blob: 3e52f26a1dc8950039006ecfb8a1ee1948c801ea [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1+ */
#if HAVE_VALGRIND_MEMCHECK_H
#include <valgrind/memcheck.h>
#endif
#include <fcntl.h>
#include <getopt.h>
#include <libfdisk.h>
#include <linux/fs.h>
#include <linux/loop.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <openssl/hmac.h>
#include <openssl/sha.h>
#include "sd-id128.h"
#include "alloc-util.h"
#include "blkid-util.h"
#include "blockdev-util.h"
#include "btrfs-util.h"
#include "conf-files.h"
#include "conf-parser.h"
#include "def.h"
#include "efivars.h"
#include "errno-util.h"
#include "fd-util.h"
#include "format-table.h"
#include "format-util.h"
#include "fs-util.h"
#include "gpt.h"
#include "id128-util.h"
#include "list.h"
#include "locale-util.h"
#include "main-func.h"
#include "parse-util.h"
#include "path-util.h"
#include "pretty-print.h"
#include "proc-cmdline.h"
#include "sort-util.h"
#include "stat-util.h"
#include "stdio-util.h"
#include "string-util.h"
#include "strv.h"
#include "terminal-util.h"
#include "utf8.h"
/* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks
* are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B
* sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll
* waste 3K per partition, which is probably fine. */
static enum {
EMPTY_REFUSE, /* refuse empty disks, never create a partition table */
EMPTY_ALLOW, /* allow empty disks, create partition table if necessary */
EMPTY_REQUIRE, /* require an empty disk, create a partition table */
EMPTY_FORCE, /* make disk empty, erase everything, create a partition table always */
} arg_empty = EMPTY_REFUSE;
static bool arg_dry_run = true;
static const char *arg_node = NULL;
static char *arg_root = NULL;
static char *arg_definitions = NULL;
static bool arg_discard = true;
static bool arg_can_factory_reset = false;
static int arg_factory_reset = -1;
static sd_id128_t arg_seed = SD_ID128_NULL;
static bool arg_randomize = false;
static int arg_pretty = -1;
STATIC_DESTRUCTOR_REGISTER(arg_root, freep);
STATIC_DESTRUCTOR_REGISTER(arg_definitions, freep);
typedef struct Partition Partition;
typedef struct FreeArea FreeArea;
typedef struct Context Context;
struct Partition {
char *definition_path;
sd_id128_t type_uuid;
sd_id128_t current_uuid, new_uuid;
char *current_label, *new_label;
bool dropped;
bool factory_reset;
int32_t priority;
uint32_t weight, padding_weight;
uint64_t current_size, new_size;
uint64_t size_min, size_max;
uint64_t current_padding, new_padding;
uint64_t padding_min, padding_max;
uint64_t partno;
uint64_t offset;
struct fdisk_partition *current_partition;
struct fdisk_partition *new_partition;
FreeArea *padding_area;
FreeArea *allocated_to_area;
LIST_FIELDS(Partition, partitions);
};
#define PARTITION_IS_FOREIGN(p) (!(p)->definition_path)
#define PARTITION_EXISTS(p) (!!(p)->current_partition)
struct FreeArea {
Partition *after;
uint64_t size;
uint64_t allocated;
};
struct Context {
LIST_HEAD(Partition, partitions);
size_t n_partitions;
FreeArea **free_areas;
size_t n_free_areas, n_allocated_free_areas;
uint64_t start, end, total;
struct fdisk_context *fdisk_context;
sd_id128_t seed;
};
static uint64_t round_down_size(uint64_t v, uint64_t p) {
return (v / p) * p;
}
static uint64_t round_up_size(uint64_t v, uint64_t p) {
v = DIV_ROUND_UP(v, p);
if (v > UINT64_MAX / p)
return UINT64_MAX; /* overflow */
return v * p;
}
static Partition *partition_new(void) {
Partition *p;
p = new(Partition, 1);
if (!p)
return NULL;
*p = (Partition) {
.weight = 1000,
.padding_weight = 0,
.current_size = UINT64_MAX,
.new_size = UINT64_MAX,
.size_min = UINT64_MAX,
.size_max = UINT64_MAX,
.current_padding = UINT64_MAX,
.new_padding = UINT64_MAX,
.padding_min = UINT64_MAX,
.padding_max = UINT64_MAX,
.partno = UINT64_MAX,
.offset = UINT64_MAX,
};
return p;
}
static Partition* partition_free(Partition *p) {
if (!p)
return NULL;
free(p->current_label);
free(p->new_label);
free(p->definition_path);
if (p->current_partition)
fdisk_unref_partition(p->current_partition);
if (p->new_partition)
fdisk_unref_partition(p->new_partition);
return mfree(p);
}
static Partition* partition_unlink_and_free(Context *context, Partition *p) {
if (!p)
return NULL;
LIST_REMOVE(partitions, context->partitions, p);
assert(context->n_partitions > 0);
context->n_partitions--;
return partition_free(p);
}
DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free);
static Context *context_new(sd_id128_t seed) {
Context *context;
context = new(Context, 1);
if (!context)
return NULL;
*context = (Context) {
.start = UINT64_MAX,
.end = UINT64_MAX,
.total = UINT64_MAX,
.seed = seed,
};
return context;
}
static void context_free_free_areas(Context *context) {
assert(context);
for (size_t i = 0; i < context->n_free_areas; i++)
free(context->free_areas[i]);
context->free_areas = mfree(context->free_areas);
context->n_free_areas = 0;
context->n_allocated_free_areas = 0;
}
static Context *context_free(Context *context) {
if (!context)
return NULL;
while (context->partitions)
partition_unlink_and_free(context, context->partitions);
assert(context->n_partitions == 0);
context_free_free_areas(context);
if (context->fdisk_context)
fdisk_unref_context(context->fdisk_context);
return mfree(context);
}
DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free);
static int context_add_free_area(
Context *context,
uint64_t size,
Partition *after) {
FreeArea *a;
assert(context);
assert(!after || !after->padding_area);
if (!GREEDY_REALLOC(context->free_areas, context->n_allocated_free_areas, context->n_free_areas + 1))
return -ENOMEM;
a = new(FreeArea, 1);
if (!a)
return -ENOMEM;
*a = (FreeArea) {
.size = size,
.after = after,
};
context->free_areas[context->n_free_areas++] = a;
if (after)
after->padding_area = a;
return 0;
}
static bool context_drop_one_priority(Context *context) {
int32_t priority = 0;
Partition *p;
bool exists = false;
LIST_FOREACH(partitions, p, context->partitions) {
if (p->dropped)
continue;
if (p->priority < priority)
continue;
if (p->priority == priority) {
exists = exists || PARTITION_EXISTS(p);
continue;
}
priority = p->priority;
exists = PARTITION_EXISTS(p);
}
/* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at
* least one existing priority */
if (priority <= 0 || exists)
return false;
LIST_FOREACH(partitions, p, context->partitions) {
if (p->priority < priority)
continue;
if (p->dropped)
continue;
p->dropped = true;
log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.", p->definition_path, p->priority);
}
return true;
}
static uint64_t partition_min_size(const Partition *p) {
uint64_t sz;
/* Calculate the disk space we really need at minimum for this partition. If the partition already
* exists the current size is what we really need. If it doesn't exist yet refuse to allocate less
* than 4K. */
if (PARTITION_IS_FOREIGN(p)) {
/* Don't allow changing size of partitions not managed by us */
assert(p->current_size != UINT64_MAX);
return p->current_size;
}
sz = p->current_size != UINT64_MAX ? p->current_size : 4096;
if (p->size_min != UINT64_MAX)
return MAX(p->size_min, sz);
return sz;
}
static uint64_t partition_max_size(const Partition *p) {
/* Calculate how large the partition may become at max. This is generally the configured maximum
* size, except when it already exists and is larger than that. In that case it's the existing size,
* since we never want to shrink partitions. */
if (PARTITION_IS_FOREIGN(p)) {
/* Don't allow changing size of partitions not managed by us */
assert(p->current_size != UINT64_MAX);
return p->current_size;
}
if (p->current_size != UINT64_MAX)
return MAX(p->current_size, p->size_max);
return p->size_max;
}
static uint64_t partition_min_size_with_padding(const Partition *p) {
uint64_t sz;
/* Calculate the disk space we need for this partition plus any free space coming after it. This
* takes user configured padding into account as well as any additional whitespace needed to align
* the next partition to 4K again. */
sz = partition_min_size(p);
if (p->padding_min != UINT64_MAX)
sz += p->padding_min;
if (PARTITION_EXISTS(p)) {
/* If the partition wasn't aligned, add extra space so that any we might add will be aligned */
assert(p->offset != UINT64_MAX);
return round_up_size(p->offset + sz, 4096) - p->offset;
}
/* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */
return round_up_size(sz, 4096);
}
static uint64_t free_area_available(const FreeArea *a) {
assert(a);
/* Determines how much of this free area is not allocated yet */
assert(a->size >= a->allocated);
return a->size - a->allocated;
}
static uint64_t free_area_available_for_new_partitions(const FreeArea *a) {
uint64_t avail;
