| /* SPDX-License-Identifier: LGPL-2.1+ */ |
| |
| #include <fcntl.h> |
| |
| #include "sd-messages.h" |
| |
| #include "alloc-util.h" |
| #include "blockdev-util.h" |
| #include "bpf-devices.h" |
| #include "bpf-firewall.h" |
| #include "btrfs-util.h" |
| #include "bus-error.h" |
| #include "cgroup-setup.h" |
| #include "cgroup-util.h" |
| #include "cgroup.h" |
| #include "fd-util.h" |
| #include "fileio.h" |
| #include "fs-util.h" |
| #include "limits-util.h" |
| #include "parse-util.h" |
| #include "path-util.h" |
| #include "process-util.h" |
| #include "procfs-util.h" |
| #include "special.h" |
| #include "stat-util.h" |
| #include "stdio-util.h" |
| #include "string-table.h" |
| #include "string-util.h" |
| #include "virt.h" |
| |
| #define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC) |
| |
| /* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access |
| * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask |
| * out specific attributes from us. */ |
| #define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING) |
| |
| uint64_t tasks_max_resolve(const TasksMax *tasks_max) { |
| if (tasks_max->scale == 0) |
| return tasks_max->value; |
| |
| return system_tasks_max_scale(tasks_max->value, tasks_max->scale); |
| } |
| |
| bool manager_owns_host_root_cgroup(Manager *m) { |
| assert(m); |
| |
| /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the |
| * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's |
| * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if |
| * we run in any kind of container virtualization. */ |
| |
| if (MANAGER_IS_USER(m)) |
| return false; |
| |
| if (detect_container() > 0) |
| return false; |
| |
| return empty_or_root(m->cgroup_root); |
| } |
| |
| bool unit_has_host_root_cgroup(Unit *u) { |
| assert(u); |
| |
| /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and |
| * the manager manages the root cgroup. */ |
| |
| if (!manager_owns_host_root_cgroup(u->manager)) |
| return false; |
| |
| return unit_has_name(u, SPECIAL_ROOT_SLICE); |
| } |
| |
| static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) { |
| int r; |
| |
| r = cg_set_attribute(controller, u->cgroup_path, attribute, value); |
| if (r < 0) |
| log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m", |
| strna(attribute), isempty(u->cgroup_path) ? "/" : u->cgroup_path, (int) strcspn(value, NEWLINE), value); |
| |
| return r; |
| } |
| |
| static void cgroup_compat_warn(void) { |
| static bool cgroup_compat_warned = false; |
| |
| if (cgroup_compat_warned) |
| return; |
| |
| log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. " |
| "See cgroup-compat debug messages for details."); |
| |
| cgroup_compat_warned = true; |
| } |
| |
| #define log_cgroup_compat(unit, fmt, ...) do { \ |
| cgroup_compat_warn(); \ |
| log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \ |
| } while (false) |
| |
| void cgroup_context_init(CGroupContext *c) { |
| assert(c); |
| |
| /* Initialize everything to the kernel defaults. */ |
| |
| *c = (CGroupContext) { |
| .cpu_weight = CGROUP_WEIGHT_INVALID, |
| .startup_cpu_weight = CGROUP_WEIGHT_INVALID, |
| .cpu_quota_per_sec_usec = USEC_INFINITY, |
| .cpu_quota_period_usec = USEC_INFINITY, |
| |
| .cpu_shares = CGROUP_CPU_SHARES_INVALID, |
| .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID, |
| |
| .memory_high = CGROUP_LIMIT_MAX, |
| .memory_max = CGROUP_LIMIT_MAX, |
| .memory_swap_max = CGROUP_LIMIT_MAX, |
| |
| .memory_limit = CGROUP_LIMIT_MAX, |
| |
| .io_weight = CGROUP_WEIGHT_INVALID, |
| .startup_io_weight = CGROUP_WEIGHT_INVALID, |
| |
| .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID, |
| .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID, |
| |
| .tasks_max = TASKS_MAX_UNSET, |
| }; |
| } |
| |
| void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) { |
| assert(c); |
| assert(a); |
| |
| LIST_REMOVE(device_allow, c->device_allow, a); |
| free(a->path); |
| free(a); |
| } |
| |
| void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) { |
| assert(c); |
| assert(w); |
| |
| LIST_REMOVE(device_weights, c->io_device_weights, w); |
| free(w->path); |
| free(w); |
| } |
| |
| void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) { |
| assert(c); |
| assert(l); |
| |
| LIST_REMOVE(device_latencies, c->io_device_latencies, l); |
| free(l->path); |
| free(l); |
| } |
| |
| void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) { |
| assert(c); |
| assert(l); |
| |
| LIST_REMOVE(device_limits, c->io_device_limits, l); |
| free(l->path); |
| free(l); |
| } |
| |
| void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) { |
| assert(c); |
| assert(w); |
| |
| LIST_REMOVE(device_weights, c->blockio_device_weights, w); |
| free(w->path); |
| free(w); |
| } |
| |
| void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) { |
| assert(c); |
| assert(b); |
| |
| LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b); |
| free(b->path); |
| free(b); |
| } |
| |
| void cgroup_context_done(CGroupContext *c) { |
| assert(c); |
| |
| while (c->io_device_weights) |
| cgroup_context_free_io_device_weight(c, c->io_device_weights); |
| |
| while (c->io_device_latencies) |
| cgroup_context_free_io_device_latency(c, c->io_device_latencies); |
| |
| while (c->io_device_limits) |
| cgroup_context_free_io_device_limit(c, c->io_device_limits); |
| |
| while (c->blockio_device_weights) |
| cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights); |
| |
| while (c->blockio_device_bandwidths) |
| cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths); |
| |
| while (c->device_allow) |
| cgroup_context_free_device_allow(c, c->device_allow); |
| |
| c->ip_address_allow = ip_address_access_free_all(c->ip_address_allow); |
| c->ip_address_deny = ip_address_access_free_all(c->ip_address_deny); |
| |
| c->ip_filters_ingress = strv_free(c->ip_filters_ingress); |
| c->ip_filters_egress = strv_free(c->ip_filters_egress); |
| |
| cpu_set_reset(&c->cpuset_cpus); |
| cpu_set_reset(&c->cpuset_mems); |
| } |
| |
| static int unit_get_kernel_memory_limit(Unit *u, const char *file, uint64_t *ret) { |
| _cleanup_free_ char *raw_kval = NULL; |
| uint64_t kval; |
| int r; |
| |
| assert(u); |
| |
| if (!u->cgroup_realized) |
| return -EOWNERDEAD; |
| |
| r = cg_get_attribute("memory", u->cgroup_path, file, &raw_kval); |
| if (r < 0) |
| return r; |
| |
| if (streq(raw_kval, "max")) { |
| *ret = CGROUP_LIMIT_MAX; |
| return 0; |
| } |
| |
| r = safe_atou64(raw_kval, &kval); |
| if (r < 0) |
| return r; |
| |
| *ret = kval; |
| |
| return 0; |
| } |
| |
| static int unit_compare_memory_limit(Unit *u, const char *property_name, uint64_t *ret_unit_value, uint64_t *ret_kernel_value) { |
| CGroupContext *c; |
| CGroupMask m; |
| const char *file; |
| uint64_t unit_value; |
| int r; |
| |
| /* Compare kernel memcg configuration against our internal systemd state. Unsupported (and will |
| * return -ENODATA) on cgroup v1. |
| * |
| * Returns: |
| * |
| * <0: On error. |
| * 0: If the kernel memory setting doesn't match our configuration. |
| * >0: If the kernel memory setting matches our configuration. |
| * |
| * The following values are only guaranteed to be populated on return >=0: |
| * |
| * - ret_unit_value will contain our internal expected value for the unit, page-aligned. |
| * - ret_kernel_value will contain the actual value presented by the kernel. */ |
| |
| assert(u); |
| |
| r = cg_all_unified(); |
| if (r < 0) |
| return log_debug_errno(r, "Failed to determine cgroup hierarchy version: %m"); |
| |
| /* Unsupported on v1. |
| * |
| * We don't return ENOENT, since that could actually mask a genuine problem where somebody else has |
| * silently masked the controller. */ |
| if (r == 0) |
| return -ENODATA; |
| |
| /* The root slice doesn't have any controller files, so we can't compare anything. */ |
| if (unit_has_name(u, SPECIAL_ROOT_SLICE)) |
| return -ENODATA; |
| |
| /* It's possible to have MemoryFoo set without systemd wanting to have the memory controller enabled, |
| * for example, in the case of DisableControllers= or cgroup_disable on the kernel command line. To |
| * avoid specious errors in these scenarios, check that we even expect the memory controller to be |
| * enabled at all. */ |
| m = unit_get_target_mask(u); |
| if (!FLAGS_SET(m, CGROUP_MASK_MEMORY)) |
| return -ENODATA; |
| |
| c = unit_get_cgroup_context(u); |
| assert(c); |
| |
| if (streq(property_name, "MemoryLow")) { |
| unit_value = unit_get_ancestor_memory_low(u); |
| file = "memory.low"; |
| } else if (streq(property_name, "MemoryMin")) { |
| unit_value = unit_get_ancestor_memory_min(u); |
| file = "memory.min"; |
| } else if (streq(property_name, "MemoryHigh")) { |
| unit_value = c->memory_high; |
| file = "memory.high"; |
| } else if (streq(property_name, "MemoryMax")) { |
| unit_value = c->memory_max; |
| file = "memory.max"; |
| } else if (streq(property_name, "MemorySwapMax")) { |
| unit_value = c->memory_swap_max; |
| file = "memory.swap.max"; |
| } else |
| return -EINVAL; |
| |
| r = unit_get_kernel_memory_limit(u, file, ret_kernel_value); |
| if (r < 0) |
| return log_unit_debug_errno(u, r, "Failed to parse %s: %m", file); |
| |
| /* It's intended (soon) in a future kernel to not expose cgroup memory limits rounded to page |
| * boundaries, but instead separate the user-exposed limit, which is whatever userspace told us, from |
| * our internal page-counting. To support those future kernels, just check the value itself first |
| * without any page-alignment. */ |
| if (*ret_kernel_value == unit_value) { |
| *ret_unit_value = unit_value; |
| return 1; |
| } |
| |
| /* The current kernel behaviour, by comparison, is that even if you write a particular number of |
| * bytes into a cgroup memory file, it always returns that number page-aligned down (since the kernel |
| * internally stores cgroup limits in pages). As such, so long as it aligns properly, everything is |
| * cricket. */ |
| if (unit_value != CGROUP_LIMIT_MAX) |
