < 0) |
| return r; |
| |
| if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max) |
| return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), |
| "SizeMinBytes= larger than SizeMaxBytes=, refusing."); |
| |
| if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max) |
| return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), |
| "PaddingMinBytes= larger than PaddingMaxBytes=, refusing."); |
| |
| if (sd_id128_is_null(p->type_uuid)) |
| return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), |
| "Type= not defined, refusing."); |
| |
| return 0; |
| } |
| |
| static int context_read_definitions( |
| Context *context, |
| const char *directory, |
| const char *root) { |
| |
| _cleanup_strv_free_ char **files = NULL; |
| Partition *last = NULL; |
| char **f; |
| int r; |
| |
| assert(context); |
| |
| if (directory) |
| r = conf_files_list_strv(&files, ".conf", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) STRV_MAKE(directory)); |
| else |
| r = conf_files_list_strv(&files, ".conf", root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) CONF_PATHS_STRV("repart.d")); |
| if (r < 0) |
| return log_error_errno(r, "Failed to enumerate *.conf files: %m"); |
| |
| STRV_FOREACH(f, files) { |
| _cleanup_(partition_freep) Partition *p = NULL; |
| |
| p = partition_new(); |
| if (!p) |
| return log_oom(); |
| |
| p->definition_path = strdup(*f); |
| if (!p->definition_path) |
| return log_oom(); |
| |
| r = partition_read_definition(p, *f); |
| if (r < 0) |
| return r; |
| |
| LIST_INSERT_AFTER(partitions, context->partitions, last, p); |
| last = TAKE_PTR(p); |
| context->n_partitions++; |
| } |
| |
| return 0; |
| } |
| |
| DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_context*, fdisk_unref_context); |
| DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_partition*, fdisk_unref_partition); |
| DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_parttype*, fdisk_unref_parttype); |
| DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_table*, fdisk_unref_table); |
| |
| static int determine_current_padding( |
| struct fdisk_context *c, |
| struct fdisk_table *t, |
| struct fdisk_partition *p, |
| uint64_t *ret) { |
| |
| size_t n_partitions; |
| uint64_t offset, next = UINT64_MAX; |
| |
| assert(c); |
| assert(t); |
| assert(p); |
| |
| if (!fdisk_partition_has_end(p)) |
| return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!"); |
| |
| offset = fdisk_partition_get_end(p); |
| assert(offset < UINT64_MAX / 512); |
| offset *= 512; |
| |
| n_partitions = fdisk_table_get_nents(t); |
| for (size_t i = 0; i < n_partitions; i++) { |
| struct fdisk_partition *q; |
| uint64_t start; |
| |
| q = fdisk_table_get_partition(t, i); |
| if (!q) |
| return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); |
| |
| if (fdisk_partition_is_used(q) <= 0) |
| continue; |
| |
| if (!fdisk_partition_has_start(q)) |
| continue; |
| |
| start = fdisk_partition_get_start(q); |
| assert(start < UINT64_MAX / 512); |
| start *= 512; |
| |
| if (start >= offset && (next == UINT64_MAX || next > start)) |
| next = start; |
| } |
| |
| if (next == UINT64_MAX) { |
| /* No later partition? In that case check the end of the usable area */ |
| next = fdisk_get_last_lba(c); |
| assert(next < UINT64_MAX); |
| next++; /* The last LBA is one sector before the end */ |
| |
| assert(next < UINT64_MAX / 512); |
| next *= 512; |
| |
| if (offset > next) |
| return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); |
| } |
| |
| assert(next >= offset); |
| offset = round_up_size(offset, 4096); |
| next = round_down_size(next, 4096); |
| |
| if (next >= offset) /* Check again, rounding might have fucked things up */ |
| *ret = next - offset; |
| else |
| *ret = 0; |
| |
| return 0; |
| } |
| |
| static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) { |
| _cleanup_free_ char *ids = NULL; |
| int r; |
| |
| if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING) |
| return -EINVAL; |
| |
| ids = new(char, ID128_UUID_STRING_MAX); |
| if (!ids) |
| return -ENOMEM; |
| |
| r = fdisk_ask_string_set_result(ask, id128_to_uuid_string(*(sd_id128_t*) data, ids)); |
| if (r < 0) |
| return r; |
| |
| TAKE_PTR(ids); |
| return 0; |
| } |
| |
| static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) { |
| int r; |
| |
| r = fdisk_set_ask(c, fdisk_ask_cb, &id); |
| if (r < 0) |
| return r; |
| |
| r = fdisk_set_disklabel_id(c); |
| if (r < 0) |
| return r; |
| |
| return fdisk_set_ask(c, NULL, NULL); |
| } |
| |
| #define DISK_UUID_TOKEN "disk-uuid" |
| |
| static int disk_acquire_uuid(Context *context, sd_id128_t *ret) { |
| union { |
| unsigned char md[SHA256_DIGEST_LENGTH]; |
| sd_id128_t id; |
| } result; |
| |
| assert(context); |
| assert(ret); |
| |
| /* Calculate the HMAC-SHA256 of the string "disk-uuid", keyed off the machine ID. We use the machine |
| * ID as key (and not as cleartext!) since it's the machine ID we don't want to leak. */ |
| |
| if (!HMAC(EVP_sha256(), |
| &context->seed, sizeof(context->seed), |
| (const unsigned char*) DISK_UUID_TOKEN, strlen(DISK_UUID_TOKEN), |
| result.md, NULL)) |
| return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "HMAC-SHA256 calculation failed."); |
| |
| /* Take the first half, mark it as v4 UUID */ |
| assert_cc(sizeof(result.md) == sizeof(result.id) * 2); |
| *ret = id128_make_v4_uuid(result.id); |
| return 0; |
| } |
| |
| static int context_load_partition_table(Context *context, const char *node) { |
| _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; |
| _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL; |
| uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors; |
| _cleanup_free_ char *disk_uuid_string = NULL; |
| bool from_scratch = false; |
| sd_id128_t disk_uuid; |
| size_t n_partitions; |
| int r; |
| |
| assert(context); |
| assert(node); |
| |
| c = fdisk_new_context(); |
| if (!c) |
| return log_oom(); |
| |
| r = fdisk_assign_device(c, node, arg_dry_run); |
| if (r < 0) |
| return log_error_errno(r, "Failed to open device: %m"); |
| |
| /* Tell udev not to interfere while we are processing the device */ |
| if (flock(fdisk_get_devfd(c), arg_dry_run ? LOCK_SH : LOCK_EX) < 0) |
| return log_error_errno(errno, "Failed to lock block device: %m"); |
| |
| switch (arg_empty) { |
| |
| case EMPTY_REFUSE: |
| /* Refuse empty disks, insist on an existing GPT partition table */ |
| if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) |
| return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", node); |
| |
| break; |
| |
| case EMPTY_REQUIRE: |
| /* Require an empty disk, refuse any existing partition table */ |
| r = fdisk_has_label(c); |
| if (r < 0) |
| return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node); |
| if (r > 0) |
| return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", node); |
| |
| from_scratch = true; |
| break; |
| |
| case EMPTY_ALLOW: |