/* Similar to free_area_available(), but takes into account that the required size and padding of the
* preceeding partition is honoured. */
avail = free_area_available(a);
if (a->after) {
uint64_t need, space;
need = partition_min_size_with_padding(a->after);
assert(a->after->offset != UINT64_MAX);
assert(a->after->current_size != UINT64_MAX);
space = round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset + avail;
if (need >= space)
return 0;
return space - need;
}
return avail;
}
static int free_area_compare(FreeArea *const *a, FreeArea *const*b) {
return CMP(free_area_available_for_new_partitions(*a),
free_area_available_for_new_partitions(*b));
}
static uint64_t charge_size(uint64_t total, uint64_t amount) {
uint64_t rounded;
assert(amount <= total);
/* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */
rounded = round_up_size(amount, 4096);
if (rounded >= total)
return 0;
return total - rounded;
}
static uint64_t charge_weight(uint64_t total, uint64_t amount) {
assert(amount <= total);
return total - amount;
}
static bool context_allocate_partitions(Context *context) {
Partition *p;
assert(context);
/* A simple first-fit algorithm, assuming the array of free areas is sorted by size in decreasing
* order. */
LIST_FOREACH(partitions, p, context->partitions) {
bool fits = false;
uint64_t required;
FreeArea *a = NULL;
/* Skip partitions we already dropped or that already exist */
if (p->dropped || PARTITION_EXISTS(p))
continue;
/* Sort by size */
typesafe_qsort(context->free_areas, context->n_free_areas, free_area_compare);
/* How much do we need to fit? */
required = partition_min_size_with_padding(p);
assert(required % 4096 == 0);
for (size_t i = 0; i < context->n_free_areas; i++) {
a = context->free_areas[i];
if (free_area_available_for_new_partitions(a) >= required) {
fits = true;
break;
}
}
if (!fits)
return false; /* 😢 Oh no! We can't fit this partition into any free area! */
/* Assign the partition to this free area */
p->allocated_to_area = a;
/* Budget the minimal partition size */
a->allocated += required;
}
return true;
}
static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) {
uint64_t weight_sum = 0;
Partition *p;
assert(context);
assert(a);
assert(ret);
/* Determine the sum of the weights of all partitions placed in or before the specified free area */
LIST_FOREACH(partitions, p, context->partitions) {
if (p->padding_area != a && p->allocated_to_area != a)
continue;
if (p->weight > UINT64_MAX - weight_sum)
goto overflow_sum;
weight_sum += p->weight;
if (p->padding_weight > UINT64_MAX - weight_sum)
goto overflow_sum;
weight_sum += p->padding_weight;
}
*ret = weight_sum;
return 0;
overflow_sum:
return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64bit range, refusing.");
}
static int scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum, uint64_t *ret) {
assert(weight_sum >= weight);
assert(ret);
if (weight == 0) {
*ret = 0;
return 0;
}
if (value > UINT64_MAX / weight)
return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Scaling by weight of partition exceeds unsigned 64bit range, refusing.");
*ret = value * weight / weight_sum;
return 0;
}
typedef enum GrowPartitionPhase {
/* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */
PHASE_OVERCHARGE,
/* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */
PHASE_UNDERCHARGE,
/* The third phase: we distribute what remains among the remaining partitions, according to the weights */
PHASE_DISTRIBUTE,
} GrowPartitionPhase;
static int context_grow_partitions_phase(
Context *context,
FreeArea *a,
GrowPartitionPhase phase,
uint64_t *span,
uint64_t *weight_sum) {
Partition *p;
int r;
assert(context);
assert(a);
/* Now let's look at the intended weights and adjust them taking the minimum space assignments into
* account. i.e. if a partition has a small weight but a high minimum space value set it should not
* get any additional room from the left-overs. Similar, if two partitions have the same weight they
* should get the same space if possible, even if one has a smaller minimum size than the other. */
LIST_FOREACH(partitions, p, context->partitions) {
/* Look only at partitions associated with this free area, i.e. immediately
* preceeding it, or allocated into it */
if (p->allocated_to_area != a && p->padding_area != a)
continue;
if (p->new_size == UINT64_MAX) {
bool charge = false, try_again = false;
uint64_t share, rsz, xsz;
/* Calculate how much this space this partition needs if everyone would get
* the weight based share */
r = scale_by_weight(*span, p->weight, *weight_sum, &share);
if (r < 0)
return r;
rsz = partition_min_size(p);
xsz = partition_max_size(p);
if (phase == PHASE_OVERCHARGE && rsz > share) {
/* This partition needs more than its calculated share. Let's assign
* it that, and take this partition out of all calculations and start
* again. */
p->new_size = rsz;
charge = try_again = true;
} else if (phase == PHASE_UNDERCHARGE && xsz != UINT64_MAX && xsz < share) {
/* This partition accepts less than its calculated
* share. Let's assign it that, and take this partition out
* of all calculations and start again. */
p->new_size = xsz;
charge = try_again = true;
} else if (phase == PHASE_DISTRIBUTE) {
/* This partition can accept its calculated share. Let's
* assign it. There's no need to restart things here since
* assigning this shouldn't impact the shares of the other
* partitions. */
if (PARTITION_IS_FOREIGN(p))
/* Never change of foreign partitions (i.e. those we don't manage) */
p->new_size = p->current_size;
else
p->new_size = MAX(round_down_size(share, 4096), rsz);
charge = true;
}
if (charge) {
*span = charge_size(*span, p->new_size);
*weight_sum = charge_weight(*weight_sum, p->weight);
}
if (try_again)
return 0; /* try again */
}
if (p->new_padding == UINT64_MAX) {
bool charge = false, try_again = false;
uint64_t share;
r = scale_by_weight(*span, p->padding_weight, *weight_sum, &share);
if (r < 0)
return r;
if (phase == PHASE_OVERCHARGE && p->padding_min != UINT64_MAX && p->padding_min > share) {
p->new_padding = p->padding_min;
charge = try_again = true;
} else if (phase == PHASE_UNDERCHARGE && p->padding_max != UINT64_MAX && p->padding_max < share) {
p->new_padding = p->padding_max;
charge = try_again = true;
} else if (phase == PHASE_DISTRIBUTE) {
p->new_padding = round_down_size(share, 4096);
if (p->padding_min != UINT64_MAX && p->new_padding < p->padding_min)
p->new_padding = p->padding_min;
charge = true;
}
if (charge) {
*span = charge_size(*span, p->new_padding);
*weight_sum = charge_weight(*weight_sum, p->padding_weight);
}
if (try_again)
return 0; /* try again */
}
}
return 1; /* done */
}
static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) {
uint64_t weight_sum = 0, span;
int r;
assert(context);
assert(a);
r = context_sum_weights(context, a, &weight_sum);
if (r < 0)
return r;
/* Let's calculate the total area covered by this free area and the partition before it */
span = a->size;
if (a->after) {
assert(a->after->offset != UINT64_MAX);
assert(a->after->current_size != UINT64_MAX);
span += round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset;
}
GrowPartitionPhase phase = PHASE_OVERCHARGE;
for (;;) {
r = context_grow_partitions_phase(context, a, phase, &span, &weight_sum);
if (r < 0)
return r;
if (r == 0) /* not done yet, re-run this phase */
continue;
if (phase == PHASE_OVERCHARGE)
phase = PHASE_UNDERCHARGE;
else if (phase == PHASE_UNDERCHARGE)
phase = PHASE_DISTRIBUTE;
else if (phase == PHASE_DISTRIBUTE)
break;
}
/* We still have space left over? Donate to preceeding partition if we have one */
if (span > 0 && a->after && !PARTITION_IS_FOREIGN(a->after)) {
uint64_t m, xsz;
assert(a->after->new_size != UINT64_MAX);
m = a->after->new_size + span;
xsz = partition_max_size(a->after);
if (xsz != UINT64_MAX && m > xsz)
m = xsz;
span = charge_size(span, m - a->after->new_size);
a->after->new_size = m;
}
/* What? Even still some space left (maybe because there was no preceeding partition, or it had a
* size limit), then let's donate it to whoever wants it. */
if (span > 0) {
Partition *p;
LIST_FOREACH(partitions, p, context->partitions) {
uint64_t m, xsz;
if (p->allocated_to_area != a)
continue;
if (PARTITION_IS_FOREIGN(p))
continue;
assert(p->new_size != UINT64_MAX);
m = p->new_size + span;
xsz = partition_max_size(a->after);
if (xsz != UINT64_MAX && m > xsz)
m = xsz;
span = charge_size(span, m - p->new_size);
p->new_size = m;
if (span == 0)
break;
}
}
/* Yuck, still noone? Then make it padding */
if (span > 0 && a->after) {
assert(a->after->new_padding != UINT64_MAX);
a->after->new_padding += span;
}
return 0;
}
static int context_grow_partitions(Context *context) {
Partition *p;
int r;
assert(context);
for (size_t i = 0; i < context->n_free_areas; i++) {