| unit_value = PAGE_ALIGN_DOWN(unit_value); |
| |
| *ret_unit_value = unit_value; |
| |
| return *ret_kernel_value == *ret_unit_value; |
| } |
| |
| #define FORMAT_CGROUP_DIFF_MAX 128 |
| |
| static char *format_cgroup_memory_limit_comparison(char *buf, size_t l, Unit *u, const char *property_name) { |
| uint64_t kval, sval; |
| int r; |
| |
| assert(u); |
| assert(buf); |
| assert(l > 0); |
| |
| r = unit_compare_memory_limit(u, property_name, &sval, &kval); |
| |
| /* memory.swap.max is special in that it relies on CONFIG_MEMCG_SWAP (and the default swapaccount=1). |
| * In the absence of reliably being able to detect whether memcg swap support is available or not, |
| * only complain if the error is not ENOENT. */ |
| if (r > 0 || IN_SET(r, -ENODATA, -EOWNERDEAD) || |
| (r == -ENOENT && streq(property_name, "MemorySwapMax"))) { |
| buf[0] = 0; |
| return buf; |
| } |
| |
| if (r < 0) { |
| snprintf(buf, l, " (error getting kernel value: %s)", strerror_safe(r)); |
| return buf; |
| } |
| |
| snprintf(buf, l, " (different value in kernel: %" PRIu64 ")", kval); |
| |
| return buf; |
| } |
| |
| void cgroup_context_dump(Unit *u, FILE* f, const char *prefix) { |
| _cleanup_free_ char *disable_controllers_str = NULL, *cpuset_cpus = NULL, *cpuset_mems = NULL; |
| CGroupIODeviceLimit *il; |
| CGroupIODeviceWeight *iw; |
| CGroupIODeviceLatency *l; |
| CGroupBlockIODeviceBandwidth *b; |
| CGroupBlockIODeviceWeight *w; |
| CGroupDeviceAllow *a; |
| CGroupContext *c; |
| IPAddressAccessItem *iaai; |
| char **path; |
| char q[FORMAT_TIMESPAN_MAX]; |
| char v[FORMAT_TIMESPAN_MAX]; |
| |
| char cda[FORMAT_CGROUP_DIFF_MAX]; |
| char cdb[FORMAT_CGROUP_DIFF_MAX]; |
| char cdc[FORMAT_CGROUP_DIFF_MAX]; |
| char cdd[FORMAT_CGROUP_DIFF_MAX]; |
| char cde[FORMAT_CGROUP_DIFF_MAX]; |
| |
| assert(u); |
| assert(f); |
| |
| c = unit_get_cgroup_context(u); |
| assert(c); |
| |
| prefix = strempty(prefix); |
| |
| (void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str); |
| |
| cpuset_cpus = cpu_set_to_range_string(&c->cpuset_cpus); |
| cpuset_mems = cpu_set_to_range_string(&c->cpuset_mems); |
| |
| fprintf(f, |
| "%sCPUAccounting: %s\n" |
| "%sIOAccounting: %s\n" |
| "%sBlockIOAccounting: %s\n" |
| "%sMemoryAccounting: %s\n" |
| "%sTasksAccounting: %s\n" |
| "%sIPAccounting: %s\n" |
| "%sCPUWeight: %" PRIu64 "\n" |
| "%sStartupCPUWeight: %" PRIu64 "\n" |
| "%sCPUShares: %" PRIu64 "\n" |
| "%sStartupCPUShares: %" PRIu64 "\n" |
| "%sCPUQuotaPerSecSec: %s\n" |
| "%sCPUQuotaPeriodSec: %s\n" |
| "%sAllowedCPUs: %s\n" |
| "%sAllowedMemoryNodes: %s\n" |
| "%sIOWeight: %" PRIu64 "\n" |
| "%sStartupIOWeight: %" PRIu64 "\n" |
| "%sBlockIOWeight: %" PRIu64 "\n" |
| "%sStartupBlockIOWeight: %" PRIu64 "\n" |
| "%sDefaultMemoryMin: %" PRIu64 "\n" |
| "%sDefaultMemoryLow: %" PRIu64 "\n" |
| "%sMemoryMin: %" PRIu64 "%s\n" |
| "%sMemoryLow: %" PRIu64 "%s\n" |
| "%sMemoryHigh: %" PRIu64 "%s\n" |
| "%sMemoryMax: %" PRIu64 "%s\n" |
| "%sMemorySwapMax: %" PRIu64 "%s\n" |
| "%sMemoryLimit: %" PRIu64 "\n" |
| "%sTasksMax: %" PRIu64 "\n" |
| "%sDevicePolicy: %s\n" |
| "%sDisableControllers: %s\n" |
| "%sDelegate: %s\n", |
| prefix, yes_no(c->cpu_accounting), |
| prefix, yes_no(c->io_accounting), |
| prefix, yes_no(c->blockio_accounting), |
| prefix, yes_no(c->memory_accounting), |
| prefix, yes_no(c->tasks_accounting), |
| prefix, yes_no(c->ip_accounting), |
| prefix, c->cpu_weight, |
| prefix, c->startup_cpu_weight, |
| prefix, c->cpu_shares, |
| prefix, c->startup_cpu_shares, |
| prefix, format_timespan(q, sizeof(q), c->cpu_quota_per_sec_usec, 1), |
| prefix, format_timespan(v, sizeof(v), c->cpu_quota_period_usec, 1), |
| prefix, strempty(cpuset_cpus), |
| prefix, strempty(cpuset_mems), |
| prefix, c->io_weight, |
| prefix, c->startup_io_weight, |
| prefix, c->blockio_weight, |
| prefix, c->startup_blockio_weight, |
| prefix, c->default_memory_min, |
| prefix, c->default_memory_low, |
| prefix, c->memory_min, format_cgroup_memory_limit_comparison(cda, sizeof(cda), u, "MemoryMin"), |
| prefix, c->memory_low, format_cgroup_memory_limit_comparison(cdb, sizeof(cdb), u, "MemoryLow"), |
| prefix, c->memory_high, format_cgroup_memory_limit_comparison(cdc, sizeof(cdc), u, "MemoryHigh"), |
| prefix, c->memory_max, format_cgroup_memory_limit_comparison(cdd, sizeof(cdd), u, "MemoryMax"), |
| prefix, c->memory_swap_max, format_cgroup_memory_limit_comparison(cde, sizeof(cde), u, "MemorySwapMax"), |
| prefix, c->memory_limit, |
| prefix, tasks_max_resolve(&c->tasks_max), |
| prefix, cgroup_device_policy_to_string(c->device_policy), |
| prefix, strempty(disable_controllers_str), |
| prefix, yes_no(c->delegate)); |
| |
| if (c->delegate) { |
| _cleanup_free_ char *t = NULL; |
| |
| (void) cg_mask_to_string(c->delegate_controllers, &t); |
| |
| fprintf(f, "%sDelegateControllers: %s\n", |
| prefix, |
| strempty(t)); |
| } |
| |
| LIST_FOREACH(device_allow, a, c->device_allow) |
| fprintf(f, |
| "%sDeviceAllow: %s %s%s%s\n", |
| prefix, |
| a->path, |
| a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : ""); |
| |
| LIST_FOREACH(device_weights, iw, c->io_device_weights) |
| fprintf(f, |
| "%sIODeviceWeight: %s %" PRIu64 "\n", |
| prefix, |
| iw->path, |
| iw->weight); |
| |
| LIST_FOREACH(device_latencies, l, c->io_device_latencies) |
| fprintf(f, |
| "%sIODeviceLatencyTargetSec: %s %s\n", |
| prefix, |
| l->path, |
| format_timespan(q, sizeof(q), l->target_usec, 1)); |
| |
| LIST_FOREACH(device_limits, il, c->io_device_limits) { |
| char buf[FORMAT_BYTES_MAX]; |
| CGroupIOLimitType type; |
| |
| for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++) |
| if (il->limits[type] != cgroup_io_limit_defaults[type]) |
| fprintf(f, |
| "%s%s: %s %s\n", |
| prefix, |
| cgroup_io_limit_type_to_string(type), |
| il->path, |
| format_bytes(buf, sizeof(buf), il->limits[type])); |
| } |
| |
| LIST_FOREACH(device_weights, w, c->blockio_device_weights) |
| fprintf(f, |
| "%sBlockIODeviceWeight: %s %" PRIu64, |
| prefix, |
| w->path, |
| w->weight); |
| |
| LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) { |
| char buf[FORMAT_BYTES_MAX]; |
| |
| if (b->rbps != CGROUP_LIMIT_MAX) |
| fprintf(f, |
| "%sBlockIOReadBandwidth: %s %s\n", |
| prefix, |
| b->path, |
| format_bytes(buf, sizeof(buf), b->rbps)); |
| if (b->wbps != CGROUP_LIMIT_MAX) |
| fprintf(f, |
| "%sBlockIOWriteBandwidth: %s %s\n", |
| prefix, |
| b->path, |
| format_bytes(buf, sizeof(buf), b->wbps)); |
| } |
| |
| LIST_FOREACH(items, iaai, c->ip_address_allow) { |
| _cleanup_free_ char *k = NULL; |
| |
| (void) in_addr_to_string(iaai->family, &iaai->address, &k); |
| fprintf(f, "%sIPAddressAllow: %s/%u\n", prefix, strnull(k), iaai->prefixlen); |
| } |
| |
| LIST_FOREACH(items, iaai, c->ip_address_deny) { |
| _cleanup_free_ char *k = NULL; |
| |
| (void) in_addr_to_string(iaai->family, &iaai->address, &k); |
| fprintf(f, "%sIPAddressDeny: %s/%u\n", prefix, strnull(k), iaai->prefixlen); |
| } |
| |
| STRV_FOREACH(path, c->ip_filters_ingress) |
| fprintf(f, "%sIPIngressFilterPath: %s\n", prefix, *path); |
| |
| STRV_FOREACH(path, c->ip_filters_egress) |
| fprintf(f, "%sIPEgressFilterPath: %s\n", prefix, *path); |
| } |
| |
| int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) { |
| _cleanup_free_ CGroupDeviceAllow *a = NULL; |
| _cleanup_free_ char *d = NULL; |
| |
| assert(c); |
| assert(dev); |
| assert(isempty(mode) || in_charset(mode, "rwm")); |
| |
| a = new(CGroupDeviceAllow, 1); |
| if (!a) |
| return -ENOMEM; |
| |
| d = strdup(dev); |
| if (!d) |
| return -ENOMEM; |
| |
| *a = (CGroupDeviceAllow) { |
| .path = TAKE_PTR(d), |
| .r = isempty(mode) || strchr(mode, 'r'), |
| .w = isempty(mode) || strchr(mode, 'w'), |
| .m = isempty(mode) || strchr(mode, 'm'), |
| }; |
| |
| LIST_PREPEND(device_allow, c->device_allow, a); |
| TAKE_PTR(a); |
| |
| return 0; |
| } |
| |
| #define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \ |
| uint64_t unit_get_ancestor_##entry(Unit *u) { \ |
| CGroupContext *c; \ |
| \ |
| /* 1. Is entry set in this unit? If so, use that. \ |
| * 2. Is the default for this entry set in any \ |
| * ancestor? If so, use that. \ |
| * 3. Otherwise, return CGROUP_LIMIT_MIN. */ \ |
| \ |
| assert(u); \ |
| \ |
| c = unit_get_cgroup_context(u); \ |
| if (c && c->entry##_set) \ |
| return c->entry; \ |
| \ |
| while ((u = UNIT_DEREF(u->slice))) { \ |
| c = unit_get_cgroup_context(u); \ |
| if (c && c->default_##entry##_set) \ |
| return c->default_##entry; \ |
| } \ |
| \ |
| /* We've reached the root, but nobody had default for \ |
| * this entry set, so set it to the kernel default. */ \ |
| return CGROUP_LIMIT_MIN; \ |
| } |
| |
| UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low); |
| UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min); |
| |
| static void cgroup_xattr_apply(Unit *u) { |
| char ids[SD_ID128_STRING_MAX]; |
| int r; |
| |
| assert(u); |
| |
| if (!MANAGER_IS_SYSTEM(u->manager)) |
| return; |
| |
| if (!sd_id128_is_null(u->invocation_id)) { |
| r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, |
| "trusted.invocation_id", |
| sd_id128_to_string(u->invocation_id, ids), 32, |
| 0); |
| if (r < 0) |
| log_unit_debug_errno(u, r, "Failed to set invocation ID on control group %s, ignoring: %m", u->cgroup_path); |
| } |
| |
| if (unit_cgroup_delegate(u)) { |
| r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, |
| "trusted.delegate", |
| "1", 1, |
| 0); |
| if (r < 0) |
| log_unit_debug_errno(u, r, "Failed to set delegate flag on control group %s, ignoring: %m", u->cgroup_path); |
| } else { |
| r = cg_remove_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "trusted.delegate"); |
| if (r != -ENODATA) |
| log_unit_debug_errno(u, r, "Failed to remove delegate flag on control group %s, ignoring: %m", u->cgroup_path); |
| } |
| } |
| |
| static int lookup_block_device(const char *p, dev_t *ret) { |
| dev_t rdev, dev = 0; |
| mode_t mode; |
| int r; |
| |
| assert(p); |
| assert(ret); |
| |
| r = device_path_parse_major_minor(p, &mode, &rdev); |