| /* Allow both an empty disk and an existing partition table, but only GPT */ |
| r = fdisk_has_label(c); |
| if (r < 0) |
| return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node); |
| if (r > 0) { |
| if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) |
| return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", node); |
| } else |
| from_scratch = true; |
| |
| break; |
| |
| case EMPTY_FORCE: |
| /* Always reinitiaize the disk, don't consider what there was on the disk before */ |
| from_scratch = true; |
| break; |
| } |
| |
| if (from_scratch) { |
| r = fdisk_enable_wipe(c, true); |
| if (r < 0) |
| return log_error_errno(r, "Failed to enable wiping of disk signature: %m"); |
| |
| r = fdisk_create_disklabel(c, "gpt"); |
| if (r < 0) |
| return log_error_errno(r, "Failed to create GPT disk label: %m"); |
| |
| r = disk_acquire_uuid(context, &disk_uuid); |
| if (r < 0) |
| return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); |
| |
| r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set GPT disk label: %m"); |
| |
| goto add_initial_free_area; |
| } |
| |
| r = fdisk_get_disklabel_id(c, &disk_uuid_string); |
| if (r < 0) |
| return log_error_errno(r, "Failed to get current GPT disk label UUID: %m"); |
| |
| r = sd_id128_from_string(disk_uuid_string, &disk_uuid); |
| if (r < 0) |
| return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m"); |
| |
| if (sd_id128_is_null(disk_uuid)) { |
| r = disk_acquire_uuid(context, &disk_uuid); |
| if (r < 0) |
| return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); |
| |
| r = fdisk_set_disklabel_id(c); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set GPT disk label: %m"); |
| } |
| |
| r = fdisk_get_partitions(c, &t); |
| if (r < 0) |
| return log_error_errno(r, "Failed to acquire partition table: %m"); |
| |
| n_partitions = fdisk_table_get_nents(t); |
| for (size_t i = 0; i < n_partitions; i++) { |
| _cleanup_free_ char *label_copy = NULL; |
| Partition *pp, *last = NULL; |
| struct fdisk_partition *p; |
| struct fdisk_parttype *pt; |
| const char *pts, *ids, *label; |
| uint64_t sz, start; |
| bool found = false; |
| sd_id128_t ptid, id; |
| size_t partno; |
| |
| p = fdisk_table_get_partition(t, i); |
| if (!p) |
| return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); |
| |
| if (fdisk_partition_is_used(p) <= 0) |
| continue; |
| |
| if (fdisk_partition_has_start(p) <= 0 || |
| fdisk_partition_has_size(p) <= 0 || |
| fdisk_partition_has_partno(p) <= 0) |
| return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number."); |
| |
| pt = fdisk_partition_get_type(p); |
| if (!pt) |
| return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition: %m"); |
| |
| pts = fdisk_parttype_get_string(pt); |
| if (!pts) |
| return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition as string: %m"); |
| |
| r = sd_id128_from_string(pts, &ptid); |
| if (r < 0) |
| return log_error_errno(r, "Failed to parse partition type UUID %s: %m", pts); |
| |
| ids = fdisk_partition_get_uuid(p); |
| if (!ids) |
| return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a UUID."); |
| |
| r = sd_id128_from_string(ids, &id); |
| if (r < 0) |
| return log_error_errno(r, "Failed to parse partition UUID %s: %m", ids); |
| |
| label = fdisk_partition_get_name(p); |
| if (!isempty(label)) { |
| label_copy = strdup(label); |
| if (!label_copy) |
| return log_oom(); |
| } |
| |
| sz = fdisk_partition_get_size(p); |
| assert_se(sz <= UINT64_MAX/512); |
| sz *= 512; |
| |
| start = fdisk_partition_get_start(p); |
| assert_se(start <= UINT64_MAX/512); |
| start *= 512; |
| |
| partno = fdisk_partition_get_partno(p); |
| |
| if (left_boundary == UINT64_MAX || left_boundary > start) |
| left_boundary = start; |
| |
| /* Assign this existing partition to the first partition of the right type that doesn't have |
| * an existing one assigned yet. */ |
| LIST_FOREACH(partitions, pp, context->partitions) { |
| last = pp; |
| |
| if (!sd_id128_equal(pp->type_uuid, ptid)) |
| continue; |
| |
| if (!pp->current_partition) { |
| pp->current_uuid = id; |
| pp->current_size = sz; |
| pp->offset = start; |
| pp->partno = partno; |
| pp->current_label = TAKE_PTR(label_copy); |
| |
| pp->current_partition = p; |
| fdisk_ref_partition(p); |
| |
| r = determine_current_padding(c, t, p, &pp->current_padding); |
| if (r < 0) |
| return r; |
| |
| if (pp->current_padding > 0) { |
| r = context_add_free_area(context, pp->current_padding, pp); |
| if (r < 0) |
| return r; |
| } |
| |
| found = true; |
| break; |
| } |
| } |
| |
| /* If we have no matching definition, create a new one. */ |
| if (!found) { |
| _cleanup_(partition_freep) Partition *np = NULL; |
| |
| np = partition_new(); |
| if (!np) |
| return log_oom(); |
| |
| np->current_uuid = id; |
| np->type_uuid = ptid; |
| np->current_size = sz; |
| np->offset = start; |
| np->partno = partno; |
| np->current_label = TAKE_PTR(label_copy); |
| |
| np->current_partition = p; |
| fdisk_ref_partition(p); |
| |
| r = determine_current_padding(c, t, p, &np->current_padding); |
| if (r < 0) |
| return r; |
| |
| if (np->current_padding > 0) { |
| r = context_add_free_area(context, np->current_padding, np); |
| if (r < 0) |
| return r; |
| } |
| |
| LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np)); |
| context->n_partitions++; |
| } |
| } |
| |
| add_initial_free_area: |
| nsectors = fdisk_get_nsectors(c); |
| assert(nsectors <= UINT64_MAX/512); |
| nsectors *= 512; |
| |
| first_lba = fdisk_get_first_lba(c); |
| assert(first_lba <= UINT64_MAX/512); |
| first_lba *= 512; |
| |
| last_lba = fdisk_get_last_lba(c); |
| assert(last_lba < UINT64_MAX); |
| last_lba++; |
| assert(last_lba <= UINT64_MAX/512); |
| last_lba *= 512; |
| |
| assert(last_lba >= first_lba); |
| |
| if (left_boundary == UINT64_MAX) { |
| /* No partitions at all? Then the whole disk is up for grabs. */ |
| |
| first_lba = round_up_size(first_lba, 4096); |
| last_lba = round_down_size(last_lba, 4096); |
| |
| if (last_lba > first_lba) { |
| r = context_add_free_area(context, last_lba - first_lba, NULL); |
| if (r < 0) |
| return r; |
| } |
| } else { |
| /* Add space left of first partition */ |
| assert(left_boundary >= first_lba); |
| |
| first_lba = round_up_size(first_lba, 4096); |
| left_boundary = round_down_size(left_boundary, 4096); |
| last_lba = round_down_size(last_lba, 4096); |
| |
| if (left_boundary > first_lba) { |
| r = context_add_free_area(context, left_boundary - first_lba, NULL); |
| if (r < 0) |
| return r; |
| } |
| } |
| |
| context->start = first_lba; |
| context->end = last_lba; |
| context->total = nsectors; |
| context->fdisk_context = TAKE_PTR(c); |
| |
| return from_scratch; |
| } |
| |
| static void context_unload_partition_table(Context *context) { |
| Partition *p, *next; |
| |
| assert(context); |
| |
| LIST_FOREACH_SAFE(partitions, p, next, context->partitions) { |