r = context_grow_partitions_on_free_area(context, context->free_areas[i]);
if (r < 0)
return r;
}
/* All existing partitions that have no free space after them can't change size */
LIST_FOREACH(partitions, p, context->partitions) {
if (p->dropped)
continue;
if (!PARTITION_EXISTS(p) || p->padding_area) {
/* The algorithm above must have initialized this already */
assert(p->new_size != UINT64_MAX);
continue;
}
assert(p->new_size == UINT64_MAX);
p->new_size = p->current_size;
assert(p->new_padding == UINT64_MAX);
p->new_padding = p->current_padding;
}
return 0;
}
static void context_place_partitions(Context *context) {
uint64_t partno = 0;
Partition *p;
assert(context);
/* Determine next partition number to assign */
LIST_FOREACH(partitions, p, context->partitions) {
if (!PARTITION_EXISTS(p))
continue;
assert(p->partno != UINT64_MAX);
if (p->partno >= partno)
partno = p->partno + 1;
}
for (size_t i = 0; i < context->n_free_areas; i++) {
FreeArea *a = context->free_areas[i];
uint64_t start, left;
if (a->after) {
assert(a->after->offset != UINT64_MAX);
assert(a->after->new_size != UINT64_MAX);
assert(a->after->new_padding != UINT64_MAX);
start = a->after->offset + a->after->new_size + a->after->new_padding;
} else
start = context->start;
start = round_up_size(start, 4096);
left = a->size;
LIST_FOREACH(partitions, p, context->partitions) {
if (p->allocated_to_area != a)
continue;
p->offset = start;
p->partno = partno++;
assert(left >= p->new_size);
start += p->new_size;
left -= p->new_size;
assert(left >= p->new_padding);
start += p->new_padding;
left -= p->new_padding;
}
}
}
static int config_parse_type(
const char *unit,
const char *filename,
unsigned line,
const char *section,
unsigned section_line,
const char *lvalue,
int ltype,
const char *rvalue,
void *data,
void *userdata) {
sd_id128_t *type_uuid = data;
int r;
assert(rvalue);
assert(type_uuid);
r = gpt_partition_type_uuid_from_string(rvalue, type_uuid);
if (r < 0)
return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue);
return 0;
}
static int config_parse_label(
const char *unit,
const char *filename,
unsigned line,
const char *section,
unsigned section_line,
const char *lvalue,
int ltype,
const char *rvalue,
void *data,
void *userdata) {
_cleanup_free_ char16_t *recoded = NULL;
char **label = data;
int r;
assert(rvalue);
assert(label);
if (!utf8_is_valid(rvalue)) {
log_syntax(unit, LOG_WARNING, filename, line, 0,
"Partition label not valid UTF-8, ignoring: %s", rvalue);
return 0;
}
recoded = utf8_to_utf16(rvalue, strlen(rvalue));
if (!recoded)
return log_oom();
if (char16_strlen(recoded) > 36) {
log_syntax(unit, LOG_WARNING, filename, line, 0,
"Partition label too long for GPT table, ignoring: %s", rvalue);
return 0;
}
r = free_and_strdup(label, rvalue);
if (r < 0)
return log_oom();
return 0;
}
static int config_parse_weight(
const char *unit,
const char *filename,
unsigned line,
const char *section,
unsigned section_line,
const char *lvalue,
int ltype,
const char *rvalue,
void *data,
void *userdata) {
uint32_t *priority = data, v;
int r;
assert(rvalue);
assert(priority);
r = safe_atou32(rvalue, &v);
if (r < 0) {
log_syntax(unit, LOG_WARNING, filename, line, r,
"Failed to parse weight value, ignoring: %s", rvalue);
return 0;
}
if (v > 1000U*1000U) {
log_syntax(unit, LOG_WARNING, filename, line, r,
"Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v);
return 0;
}
*priority = v;
return 0;
}
static int config_parse_size4096(
const char *unit,
const char *filename,
unsigned line,
const char *section,
unsigned section_line,
const char *lvalue,
int ltype,
const char *rvalue,
void *data,
void *userdata) {
uint64_t *sz = data, parsed;
int r;
assert(rvalue);
assert(data);
r = parse_size(rvalue, 1024, &parsed);
if (r < 0)
return log_syntax(unit, LOG_WARNING, filename, line, r,
"Failed to parse size value: %s", rvalue);
if (ltype > 0)
*sz = round_up_size(parsed, 4096);
else if (ltype < 0)
*sz = round_down_size(parsed, 4096);
else
*sz = parsed;
if (*sz != parsed)
log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " → %" PRIu64 ", a multiple of 4096.", lvalue, parsed, *sz);
return 0;
}
static int partition_read_definition(Partition *p, const char *path) {
ConfigTableItem table[] = {
{ "Partition", "Type", config_parse_type, 0, &p->type_uuid },
{ "Partition", "Label", config_parse_label, 0, &p->new_label },
{ "Partition", "Priority", config_parse_int32, 0, &p->priority },
{ "Partition", "Weight", config_parse_weight, 0, &p->weight },
{ "Partition", "PaddingWeight", config_parse_weight, 0, &p->padding_weight },
{ "Partition", "SizeMinBytes", config_parse_size4096, 1, &p->size_min },
{ "Partition", "SizeMaxBytes", config_parse_size4096, -1, &p->size_max },
{ "Partition", "PaddingMinBytes", config_parse_size4096, 1, &p->padding_min },
{ "Partition", "PaddingMaxBytes", config_parse_size4096, -1, &p->padding_max },
{ "Partition", "FactoryReset", config_parse_bool, 0, &p->factory_reset },
{}
};
int r;
r = config_parse(NULL, path, NULL, "Partition\0", config_item_table_lookup, table, CONFIG_PARSE_WARN, p);
if (r < 0)
return r;
if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max)
return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
"SizeMinBytes= larger than SizeMaxBytes=, refusing.");
if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max)
return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
"PaddingMinBytes= larger than PaddingMaxBytes=, refusing.");
if (sd_id128_is_null(p->type_uuid))
return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
"Type= not defined, refusing.");
return 0;
}
static int context_read_definitions(
Context *context,
const char *directory,
const char *root) {
_cleanup_strv_free_ char **files = NULL;
Partition *last = NULL;
char **f;
int r;
assert(context);
if (directory)
r = conf_files_list_strv(&files, ".conf", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) STRV_MAKE(directory));
else
r = conf_files_list_strv(&files, ".conf", root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) CONF_PATHS_STRV("repart.d"));
if (r < 0)
return log_error_errno(r, "Failed to enumerate *.conf files: %m");
STRV_FOREACH(f, files) {
_cleanup_(partition_freep) Partition *p = NULL;
p = partition_new();
if (!p)
return log_oom();
p->definition_path = strdup(*f);
if (!p->definition_path)
return log_oom();
r = partition_read_definition(p, *f);
if (r < 0)
return r;
LIST_INSERT_AFTER(partitions, context->partitions, last, p);
last = TAKE_PTR(p);
context->n_partitions++;
}
return 0;
}
DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_context*, fdisk_unref_context);
DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_partition*, fdisk_unref_partition);
DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_parttype*, fdisk_unref_parttype);
DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_table*, fdisk_unref_table);
static int determine_current_padding(
struct fdisk_context *c,
struct fdisk_table *t,
struct fdisk_partition *p,
uint64_t *ret) {
size_t n_partitions;
uint64_t offset, next = UINT64_MAX;
assert(c);
assert(t);
assert(p);
if (!fdisk_partition_has_end(p))
return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!");
offset = fdisk_partition_get_end(p);
assert(offset < UINT64_MAX / 512);
offset *= 512;
n_partitions = fdisk_table_get_nents(t);
for (size_t i = 0; i < n_partitions; i++) {
struct fdisk_partition *q;
uint64_t start;
q = fdisk_table_get_partition(t, i);
if (!q)
return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
if (fdisk_partition_is_used(q) <= 0)
continue;
if (!fdisk_partition_has_start(q))
continue;
start = fdisk_partition_get_start(q);
assert(start < UINT64_MAX / 512);
start *= 512;
if (start >= offset && (next == UINT64_MAX || next > start))
next = start;
}
if (next == UINT64_MAX) {
/* No later partition? In that case check the end of the usable area */
next = fdisk_get_last_lba(c);
assert(next < UINT64_MAX);
next++; /* The last LBA is one sector before the end */
assert(next < UINT64_MAX / 512);
next *= 512;
if (offset > next)
return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
}
assert(next >= offset);
offset = round_up_size(offset, 4096);
next = round_down_size(next, 4096);
if (next >= offset) /* Check again, rounding might have fucked things up */
*ret = next - offset;
else
*ret = 0;
return 0;
}
static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) {
_cleanup_free_ char *ids = NULL;
int r;
if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING)
return -EINVAL;
ids = new(char, ID128_UUID_STRING_MAX);
if (!ids)
return -ENOMEM;
r = fdisk_ask_string_set_result(ask, id128_to_uuid_string(*(sd_id128_t*) data, ids));
if (r < 0)
return r;
TAKE_PTR(ids);
return 0;
}