| if (r == -ENODEV) { /* not a parsable device node, need to go to disk */ |
| struct stat st; |
| |
| if (stat(p, &st) < 0) |
| return log_warning_errno(errno, "Couldn't stat device '%s': %m", p); |
| |
| mode = st.st_mode; |
| rdev = st.st_rdev; |
| dev = st.st_dev; |
| } else if (r < 0) |
| return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p); |
| |
| if (S_ISCHR(mode)) |
| return log_warning_errno(SYNTHETIC_ERRNO(ENOTBLK), |
| "Device node '%s' is a character device, but block device needed.", p); |
| if (S_ISBLK(mode)) |
| *ret = rdev; |
| else if (major(dev) != 0) |
| *ret = dev; /* If this is not a device node then use the block device this file is stored on */ |
| else { |
| /* If this is btrfs, getting the backing block device is a bit harder */ |
| r = btrfs_get_block_device(p, ret); |
| if (r == -ENOTTY) |
| return log_warning_errno(SYNTHETIC_ERRNO(ENODEV), |
| "'%s' is not a block device node, and file system block device cannot be determined or is not local.", p); |
| if (r < 0) |
| return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p); |
| } |
| |
| /* If this is a LUKS device, try to get the originating block device */ |
| (void) block_get_originating(*ret, ret); |
| |
| /* If this is a partition, try to get the originating block device */ |
| (void) block_get_whole_disk(*ret, ret); |
| return 0; |
| } |
| |
| static bool cgroup_context_has_cpu_weight(CGroupContext *c) { |
| return c->cpu_weight != CGROUP_WEIGHT_INVALID || |
| c->startup_cpu_weight != CGROUP_WEIGHT_INVALID; |
| } |
| |
| static bool cgroup_context_has_cpu_shares(CGroupContext *c) { |
| return c->cpu_shares != CGROUP_CPU_SHARES_INVALID || |
| c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID; |
| } |
| |
| static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) { |
| if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) && |
| c->startup_cpu_weight != CGROUP_WEIGHT_INVALID) |
| return c->startup_cpu_weight; |
| else if (c->cpu_weight != CGROUP_WEIGHT_INVALID) |
| return c->cpu_weight; |
| else |
| return CGROUP_WEIGHT_DEFAULT; |
| } |
| |
| static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) { |
| if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) && |
| c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID) |
| return c->startup_cpu_shares; |
| else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID) |
| return c->cpu_shares; |
| else |
| return CGROUP_CPU_SHARES_DEFAULT; |
| } |
| |
| usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) { |
| /* kernel uses a minimum resolution of 1ms, so both period and (quota * period) |
| * need to be higher than that boundary. quota is specified in USecPerSec. |
| * Additionally, period must be at most max_period. */ |
| assert(quota > 0); |
| |
| return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period); |
| } |
| |
| static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) { |
| usec_t new_period; |
| |
| if (quota == USEC_INFINITY) |
| /* Always use default period for infinity quota. */ |
| return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC; |
| |
| if (period == USEC_INFINITY) |
| /* Default period was requested. */ |
| period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC; |
| |
| /* Clamp to interval [1ms, 1s] */ |
| new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC); |
| |
| if (new_period != period) { |
| char v[FORMAT_TIMESPAN_MAX]; |
| log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING, 0, |
| "Clamping CPU interval for cpu.max: period is now %s", |
| format_timespan(v, sizeof(v), new_period, 1)); |
| u->warned_clamping_cpu_quota_period = true; |
| } |
| |
| return new_period; |
| } |
| |
| static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) { |
| char buf[DECIMAL_STR_MAX(uint64_t) + 2]; |
| |
| xsprintf(buf, "%" PRIu64 "\n", weight); |
| (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf); |
| } |
| |
| static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) { |
| char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1]; |
| |
| period = cgroup_cpu_adjust_period_and_log(u, period, quota); |
| if (quota != USEC_INFINITY) |
| xsprintf(buf, USEC_FMT " " USEC_FMT "\n", |
| MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period); |
| else |
| xsprintf(buf, "max " USEC_FMT "\n", period); |
| (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf); |
| } |
| |
| static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) { |
| char buf[DECIMAL_STR_MAX(uint64_t) + 2]; |
| |
| xsprintf(buf, "%" PRIu64 "\n", shares); |
| (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf); |
| } |
| |
| static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) { |
| char buf[DECIMAL_STR_MAX(usec_t) + 2]; |
| |
| period = cgroup_cpu_adjust_period_and_log(u, period, quota); |
| |
| xsprintf(buf, USEC_FMT "\n", period); |
| (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf); |
| |
| if (quota != USEC_INFINITY) { |
| xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC)); |
| (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf); |
| } else |
| (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n"); |
| } |
| |
| static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) { |
| return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT, |
| CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); |
| } |
| |
| static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) { |
| return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT, |
| CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX); |
| } |
| |
| static void cgroup_apply_unified_cpuset(Unit *u, const CPUSet *cpus, const char *name) { |
| _cleanup_free_ char *buf = NULL; |
| |
| buf = cpu_set_to_range_string(cpus); |
| if (!buf) { |
| log_oom(); |
| return; |
| } |
| |
| (void) set_attribute_and_warn(u, "cpuset", name, buf); |
| } |
| |
| static bool cgroup_context_has_io_config(CGroupContext *c) { |
| return c->io_accounting || |
| c->io_weight != CGROUP_WEIGHT_INVALID || |
| c->startup_io_weight != CGROUP_WEIGHT_INVALID || |
| c->io_device_weights || |
| c->io_device_latencies || |
| c->io_device_limits; |
| } |
| |
| static bool cgroup_context_has_blockio_config(CGroupContext *c) { |
| return c->blockio_accounting || |
| c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID || |
| c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID || |
| c->blockio_device_weights || |
| c->blockio_device_bandwidths; |
| } |
| |
| static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) { |
| if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) && |
| c->startup_io_weight != CGROUP_WEIGHT_INVALID) |
| return c->startup_io_weight; |
| else if (c->io_weight != CGROUP_WEIGHT_INVALID) |
| return c->io_weight; |
| else |
| return CGROUP_WEIGHT_DEFAULT; |
| } |
| |
| static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) { |
| if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) && |
| c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID) |
| return c->startup_blockio_weight; |
| else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID) |
| return c->blockio_weight; |
| else |
| return CGROUP_BLKIO_WEIGHT_DEFAULT; |
| } |
| |
| static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) { |
| return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT, |
| CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); |
| } |
| |
| static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) { |
| return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT, |
| CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX); |
| } |
| |
| static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) { |
| char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1]; |
| dev_t dev; |
| int r; |
| |
| r = lookup_block_device(dev_path, &dev); |
| if (r < 0) |
| return; |
| |
| xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight); |
| (void) set_attribute_and_warn(u, "io", "io.weight", buf); |
| } |
| |
| static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) { |
| char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1]; |
| dev_t dev; |
| int r; |
| |
| r = lookup_block_device(dev_path, &dev); |
| if (r < 0) |
| return; |
| |
| xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight); |
| (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf); |
| } |
| |
| static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) { |
| char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1]; |
| dev_t dev; |
| int r; |
| |
| r = lookup_block_device(dev_path, &dev); |
| if (r < 0) |
| return; |
| |
| if (target != USEC_INFINITY) |
| xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target); |
| else |
| xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev)); |
| |
| (void) set_attribute_and_warn(u, "io", "io.latency", buf); |
| } |
| |
| static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) { |
| char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)]; |
| char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4]; |
| CGroupIOLimitType type; |
| dev_t dev; |
| int r; |
| |
| r = lookup_block_device(dev_path, &dev); |
| if (r < 0) |
| return; |
| |
| for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++) |
| if (limits[type] != cgroup_io_limit_defaults[type]) |
| xsprintf(limit_bufs[type], "%" PRIu64, limits[type]); |
| else |
| xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0"); |
| |
| xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev), |
| limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX], |
| limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]); |
| (void) set_attribute_and_warn(u, "io", "io.max", buf); |
| } |
| |
| static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) { |
| char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1]; |
| dev_t dev; |
| int r; |
| |
| r = lookup_block_device(dev_path, &dev); |
| if (r < 0) |
| return; |
| |
| sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps); |
| (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf); |