| |
| /* Entirely remove partitions that have no configuration */ |
| if (PARTITION_IS_FOREIGN(p)) { |
| partition_unlink_and_free(context, p); |
| continue; |
| } |
| |
| /* Otherwise drop all data we read off the block device and everything we might have |
| * calculated based on it */ |
| |
| p->dropped = false; |
| p->current_size = UINT64_MAX; |
| p->new_size = UINT64_MAX; |
| p->current_padding = UINT64_MAX; |
| p->new_padding = UINT64_MAX; |
| p->partno = UINT64_MAX; |
| p->offset = UINT64_MAX; |
| |
| if (p->current_partition) { |
| fdisk_unref_partition(p->current_partition); |
| p->current_partition = NULL; |
| } |
| |
| if (p->new_partition) { |
| fdisk_unref_partition(p->new_partition); |
| p->new_partition = NULL; |
| } |
| |
| p->padding_area = NULL; |
| p->allocated_to_area = NULL; |
| |
| p->current_uuid = p->new_uuid = SD_ID128_NULL; |
| } |
| |
| context->start = UINT64_MAX; |
| context->end = UINT64_MAX; |
| context->total = UINT64_MAX; |
| |
| if (context->fdisk_context) { |
| fdisk_unref_context(context->fdisk_context); |
| context->fdisk_context = NULL; |
| } |
| |
| context_free_free_areas(context); |
| } |
| |
| static int format_size_change(uint64_t from, uint64_t to, char **ret) { |
| char format_buffer1[FORMAT_BYTES_MAX], format_buffer2[FORMAT_BYTES_MAX], *buf; |
| |
| if (from != UINT64_MAX) |
| format_bytes(format_buffer1, sizeof(format_buffer1), from); |
| if (to != UINT64_MAX) |
| format_bytes(format_buffer2, sizeof(format_buffer2), to); |
| |
| if (from != UINT64_MAX) { |
| if (from == to || to == UINT64_MAX) |
| buf = strdup(format_buffer1); |
| else |
| buf = strjoin(format_buffer1, " ", special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2); |
| } else if (to != UINT64_MAX) |
| buf = strjoin(special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2); |
| else { |
| *ret = NULL; |
| return 0; |
| } |
| |
| if (!buf) |
| return log_oom(); |
| |
| *ret = TAKE_PTR(buf); |
| return 1; |
| } |
| |
| static const char *partition_label(const Partition *p) { |
| assert(p); |
| |
| if (p->new_label) |
| return p->new_label; |
| |
| if (p->current_label) |
| return p->current_label; |
| |
| return gpt_partition_type_uuid_to_string(p->type_uuid); |
| } |
| |
| static int context_dump_partitions(Context *context, const char *node) { |
| _cleanup_(table_unrefp) Table *t = NULL; |
| uint64_t sum_padding = 0, sum_size = 0; |
| Partition *p; |
| int r; |
| |
| t = table_new("type", "label", "uuid", "file", "node", "offset", "raw size", "size", "raw padding", "padding"); |
| if (!t) |
| return log_oom(); |
| |
| if (!DEBUG_LOGGING) |
| (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, (size_t) 7, (size_t) 9, (size_t) -1); |
| |
| (void) table_set_align_percent(t, table_get_cell(t, 0, 4), 100); |
| (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100); |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL; |
| char uuid_buffer[ID128_UUID_STRING_MAX]; |
| const char *label; |
| |
| if (p->dropped) |
| continue; |
| |
| label = partition_label(p); |
| partname = p->partno != UINT64_MAX ? fdisk_partname(node, p->partno+1) : NULL; |
| |
| r = format_size_change(p->current_size, p->new_size, &size_change); |
| if (r < 0) |
| return r; |
| |
| r = format_size_change(p->current_padding, p->new_padding, &padding_change); |
| if (r < 0) |
| return r; |
| |
| if (p->new_size != UINT64_MAX) |
| sum_size += p->new_size; |
| if (p->new_padding != UINT64_MAX) |
| sum_padding += p->new_padding; |
| |
| r = table_add_many( |
| t, |
| TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type_uuid, uuid_buffer), |
| TABLE_STRING, label ?: "-", TABLE_SET_COLOR, label ? NULL : ansi_grey(), |
| TABLE_UUID, sd_id128_is_null(p->new_uuid) ? p->current_uuid : p->new_uuid, |
| TABLE_STRING, p->definition_path ? basename(p->definition_path) : "-", TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(), |
| TABLE_STRING, partname ?: "no", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(), |
| TABLE_UINT64, p->offset, |
| TABLE_UINT64, p->new_size, |
| TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL, |
| TABLE_UINT64, p->new_padding, |
| TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL); |
| if (r < 0) |
| return log_error_errno(r, "Failed to add row to table: %m"); |
| } |
| |
| if (sum_padding > 0 || sum_size > 0) { |
| char s[FORMAT_BYTES_MAX]; |
| const char *a, *b; |
| |
| a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_size)); |
| b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_padding)); |
| |
| r = table_add_many( |
| t, |
| TABLE_EMPTY, |
| TABLE_EMPTY, |
| TABLE_EMPTY, |
| TABLE_EMPTY, |
| TABLE_EMPTY, |
| TABLE_EMPTY, |
| TABLE_EMPTY, |
| TABLE_STRING, a, |
| TABLE_EMPTY, |
| TABLE_STRING, b); |
| if (r < 0) |
| return log_error_errno(r, "Failed to add row to table: %m"); |
| } |
| |
| r = table_print(t, stdout); |
| if (r < 0) |
| return log_error_errno(r, "Failed to dump table: %m"); |
| |
| return 0; |
| } |
| |
| static void context_bar_char_process_partition( |
| Context *context, |
| Partition *bar[], |
| size_t n, |
| Partition *p, |
| size_t *ret_start) { |
| |
| uint64_t from, to, total; |
| size_t x, y; |
| |
| assert(context); |
| assert(bar); |
| assert(n > 0); |
| assert(p); |
| |
| if (p->dropped) |
| return; |
| |
| assert(p->offset != UINT64_MAX); |
| assert(p->new_size != UINT64_MAX); |
| |
| from = p->offset; |
| to = from + p->new_size; |
| |
| assert(context->end >= context->start); |
| total = context->end - context->start; |
| |
| assert(from >= context->start); |
| assert(from <= context->end); |
| x = (from - context->start) * n / total; |
| |
| assert(to >= context->start); |
| assert(to <= context->end); |
| y = (to - context->start) * n / total; |
| |
| assert(x <= y); |
| assert(y <= n); |
| |
| for (size_t i = x; i < y; i++) |
| bar[i] = p; |
| |
| *ret_start = x; |
| } |
| |
| static int partition_hint(const Partition *p, const char *node, char **ret) { |
| _cleanup_free_ char *buf = NULL; |
| char ids[ID128_UUID_STRING_MAX]; |
| const char *label; |
| sd_id128_t id; |
| |
| /* Tries really hard to find a suitable description for this partition */ |
| |
| if (p->definition_path) { |
| buf = strdup(basename(p->definition_path)); |
| goto done; |
| } |
| |
| label = partition_label(p); |
| if (!isempty(label)) { |
| buf = strdup(label); |
| goto done; |
| } |
| |
| if (p->partno != UINT64_MAX) { |
| buf = fdisk_partname(node, p->partno+1); |
| goto done; |
| } |
| |
| if (!sd_id128_is_null(p->new_uuid)) |
| id = p->new_uuid; |
| else if (!sd_id128_is_null(p->current_uuid)) |
| id = p->current_uuid; |
| else |
| id = p->type_uuid; |
| |
| buf = strdup(id128_to_uuid_string(id, ids)); |
| |
| done: |
| if (!buf) |
| return -ENOMEM; |
| |
| *ret = TAKE_PTR(buf); |
| return 0; |
| } |
| |
| static int context_dump_partition_bar(Context *context, const char *node) { |