static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) {
int r;
r = fdisk_set_ask(c, fdisk_ask_cb, &id);
if (r < 0)
return r;
r = fdisk_set_disklabel_id(c);
if (r < 0)
return r;
return fdisk_set_ask(c, NULL, NULL);
}
#define DISK_UUID_TOKEN "disk-uuid"
static int disk_acquire_uuid(Context *context, sd_id128_t *ret) {
union {
unsigned char md[SHA256_DIGEST_LENGTH];
sd_id128_t id;
} result;
assert(context);
assert(ret);
/* Calculate the HMAC-SHA256 of the string "disk-uuid", keyed off the machine ID. We use the machine
* ID as key (and not as cleartext!) since it's the machine ID we don't want to leak. */
if (!HMAC(EVP_sha256(),
&context->seed, sizeof(context->seed),
(const unsigned char*) DISK_UUID_TOKEN, strlen(DISK_UUID_TOKEN),
result.md, NULL))
return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "HMAC-SHA256 calculation failed.");
/* Take the first half, mark it as v4 UUID */
assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
*ret = id128_make_v4_uuid(result.id);
return 0;
}
static int context_load_partition_table(Context *context, const char *node) {
_cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL;
_cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL;
uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors;
_cleanup_free_ char *disk_uuid_string = NULL;
bool from_scratch = false;
sd_id128_t disk_uuid;
size_t n_partitions;
int r;
assert(context);
assert(node);
c = fdisk_new_context();
if (!c)
return log_oom();
r = fdisk_assign_device(c, node, arg_dry_run);
if (r < 0)
return log_error_errno(r, "Failed to open device: %m");
/* Tell udev not to interfere while we are processing the device */
if (flock(fdisk_get_devfd(c), arg_dry_run ? LOCK_SH : LOCK_EX) < 0)
return log_error_errno(errno, "Failed to lock block device: %m");
switch (arg_empty) {
case EMPTY_REFUSE:
/* Refuse empty disks, insist on an existing GPT partition table */
if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", node);
break;
case EMPTY_REQUIRE:
/* Require an empty disk, refuse any existing partition table */
r = fdisk_has_label(c);
if (r < 0)
return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node);
if (r > 0)
return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", node);
from_scratch = true;
break;
case EMPTY_ALLOW:
/* Allow both an empty disk and an existing partition table, but only GPT */
r = fdisk_has_label(c);
if (r < 0)
return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node);
if (r > 0) {
if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", node);
} else
from_scratch = true;
break;
case EMPTY_FORCE:
/* Always reinitiaize the disk, don't consider what there was on the disk before */
from_scratch = true;
break;
}
if (from_scratch) {
r = fdisk_enable_wipe(c, true);
if (r < 0)
return log_error_errno(r, "Failed to enable wiping of disk signature: %m");
r = fdisk_create_disklabel(c, "gpt");
if (r < 0)
return log_error_errno(r, "Failed to create GPT disk label: %m");
r = disk_acquire_uuid(context, &disk_uuid);
if (r < 0)
return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid);
if (r < 0)
return log_error_errno(r, "Failed to set GPT disk label: %m");
goto add_initial_free_area;
}
r = fdisk_get_disklabel_id(c, &disk_uuid_string);
if (r < 0)
return log_error_errno(r, "Failed to get current GPT disk label UUID: %m");
r = sd_id128_from_string(disk_uuid_string, &disk_uuid);
if (r < 0)
return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m");
if (sd_id128_is_null(disk_uuid)) {
r = disk_acquire_uuid(context, &disk_uuid);
if (r < 0)
return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
r = fdisk_set_disklabel_id(c);
if (r < 0)
return log_error_errno(r, "Failed to set GPT disk label: %m");
}
r = fdisk_get_partitions(c, &t);
if (r < 0)
return log_error_errno(r, "Failed to acquire partition table: %m");
n_partitions = fdisk_table_get_nents(t);
for (size_t i = 0; i < n_partitions; i++) {
_cleanup_free_ char *label_copy = NULL;
Partition *pp, *last = NULL;
struct fdisk_partition *p;
struct fdisk_parttype *pt;
const char *pts, *ids, *label;
uint64_t sz, start;
bool found = false;
sd_id128_t ptid, id;
size_t partno;
p = fdisk_table_get_partition(t, i);
if (!p)
return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
if (fdisk_partition_is_used(p) <= 0)
continue;
if (fdisk_partition_has_start(p) <= 0 ||
fdisk_partition_has_size(p) <= 0 ||
fdisk_partition_has_partno(p) <= 0)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number.");
pt = fdisk_partition_get_type(p);
if (!pt)
return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition: %m");
pts = fdisk_parttype_get_string(pt);
if (!pts)
return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition as string: %m");
r = sd_id128_from_string(pts, &ptid);
if (r < 0)
return log_error_errno(r, "Failed to parse partition type UUID %s: %m", pts);
ids = fdisk_partition_get_uuid(p);
if (!ids)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a UUID.");
r = sd_id128_from_string(ids, &id);
if (r < 0)
return log_error_errno(r, "Failed to parse partition UUID %s: %m", ids);
label = fdisk_partition_get_name(p);
if (!isempty(label)) {
label_copy = strdup(label);
if (!label_copy)
return log_oom();
}
sz = fdisk_partition_get_size(p);
assert_se(sz <= UINT64_MAX/512);
sz *= 512;
start = fdisk_partition_get_start(p);
assert_se(start <= UINT64_MAX/512);
start *= 512;
partno = fdisk_partition_get_partno(p);
if (left_boundary == UINT64_MAX || left_boundary > start)
left_boundary = start;
/* Assign this existing partition to the first partition of the right type that doesn't have
* an existing one assigned yet. */
LIST_FOREACH(partitions, pp, context->partitions) {
last = pp;
if (!sd_id128_equal(pp->type_uuid, ptid))
continue;
if (!pp->current_partition) {
pp->current_uuid = id;
pp->current_size = sz;
pp->offset = start;
pp->partno = partno;
pp->current_label = TAKE_PTR(label_copy);
pp->current_partition = p;
fdisk_ref_partition(p);
r = determine_current_padding(c, t, p, &pp->current_padding);
if (r < 0)
return r;
if (pp->current_padding > 0) {
r = context_add_free_area(context, pp->current_padding, pp);
if (r < 0)
return r;
}
found = true;
break;
}
}
/* If we have no matching definition, create a new one. */
if (!found) {
_cleanup_(partition_freep) Partition *np = NULL;
np = partition_new();
if (!np)
return log_oom();
np->current_uuid = id;
np->type_uuid = ptid;
np->current_size = sz;
np->offset = start;
np->partno = partno;
np->current_label = TAKE_PTR(label_copy);
np->current_partition = p;
fdisk_ref_partition(p);
r = determine_current_padding(c, t, p, &np->current_padding);
if (r < 0)
return r;
if (np->current_padding > 0) {
r = context_add_free_area(context, np->current_padding, np);
if (r < 0)
return r;
}
LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np));
context->n_partitions++;
}
}
add_initial_free_area:
nsectors = fdisk_get_nsectors(c);
assert(nsectors <= UINT64_MAX/512);
nsectors *= 512;
first_lba = fdisk_get_first_lba(c);
assert(first_lba <= UINT64_MAX/512);
first_lba *= 512;
last_lba = fdisk_get_last_lba(c);
assert(last_lba < UINT64_MAX);
last_lba++;
assert(last_lba <= UINT64_MAX/512);
last_lba *= 512;
assert(last_lba >= first_lba);
if (left_boundary == UINT64_MAX) {
/* No partitions at all? Then the whole disk is up for grabs. */
first_lba = round_up_size(first_lba, 4096);
last_lba = round_down_size(last_lba, 4096);
if (last_lba > first_lba) {
r = context_add_free_area(context, last_lba - first_lba, NULL);
if (r < 0)
return r;
}
} else {
/* Add space left of first partition */
assert(left_boundary >= first_lba);
first_lba = round_up_size(first_lba, 4096);
left_boundary = round_down_size(left_boundary, 4096);
last_lba = round_down_size(last_lba, 4096);
if (left_boundary > first_lba) {
r = context_add_free_area(context, left_boundary - first_lba, NULL);
if (r < 0)
return r;
}
}
context->start = first_lba;
context->end = last_lba;
context->total = nsectors;
context->fdisk_context = TAKE_PTR(c);
return from_scratch;
}
static void context_unload_partition_table(Context *context) {
Partition *p, *next;
assert(context);
LIST_FOREACH_SAFE(partitions, p, next, context->partitions) {
/* Entirely remove partitions that have no configuration */
if (PARTITION_IS_FOREIGN(p)) {
partition_unlink_and_free(context, p);
continue;
}
/* Otherwise drop all data we read off the block device and everything we might have
* calculated based on it */
p->dropped = false;
p->current_size = UINT64_MAX;
p->new_size = UINT64_MAX;
p->current_padding = UINT64_MAX;
p->new_padding = UINT64_MAX;
p->partno = UINT64_MAX;
p->offset = UINT64_MAX;
if (p->current_partition) {
fdisk_unref_partition(p->current_partition);
p->current_partition = NULL;
}
if (p->new_partition) {