| |
| sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps); |
| (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf); |
| } |
| |
| static bool unit_has_unified_memory_config(Unit *u) { |
| CGroupContext *c; |
| |
| assert(u); |
| |
| c = unit_get_cgroup_context(u); |
| assert(c); |
| |
| return unit_get_ancestor_memory_min(u) > 0 || unit_get_ancestor_memory_low(u) > 0 || |
| c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX || |
| c->memory_swap_max != CGROUP_LIMIT_MAX; |
| } |
| |
| static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) { |
| char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n"; |
| |
| if (v != CGROUP_LIMIT_MAX) |
| xsprintf(buf, "%" PRIu64 "\n", v); |
| |
| (void) set_attribute_and_warn(u, "memory", file, buf); |
| } |
| |
| static void cgroup_apply_firewall(Unit *u) { |
| assert(u); |
| |
| /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */ |
| |
| if (bpf_firewall_compile(u) < 0) |
| return; |
| |
| (void) bpf_firewall_load_custom(u); |
| (void) bpf_firewall_install(u); |
| } |
| |
| static int cgroup_apply_devices(Unit *u) { |
| _cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL; |
| const char *path; |
| CGroupContext *c; |
| CGroupDeviceAllow *a; |
| CGroupDevicePolicy policy; |
| int r; |
| |
| assert_se(c = unit_get_cgroup_context(u)); |
| assert_se(path = u->cgroup_path); |
| |
| policy = c->device_policy; |
| |
| if (cg_all_unified() > 0) { |
| r = bpf_devices_cgroup_init(&prog, policy, c->device_allow); |
| if (r < 0) |
| return log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m"); |
| |
| } else { |
| /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore |
| * EINVAL here. */ |
| |
| if (c->device_allow || policy != CGROUP_DEVICE_POLICY_AUTO) |
| r = cg_set_attribute("devices", path, "devices.deny", "a"); |
| else |
| r = cg_set_attribute("devices", path, "devices.allow", "a"); |
| if (r < 0) |
| log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r, |
| "Failed to reset devices.allow/devices.deny: %m"); |
| } |
| |
| bool whitelist_static = policy == CGROUP_DEVICE_POLICY_CLOSED || |
| (policy == CGROUP_DEVICE_POLICY_AUTO && c->device_allow); |
| if (whitelist_static) |
| (void) bpf_devices_whitelist_static(prog, path); |
| |
| bool any = whitelist_static; |
| LIST_FOREACH(device_allow, a, c->device_allow) { |
| char acc[4], *val; |
| unsigned k = 0; |
| |
| if (a->r) |
| acc[k++] = 'r'; |
| if (a->w) |
| acc[k++] = 'w'; |
| if (a->m) |
| acc[k++] = 'm'; |
| if (k == 0) |
| continue; |
| acc[k++] = 0; |
| |
| if (path_startswith(a->path, "/dev/")) |
| r = bpf_devices_whitelist_device(prog, path, a->path, acc); |
| else if ((val = startswith(a->path, "block-"))) |
| r = bpf_devices_whitelist_major(prog, path, val, 'b', acc); |
| else if ((val = startswith(a->path, "char-"))) |
| r = bpf_devices_whitelist_major(prog, path, val, 'c', acc); |
| else { |
| log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path); |
| continue; |
| } |
| |
| if (r >= 0) |
| any = true; |
| } |
| |
| if (prog && !any) { |
| log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENODEV), "No devices matched by device filter."); |
| |
| /* The kernel verifier would reject a program we would build with the normal intro and outro |
| but no whitelisting rules (outro would contain an unreachable instruction for successful |
| return). */ |
| policy = CGROUP_DEVICE_POLICY_STRICT; |
| } |
| |
| r = bpf_devices_apply_policy(prog, policy, any, path, &u->bpf_device_control_installed); |
| if (r < 0) { |
| static bool warned = false; |
| |
| log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r, |
| "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n" |
| "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n" |
| "(This warning is only shown for the first loaded unit using device ACL.)", u->id); |
| |
| warned = true; |
| } |
| return r; |
| } |
| |
| static void cgroup_context_apply( |
| Unit *u, |
| CGroupMask apply_mask, |
| ManagerState state) { |
| |
| const char *path; |
| CGroupContext *c; |
| bool is_host_root, is_local_root; |
| int r; |
| |
| assert(u); |
| |
| /* Nothing to do? Exit early! */ |
| if (apply_mask == 0) |
| return; |
| |
| /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other |
| * attributes should only be managed for cgroups further down the tree. */ |
| is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE); |
| is_host_root = unit_has_host_root_cgroup(u); |
| |
| assert_se(c = unit_get_cgroup_context(u)); |
| assert_se(path = u->cgroup_path); |
| |
| if (is_local_root) /* Make sure we don't try to display messages with an empty path. */ |
| path = "/"; |
| |
| /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container |
| * then), and missing cgroups, i.e. EROFS and ENOENT. */ |
| |
| /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but |
| * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this |
| * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of |
| * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used |
| * we couldn't even write to them if we wanted to). */ |
| if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) { |
| |
| if (cg_all_unified() > 0) { |
| uint64_t weight; |
| |
| if (cgroup_context_has_cpu_weight(c)) |
| weight = cgroup_context_cpu_weight(c, state); |
| else if (cgroup_context_has_cpu_shares(c)) { |
| uint64_t shares; |
| |
| shares = cgroup_context_cpu_shares(c, state); |
| weight = cgroup_cpu_shares_to_weight(shares); |
| |
| log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s", |
| shares, weight, path); |
| } else |
| weight = CGROUP_WEIGHT_DEFAULT; |
| |
| cgroup_apply_unified_cpu_weight(u, weight); |
| cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec); |
| |
| } else { |
| uint64_t shares; |
| |
| if (cgroup_context_has_cpu_weight(c)) { |
| uint64_t weight; |
| |
| weight = cgroup_context_cpu_weight(c, state); |
| shares = cgroup_cpu_weight_to_shares(weight); |
| |
| log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s", |
| weight, shares, path); |
| } else if (cgroup_context_has_cpu_shares(c)) |
| shares = cgroup_context_cpu_shares(c, state); |
| else |
| shares = CGROUP_CPU_SHARES_DEFAULT; |
| |
| cgroup_apply_legacy_cpu_shares(u, shares); |
| cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec); |
| } |
| } |
| |
| if ((apply_mask & CGROUP_MASK_CPUSET) && !is_local_root) { |
| cgroup_apply_unified_cpuset(u, &c->cpuset_cpus, "cpuset.cpus"); |
| cgroup_apply_unified_cpuset(u, &c->cpuset_mems, "cpuset.mems"); |
| } |
| |
| /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2 |
| * controller), and in case of containers we want to leave control of these attributes to the container manager |
| * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */ |
| if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) { |
| char buf[8+DECIMAL_STR_MAX(uint64_t)+1]; |
| bool has_io, has_blockio; |
| uint64_t weight; |
| |
| has_io = cgroup_context_has_io_config(c); |
| has_blockio = cgroup_context_has_blockio_config(c); |
| |
| if (has_io) |
| weight = cgroup_context_io_weight(c, state); |
| else if (has_blockio) { |
| uint64_t blkio_weight; |
| |
| blkio_weight = cgroup_context_blkio_weight(c, state); |
| weight = cgroup_weight_blkio_to_io(blkio_weight); |
| |
| log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64, |
| blkio_weight, weight); |
| } else |
| weight = CGROUP_WEIGHT_DEFAULT; |
| |
| xsprintf(buf, "default %" PRIu64 "\n", weight); |
| (void) set_attribute_and_warn(u, "io", "io.weight", buf); |
| |
| /* FIXME: drop this when distro kernels properly support BFQ through "io.weight" |
| * See also: https://github.com/systemd/systemd/pull/13335 */ |
| xsprintf(buf, "%" PRIu64 "\n", weight); |
| (void) set_attribute_and_warn(u, "io", "io.bfq.weight", buf); |
| |
| if (has_io) { |
| CGroupIODeviceLatency *latency; |
| CGroupIODeviceLimit *limit; |
| CGroupIODeviceWeight *w; |
| |
| LIST_FOREACH(device_weights, w, c->io_device_weights) |
| cgroup_apply_io_device_weight(u, w->path, w->weight); |
| |
| LIST_FOREACH(device_limits, limit, c->io_device_limits) |
| cgroup_apply_io_device_limit(u, limit->path, limit->limits); |
| |
| LIST_FOREACH(device_latencies, latency, c->io_device_latencies) |
| cgroup_apply_io_device_latency(u, latency->path, latency->target_usec); |
| |
| } else if (has_blockio) { |
| CGroupBlockIODeviceWeight *w; |
| CGroupBlockIODeviceBandwidth *b; |
| |
| LIST_FOREACH(device_weights, w, c->blockio_device_weights) { |
| weight = cgroup_weight_blkio_to_io(w->weight); |
| |
| log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s", |
| w->weight, weight, w->path); |
| |
| cgroup_apply_io_device_weight(u, w->path, weight); |
| } |
| |
| LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) { |
| uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX]; |
| CGroupIOLimitType type; |
| |
| for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++) |
| limits[type] = cgroup_io_limit_defaults[type]; |
| |
| limits[CGROUP_IO_RBPS_MAX] = b->rbps; |
| limits[CGROUP_IO_WBPS_MAX] = b->wbps; |
| |
| log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s", |
| b->rbps, b->wbps, b->path); |
| |
| cgroup_apply_io_device_limit(u, b->path, limits); |
| } |
| } |
| } |
| |
| if (apply_mask & CGROUP_MASK_BLKIO) { |
| bool has_io, has_blockio; |
| |
| has_io = cgroup_context_has_io_config(c); |
| has_blockio = cgroup_context_has_blockio_config(c); |
| |
| /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be |
| * left to our container manager, too. */ |
| if (!is_local_root) { |
| char buf[DECIMAL_STR_MAX(uint64_t)+1]; |
| uint64_t weight; |
| |
| if (has_io) { |
| uint64_t io_weight; |
| |
| io_weight = cgroup_context_io_weight(c, state); |
| weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state)); |
| |
| log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64, |
| io_weight, weight); |
| } else if (has_blockio) |
| weight = cgroup_context_blkio_weight(c, state); |
| else |