| _cleanup_free_ Partition **bar = NULL; |
| _cleanup_free_ size_t *start_array = NULL; |
| Partition *p, *last = NULL; |
| bool z = false; |
| size_t c, j = 0; |
| |
| assert((c = columns()) >= 2); |
| c -= 2; /* We do not use the leftmost and rightmost character cell */ |
| |
| bar = new0(Partition*, c); |
| if (!bar) |
| return log_oom(); |
| |
| start_array = new(size_t, context->n_partitions); |
| if (!start_array) |
| return log_oom(); |
| |
| LIST_FOREACH(partitions, p, context->partitions) |
| context_bar_char_process_partition(context, bar, c, p, start_array + j++); |
| |
| putc(' ', stdout); |
| |
| for (size_t i = 0; i < c; i++) { |
| if (bar[i]) { |
| if (last != bar[i]) |
| z = !z; |
| |
| fputs(z ? ansi_green() : ansi_yellow(), stdout); |
| fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout); |
| } else { |
| fputs(ansi_normal(), stdout); |
| fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout); |
| } |
| |
| last = bar[i]; |
| } |
| |
| fputs(ansi_normal(), stdout); |
| putc('\n', stdout); |
| |
| for (size_t i = 0; i < context->n_partitions; i++) { |
| _cleanup_free_ char **line = NULL; |
| |
| line = new0(char*, c); |
| if (!line) |
| return log_oom(); |
| |
| j = 0; |
| LIST_FOREACH(partitions, p, context->partitions) { |
| _cleanup_free_ char *d = NULL; |
| j++; |
| |
| if (i < context->n_partitions - j) { |
| |
| if (line[start_array[j-1]]) { |
| const char *e; |
| |
| /* Upgrade final corner to the right with a branch to the right */ |
| e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT)); |
| if (e) { |
| d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e); |
| if (!d) |
| return log_oom(); |
| } |
| } |
| |
| if (!d) { |
| d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)); |
| if (!d) |
| return log_oom(); |
| } |
| |
| } else if (i == context->n_partitions - j) { |
| _cleanup_free_ char *hint = NULL; |
| |
| (void) partition_hint(p, node, &hint); |
| |
| if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL))) |
| d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint)); |
| else |
| d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint)); |
| |
| if (!d) |
| return log_oom(); |
| } |
| |
| if (d) |
| free_and_replace(line[start_array[j-1]], d); |
| } |
| |
| putc(' ', stdout); |
| |
| j = 0; |
| while (j < c) { |
| if (line[j]) { |
| fputs(line[j], stdout); |
| j += utf8_console_width(line[j]); |
| } else { |
| putc(' ', stdout); |
| j++; |
| } |
| } |
| |
| putc('\n', stdout); |
| |
| for (j = 0; j < c; j++) |
| free(line[j]); |
| } |
| |
| return 0; |
| } |
| |
| static bool context_changed(const Context *context) { |
| Partition *p; |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| if (p->dropped) |
| continue; |
| |
| if (p->allocated_to_area) |
| return true; |
| |
| if (p->new_size != p->current_size) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int context_wipe_partition(Context *context, Partition *p) { |
| _cleanup_(blkid_free_probep) blkid_probe probe = NULL; |
| int r; |
| |
| assert(context); |
| assert(p); |
| assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */ |
| |
| probe = blkid_new_probe(); |
| if (!probe) |
| return log_oom(); |
| |
| assert(p->offset != UINT64_MAX); |
| assert(p->new_size != UINT64_MAX); |
| |
| errno = 0; |
| r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), p->offset, p->new_size); |
| if (r < 0) |
| return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for partition %" PRIu64 ".", p->partno); |
| |
| errno = 0; |
| if (blkid_probe_enable_superblocks(probe, true) < 0 || |
| blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 || |
| blkid_probe_enable_partitions(probe, true) < 0 || |
| blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0) |
| return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing for partition %" PRIu64 ".", p->partno); |
| |
| for (;;) { |
| errno = 0; |
| r = blkid_do_probe(probe); |
| if (r < 0) |
| return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to probe for file systems."); |
| if (r > 0) |
| break; |
| |
| errno = 0; |
| if (blkid_do_wipe(probe, false) < 0) |
| return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to wipe file system signature."); |
| } |
| |
| log_info("Successfully wiped file system signatures from partition %" PRIu64 ".", p->partno); |
| return 0; |
| } |
| |
| static int context_discard_range(Context *context, uint64_t offset, uint64_t size) { |
| struct stat st; |
| int fd; |
| |
| assert(context); |
| assert(offset != UINT64_MAX); |
| assert(size != UINT64_MAX); |
| |
| if (size <= 0) |
| return 0; |
| |
| fd = fdisk_get_devfd(context->fdisk_context); |
| assert(fd >= 0); |
| |
| if (fstat(fd, &st) < 0) |
| return -errno; |
| |
| if (S_ISREG(st.st_mode)) { |
| if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) { |
| if (ERRNO_IS_NOT_SUPPORTED(errno)) |
| return -EOPNOTSUPP; |
| |
| return -errno; |
| } |
| |
| return 1; |
| } |
| |
| if (S_ISBLK(st.st_mode)) { |
| uint64_t range[2], end; |
| |
| range[0] = round_up_size(offset, 512); |
| |
| end = offset + size; |
| if (end <= range[0]) |
| return 0; |
| |
| range[1] = round_down_size(end - range[0], 512); |
| if (range[1] <= 0) |
| return 0; |
| |
| if (ioctl(fd, BLKDISCARD, range) < 0) { |
| if (ERRNO_IS_NOT_SUPPORTED(errno)) |
| return -EOPNOTSUPP; |
| |
| return -errno; |
| } |
| |
| return 1; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int context_discard_partition(Context *context, Partition *p) { |
| int r; |
| |
| assert(context); |
| assert(p); |
| |
| assert(p->offset != UINT64_MAX); |
| assert(p->new_size != UINT64_MAX); |
| assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */ |
| |
| if (!arg_discard) |
| return 0; |
| |
| r = context_discard_range(context, p->offset, p->new_size); |
| if (r == -EOPNOTSUPP) { |
| log_info("Storage does not support discarding, not discarding data in new partition %" PRIu64 ".", p->partno); |
| return 0; |
| } |
| if (r == 0) { |
| log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno); |
| return 0; |
| } |
| if (r < 0) |
| return log_error_errno(r, "Failed to discard data for new partition %" PRIu64 ".", p->partno); |
| |
| log_info("Successfully discarded data from partition %" PRIu64 ".", p->partno); |
| return 1; |
| } |
| |
| static int context_discard_gap_after(Context *context, Partition *p) { |
| uint64_t gap, next = UINT64_MAX; |
| Partition *q; |
| int r; |
| |
| assert(context); |
| assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX)); |
| |
| if (p) |
| gap = p->offset + p->new_size; |
| else |
| gap = context->start; |
| |
| LIST_FOREACH(partitions, q, context->partitions) { |
| if (q->dropped) |
| continue; |
| |
| assert(q->offset != UINT64_MAX); |
| assert(q->new_size != UINT64_MAX); |
| |
| if (q->offset < gap) |
| continue; |
| |
| if (next == UINT64_MAX || q->offset < next) |
| next = q->offset; |
| } |
| |