fdisk_unref_partition(p->new_partition);
p->new_partition = NULL;
}
p->padding_area = NULL;
p->allocated_to_area = NULL;
p->current_uuid = p->new_uuid = SD_ID128_NULL;
}
context->start = UINT64_MAX;
context->end = UINT64_MAX;
context->total = UINT64_MAX;
if (context->fdisk_context) {
fdisk_unref_context(context->fdisk_context);
context->fdisk_context = NULL;
}
context_free_free_areas(context);
}
static int format_size_change(uint64_t from, uint64_t to, char **ret) {
char format_buffer1[FORMAT_BYTES_MAX], format_buffer2[FORMAT_BYTES_MAX], *buf;
if (from != UINT64_MAX)
format_bytes(format_buffer1, sizeof(format_buffer1), from);
if (to != UINT64_MAX)
format_bytes(format_buffer2, sizeof(format_buffer2), to);
if (from != UINT64_MAX) {
if (from == to || to == UINT64_MAX)
buf = strdup(format_buffer1);
else
buf = strjoin(format_buffer1, " ", special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2);
} else if (to != UINT64_MAX)
buf = strjoin(special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2);
else {
*ret = NULL;
return 0;
}
if (!buf)
return log_oom();
*ret = TAKE_PTR(buf);
return 1;
}
static const char *partition_label(const Partition *p) {
assert(p);
if (p->new_label)
return p->new_label;
if (p->current_label)
return p->current_label;
return gpt_partition_type_uuid_to_string(p->type_uuid);
}
static int context_dump_partitions(Context *context, const char *node) {
_cleanup_(table_unrefp) Table *t = NULL;
uint64_t sum_padding = 0, sum_size = 0;
Partition *p;
int r;
t = table_new("type", "label", "uuid", "file", "node", "offset", "raw size", "size", "raw padding", "padding");
if (!t)
return log_oom();
if (!DEBUG_LOGGING)
(void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, (size_t) 7, (size_t) 9, (size_t) -1);
(void) table_set_align_percent(t, table_get_cell(t, 0, 4), 100);
(void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100);
LIST_FOREACH(partitions, p, context->partitions) {
_cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL;
char uuid_buffer[ID128_UUID_STRING_MAX];
const char *label;
if (p->dropped)
continue;
label = partition_label(p);
partname = p->partno != UINT64_MAX ? fdisk_partname(node, p->partno+1) : NULL;
r = format_size_change(p->current_size, p->new_size, &size_change);
if (r < 0)
return r;
r = format_size_change(p->current_padding, p->new_padding, &padding_change);
if (r < 0)
return r;
if (p->new_size != UINT64_MAX)
sum_size += p->new_size;
if (p->new_padding != UINT64_MAX)
sum_padding += p->new_padding;
r = table_add_many(
t,
TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type_uuid, uuid_buffer),
TABLE_STRING, label ?: "-", TABLE_SET_COLOR, label ? NULL : ansi_grey(),
TABLE_UUID, sd_id128_is_null(p->new_uuid) ? p->current_uuid : p->new_uuid,
TABLE_STRING, p->definition_path ? basename(p->definition_path) : "-", TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(),
TABLE_STRING, partname ?: "no", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(),
TABLE_UINT64, p->offset,
TABLE_UINT64, p->new_size,
TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL,
TABLE_UINT64, p->new_padding,
TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL);
if (r < 0)
return log_error_errno(r, "Failed to add row to table: %m");
}
if (sum_padding > 0 || sum_size > 0) {
char s[FORMAT_BYTES_MAX];
const char *a, *b;
a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_size));
b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_padding));
r = table_add_many(
t,
TABLE_EMPTY,
TABLE_EMPTY,
TABLE_EMPTY,
TABLE_EMPTY,
TABLE_EMPTY,
TABLE_EMPTY,
TABLE_EMPTY,
TABLE_STRING, a,
TABLE_EMPTY,
TABLE_STRING, b);
if (r < 0)
return log_error_errno(r, "Failed to add row to table: %m");
}
r = table_print(t, stdout);
if (r < 0)
return log_error_errno(r, "Failed to dump table: %m");
return 0;
}
static void context_bar_char_process_partition(
Context *context,
Partition *bar[],
size_t n,
Partition *p,
size_t *ret_start) {
uint64_t from, to, total;
size_t x, y;
assert(context);
assert(bar);
assert(n > 0);
assert(p);
if (p->dropped)
return;
assert(p->offset != UINT64_MAX);
assert(p->new_size != UINT64_MAX);
from = p->offset;
to = from + p->new_size;
assert(context->end >= context->start);
total = context->end - context->start;
assert(from >= context->start);
assert(from <= context->end);
x = (from - context->start) * n / total;
assert(to >= context->start);
assert(to <= context->end);
y = (to - context->start) * n / total;
assert(x <= y);
assert(y <= n);
for (size_t i = x; i < y; i++)
bar[i] = p;
*ret_start = x;
}
static int partition_hint(const Partition *p, const char *node, char **ret) {
_cleanup_free_ char *buf = NULL;
char ids[ID128_UUID_STRING_MAX];
const char *label;
sd_id128_t id;
/* Tries really hard to find a suitable description for this partition */
if (p->definition_path) {
buf = strdup(basename(p->definition_path));
goto done;
}
label = partition_label(p);
if (!isempty(label)) {
buf = strdup(label);
goto done;
}
if (p->partno != UINT64_MAX) {
buf = fdisk_partname(node, p->partno+1);
goto done;
}
if (!sd_id128_is_null(p->new_uuid))
id = p->new_uuid;
else if (!sd_id128_is_null(p->current_uuid))
id = p->current_uuid;
else
id = p->type_uuid;
buf = strdup(id128_to_uuid_string(id, ids));
done:
if (!buf)
return -ENOMEM;
*ret = TAKE_PTR(buf);
return 0;
}
static int context_dump_partition_bar(Context *context, const char *node) {
_cleanup_free_ Partition **bar = NULL;
_cleanup_free_ size_t *start_array = NULL;
Partition *p, *last = NULL;
bool z = false;
size_t c, j = 0;
assert((c = columns()) >= 2);
c -= 2; /* We do not use the leftmost and rightmost character cell */
bar = new0(Partition*, c);
if (!bar)
return log_oom();
start_array = new(size_t, context->n_partitions);
if (!start_array)
return log_oom();
LIST_FOREACH(partitions, p, context->partitions)
context_bar_char_process_partition(context, bar, c, p, start_array + j++);
putc(' ', stdout);
for (size_t i = 0; i < c; i++) {
if (bar[i]) {
if (last != bar[i])
z = !z;
fputs(z ? ansi_green() : ansi_yellow(), stdout);
fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout);
} else {
fputs(ansi_normal(), stdout);
fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout);
}
last = bar[i];
}
fputs(ansi_normal(), stdout);
putc('\n', stdout);
for (size_t i = 0; i < context->n_partitions; i++) {
_cleanup_free_ char **line = NULL;
line = new0(char*, c);
if (!line)
return log_oom();
j = 0;
LIST_FOREACH(partitions, p, context->partitions) {
_cleanup_free_ char *d = NULL;
j++;
if (i < context->n_partitions - j) {
if (line[start_array[j-1]]) {
const char *e;
/* Upgrade final corner to the right with a branch to the right */
e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT));
if (e) {
d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e);
if (!d)
return log_oom();
}
}
if (!d) {
d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL));
if (!d)
return log_oom();
}
} else if (i == context->n_partitions - j) {
_cleanup_free_ char *hint = NULL;
(void) partition_hint(p, node, &hint);
if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)))
d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint));
else
d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint));
if (!d)
return log_oom();
}
if (d)
free_and_replace(line[start_array[j-1]], d);
}
putc(' ', stdout);
j = 0;
while (j < c) {
if (line[j]) {
fputs(line[j], stdout);
j += utf8_console_width(line[j]);
} else {
putc(' ', stdout);
j++;
}
}
putc('\n', stdout);
for (j = 0; j < c; j++)
free(line[j]);
}
return 0;
}
static bool context_changed(const Context *context) {
Partition *p;
LIST_FOREACH(partitions, p, context->partitions) {
if (p->dropped)
continue;
if (p->allocated_to_area)
return true;
if (p->new_size != p->current_size)
return true;
}
return false;
}
static int context_wipe_partition(Context *context, Partition *p) {
_cleanup_(blkid_free_probep) blkid_probe probe = NULL;
int r;
assert(context);
assert(p);
assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */
probe = blkid_new_probe();
if (!probe)
return log_oom();
assert(p->offset != UINT64_MAX);
assert(p->new_size != UINT64_MAX);
errno = 0;
r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), p->offset, p->new_size);
if (r < 0)
return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for partition %" PRIu64 ".", p->partno);
errno = 0;
if (blkid_probe_enable_superblocks(probe, true) < 0 ||
blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 ||
blkid_probe_enable_partitions(probe, true) < 0 ||
blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0)
return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing for partition %" PRIu64 ".", p->partno);
for (;;) {
errno = 0;
r = blkid_do_probe(probe);
if (r < 0)