| weight = CGROUP_BLKIO_WEIGHT_DEFAULT; |
| |
| xsprintf(buf, "%" PRIu64 "\n", weight); |
| (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf); |
| |
| if (has_io) { |
| CGroupIODeviceWeight *w; |
| |
| LIST_FOREACH(device_weights, w, c->io_device_weights) { |
| weight = cgroup_weight_io_to_blkio(w->weight); |
| |
| log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s", |
| w->weight, weight, w->path); |
| |
| cgroup_apply_blkio_device_weight(u, w->path, weight); |
| } |
| } else if (has_blockio) { |
| CGroupBlockIODeviceWeight *w; |
| |
| LIST_FOREACH(device_weights, w, c->blockio_device_weights) |
| cgroup_apply_blkio_device_weight(u, w->path, w->weight); |
| } |
| } |
| |
| /* The bandwidth limits are something that make sense to be applied to the host's root but not container |
| * roots, as there we want the container manager to handle it */ |
| if (is_host_root || !is_local_root) { |
| if (has_io) { |
| CGroupIODeviceLimit *l; |
| |
| LIST_FOREACH(device_limits, l, c->io_device_limits) { |
| log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s", |
| l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path); |
| |
| cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]); |
| } |
| } else if (has_blockio) { |
| CGroupBlockIODeviceBandwidth *b; |
| |
| LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) |
| cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps); |
| } |
| } |
| } |
| |
| /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes' |
| * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we |
| * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even |
| * write to this if we wanted to.) */ |
| if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) { |
| |
| if (cg_all_unified() > 0) { |
| uint64_t max, swap_max = CGROUP_LIMIT_MAX; |
| |
| if (unit_has_unified_memory_config(u)) { |
| max = c->memory_max; |
| swap_max = c->memory_swap_max; |
| } else { |
| max = c->memory_limit; |
| |
| if (max != CGROUP_LIMIT_MAX) |
| log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max); |
| } |
| |
| cgroup_apply_unified_memory_limit(u, "memory.min", unit_get_ancestor_memory_min(u)); |
| cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u)); |
| cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high); |
| cgroup_apply_unified_memory_limit(u, "memory.max", max); |
| cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max); |
| |
| (void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group)); |
| |
| } else { |
| char buf[DECIMAL_STR_MAX(uint64_t) + 1]; |
| uint64_t val; |
| |
| if (unit_has_unified_memory_config(u)) { |
| val = c->memory_max; |
| log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val); |
| } else |
| val = c->memory_limit; |
| |
| if (val == CGROUP_LIMIT_MAX) |
| strncpy(buf, "-1\n", sizeof(buf)); |
| else |
| xsprintf(buf, "%" PRIu64 "\n", val); |
| |
| (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf); |
| } |
| } |
| |
| /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of |
| * containers, where we leave this to the manager */ |
| if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) && |
| (is_host_root || cg_all_unified() > 0 || !is_local_root)) |
| (void) cgroup_apply_devices(u); |
| |
| if (apply_mask & CGROUP_MASK_PIDS) { |
| |
| if (is_host_root) { |
| /* So, the "pids" controller does not expose anything on the root cgroup, in order not to |
| * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when |
| * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a |
| * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take |
| * exclusive ownership of the sysctls, but we still want to honour things if the user sets |
| * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit |
| * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded) |
| * it also counts. But if the user never set a limit through us (i.e. we are the default of |
| * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on |
| * the first time we set a limit. Note that this boolean is flushed out on manager reload, |
| * which is desirable so that there's an official way to release control of the sysctl from |
| * systemd: set the limit to unbounded and reload. */ |
| |
| if (tasks_max_isset(&c->tasks_max)) { |
| u->manager->sysctl_pid_max_changed = true; |
| r = procfs_tasks_set_limit(tasks_max_resolve(&c->tasks_max)); |
| } else if (u->manager->sysctl_pid_max_changed) |
| r = procfs_tasks_set_limit(TASKS_MAX); |
| else |
| r = 0; |
| if (r < 0) |
| log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, |
| "Failed to write to tasks limit sysctls: %m"); |
| } |
| |
| /* The attribute itself is not available on the host root cgroup, and in the container case we want to |
| * leave it for the container manager. */ |
| if (!is_local_root) { |
| if (tasks_max_isset(&c->tasks_max)) { |
| char buf[DECIMAL_STR_MAX(uint64_t) + 1]; |
| |
| xsprintf(buf, "%" PRIu64 "\n", tasks_max_resolve(&c->tasks_max)); |
| (void) set_attribute_and_warn(u, "pids", "pids.max", buf); |
| } else |
| (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n"); |
| } |
| } |
| |
| if (apply_mask & CGROUP_MASK_BPF_FIREWALL) |
| cgroup_apply_firewall(u); |
| } |
| |
| static bool unit_get_needs_bpf_firewall(Unit *u) { |
| CGroupContext *c; |
| Unit *p; |
| assert(u); |
| |
| c = unit_get_cgroup_context(u); |
| if (!c) |
| return false; |
| |
| if (c->ip_accounting || |
| c->ip_address_allow || |
| c->ip_address_deny || |
| c->ip_filters_ingress || |
| c->ip_filters_egress) |
| return true; |
| |
| /* If any parent slice has an IP access list defined, it applies too */ |
| for (p = UNIT_DEREF(u->slice); p; p = UNIT_DEREF(p->slice)) { |
| c = unit_get_cgroup_context(p); |
| if (!c) |
| return false; |
| |
| if (c->ip_address_allow || |
| c->ip_address_deny) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static CGroupMask unit_get_cgroup_mask(Unit *u) { |
| CGroupMask mask = 0; |
| CGroupContext *c; |
| |
| assert(u); |
| |
| c = unit_get_cgroup_context(u); |
| |
| assert(c); |
| |
| /* Figure out which controllers we need, based on the cgroup context object */ |
| |
| if (c->cpu_accounting) |
| mask |= get_cpu_accounting_mask(); |
| |
| if (cgroup_context_has_cpu_weight(c) || |
| cgroup_context_has_cpu_shares(c) || |
| c->cpu_quota_per_sec_usec != USEC_INFINITY) |
| mask |= CGROUP_MASK_CPU; |
| |
| if (c->cpuset_cpus.set || c->cpuset_mems.set) |
| mask |= CGROUP_MASK_CPUSET; |
| |
| if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c)) |
| mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO; |
| |
| if (c->memory_accounting || |
| c->memory_limit != CGROUP_LIMIT_MAX || |
| unit_has_unified_memory_config(u)) |
| mask |= CGROUP_MASK_MEMORY; |
| |
| if (c->device_allow || |
| c->device_policy != CGROUP_DEVICE_POLICY_AUTO) |
| mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES; |
| |
| if (c->tasks_accounting || |
| tasks_max_isset(&c->tasks_max)) |
| mask |= CGROUP_MASK_PIDS; |
| |
| return CGROUP_MASK_EXTEND_JOINED(mask); |
| } |
| |
| static CGroupMask unit_get_bpf_mask(Unit *u) { |
| CGroupMask mask = 0; |
| |
| /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children |
| * too. */ |
| |
| if (unit_get_needs_bpf_firewall(u)) |
| mask |= CGROUP_MASK_BPF_FIREWALL; |
| |
| return mask; |
| } |
| |
| CGroupMask unit_get_own_mask(Unit *u) { |
| CGroupContext *c; |
| |
| /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty |
| * mask, as we shouldn't reflect it in the cgroup hierarchy then. */ |
| |
| if (u->load_state != UNIT_LOADED) |
| return 0; |
| |
| c = unit_get_cgroup_context(u); |
| if (!c) |
| return 0; |
| |
| return (unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u)) & ~unit_get_ancestor_disable_mask(u); |
| } |
| |
| CGroupMask unit_get_delegate_mask(Unit *u) { |
| CGroupContext *c; |
| |
| /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the |
| * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers. |
| * |
| * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */ |
| |
| if (!unit_cgroup_delegate(u)) |
| return 0; |
| |
| if (cg_all_unified() <= 0) { |
| ExecContext *e; |
| |
| e = unit_get_exec_context(u); |
| if (e && !exec_context_maintains_privileges(e)) |
| return 0; |
| } |
| |
| assert_se(c = unit_get_cgroup_context(u)); |
| return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers); |
| } |
| |
| CGroupMask unit_get_members_mask(Unit *u) { |
| assert(u); |
| |
| /* Returns the mask of controllers all of the unit's children require, merged */ |
| |
| if (u->cgroup_members_mask_valid) |
| return u->cgroup_members_mask; /* Use cached value if possible */ |
| |
| u->cgroup_members_mask = 0; |
| |
| if (u->type == UNIT_SLICE) { |
| void *v; |
| Unit *member; |
| Iterator i; |
| |
| HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) |
| if (UNIT_DEREF(member->slice) == u) |
| u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */ |
| } |
| |
| u->cgroup_members_mask_valid = true; |
| return u->cgroup_members_mask; |
| } |
| |
| CGroupMask unit_get_siblings_mask(Unit *u) { |
| assert(u); |
| |
| /* Returns the mask of controllers all of the unit's siblings |
| * require, i.e. the members mask of the unit's parent slice |
| * if there is one. */ |
| |
| if (UNIT_ISSET(u->slice)) |
| return unit_get_members_mask(UNIT_DEREF(u->slice)); |
| |
| return unit_get_subtree_mask(u); /* we are the top-level slice */ |
| } |
| |
| CGroupMask unit_get_disable_mask(Unit *u) { |
| CGroupContext *c; |
| |
| c = unit_get_cgroup_context(u); |
| if (!c) |
| return 0; |
| |
| return c->disable_controllers; |
| } |
| |
| CGroupMask unit_get_ancestor_disable_mask(Unit *u) { |
| CGroupMask mask; |
| |
| assert(u); |
| mask = unit_get_disable_mask(u); |
| |
| /* Returns the mask of controllers which are marked as forcibly |
| * disabled in any ancestor unit or the unit in question. */ |
| |
| if (UNIT_ISSET(u->slice)) |
| mask |= unit_get_ancestor_disable_mask(UNIT_DEREF(u->slice)); |
| |
| return mask; |
| } |
| |
| CGroupMask unit_get_subtree_mask(Unit *u) { |