| if (next == UINT64_MAX) { |
| next = context->end; |
| if (gap > next) |
| return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); |
| } |
| |
| assert(next >= gap); |
| r = context_discard_range(context, gap, next - gap); |
| if (r == -EOPNOTSUPP) { |
| if (p) |
| log_info("Storage does not support discarding, not discarding gap after partition %" PRIu64 ".", p->partno); |
| else |
| log_info("Storage does not support discarding, not discarding gap at beginning of disk."); |
| return 0; |
| } |
| if (r == 0) /* Too short */ |
| return 0; |
| if (r < 0) { |
| if (p) |
| return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno); |
| else |
| return log_error_errno(r, "Failed to discard gap at beginning of disk."); |
| } |
| |
| if (p) |
| log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno); |
| else |
| log_info("Successfully discarded gap at beginning of disk."); |
| |
| return 0; |
| } |
| |
| static int context_wipe_and_discard(Context *context, bool from_scratch) { |
| Partition *p; |
| int r; |
| |
| assert(context); |
| |
| /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if |
| * we were supposed to start from scratch anyway, as in that case we just discard the whole block |
| * device in one go early on. */ |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| |
| if (!p->allocated_to_area) |
| continue; |
| |
| if (!from_scratch) { |
| r = context_discard_partition(context, p); |
| if (r < 0) |
| return r; |
| } |
| |
| r = context_wipe_partition(context, p); |
| if (r < 0) |
| return r; |
| |
| if (!from_scratch) { |
| r = context_discard_gap_after(context, p); |
| if (r < 0) |
| return r; |
| } |
| } |
| |
| if (!from_scratch) { |
| r = context_discard_gap_after(context, NULL); |
| if (r < 0) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) { |
| struct { |
| sd_id128_t type_uuid; |
| uint64_t counter; |
| } _packed_ plaintext = {}; |
| union { |
| unsigned char md[SHA256_DIGEST_LENGTH]; |
| sd_id128_t id; |
| } result; |
| |
| uint64_t k = 0; |
| Partition *q; |
| int r; |
| |
| assert(context); |
| assert(p); |
| assert(ret); |
| |
| /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility, |
| * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely: |
| * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the |
| * installation we are processing, but if random behaviour is desired can be random, too. We use the |
| * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak) |
| * and the partition type as plaintext. The partition type is suffixed with a counter (only for the |
| * second and later partition of the same type) if we have more than one partition of the same |
| * time. Or in other words: |
| * |
| * With: |
| * SEED := /etc/machine-id |
| * |
| * If first partition instance of type TYPE_UUID: |
| * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID) |
| * |
| * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number: |
| * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE) |
| */ |
| |
| LIST_FOREACH(partitions, q, context->partitions) { |
| if (p == q) |
| break; |
| |
| if (!sd_id128_equal(p->type_uuid, q->type_uuid)) |
| continue; |
| |
| k++; |
| } |
| |
| plaintext.type_uuid = p->type_uuid; |
| plaintext.counter = htole64(k); |
| |
| if (!HMAC(EVP_sha256(), |
| &context->seed, sizeof(context->seed), |
| (const unsigned char*) &plaintext, k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext), |
| result.md, NULL)) |
| return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "SHA256 calculation failed."); |
| |
| /* Take the first half, mark it as v4 UUID */ |
| assert_cc(sizeof(result.md) == sizeof(result.id) * 2); |
| result.id = id128_make_v4_uuid(result.id); |
| |
| /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */ |
| LIST_FOREACH(partitions, q, context->partitions) { |
| if (p == q) |
| continue; |
| |
| if (sd_id128_equal(q->current_uuid, result.id) || |
| sd_id128_equal(q->new_uuid, result.id)) { |
| log_warning("Partition UUID calculated from seed for partition %" PRIu64 " exists already, reverting to randomized UUID.", p->partno); |
| |
| r = sd_id128_randomize(&result.id); |
| if (r < 0) |
| return log_error_errno(r, "Failed to generate randomized UUID: %m"); |
| |
| break; |
| } |
| } |
| |
| *ret = result.id; |
| return 0; |
| } |
| |
| static int partition_acquire_label(Context *context, Partition *p, char **ret) { |
| _cleanup_free_ char *label = NULL; |
| const char *prefix; |
| unsigned k = 1; |
| |
| assert(context); |
| assert(p); |
| assert(ret); |
| |
| prefix = gpt_partition_type_uuid_to_string(p->type_uuid); |
| if (!prefix) |
| prefix = "linux"; |
| |
| for (;;) { |
| const char *ll = label ?: prefix; |
| bool retry = false; |
| Partition *q; |
| |
| LIST_FOREACH(partitions, q, context->partitions) { |
| if (p == q) |
| break; |
| |
| if (streq_ptr(ll, q->current_label) || |
| streq_ptr(ll, q->new_label)) { |
| retry = true; |
| break; |
| } |
| } |
| |
| if (!retry) |
| break; |
| |
| label = mfree(label); |
| |
| |
| if (asprintf(&label, "%s-%u", prefix, ++k) < 0) |
| return log_oom(); |
| } |
| |
| if (!label) { |
| label = strdup(prefix); |
| if (!label) |
| return log_oom(); |
| } |
| |
| *ret = TAKE_PTR(label); |
| return 0; |
| } |
| |
| static int context_acquire_partition_uuids_and_labels(Context *context) { |
| Partition *p; |
| int r; |
| |
| assert(context); |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| assert(sd_id128_is_null(p->new_uuid)); |
| assert(!p->new_label); |
| |
| /* Never touch foreign partitions */ |
| if (PARTITION_IS_FOREIGN(p)) { |
| p->new_uuid = p->current_uuid; |
| |
| if (p->current_label) { |
| p->new_label = strdup(p->current_label); |
| if (!p->new_label) |
| return log_oom(); |
| } |
| |
| continue; |
| } |
| |
| if (!sd_id128_is_null(p->current_uuid)) |
| p->new_uuid = p->current_uuid; /* Never change initialized UUIDs */ |
| else { |
| r = partition_acquire_uuid(context, p, &p->new_uuid); |
| if (r < 0) |
| return r; |
| } |
| |
| if (!isempty(p->current_label)) { |
| p->new_label = strdup(p->current_label); /* never change initialized labels */ |
| if (!p->new_label) |
| return log_oom(); |
| } else { |
| r = partition_acquire_label(context, p, &p->new_label); |
| if (r < 0) |
| return r; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int device_kernel_partitions_supported(int fd) { |
| struct loop_info64 info; |
| struct stat st; |
| |
| assert(fd >= 0); |
| |
| if (fstat(fd, &st) < 0) |
| return log_error_errno(fd, "Failed to fstat() image file: %m"); |
| if (!S_ISBLK(st.st_mode)) |
| return false; |
| |
| if (ioctl(fd, LOOP_GET_STATUS64, &info) < 0) { |
| |
| if (ERRNO_IS_NOT_SUPPORTED(errno) || errno == EINVAL) |
| return true; /* not a loopback device, let's assume partition are supported */ |
| |
| return log_error_errno(fd, "Failed to issue LOOP_GET_STATUS64 on block device: %m"); |
| } |