return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to probe for file systems.");
if (r > 0)
break;
errno = 0;
if (blkid_do_wipe(probe, false) < 0)
return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to wipe file system signature.");
}
log_info("Successfully wiped file system signatures from partition %" PRIu64 ".", p->partno);
return 0;
}
static int context_discard_range(Context *context, uint64_t offset, uint64_t size) {
struct stat st;
int fd;
assert(context);
assert(offset != UINT64_MAX);
assert(size != UINT64_MAX);
if (size <= 0)
return 0;
fd = fdisk_get_devfd(context->fdisk_context);
assert(fd >= 0);
if (fstat(fd, &st) < 0)
return -errno;
if (S_ISREG(st.st_mode)) {
if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) {
if (ERRNO_IS_NOT_SUPPORTED(errno))
return -EOPNOTSUPP;
return -errno;
}
return 1;
}
if (S_ISBLK(st.st_mode)) {
uint64_t range[2], end;
range[0] = round_up_size(offset, 512);
end = offset + size;
if (end <= range[0])
return 0;
range[1] = round_down_size(end - range[0], 512);
if (range[1] <= 0)
return 0;
if (ioctl(fd, BLKDISCARD, range) < 0) {
if (ERRNO_IS_NOT_SUPPORTED(errno))
return -EOPNOTSUPP;
return -errno;
}
return 1;
}
return -EOPNOTSUPP;
}
static int context_discard_partition(Context *context, Partition *p) {
int r;
assert(context);
assert(p);
assert(p->offset != UINT64_MAX);
assert(p->new_size != UINT64_MAX);
assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */
if (!arg_discard)
return 0;
r = context_discard_range(context, p->offset, p->new_size);
if (r == -EOPNOTSUPP) {
log_info("Storage does not support discarding, not discarding data in new partition %" PRIu64 ".", p->partno);
return 0;
}
if (r == 0) {
log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno);
return 0;
}
if (r < 0)
return log_error_errno(r, "Failed to discard data for new partition %" PRIu64 ".", p->partno);
log_info("Successfully discarded data from partition %" PRIu64 ".", p->partno);
return 1;
}
static int context_discard_gap_after(Context *context, Partition *p) {
uint64_t gap, next = UINT64_MAX;
Partition *q;
int r;
assert(context);
assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX));
if (p)
gap = p->offset + p->new_size;
else
gap = context->start;
LIST_FOREACH(partitions, q, context->partitions) {
if (q->dropped)
continue;
assert(q->offset != UINT64_MAX);
assert(q->new_size != UINT64_MAX);
if (q->offset < gap)
continue;
if (next == UINT64_MAX || q->offset < next)
next = q->offset;
}
if (next == UINT64_MAX) {
next = context->end;
if (gap > next)
return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
}
assert(next >= gap);
r = context_discard_range(context, gap, next - gap);
if (r == -EOPNOTSUPP) {
if (p)
log_info("Storage does not support discarding, not discarding gap after partition %" PRIu64 ".", p->partno);
else
log_info("Storage does not support discarding, not discarding gap at beginning of disk.");
return 0;
}
if (r == 0) /* Too short */
return 0;
if (r < 0) {
if (p)
return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno);
else
return log_error_errno(r, "Failed to discard gap at beginning of disk.");
}
if (p)
log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno);
else
log_info("Successfully discarded gap at beginning of disk.");
return 0;
}
static int context_wipe_and_discard(Context *context, bool from_scratch) {
Partition *p;
int r;
assert(context);
/* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if
* we were supposed to start from scratch anyway, as in that case we just discard the whole block
* device in one go early on. */
LIST_FOREACH(partitions, p, context->partitions) {
if (!p->allocated_to_area)
continue;
if (!from_scratch) {
r = context_discard_partition(context, p);
if (r < 0)
return r;
}
r = context_wipe_partition(context, p);
if (r < 0)
return r;
if (!from_scratch) {
r = context_discard_gap_after(context, p);
if (r < 0)
return r;
}
}
if (!from_scratch) {
r = context_discard_gap_after(context, NULL);
if (r < 0)
return r;
}
return 0;
}
static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) {
struct {
sd_id128_t type_uuid;
uint64_t counter;
} _packed_ plaintext = {};
union {
unsigned char md[SHA256_DIGEST_LENGTH];
sd_id128_t id;
} result;
uint64_t k = 0;
Partition *q;
int r;
assert(context);
assert(p);
assert(ret);
/* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility,
* hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely:
* HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the
* installation we are processing, but if random behaviour is desired can be random, too. We use the
* seed value as key for the HMAC (since the machine ID is something we generally don't want to leak)
* and the partition type as plaintext. The partition type is suffixed with a counter (only for the
* second and later partition of the same type) if we have more than one partition of the same
* time. Or in other words:
*
* With:
* SEED := /etc/machine-id
*
* If first partition instance of type TYPE_UUID:
* PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID)
*
* For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number:
* PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE)
*/
LIST_FOREACH(partitions, q, context->partitions) {
if (p == q)
break;
if (!sd_id128_equal(p->type_uuid, q->type_uuid))
continue;
k++;
}
plaintext.type_uuid = p->type_uuid;
plaintext.counter = htole64(k);
if (!HMAC(EVP_sha256(),
&context->seed, sizeof(context->seed),
(const unsigned char*) &plaintext, k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext),
result.md, NULL))
return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "SHA256 calculation failed.");
/* Take the first half, mark it as v4 UUID */
assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
result.id = id128_make_v4_uuid(result.id);
/* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */
LIST_FOREACH(partitions, q, context->partitions) {
if (p == q)
continue;
if (sd_id128_equal(q->current_uuid, result.id) ||
sd_id128_equal(q->new_uuid, result.id)) {
log_warning("Partition UUID calculated from seed for partition %" PRIu64 " exists already, reverting to randomized UUID.", p->partno);
r = sd_id128_randomize(&result.id);
if (r < 0)
return log_error_errno(r, "Failed to generate randomized UUID: %m");
break;
}
}
*ret = result.id;
return 0;
}
static int partition_acquire_label(Context *context, Partition *p, char **ret) {
_cleanup_free_ char *label = NULL;
const char *prefix;
unsigned k = 1;
assert(context);
assert(p);
assert(ret);
prefix = gpt_partition_type_uuid_to_string(p->type_uuid);
if (!prefix)
prefix = "linux";
for (;;) {
const char *ll = label ?: prefix;
bool retry = false;
Partition *q;
LIST_FOREACH(partitions, q, context->partitions) {
if (p == q)
break;
if (streq_ptr(ll, q->current_label) ||
streq_ptr(ll, q->new_label)) {
retry = true;
break;
}
}
if (!retry)
break;
label = mfree(label);
if (asprintf(&label, "%s-%u", prefix, ++k) < 0)
return log_oom();
}
if (!label) {
label = strdup(prefix);
if (!label)
return log_oom();
}
*ret = TAKE_PTR(label);
return 0;
}
static int context_acquire_partition_uuids_and_labels(Context *context) {
Partition *p;
int r;
assert(context);
LIST_FOREACH(partitions, p, context->partitions) {
assert(sd_id128_is_null(p->new_uuid));
assert(!p->new_label);
/* Never touch foreign partitions */
if (PARTITION_IS_FOREIGN(p)) {
p->new_uuid = p->current_uuid;
if (p->current_label) {
p->new_label = strdup(p->current_label);
if (!p->new_label)
return log_oom();
}
continue;
}
if (!sd_id128_is_null(p->current_uuid))
p->new_uuid = p->current_uuid; /* Never change initialized UUIDs */
else {
r = partition_acquire_uuid(context, p, &p->new_uuid);
if (r < 0)
return r;
}
if (!isempty(p->current_label)) {
p->new_label = strdup(p->current_label); /* never change initialized labels */
if (!p->new_label)
return log_oom();
} else {
r = partition_acquire_label(context, p, &p->new_label);
if (r < 0)
return r;
}
}
return 0;
}
static int device_kernel_partitions_supported(int fd) {
struct loop_info64 info;
struct stat st;
assert(fd >= 0);
if (fstat(fd, &st) < 0)
return log_error_errno(fd, "Failed to fstat() image file: %m");
if (!S_ISBLK(st.st_mode))
return false;
if (ioctl(fd, LOOP_GET_STATUS64, &info) < 0) {
if (ERRNO_IS_NOT_SUPPORTED(errno) || errno == EINVAL)
return true; /* not a loopback device, let's assume partition are supported */
return log_error_errno(fd, "Failed to issue LOOP_GET_STATUS64 on block device: %m");
}
#if HAVE_VALGRIND_MEMCHECK_H
/* Valgrind currently doesn't know LOOP_GET_STATUS64. Remove this once it does */
VALGRIND_MAKE_MEM_DEFINED(&info, sizeof(info));
#endif
return FLAGS_SET(info.lo_flags, LO_FLAGS_PARTSCAN);
}
static int context_write_partition_table(
Context *context,