| |
| /* Returns the mask of this subtree, meaning of the group |
| * itself and its children. */ |
| |
| return unit_get_own_mask(u) | unit_get_members_mask(u); |
| } |
| |
| CGroupMask unit_get_target_mask(Unit *u) { |
| CGroupMask mask; |
| |
| /* This returns the cgroup mask of all controllers to enable |
| * for a specific cgroup, i.e. everything it needs itself, |
| * plus all that its children need, plus all that its siblings |
| * need. This is primarily useful on the legacy cgroup |
| * hierarchy, where we need to duplicate each cgroup in each |
| * hierarchy that shall be enabled for it. */ |
| |
| mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u); |
| |
| if (mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported) |
| emit_bpf_firewall_warning(u); |
| |
| mask &= u->manager->cgroup_supported; |
| mask &= ~unit_get_ancestor_disable_mask(u); |
| |
| return mask; |
| } |
| |
| CGroupMask unit_get_enable_mask(Unit *u) { |
| CGroupMask mask; |
| |
| /* This returns the cgroup mask of all controllers to enable |
| * for the children of a specific cgroup. This is primarily |
| * useful for the unified cgroup hierarchy, where each cgroup |
| * controls which controllers are enabled for its children. */ |
| |
| mask = unit_get_members_mask(u); |
| mask &= u->manager->cgroup_supported; |
| mask &= ~unit_get_ancestor_disable_mask(u); |
| |
| return mask; |
| } |
| |
| void unit_invalidate_cgroup_members_masks(Unit *u) { |
| assert(u); |
| |
| /* Recurse invalidate the member masks cache all the way up the tree */ |
| u->cgroup_members_mask_valid = false; |
| |
| if (UNIT_ISSET(u->slice)) |
| unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice)); |
| } |
| |
| const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) { |
| |
| /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */ |
| |
| while (u) { |
| |
| if (u->cgroup_path && |
| u->cgroup_realized && |
| FLAGS_SET(u->cgroup_realized_mask, mask)) |
| return u->cgroup_path; |
| |
| u = UNIT_DEREF(u->slice); |
| } |
| |
| return NULL; |
| } |
| |
| static const char *migrate_callback(CGroupMask mask, void *userdata) { |
| return unit_get_realized_cgroup_path(userdata, mask); |
| } |
| |
| char *unit_default_cgroup_path(const Unit *u) { |
| _cleanup_free_ char *escaped = NULL, *slice = NULL; |
| int r; |
| |
| assert(u); |
| |
| if (unit_has_name(u, SPECIAL_ROOT_SLICE)) |
| return strdup(u->manager->cgroup_root); |
| |
| if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) { |
| r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice); |
| if (r < 0) |
| return NULL; |
| } |
| |
| escaped = cg_escape(u->id); |
| if (!escaped) |
| return NULL; |
| |
| return path_join(empty_to_root(u->manager->cgroup_root), slice, escaped); |
| } |
| |
| int unit_set_cgroup_path(Unit *u, const char *path) { |
| _cleanup_free_ char *p = NULL; |
| int r; |
| |
| assert(u); |
| |
| if (streq_ptr(u->cgroup_path, path)) |
| return 0; |
| |
| if (path) { |
| p = strdup(path); |
| if (!p) |
| return -ENOMEM; |
| } |
| |
| if (p) { |
| r = hashmap_put(u->manager->cgroup_unit, p, u); |
| if (r < 0) |
| return r; |
| } |
| |
| unit_release_cgroup(u); |
| u->cgroup_path = TAKE_PTR(p); |
| |
| return 1; |
| } |
| |
| int unit_watch_cgroup(Unit *u) { |
| _cleanup_free_ char *events = NULL; |
| int r; |
| |
| assert(u); |
| |
| /* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if |
| * cgroupv2 is available. */ |
| |
| if (!u->cgroup_path) |
| return 0; |
| |
| if (u->cgroup_control_inotify_wd >= 0) |
| return 0; |
| |
| /* Only applies to the unified hierarchy */ |
| r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER); |
| if (r < 0) |
| return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m"); |
| if (r == 0) |
| return 0; |
| |
| /* No point in watch the top-level slice, it's never going to run empty. */ |
| if (unit_has_name(u, SPECIAL_ROOT_SLICE)) |
| return 0; |
| |
| r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops); |
| if (r < 0) |
| return log_oom(); |
| |
| r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events); |
| if (r < 0) |
| return log_oom(); |
| |
| u->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY); |
| if (u->cgroup_control_inotify_wd < 0) { |
| |
| if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this |
| * is not an error */ |
| return 0; |
| |
| return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", u->cgroup_path); |
| } |
| |
| r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd), u); |
| if (r < 0) |
| return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor to hash map: %m"); |
| |
| return 0; |
| } |
| |
| int unit_watch_cgroup_memory(Unit *u) { |
| _cleanup_free_ char *events = NULL; |
| CGroupContext *c; |
| int r; |
| |
| assert(u); |
| |
| /* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if |
| * cgroupv2 is available. */ |
| |
| if (!u->cgroup_path) |
| return 0; |
| |
| c = unit_get_cgroup_context(u); |
| if (!c) |
| return 0; |
| |
| /* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie |
| * this to memory accounting, in a way watching for OOM kills is a form of memory accounting after |
| * all. */ |
| if (!c->memory_accounting) |
| return 0; |
| |
| /* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and |
| * we also don't want to generate a log message for each parent cgroup of a process. */ |
| if (u->type == UNIT_SLICE) |
| return 0; |
| |
| if (u->cgroup_memory_inotify_wd >= 0) |
| return 0; |
| |
| /* Only applies to the unified hierarchy */ |
| r = cg_all_unified(); |
| if (r < 0) |
| return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m"); |
| if (r == 0) |
| return 0; |
| |
| r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops); |
| if (r < 0) |
| return log_oom(); |
| |
| r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "memory.events", &events); |
| if (r < 0) |
| return log_oom(); |
| |
| u->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY); |
| if (u->cgroup_memory_inotify_wd < 0) { |
| |
| if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this |
| * is not an error */ |
| return 0; |
| |
| return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", u->cgroup_path); |
| } |
| |
| r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd), u); |
| if (r < 0) |
| return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor to hash map: %m"); |
| |
| return 0; |
| } |
| |
| int unit_pick_cgroup_path(Unit *u) { |
| _cleanup_free_ char *path = NULL; |
| int r; |
| |
| assert(u); |
| |
| if (u->cgroup_path) |
| return 0; |
| |
| if (!UNIT_HAS_CGROUP_CONTEXT(u)) |
| return -EINVAL; |
| |
| path = unit_default_cgroup_path(u); |
| if (!path) |
| return log_oom(); |
| |
| r = unit_set_cgroup_path(u, path); |
| if (r == -EEXIST) |
| return log_unit_error_errno(u, r, "Control group %s exists already.", path); |
| if (r < 0) |
| return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path); |
| |
| return 0; |
| } |
| |
| static int unit_create_cgroup( |
| Unit *u, |
| CGroupMask target_mask, |
| CGroupMask enable_mask, |
| ManagerState state) { |
| |
| bool created; |
| int r; |
| |
| assert(u); |
| |
| if (!UNIT_HAS_CGROUP_CONTEXT(u)) |
| return 0; |
| |
| /* Figure out our cgroup path */ |
| r = unit_pick_cgroup_path(u); |
| if (r < 0) |
| return r; |
| |
| /* First, create our own group */ |
| r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path); |
| if (r < 0) |
| return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path); |
| created = r; |
| |
| /* Start watching it */ |
| (void) unit_watch_cgroup(u); |
| (void) unit_watch_cgroup_memory(u); |
| |
| /* Preserve enabled controllers in delegated units, adjust others. */ |
| if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) { |
| CGroupMask result_mask = 0; |
| |
| /* Enable all controllers we need */ |
| r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask); |
| if (r < 0) |
| log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", u->cgroup_path); |
| |
| /* If we just turned off a controller, this might release the controller for our parent too, let's |
| * enqueue the parent for re-realization in that case again. */ |
| if (UNIT_ISSET(u->slice)) { |
| CGroupMask turned_off; |
| |
| turned_off = (u->cgroup_realized ? u->cgroup_enabled_mask & ~result_mask : 0); |
| if (turned_off != 0) { |
| Unit *parent; |
| |
| /* Force the parent to propagate the enable mask to the kernel again, by invalidating |
| * the controller we just turned off. */ |
| |
| for (parent = UNIT_DEREF(u->slice); parent; parent = UNIT_DEREF(parent->slice)) |
| unit_invalidate_cgroup(parent, turned_off); |
| } |
| } |
| |
| /* Remember what's actually enabled now */ |
| u->cgroup_enabled_mask = result_mask; |
| } |
| |
| /* Keep track that this is now realized */ |
| u->cgroup_realized = true; |
| u->cgroup_realized_mask = target_mask; |
| |
| if (u->type != UNIT_SLICE && !unit_cgroup_delegate(u)) { |
| |
| /* Then, possibly move things over, but not if |
| * subgroups may contain processes, which is the case |
| * for slice and delegation units. */ |
| r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u); |
| if (r < 0) |
| log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path); |
| } |
| |
| /* Set attributes */ |
| cgroup_context_apply(u, target_mask, state); |
| cgroup_xattr_apply(u); |
| |
| return 0; |
| } |
| |
| static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) { |
| _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; |
| char *pp; |
| int r; |
| |
| assert(u); |
| |
| if (MANAGER_IS_SYSTEM(u->manager)) |
| return -EINVAL; |
| |
| if (!u->manager->system_bus) |
| return -EIO; |
| |
| if (!u->cgroup_path) |
| return -EINVAL; |
| |
| /* Determine this unit's cgroup path relative to our cgroup root */ |
| pp = path_startswith(u->cgroup_path, u->manager->cgroup_root); |
| if (!pp) |
| return -EINVAL; |
| |
| pp = strjoina("/", pp, suffix_path); |
| path_simplify(pp, false); |
| |
| r = sd_bus_call_method(u->manager->system_bus, |