| |
| #if HAVE_VALGRIND_MEMCHECK_H |
| /* Valgrind currently doesn't know LOOP_GET_STATUS64. Remove this once it does */ |
| VALGRIND_MAKE_MEM_DEFINED(&info, sizeof(info)); |
| #endif |
| |
| return FLAGS_SET(info.lo_flags, LO_FLAGS_PARTSCAN); |
| } |
| |
| static int context_write_partition_table( |
| Context *context, |
| const char *node, |
| bool from_scratch) { |
| |
| _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL; |
| int capable, r; |
| Partition *p; |
| |
| assert(context); |
| |
| if (arg_pretty > 0 || |
| (arg_pretty < 0 && isatty(STDOUT_FILENO) > 0)) { |
| |
| if (context->n_partitions == 0) |
| puts("Empty partition table."); |
| else |
| (void) context_dump_partitions(context, node); |
| |
| putc('\n', stdout); |
| |
| (void) context_dump_partition_bar(context, node); |
| putc('\n', stdout); |
| fflush(stdout); |
| } |
| |
| if (!from_scratch && !context_changed(context)) { |
| log_info("No changes."); |
| return 0; |
| } |
| |
| if (arg_dry_run) { |
| log_notice("Refusing to repartition, please re-run with --dry-run=no."); |
| return 0; |
| } |
| |
| log_info("Applying changes."); |
| |
| if (from_scratch) { |
| r = context_discard_range(context, 0, context->total); |
| if (r == -EOPNOTSUPP) |
| log_info("Storage does not support discarding, not discarding entire block device data."); |
| else if (r < 0) |
| return log_error_errno(r, "Failed to discard entire block device: %m"); |
| else if (r > 0) |
| log_info("Discarded entire block device."); |
| } |
| |
| r = fdisk_get_partitions(context->fdisk_context, &original_table); |
| if (r < 0) |
| return log_error_errno(r, "Failed to acquire partition table: %m"); |
| |
| /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the |
| * gaps between partitions, just to be sure. */ |
| r = context_wipe_and_discard(context, from_scratch); |
| if (r < 0) |
| return r; |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| if (p->dropped) |
| continue; |
| |
| assert(p->new_size != UINT64_MAX); |
| assert(p->offset != UINT64_MAX); |
| assert(p->partno != UINT64_MAX); |
| |
| if (PARTITION_EXISTS(p)) { |
| bool changed = false; |
| |
| assert(p->current_partition); |
| |
| if (p->new_size != p->current_size) { |
| assert(p->new_size >= p->current_size); |
| assert(p->new_size % 512 == 0); |
| |
| r = fdisk_partition_size_explicit(p->current_partition, true); |
| if (r < 0) |
| return log_error_errno(r, "Failed to enable explicit sizing: %m"); |
| |
| r = fdisk_partition_set_size(p->current_partition, p->new_size / 512); |
| if (r < 0) |
| return log_error_errno(r, "Failed to grow partition: %m"); |
| |
| log_info("Growing existing partition %" PRIu64 ".", p->partno); |
| changed = true; |
| } |
| |
| if (!sd_id128_equal(p->new_uuid, p->current_uuid)) { |
| char buf[ID128_UUID_STRING_MAX]; |
| |
| assert(!sd_id128_is_null(p->new_uuid)); |
| |
| r = fdisk_partition_set_uuid(p->current_partition, id128_to_uuid_string(p->new_uuid, buf)); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set partition UUID: %m"); |
| |
| log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno); |
| changed = true; |
| } |
| |
| if (!streq_ptr(p->new_label, p->current_label)) { |
| assert(!isempty(p->new_label)); |
| |
| r = fdisk_partition_set_name(p->current_partition, p->new_label); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set partition label: %m"); |
| |
| log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno); |
| changed = true; |
| } |
| |
| if (changed) { |
| assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */ |
| |
| r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition); |
| if (r < 0) |
| return log_error_errno(r, "Failed to update partition: %m"); |
| } |
| } else { |
| _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL; |
| _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL; |
| char ids[ID128_UUID_STRING_MAX]; |
| |
| assert(!p->new_partition); |
| assert(p->offset % 512 == 0); |
| assert(p->new_size % 512 == 0); |
| assert(!sd_id128_is_null(p->new_uuid)); |
| assert(!isempty(p->new_label)); |
| |
| t = fdisk_new_parttype(); |
| if (!t) |
| return log_oom(); |
| |
| r = fdisk_parttype_set_typestr(t, id128_to_uuid_string(p->type_uuid, ids)); |
| if (r < 0) |
| return log_error_errno(r, "Failed to initialize partition type: %m"); |
| |
| q = fdisk_new_partition(); |
| if (!q) |
| return log_oom(); |
| |
| r = fdisk_partition_set_type(q, t); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set partition type: %m"); |
| |
| r = fdisk_partition_size_explicit(q, true); |
| if (r < 0) |
| return log_error_errno(r, "Failed to enable explicit sizing: %m"); |
| |
| r = fdisk_partition_set_start(q, p->offset / 512); |
| if (r < 0) |
| return log_error_errno(r, "Failed to position partition: %m"); |
| |
| r = fdisk_partition_set_size(q, p->new_size / 512); |
| if (r < 0) |
| return log_error_errno(r, "Failed to grow partition: %m"); |
| |
| r = fdisk_partition_set_partno(q, p->partno); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set partition number: %m"); |
| |
| r = fdisk_partition_set_uuid(q, id128_to_uuid_string(p->new_uuid, ids)); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set partition UUID: %m"); |
| |
| r = fdisk_partition_set_name(q, p->new_label); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set partition label: %m"); |
| |
| log_info("Creating new partition %" PRIu64 ".", p->partno); |
| |
| r = fdisk_add_partition(context->fdisk_context, q, NULL); |
| if (r < 0) |
| return log_error_errno(r, "Failed to add partition: %m"); |
| |
| assert(!p->new_partition); |
| p->new_partition = TAKE_PTR(q); |
| } |
| } |
| |
| log_info("Writing new partition table."); |
| |
| r = fdisk_write_disklabel(context->fdisk_context); |
| if (r < 0) |
| return log_error_errno(r, "Failed to write partition table: %m"); |
| |
| capable = device_kernel_partitions_supported(fdisk_get_devfd(context->fdisk_context)); |
| if (capable < 0) |
| return capable; |
| if (capable > 0) { |
| log_info("Telling kernel to reread partition table."); |
| |
| if (from_scratch) |
| r = fdisk_reread_partition_table(context->fdisk_context); |
| else |
| r = fdisk_reread_changes(context->fdisk_context, original_table); |
| if (r < 0) |
| return log_error_errno(r, "Failed to reread partition table: %m"); |
| } else |
| log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices."); |
| |
| log_info("All done."); |
| |
| return 0; |
| } |
| |
| static int context_read_seed(Context *context, const char *root) { |
| int r; |
| |
| assert(context); |
| |
| if (!sd_id128_is_null(context->seed)) |
| return 0; |
| |
| if (!arg_randomize) { |
| _cleanup_close_ int fd = -1; |
| |
| fd = chase_symlinks_and_open("/etc/machine-id", root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC, NULL); |
| if (fd == -ENOENT) |
| log_info("No machine ID set, using randomized partition UUIDs."); |
| else if (fd < 0) |