const char *node,
bool from_scratch) {
_cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL;
int capable, r;
Partition *p;
assert(context);
if (arg_pretty > 0 ||
(arg_pretty < 0 && isatty(STDOUT_FILENO) > 0)) {
if (context->n_partitions == 0)
puts("Empty partition table.");
else
(void) context_dump_partitions(context, node);
putc('\n', stdout);
(void) context_dump_partition_bar(context, node);
putc('\n', stdout);
fflush(stdout);
}
if (!from_scratch && !context_changed(context)) {
log_info("No changes.");
return 0;
}
if (arg_dry_run) {
log_notice("Refusing to repartition, please re-run with --dry-run=no.");
return 0;
}
log_info("Applying changes.");
if (from_scratch) {
r = context_discard_range(context, 0, context->total);
if (r == -EOPNOTSUPP)
log_info("Storage does not support discarding, not discarding entire block device data.");
else if (r < 0)
return log_error_errno(r, "Failed to discard entire block device: %m");
else if (r > 0)
log_info("Discarded entire block device.");
}
r = fdisk_get_partitions(context->fdisk_context, &original_table);
if (r < 0)
return log_error_errno(r, "Failed to acquire partition table: %m");
/* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the
* gaps between partitions, just to be sure. */
r = context_wipe_and_discard(context, from_scratch);
if (r < 0)
return r;
LIST_FOREACH(partitions, p, context->partitions) {
if (p->dropped)
continue;
assert(p->new_size != UINT64_MAX);
assert(p->offset != UINT64_MAX);
assert(p->partno != UINT64_MAX);
if (PARTITION_EXISTS(p)) {
bool changed = false;
assert(p->current_partition);
if (p->new_size != p->current_size) {
assert(p->new_size >= p->current_size);
assert(p->new_size % 512 == 0);
r = fdisk_partition_size_explicit(p->current_partition, true);
if (r < 0)
return log_error_errno(r, "Failed to enable explicit sizing: %m");
r = fdisk_partition_set_size(p->current_partition, p->new_size / 512);
if (r < 0)
return log_error_errno(r, "Failed to grow partition: %m");
log_info("Growing existing partition %" PRIu64 ".", p->partno);
changed = true;
}
if (!sd_id128_equal(p->new_uuid, p->current_uuid)) {
char buf[ID128_UUID_STRING_MAX];
assert(!sd_id128_is_null(p->new_uuid));
r = fdisk_partition_set_uuid(p->current_partition, id128_to_uuid_string(p->new_uuid, buf));
if (r < 0)
return log_error_errno(r, "Failed to set partition UUID: %m");
log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno);
changed = true;
}
if (!streq_ptr(p->new_label, p->current_label)) {
assert(!isempty(p->new_label));
r = fdisk_partition_set_name(p->current_partition, p->new_label);
if (r < 0)
return log_error_errno(r, "Failed to set partition label: %m");
log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno);
changed = true;
}
if (changed) {
assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */
r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition);
if (r < 0)
return log_error_errno(r, "Failed to update partition: %m");
}
} else {
_cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL;
_cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL;
char ids[ID128_UUID_STRING_MAX];
assert(!p->new_partition);
assert(p->offset % 512 == 0);
assert(p->new_size % 512 == 0);
assert(!sd_id128_is_null(p->new_uuid));
assert(!isempty(p->new_label));
t = fdisk_new_parttype();
if (!t)
return log_oom();
r = fdisk_parttype_set_typestr(t, id128_to_uuid_string(p->type_uuid, ids));
if (r < 0)
return log_error_errno(r, "Failed to initialize partition type: %m");
q = fdisk_new_partition();
if (!q)
return log_oom();
r = fdisk_partition_set_type(q, t);
if (r < 0)
return log_error_errno(r, "Failed to set partition type: %m");
r = fdisk_partition_size_explicit(q, true);
if (r < 0)
return log_error_errno(r, "Failed to enable explicit sizing: %m");
r = fdisk_partition_set_start(q, p->offset / 512);
if (r < 0)
return log_error_errno(r, "Failed to position partition: %m");
r = fdisk_partition_set_size(q, p->new_size / 512);
if (r < 0)
return log_error_errno(r, "Failed to grow partition: %m");
r = fdisk_partition_set_partno(q, p->partno);
if (r < 0)
return log_error_errno(r, "Failed to set partition number: %m");
r = fdisk_partition_set_uuid(q, id128_to_uuid_string(p->new_uuid, ids));
if (r < 0)
return log_error_errno(r, "Failed to set partition UUID: %m");
r = fdisk_partition_set_name(q, p->new_label);
if (r < 0)
return log_error_errno(r, "Failed to set partition label: %m");
log_info("Creating new partition %" PRIu64 ".", p->partno);
r = fdisk_add_partition(context->fdisk_context, q, NULL);
if (r < 0)
return log_error_errno(r, "Failed to add partition: %m");
assert(!p->new_partition);
p->new_partition = TAKE_PTR(q);
}
}
log_info("Writing new partition table.");
r = fdisk_write_disklabel(context->fdisk_context);
if (r < 0)
return log_error_errno(r, "Failed to write partition table: %m");
capable = device_kernel_partitions_supported(fdisk_get_devfd(context->fdisk_context));
if (capable < 0)
return capable;
if (capable > 0) {
log_info("Telling kernel to reread partition table.");
if (from_scratch)
r = fdisk_reread_partition_table(context->fdisk_context);
else
r = fdisk_reread_changes(context->fdisk_context, original_table);
if (r < 0)
return log_error_errno(r, "Failed to reread partition table: %m");
} else
log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices.");
log_info("All done.");
return 0;
}
static int context_read_seed(Context *context, const char *root) {
int r;
assert(context);
if (!sd_id128_is_null(context->seed))
return 0;
if (!arg_randomize) {
_cleanup_close_ int fd = -1;
fd = chase_symlinks_and_open("/etc/machine-id", root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC, NULL);
if (fd == -ENOENT)
log_info("No machine ID set, using randomized partition UUIDs.");
else if (fd < 0)
return log_error_errno(fd, "Failed to determine machine ID of image: %m");
else {
r = id128_read_fd(fd, ID128_PLAIN, &context->seed);
if (r == -ENOMEDIUM)
log_info("No machine ID set, using randomized partition UUIDs.");
else if (r < 0)
return log_error_errno(r, "Failed to parse machine ID of image: %m");
return 0;
}
}
r = sd_id128_randomize(&context->seed);
if (r < 0)
return log_error_errno(r, "Failed to generate randomized seed: %m");
return 0;
}
static int context_factory_reset(Context *context, bool from_scratch) {
Partition *p;
size_t n = 0;
int r;
assert(context);
if (arg_factory_reset <= 0)
return 0;
if (from_scratch) /* Nothing to reset if we start from scratch */
return 0;
if (arg_dry_run) {
log_notice("Refusing to factory reset, please re-run with --dry-run=no.");
return 0;
}
log_info("Applying factory reset.");
LIST_FOREACH(partitions, p, context->partitions) {
if (!p->factory_reset || !PARTITION_EXISTS(p))
continue;
assert(p->partno != UINT64_MAX);
log_info("Removing partition %" PRIu64 " for factory reset.", p->partno);
r = fdisk_delete_partition(context->fdisk_context, p->partno);
if (r < 0)
return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno);
n++;
}
if (n == 0) {
log_info("Factory reset requested, but no partitions to delete found.");
return 0;
}
r = fdisk_write_disklabel(context->fdisk_context);
if (r < 0)
return log_error_errno(r, "Failed to write disk label: %m");
log_info("Successfully deleted %zu partitions.", n);
return 1;
}
static int context_can_factory_reset(Context *context) {
Partition *p;
assert(context);
LIST_FOREACH(partitions, p, context->partitions)
if (p->factory_reset && PARTITION_EXISTS(p))
return true;
return false;
}
static int help(void) {
_cleanup_free_ char *link = NULL;
int r;
r = terminal_urlify_man("systemd-repart", "1", &link);
if (r < 0)
return log_oom();
printf("%s [OPTIONS...] [DEVICE]\n"
"\n%sGrow and add partitions to partition table.%s\n\n"
" -h --help Show this help\n"
" --version Show package version\n"
" --dry-run=BOOL Whether to run dry-run operation\n"
" --empty=MODE One of refuse, allow, require, force; controls how to\n"
" handle empty disks lacking partition table\n"
" --discard=BOOL Whether to discard backing blocks for new partitions\n"
" --pretty=BOOL Whether to show pretty summary before executing operation\n"
" --factory-reset=BOOL Whether to remove data partitions before recreating\n"
" them\n"
" --can-factory-reset Test whether factory reset is defined\n"
" --root=PATH Operate relative to root path\n"
" --definitions=DIR Find partitions in specified directory\n"
" --seed=UUID 128bit seed UUID to derive all UUIDs from\n"
"\nSee the %s for details.\n"
, program_invocation_short_name
, ansi_highlight(), ansi_normal()
, link
);
return 0;
}
static int parse_argv(int argc, char *argv[]) {
enum {
ARG_VERSION = 0x100,
ARG_DRY_RUN,
ARG_EMPTY,
ARG_DISCARD,
ARG_FACTORY_RESET,
ARG_CAN_FACTORY_RESET,
ARG_ROOT,
ARG_SEED,
ARG_PRETTY,