| "org.freedesktop.systemd1", |
| "/org/freedesktop/systemd1", |
| "org.freedesktop.systemd1.Manager", |
| "AttachProcessesToUnit", |
| &error, NULL, |
| "ssau", |
| NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid); |
| if (r < 0) |
| return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r)); |
| |
| return 0; |
| } |
| |
| int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) { |
| CGroupMask delegated_mask; |
| const char *p; |
| Iterator i; |
| void *pidp; |
| int r, q; |
| |
| assert(u); |
| |
| if (!UNIT_HAS_CGROUP_CONTEXT(u)) |
| return -EINVAL; |
| |
| if (set_isempty(pids)) |
| return 0; |
| |
| /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable. |
| * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */ |
| r = bpf_firewall_load_custom(u); |
| if (r < 0) |
| return r; |
| |
| r = unit_realize_cgroup(u); |
| if (r < 0) |
| return r; |
| |
| if (isempty(suffix_path)) |
| p = u->cgroup_path; |
| else |
| p = prefix_roota(u->cgroup_path, suffix_path); |
| |
| delegated_mask = unit_get_delegate_mask(u); |
| |
| r = 0; |
| SET_FOREACH(pidp, pids, i) { |
| pid_t pid = PTR_TO_PID(pidp); |
| CGroupController c; |
| |
| /* First, attach the PID to the main cgroup hierarchy */ |
| q = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid); |
| if (q < 0) { |
| log_unit_debug_errno(u, q, "Couldn't move process " PID_FMT " to requested cgroup '%s': %m", pid, p); |
| |
| if (MANAGER_IS_USER(u->manager) && IN_SET(q, -EPERM, -EACCES)) { |
| int z; |
| |
| /* If we are in a user instance, and we can't move the process ourselves due to |
| * permission problems, let's ask the system instance about it instead. Since it's more |
| * privileged it might be able to move the process across the leaves of a subtree who's |
| * top node is not owned by us. */ |
| |
| z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path); |
| if (z < 0) |
| log_unit_debug_errno(u, z, "Couldn't move process " PID_FMT " to requested cgroup '%s' via the system bus either: %m", pid, p); |
| else |
| continue; /* When the bus thing worked via the bus we are fully done for this PID. */ |
| } |
| |
| if (r >= 0) |
| r = q; /* Remember first error */ |
| |
| continue; |
| } |
| |
| q = cg_all_unified(); |
| if (q < 0) |
| return q; |
| if (q > 0) |
| continue; |
| |
| /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the |
| * innermost realized one */ |
| |
| for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) { |
| CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c); |
| const char *realized; |
| |
| if (!(u->manager->cgroup_supported & bit)) |
| continue; |
| |
| /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */ |
| if (delegated_mask & u->cgroup_realized_mask & bit) { |
| q = cg_attach(cgroup_controller_to_string(c), p, pid); |
| if (q >= 0) |
| continue; /* Success! */ |
| |
| log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m", |
| pid, p, cgroup_controller_to_string(c)); |
| } |
| |
| /* So this controller is either not delegate or realized, or something else weird happened. In |
| * that case let's attach the PID at least to the closest cgroup up the tree that is |
| * realized. */ |
| realized = unit_get_realized_cgroup_path(u, bit); |
| if (!realized) |
| continue; /* Not even realized in the root slice? Then let's not bother */ |
| |
| q = cg_attach(cgroup_controller_to_string(c), realized, pid); |
| if (q < 0) |
| log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m", |
| pid, realized, cgroup_controller_to_string(c)); |
| } |
| } |
| |
| return r; |
| } |
| |
| static bool unit_has_mask_realized( |
| Unit *u, |
| CGroupMask target_mask, |
| CGroupMask enable_mask) { |
| |
| assert(u); |
| |
| /* Returns true if this unit is fully realized. We check four things: |
| * |
| * 1. Whether the cgroup was created at all |
| * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1) |
| * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2) |
| * 4. Whether the invalidation mask is currently zero |
| * |
| * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note |
| * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for |
| * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask |
| * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they |
| * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are |
| * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they |
| * simply don't matter. */ |
| |
| return u->cgroup_realized && |
| ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 && |
| ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 && |
| u->cgroup_invalidated_mask == 0; |
| } |
| |
| static bool unit_has_mask_disables_realized( |
| Unit *u, |
| CGroupMask target_mask, |
| CGroupMask enable_mask) { |
| |
| assert(u); |
| |
| /* Returns true if all controllers which should be disabled are indeed disabled. |
| * |
| * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is |
| * already removed. */ |
| |
| return !u->cgroup_realized || |
| (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) && |
| FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2)); |
| } |
| |
| static bool unit_has_mask_enables_realized( |
| Unit *u, |
| CGroupMask target_mask, |
| CGroupMask enable_mask) { |
| |
| assert(u); |
| |
| /* Returns true if all controllers which should be enabled are indeed enabled. |
| * |
| * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything |
| * we want to add is already added. */ |
| |
| return u->cgroup_realized && |
| ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) && |
| ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2); |
| } |
| |
| void unit_add_to_cgroup_realize_queue(Unit *u) { |
| assert(u); |
| |
| if (u->in_cgroup_realize_queue) |
| return; |
| |
| LIST_PREPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u); |
| u->in_cgroup_realize_queue = true; |
| } |
| |
| static void unit_remove_from_cgroup_realize_queue(Unit *u) { |
| assert(u); |
| |
| if (!u->in_cgroup_realize_queue) |
| return; |
| |
| LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u); |
| u->in_cgroup_realize_queue = false; |
| } |
| |
| /* Controllers can only be enabled breadth-first, from the root of the |
| * hierarchy downwards to the unit in question. */ |
| static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) { |
| CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask; |
| int r; |
| |
| assert(u); |
| |
| /* First go deal with this unit's parent, or we won't be able to enable |
| * any new controllers at this layer. */ |
| if (UNIT_ISSET(u->slice)) { |
| r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state); |
| if (r < 0) |
| return r; |
| } |
| |
| target_mask = unit_get_target_mask(u); |
| enable_mask = unit_get_enable_mask(u); |
| |
| /* We can only enable in this direction, don't try to disable anything. |
| */ |
| if (unit_has_mask_enables_realized(u, target_mask, enable_mask)) |
| return 0; |
| |
| new_target_mask = u->cgroup_realized_mask | target_mask; |
| new_enable_mask = u->cgroup_enabled_mask | enable_mask; |
| |
| return unit_create_cgroup(u, new_target_mask, new_enable_mask, state); |
| } |
| |
| /* Controllers can only be disabled depth-first, from the leaves of the |
| * hierarchy upwards to the unit in question. */ |
| static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) { |
| Iterator i; |
| Unit *m; |
| void *v; |
| |
| assert(u); |
| |
| if (u->type != UNIT_SLICE) |
| return 0; |
| |
| HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) { |
| CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask; |
| int r; |
| |
| if (UNIT_DEREF(m->slice) != u) |
| continue; |
| |
| /* The cgroup for this unit might not actually be fully |
| * realised yet, in which case it isn't holding any controllers |
| * open anyway. */ |
| if (!m->cgroup_path) |
| continue; |
| |
| /* We must disable those below us first in order to release the |
| * controller. */ |
| if (m->type == UNIT_SLICE) |
| (void) unit_realize_cgroup_now_disable(m, state); |
| |
| target_mask = unit_get_target_mask(m); |
| enable_mask = unit_get_enable_mask(m); |
| |
| /* We can only disable in this direction, don't try to enable |
| * anything. */ |
| if (unit_has_mask_disables_realized(m, target_mask, enable_mask)) |
| continue; |
| |
| new_target_mask = m->cgroup_realized_mask & target_mask; |
| new_enable_mask = m->cgroup_enabled_mask & enable_mask; |
| |
| r = unit_create_cgroup(m, new_target_mask, new_enable_mask, state); |
| if (r < 0) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| /* Check if necessary controllers and attributes for a unit are in place. |
| * |
| * - If so, do nothing. |
| * - If not, create paths, move processes over, and set attributes. |
| * |
| * Controllers can only be *enabled* in a breadth-first way, and *disabled* in |
| * a depth-first way. As such the process looks like this: |
| * |
| * Suppose we have a cgroup hierarchy which looks like this: |
| * |
| * root |
| * / \ |
| * / \ |
| * / \ |
| * a b |
| * / \ / \ |
| * / \ / \ |
| * c d e f |
| * / \ / \ / \ / \ |
| * h i j k l m n o |
| * |
| * 1. We want to realise cgroup "d" now. |
| * 2. cgroup "a" has DisableControllers=cpu in the associated unit. |
| * 3. cgroup "k" just started requesting the memory controller. |
| * |
| * To make this work we must do the following in order: |
| * |
| * 1. Disable CPU controller in k, j |
| * 2. Disable CPU controller in d |
| * 3. Enable memory controller in root |
| * 4. Enable memory controller in a |
| * 5. Enable memory controller in d |
| * 6. Enable memory controller in k |
| * |
| * Notice that we need to touch j in one direction, but not the other. We also |
| * don't go beyond d when disabling -- it's up to "a" to get realized if it |
| * wants to disable further. The basic rules are therefore: |
| * |
| * - If you're disabling something, you need to realise all of the cgroups from |
| * your recursive descendants to the root. This starts from the leaves. |
| * - If you're enabling something, you need to realise from the root cgroup |