| return log_error_errno(fd, "Failed to determine machine ID of image: %m"); |
| else { |
| r = id128_read_fd(fd, ID128_PLAIN, &context->seed); |
| if (r == -ENOMEDIUM) |
| log_info("No machine ID set, using randomized partition UUIDs."); |
| else if (r < 0) |
| return log_error_errno(r, "Failed to parse machine ID of image: %m"); |
| |
| return 0; |
| } |
| } |
| |
| r = sd_id128_randomize(&context->seed); |
| if (r < 0) |
| return log_error_errno(r, "Failed to generate randomized seed: %m"); |
| |
| return 0; |
| } |
| |
| static int context_factory_reset(Context *context, bool from_scratch) { |
| Partition *p; |
| size_t n = 0; |
| int r; |
| |
| assert(context); |
| |
| if (arg_factory_reset <= 0) |
| return 0; |
| |
| if (from_scratch) /* Nothing to reset if we start from scratch */ |
| return 0; |
| |
| if (arg_dry_run) { |
| log_notice("Refusing to factory reset, please re-run with --dry-run=no."); |
| return 0; |
| } |
| |
| log_info("Applying factory reset."); |
| |
| LIST_FOREACH(partitions, p, context->partitions) { |
| |
| if (!p->factory_reset || !PARTITION_EXISTS(p)) |
| continue; |
| |
| assert(p->partno != UINT64_MAX); |
| |
| log_info("Removing partition %" PRIu64 " for factory reset.", p->partno); |
| |
| r = fdisk_delete_partition(context->fdisk_context, p->partno); |
| if (r < 0) |
| return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno); |
| |
| n++; |
| } |
| |
| if (n == 0) { |
| log_info("Factory reset requested, but no partitions to delete found."); |
| return 0; |
| } |
| |
| r = fdisk_write_disklabel(context->fdisk_context); |
| if (r < 0) |
| return log_error_errno(r, "Failed to write disk label: %m"); |
| |
| log_info("Successfully deleted %zu partitions.", n); |
| return 1; |
| } |
| |
| static int context_can_factory_reset(Context *context) { |
| Partition *p; |
| |
| assert(context); |
| |
| LIST_FOREACH(partitions, p, context->partitions) |
| if (p->factory_reset && PARTITION_EXISTS(p)) |
| return true; |
| |
| return false; |
| } |
| |
| static int help(void) { |
| _cleanup_free_ char *link = NULL; |
| int r; |
| |
| r = terminal_urlify_man("systemd-repart", "1", &link); |
| if (r < 0) |
| return log_oom(); |
| |
| printf("%s [OPTIONS...] [DEVICE]\n" |
| "\n%sGrow and add partitions to partition table.%s\n\n" |
| " -h --help Show this help\n" |
| " --version Show package version\n" |
| " --dry-run=BOOL Whether to run dry-run operation\n" |
| " --empty=MODE One of refuse, allow, require, force; controls how to\n" |
| " handle empty disks lacking partition table\n" |
| " --discard=BOOL Whether to discard backing blocks for new partitions\n" |
| " --pretty=BOOL Whether to show pretty summary before executing operation\n" |
| " --factory-reset=BOOL Whether to remove data partitions before recreating\n" |
| " them\n" |
| " --can-factory-reset Test whether factory reset is defined\n" |
| " --root=PATH Operate relative to root path\n" |
| " --definitions=DIR Find partitions in specified directory\n" |
| " --seed=UUID 128bit seed UUID to derive all UUIDs from\n" |
| "\nSee the %s for details.\n" |
| , program_invocation_short_name |
| , ansi_highlight(), ansi_normal() |
| , link |
| ); |
| |
| return 0; |
| } |
| |
| static int parse_argv(int argc, char *argv[]) { |
| |
| enum { |
| ARG_VERSION = 0x100, |
| ARG_DRY_RUN, |
| ARG_EMPTY, |
| ARG_DISCARD, |
| ARG_FACTORY_RESET, |
| ARG_CAN_FACTORY_RESET, |
| ARG_ROOT, |
| ARG_SEED, |
| ARG_PRETTY, |
| ARG_DEFINITIONS, |
| }; |
| |
| static const struct option options[] = { |
| { "help", no_argument, NULL, 'h' }, |
| { "version", no_argument, NULL, ARG_VERSION }, |
| { "dry-run", required_argument, NULL, ARG_DRY_RUN }, |
| { "empty", required_argument, NULL, ARG_EMPTY }, |
| { "discard", required_argument, NULL, ARG_DISCARD }, |
| { "factory-reset", required_argument, NULL, ARG_FACTORY_RESET }, |
| { "can-factory-reset", no_argument, NULL, ARG_CAN_FACTORY_RESET }, |
| { "root", required_argument, NULL, ARG_ROOT }, |
| { "seed", required_argument, NULL, ARG_SEED }, |
| { "pretty", required_argument, NULL, ARG_PRETTY }, |
| { "definitions", required_argument, NULL, ARG_DEFINITIONS }, |
| {} |
| }; |
| |
| int c, r; |
| |
| assert(argc >= 0); |
| assert(argv); |
| |
| while ((c = getopt_long(argc, argv, "h", options, NULL)) >= 0) |
| |
| switch (c) { |
| |
| case 'h': |
| return help(); |
| |
| case ARG_VERSION: |
| return version(); |
| |
| case ARG_DRY_RUN: |
| r = parse_boolean(optarg); |
| if (r < 0) |
| return log_error_errno(r, "Failed to parse --dry-run= parameter: %s", optarg); |
| |
| arg_dry_run = r; |
| break; |
| |
| case ARG_EMPTY: |
| if (isempty(optarg) || streq(optarg, "refuse")) |
| arg_empty = EMPTY_REFUSE; |
| else if (streq(optarg, "allow")) |
| arg_empty = EMPTY_ALLOW; |
| else if (streq(optarg, "require")) |
| arg_empty = EMPTY_REQUIRE; |
| else if (streq(optarg, "force")) |
| arg_empty = EMPTY_FORCE; |
| else |
| return log_error_errno(SYNTHETIC_ERRNO(EINVAL), |
| "Failed to parse --empty= parameter: %s", optarg); |
| break; |
| |
| case ARG_DISCARD: |
| r = parse_boolean(optarg); |
| if (r < 0) |
| return log_error_errno(r, "Failed to parse --discard= parameter: %s", optarg); |
| |
| arg_discard = r; |
| break; |
| |
| case ARG_FACTORY_RESET: |
| r = parse_boolean(optarg); |
| if (r < 0) |
| return log_error_errno(r, "Failed to parse --factory-reset= parameter: %s", optarg); |
| |
| arg_factory_reset = r; |
| break; |
| |
| case ARG_CAN_FACTORY_RESET: |
| arg_can_factory_reset = true; |
| break; |
| |
| case ARG_ROOT: |
| r = parse_path_argument_and_warn(optarg, false, &arg_root); |
| if (r < 0) |
| return r; |
| break; |
| |
| case ARG_SEED: |
| if (isempty(optarg)) { |
| arg_seed = SD_ID128_NULL; |
| arg_randomize = false; |
| } else if (streq(optarg, "random")) |
| arg_randomize = true; |
| else { |
| r = sd_id128_from_string(optarg, &arg_seed); |
| if (r < 0) |
| return log_error_errno(r, "Failed to parse seed: %s", optarg); |
| |
| arg_randomize = false; |
| } |
| |
| break; |
| |
| case ARG_PRETTY: |
| r = parse_boolean(optarg); |
| if (r < 0) |
| return log_error_errno(r, "Failed to parse --pretty= parameter: %s", optarg); |
| |
| arg_pretty = r; |
| break; |
| |
| case ARG_DEFINITIONS: |
| r = parse_path_argument_and_warn(optarg, false, &arg_definitions); |
| if (r < 0) |
| return r; |
| break; |
| |
| case '?': |
| return -EINVAL; |
| |
| default: |
| assert_not_reached("Unhandled option"); |
| } |
| |
| if (argc - optind > 1) |
| return log_error_errno(SYNTHETIC_ERRNO(EINVAL), |
| "Expected at most one argument, the path to the block device."); |
| |
| if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE)) |
| return log_error_errno(SYNTHETIC_ERRNO(EINVAL), |
| "Combination of --factory-reset=yes and --empty=force/--empty=require is invalid."); |
| |
| if (arg_can_factory_reset) |
| arg_dry_run = true; |
| |
| arg_node = argc > optind ? argv[optind] : NULL; |