ARG_DEFINITIONS,
};
static const struct option options[] = {
{ "help", no_argument, NULL, 'h' },
{ "version", no_argument, NULL, ARG_VERSION },
{ "dry-run", required_argument, NULL, ARG_DRY_RUN },
{ "empty", required_argument, NULL, ARG_EMPTY },
{ "discard", required_argument, NULL, ARG_DISCARD },
{ "factory-reset", required_argument, NULL, ARG_FACTORY_RESET },
{ "can-factory-reset", no_argument, NULL, ARG_CAN_FACTORY_RESET },
{ "root", required_argument, NULL, ARG_ROOT },
{ "seed", required_argument, NULL, ARG_SEED },
{ "pretty", required_argument, NULL, ARG_PRETTY },
{ "definitions", required_argument, NULL, ARG_DEFINITIONS },
{}
};
int c, r;
assert(argc >= 0);
assert(argv);
while ((c = getopt_long(argc, argv, "h", options, NULL)) >= 0)
switch (c) {
case 'h':
return help();
case ARG_VERSION:
return version();
case ARG_DRY_RUN:
r = parse_boolean(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse --dry-run= parameter: %s", optarg);
arg_dry_run = r;
break;
case ARG_EMPTY:
if (isempty(optarg) || streq(optarg, "refuse"))
arg_empty = EMPTY_REFUSE;
else if (streq(optarg, "allow"))
arg_empty = EMPTY_ALLOW;
else if (streq(optarg, "require"))
arg_empty = EMPTY_REQUIRE;
else if (streq(optarg, "force"))
arg_empty = EMPTY_FORCE;
else
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"Failed to parse --empty= parameter: %s", optarg);
break;
case ARG_DISCARD:
r = parse_boolean(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse --discard= parameter: %s", optarg);
arg_discard = r;
break;
case ARG_FACTORY_RESET:
r = parse_boolean(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse --factory-reset= parameter: %s", optarg);
arg_factory_reset = r;
break;
case ARG_CAN_FACTORY_RESET:
arg_can_factory_reset = true;
break;
case ARG_ROOT:
r = parse_path_argument_and_warn(optarg, false, &arg_root);
if (r < 0)
return r;
break;
case ARG_SEED:
if (isempty(optarg)) {
arg_seed = SD_ID128_NULL;
arg_randomize = false;
} else if (streq(optarg, "random"))
arg_randomize = true;
else {
r = sd_id128_from_string(optarg, &arg_seed);
if (r < 0)
return log_error_errno(r, "Failed to parse seed: %s", optarg);
arg_randomize = false;
}
break;
case ARG_PRETTY:
r = parse_boolean(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse --pretty= parameter: %s", optarg);
arg_pretty = r;
break;
case ARG_DEFINITIONS:
r = parse_path_argument_and_warn(optarg, false, &arg_definitions);
if (r < 0)
return r;
break;
case '?':
return -EINVAL;
default:
assert_not_reached("Unhandled option");
}
if (argc - optind > 1)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"Expected at most one argument, the path to the block device.");
if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE))
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"Combination of --factory-reset=yes and --empty=force/--empty=require is invalid.");
if (arg_can_factory_reset)
arg_dry_run = true;
arg_node = argc > optind ? argv[optind] : NULL;
return 1;
}
static int parse_proc_cmdline_factory_reset(void) {
bool b;
int r;
if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
return 0;
if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */
return 0;
r = proc_cmdline_get_bool("systemd.factory_reset", &b);
if (r < 0)
return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m");
if (r > 0) {
arg_factory_reset = b;
if (b)
log_notice("Honouring factory reset requested via kernel command line.");
}
return 0;
}
static int parse_efi_variable_factory_reset(void) {
_cleanup_free_ char *value = NULL;
int r;
if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
return 0;
if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */
return 0;
r = efi_get_variable_string(EFI_VENDOR_SYSTEMD, "FactoryReset", &value);
if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
return 0;
if (r < 0)
return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m");
r = parse_boolean(value);
if (r < 0)
return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m");
arg_factory_reset = r;
if (r)
log_notice("Honouring factory reset requested via EFI variable FactoryReset: %m");
return 0;
}
static int remove_efi_variable_factory_reset(void) {
int r;
r = efi_set_variable(EFI_VENDOR_SYSTEMD, "FactoryReset", NULL, 0);
if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
return 0;
if (r < 0)
return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m");
log_info("Successfully unset EFI variable FactoryReset.");
return 0;
}
static int acquire_root_devno(const char *p, int mode, char **ret) {
_cleanup_close_ int fd = -1;
struct stat st;
dev_t devno;
int r;
fd = open(p, mode);
if (fd < 0)
return -errno;
if (fstat(fd, &st) < 0)
return -errno;
if (S_ISREG(st.st_mode)) {
char *s;
s = strdup(p);
if (!s)
return log_oom();
*ret = s;
return 0;
}
if (S_ISBLK(st.st_mode))
devno = st.st_rdev;
else if (S_ISDIR(st.st_mode)) {
devno = st.st_dev;
if (major(st.st_dev) == 0) {
r = btrfs_get_block_device_fd(fd, &devno);
if (r == -ENOTTY) /* not btrfs */
return -ENODEV;
if (r < 0)
return r;
}
} else
return -ENOTBLK;
/* From dm-crypt to backing partition */
r = block_get_originating(devno, &devno);
if (r < 0)
log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p);
/* From partition to whole disk containing it */
r = block_get_whole_disk(devno, &devno);
if (r < 0)
log_debug_errno(r, "Failed to find whole disk block device for '%s', ingoring: %m", p);
return device_path_make_canonical(S_IFBLK, devno, ret);
}
static int find_root(char **ret) {
const char *t;
int r;
if (arg_node) {
r = acquire_root_devno(arg_node, O_RDONLY|O_CLOEXEC, ret);
if (r < 0)
return log_error_errno(r, "Failed to determine backing device of %s: %m", arg_node);
return 0;
}
/* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The
* latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device
* (think: volatile setups) */
FOREACH_STRING(t, "/", "/usr") {
_cleanup_free_ char *j = NULL;
const char *p;
if (in_initrd()) {
j = path_join("/sysroot", t);
if (!j)
return log_oom();
p = j;
} else
p = t;
r = acquire_root_devno(p, O_RDONLY|O_DIRECTORY|O_CLOEXEC, ret);
if (r < 0) {
if (r != -ENODEV)
return log_error_errno(r, "Failed to determine backing device of %s: %m", p);
} else
return 0;
}
return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device.");
}
static int run(int argc, char *argv[]) {
_cleanup_(context_freep) Context* context = NULL;
_cleanup_free_ char *node = NULL;
bool from_scratch;
int r;
log_show_color(true);
log_parse_environment();
log_open();
if (in_initrd()) {
/* Default to operation on /sysroot when invoked in the initrd! */
arg_root = strdup("/sysroot");
if (!arg_root)
return log_oom();
}
r = parse_argv(argc, argv);
if (r <= 0)
return r;
r = parse_proc_cmdline_factory_reset();
if (r < 0)
return r;
r = parse_efi_variable_factory_reset();
if (r < 0)
return r;
context = context_new(arg_seed);
if (!context)
return log_oom();
r = context_read_definitions(context, arg_definitions, arg_root);
if (r < 0)
return r;
if (context->n_partitions <= 0 && arg_empty != EMPTY_FORCE)
return 0;
r = find_root(&node);
if (r < 0)
return r;
r = context_load_partition_table(context, node);
if (r == -EHWPOISON)
return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't
* really an error when called at boot. */
if (r < 0)
return r;
from_scratch = r > 0; /* Starting from scratch */
if (arg_can_factory_reset) {
r = context_can_factory_reset(context);
if (r < 0)
return r;
if (r == 0)
return EXIT_FAILURE;
return 0;
}
r = context_factory_reset(context, from_scratch);
if (r < 0)
return r;
if (r > 0) {
/* We actually did a factory reset! */
r = remove_efi_variable_factory_reset();
if (r < 0)
return r;
/* Reload the reduced partition table */
context_unload_partition_table(context);
r = context_load_partition_table(context, node);
if (r < 0)
return r;
}
#if 0
(void) context_dump_partitions(context, node);
putchar('\n');
#endif
r = context_read_seed(context, arg_root);
if (r < 0)
return r;
/* First try to fit new partitions in, dropping by priority until it fits */
for (;;) {
if (context_allocate_partitions(context))
break; /* Success! */
if (!context_drop_one_priority(context))
return log_error_errno(SYNTHETIC_ERRNO(ENOSPC),
"Can't fit requested partitions into free space, refusing.");
}
/* Now assign free space according to the weight logic */
r = context_grow_partitions(context);
if (r < 0)
return r;
/* Now calculate where each partition gets placed */
context_place_partitions(context);
/* Make sure each partition has a unique UUID and unique label */
r = context_acquire_partition_uuids_and_labels(context);
if (r < 0)
return r;
r = context_write_partition_table(context, node, from_scratch);
if (r < 0)
return r;
return 0;
}
DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run);