| return 1; |
| } |
| |
| static int parse_proc_cmdline_factory_reset(void) { |
| bool b; |
| int r; |
| |
| if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ |
| return 0; |
| |
| if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */ |
| return 0; |
| |
| r = proc_cmdline_get_bool("systemd.factory_reset", &b); |
| if (r < 0) |
| return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m"); |
| if (r > 0) { |
| arg_factory_reset = b; |
| |
| if (b) |
| log_notice("Honouring factory reset requested via kernel command line."); |
| } |
| |
| return 0; |
| } |
| |
| static int parse_efi_variable_factory_reset(void) { |
| _cleanup_free_ char *value = NULL; |
| int r; |
| |
| if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ |
| return 0; |
| |
| if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */ |
| return 0; |
| |
| r = efi_get_variable_string(EFI_VENDOR_SYSTEMD, "FactoryReset", &value); |
| if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) |
| return 0; |
| if (r < 0) |
| return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m"); |
| |
| r = parse_boolean(value); |
| if (r < 0) |
| return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m"); |
| |
| arg_factory_reset = r; |
| if (r) |
| log_notice("Honouring factory reset requested via EFI variable FactoryReset: %m"); |
| |
| return 0; |
| } |
| |
| static int remove_efi_variable_factory_reset(void) { |
| int r; |
| |
| r = efi_set_variable(EFI_VENDOR_SYSTEMD, "FactoryReset", NULL, 0); |
| if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) |
| return 0; |
| if (r < 0) |
| return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m"); |
| |
| log_info("Successfully unset EFI variable FactoryReset."); |
| return 0; |
| } |
| |
| static int acquire_root_devno(const char *p, int mode, char **ret) { |
| _cleanup_close_ int fd = -1; |
| struct stat st; |
| dev_t devno; |
| int r; |
| |
| fd = open(p, mode); |
| if (fd < 0) |
| return -errno; |
| |
| if (fstat(fd, &st) < 0) |
| return -errno; |
| |
| if (S_ISREG(st.st_mode)) { |
| char *s; |
| |
| s = strdup(p); |
| if (!s) |
| return log_oom(); |
| |
| *ret = s; |
| return 0; |
| } |
| |
| if (S_ISBLK(st.st_mode)) |
| devno = st.st_rdev; |
| else if (S_ISDIR(st.st_mode)) { |
| |
| devno = st.st_dev; |
| |
| if (major(st.st_dev) == 0) { |
| r = btrfs_get_block_device_fd(fd, &devno); |
| if (r == -ENOTTY) /* not btrfs */ |
| return -ENODEV; |
| if (r < 0) |
| return r; |
| } |
| |
| } else |
| return -ENOTBLK; |
| |
| /* From dm-crypt to backing partition */ |
| r = block_get_originating(devno, &devno); |
| if (r < 0) |
| log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p); |
| |
| /* From partition to whole disk containing it */ |
| r = block_get_whole_disk(devno, &devno); |
| if (r < 0) |
| log_debug_errno(r, "Failed to find whole disk block device for '%s', ingoring: %m", p); |
| |
| return device_path_make_canonical(S_IFBLK, devno, ret); |
| } |
| |
| static int find_root(char **ret) { |
| const char *t; |
| int r; |
| |
| if (arg_node) { |
| r = acquire_root_devno(arg_node, O_RDONLY|O_CLOEXEC, ret); |
| if (r < 0) |
| return log_error_errno(r, "Failed to determine backing device of %s: %m", arg_node); |
| |
| return 0; |
| } |
| |
| /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The |
| * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device |
| * (think: volatile setups) */ |
| |
| FOREACH_STRING(t, "/", "/usr") { |
| _cleanup_free_ char *j = NULL; |
| const char *p; |
| |
| if (in_initrd()) { |
| j = path_join("/sysroot", t); |
| if (!j) |
| return log_oom(); |
| |
| p = j; |
| } else |
| p = t; |
| |
| r = acquire_root_devno(p, O_RDONLY|O_DIRECTORY|O_CLOEXEC, ret); |
| if (r < 0) { |
| if (r != -ENODEV) |
| return log_error_errno(r, "Failed to determine backing device of %s: %m", p); |
| } else |
| return 0; |
| } |
| |
| return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device."); |
| } |
| |
| static int run(int argc, char *argv[]) { |
| _cleanup_(context_freep) Context* context = NULL; |
| _cleanup_free_ char *node = NULL; |
| bool from_scratch; |
| int r; |
| |
| log_show_color(true); |
| log_parse_environment(); |
| log_open(); |
| |
| if (in_initrd()) { |
| /* Default to operation on /sysroot when invoked in the initrd! */ |
| arg_root = strdup("/sysroot"); |
| if (!arg_root) |
| return log_oom(); |
| } |
| |
| r = parse_argv(argc, argv); |
| if (r <= 0) |
| return r; |
| |
| r = parse_proc_cmdline_factory_reset(); |
| if (r < 0) |
| return r; |
| |
| r = parse_efi_variable_factory_reset(); |
| if (r < 0) |
| return r; |
| |
| context = context_new(arg_seed); |
| if (!context) |
| return log_oom(); |
| |
| r = context_read_definitions(context, arg_definitions, arg_root); |
| if (r < 0) |
| return r; |
| |
| if (context->n_partitions <= 0 && arg_empty != EMPTY_FORCE) |
| return 0; |
| |
| r = find_root(&node); |
| if (r < 0) |
| return r; |
| |
| r = context_load_partition_table(context, node); |
| if (r == -EHWPOISON) |
| return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't |
| * really an error when called at boot. */ |
| if (r < 0) |
| return r; |
| from_scratch = r > 0; /* Starting from scratch */ |
| |
| if (arg_can_factory_reset) { |
| r = context_can_factory_reset(context); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| return EXIT_FAILURE; |
| |
| return 0; |
| } |
| |
| r = context_factory_reset(context, from_scratch); |
| if (r < 0) |
| return r; |
| if (r > 0) { |
| /* We actually did a factory reset! */ |
| r = remove_efi_variable_factory_reset(); |
| if (r < 0) |
| return r; |
| |
| /* Reload the reduced partition table */ |
| context_unload_partition_table(context); |
| r = context_load_partition_table(context, node); |
| if (r < 0) |
| return r; |
| } |
| |
| #if 0 |
| (void) context_dump_partitions(context, node); |
| putchar('\n'); |
| #endif |
| |
| r = context_read_seed(context, arg_root); |
| if (r < 0) |
| return r; |
| |
| /* First try to fit new partitions in, dropping by priority until it fits */ |
| for (;;) { |
| if (context_allocate_partitions(context)) |
| break; /* Success! */ |
| |
| if (!context_drop_one_priority(context)) |
| return log_error_errno(SYNTHETIC_ERRNO(ENOSPC), |
| "Can't fit requested partitions into free space, refusing."); |
| } |
| |
| /* Now assign free space according to the weight logic */ |
| r = context_grow_partitions(context); |
| if (r < 0) |
| return r; |
| |
| /* Now calculate where each partition gets placed */ |
| context_place_partitions(context); |
| |
| /* Make sure each partition has a unique UUID and unique label */ |
| r = context_acquire_partition_uuids_and_labels(context); |
| if (r < 0) |
| return r; |
| |
| r = context_write_partition_table(context, node, from_scratch); |
| if (r < 0) |
| return r; |
| |
| return 0; |
| } |
| |
| DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run); |