| * downwards, but you don't need to iterate your recursive descendants. |
| * |
| * Returns 0 on success and < 0 on failure. */ |
| static int unit_realize_cgroup_now(Unit *u, ManagerState state) { |
| CGroupMask target_mask, enable_mask; |
| int r; |
| |
| assert(u); |
| |
| unit_remove_from_cgroup_realize_queue(u); |
| |
| target_mask = unit_get_target_mask(u); |
| enable_mask = unit_get_enable_mask(u); |
| |
| if (unit_has_mask_realized(u, target_mask, enable_mask)) |
| return 0; |
| |
| /* Disable controllers below us, if there are any */ |
| r = unit_realize_cgroup_now_disable(u, state); |
| if (r < 0) |
| return r; |
| |
| /* Enable controllers above us, if there are any */ |
| if (UNIT_ISSET(u->slice)) { |
| r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state); |
| if (r < 0) |
| return r; |
| } |
| |
| /* Now actually deal with the cgroup we were trying to realise and set attributes */ |
| r = unit_create_cgroup(u, target_mask, enable_mask, state); |
| if (r < 0) |
| return r; |
| |
| /* Now, reset the invalidation mask */ |
| u->cgroup_invalidated_mask = 0; |
| return 0; |
| } |
| |
| unsigned manager_dispatch_cgroup_realize_queue(Manager *m) { |
| ManagerState state; |
| unsigned n = 0; |
| Unit *i; |
| int r; |
| |
| assert(m); |
| |
| state = manager_state(m); |
| |
| while ((i = m->cgroup_realize_queue)) { |
| assert(i->in_cgroup_realize_queue); |
| |
| if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) { |
| /* Maybe things changed, and the unit is not actually active anymore? */ |
| unit_remove_from_cgroup_realize_queue(i); |
| continue; |
| } |
| |
| r = unit_realize_cgroup_now(i, state); |
| if (r < 0) |
| log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id); |
| |
| n++; |
| } |
| |
| return n; |
| } |
| |
| static void unit_add_siblings_to_cgroup_realize_queue(Unit *u) { |
| Unit *slice; |
| |
| /* This adds the siblings of the specified unit and the siblings of all parent units to the cgroup |
| * queue. (But neither the specified unit itself nor the parents.) |
| * |
| * Propagation of realization "side-ways" (i.e. towards siblings) is relevant on cgroup-v1 where |
| * scheduling becomes very weird if two units that own processes reside in the same slice, but one is |
| * realized in the "cpu" hierarchy and one is not (for example because one has CPUWeight= set and the |
| * other does not), because that means individual processes need to be scheduled against whole |
| * cgroups. Let's avoid this asymmetry by always ensuring that units below a slice that are realized |
| * at all are always realized in *all* their hierarchies, and it is sufficient for a unit's sibling |
| * to be realized for the unit itself to be realized too. */ |
| |
| while ((slice = UNIT_DEREF(u->slice))) { |
| Iterator i; |
| Unit *m; |
| void *v; |
| |
| HASHMAP_FOREACH_KEY(v, m, slice->dependencies[UNIT_BEFORE], i) { |
| |
| /* Skip units that have a dependency on the slice but aren't actually in it. */ |
| if (UNIT_DEREF(m->slice) != slice) |
| continue; |
| |
| /* No point in doing cgroup application for units without active processes. */ |
| if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m))) |
| continue; |
| |
| /* We only enqueue siblings if they were realized once at least, in the main |
| * hierarchy. */ |
| if (!m->cgroup_realized) |
| continue; |
| |
| /* If the unit doesn't need any new controllers and has current ones realized, it |
| * doesn't need any changes. */ |
| if (unit_has_mask_realized(m, |
| unit_get_target_mask(m), |
| unit_get_enable_mask(m))) |
| continue; |
| |
| unit_add_to_cgroup_realize_queue(m); |
| } |
| |
| u = slice; |
| } |
| } |
| |
| int unit_realize_cgroup(Unit *u) { |
| assert(u); |
| |
| if (!UNIT_HAS_CGROUP_CONTEXT(u)) |
| return 0; |
| |
| /* So, here's the deal: when realizing the cgroups for this |
| * unit, we need to first create all parents, but there's more |
| * actually: for the weight-based controllers we also need to |
| * make sure that all our siblings (i.e. units that are in the |
| * same slice as we are) have cgroups, too. Otherwise, things |
| * would become very uneven as each of their processes would |
| * get as much resources as all our group together. This call |
| * will synchronously create the parent cgroups, but will |
| * defer work on the siblings to the next event loop |
| * iteration. */ |
| |
| /* Add all sibling slices to the cgroup queue. */ |
| unit_add_siblings_to_cgroup_realize_queue(u); |
| |
| /* And realize this one now (and apply the values) */ |
| return unit_realize_cgroup_now(u, manager_state(u->manager)); |
| } |
| |
| void unit_release_cgroup(Unit *u) { |
| assert(u); |
| |
| /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call |
| * when we close down everything for reexecution, where we really want to leave the cgroup in place. */ |
| |
| if (u->cgroup_path) { |
| (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path); |
| u->cgroup_path = mfree(u->cgroup_path); |
| } |
| |
| if (u->cgroup_control_inotify_wd >= 0) { |
| if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_control_inotify_wd) < 0) |
| log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", u->cgroup_control_inotify_wd, u->id); |
| |
| (void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd)); |
| u->cgroup_control_inotify_wd = -1; |
| } |
| |
| if (u->cgroup_memory_inotify_wd >= 0) { |
| if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_memory_inotify_wd) < 0) |
| log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", u->cgroup_memory_inotify_wd, u->id); |
| |
| (void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd)); |
| u->cgroup_memory_inotify_wd = -1; |
| } |
| } |
| |
| void unit_prune_cgroup(Unit *u) { |
| int r; |
| bool is_root_slice; |
| |
| assert(u); |
| |
| /* Removes the cgroup, if empty and possible, and stops watching it. */ |
| |
| if (!u->cgroup_path) |
| return; |
| |
| (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */ |
| |
| is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE); |
| |
| r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice); |
| if (r < 0) |
| /* One reason we could have failed here is, that the cgroup still contains a process. |
| * However, if the cgroup becomes removable at a later time, it might be removed when |
| * the containing slice is stopped. So even if we failed now, this unit shouldn't assume |
| * that the cgroup is still realized the next time it is started. Do not return early |
| * on error, continue cleanup. */ |
| log_unit_full(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path); |
| |
| if (is_root_slice) |
| return; |
| |
| unit_release_cgroup(u); |
| |
| u->cgroup_realized = false; |
| u->cgroup_realized_mask = 0; |
| u->cgroup_enabled_mask = 0; |
| |
| u->bpf_device_control_installed = bpf_program_unref(u->bpf_device_control_installed); |
| } |
| |
| int unit_search_main_pid(Unit *u, pid_t *ret) { |
| _cleanup_fclose_ FILE *f = NULL; |
| pid_t pid = 0, npid; |
| int r; |
| |
| assert(u); |
| assert(ret); |
| |
| if (!u->cgroup_path) |
| return -ENXIO; |
| |
| r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f); |
| if (r < 0) |
| return r; |
| |
| while (cg_read_pid(f, &npid) > 0) { |
| |
| if (npid == pid) |
| continue; |
| |
| if (pid_is_my_child(npid) == 0) |
| continue; |
| |
| if (pid != 0) |
| /* Dang, there's more than one daemonized PID |
| in this group, so we don't know what process |
| is the main process. */ |
| |
| return -ENODATA; |
| |
| pid = npid; |
| } |
| |
| *ret = pid; |
| return 0; |
| } |
| |
| static int unit_watch_pids_in_path(Unit *u, const char *path) { |
| _cleanup_closedir_ DIR *d = NULL; |
| _cleanup_fclose_ FILE *f = NULL; |
| int ret = 0, r; |
| |
| assert(u); |
| assert(path); |
| |
| r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f); |
| if (r < 0) |
| ret = r; |
| else { |
| pid_t pid; |
| |
| while ((r = cg_read_pid(f, &pid)) > 0) { |
| r = unit_watch_pid(u, pid, false); |
| if (r < 0 && ret >= 0) |
| ret = r; |
| } |
| |
| if (r < 0 && ret >= 0) |
| ret = r; |
| } |
| |
| r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d); |
| if (r < 0) { |
| if (ret >= 0) |
| ret = r; |
| } else { |
| char *fn; |
| |
| while ((r = cg_read_subgroup(d, &fn)) > 0) { |
| _cleanup_free_ char *p = NULL; |
| |
| p = path_join(empty_to_root(path), fn); |
| free(fn); |
| |
| if (!p) |
| return -ENOMEM; |
| |
| r = unit_watch_pids_in_path(u, p); |
| if (r < 0 && ret >= 0) |
| ret = r; |
| } |
| |
| if (r < 0 && ret >= 0) |
| ret = r; |
| } |
| |
| return ret; |
| } |
| |
| int unit_synthesize_cgroup_empty_event(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility |
| * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can |
| * get as notification source as soon as we stopped having any useful PIDs to watch for. */ |
| |
| if (!u->cgroup_path) |
| return -ENOENT; |
| |
| r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER); |
| if (r < 0) |
| return r; |
| if (r > 0) /* On unified we have reliable notifications, and don't need this */ |
| return 0; |
| |
| if (!set_isempty(u->pids)) |
| return 0; |
| |
| unit_add_to_cgroup_empty_queue(u); |
| return 0; |
| } |
| |
| int unit_watch_all_pids(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| /* Adds all PIDs from our cgroup to the set of PIDs we |
| * watch. This is a fallback logic for cases where we do not |
| * get reliable cgroup empty notifications: we try to use |
| * SIGCHLD as replacement. */ |
| |
| if (!u->cgroup_path) |
| return -ENOENT; |
| |
| r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER); |
| if (r < 0) |
| return r; |
| if (r > 0) /* On unified we can use proper notifications */ |
| return 0; |
| |
| return unit_watch_pids_in_path(u, u->cgroup_path); |
| } |
| |
| static int on_cgroup_empty_event(sd_event_source *s, void *userdata) { |
| Manager *m = userdata; |
| Unit *u; |
| int r; |
| |
| assert(s); |
| assert(m); |
| |
| u = m->cgroup_empty_queue; |
| if (!u) |
| return 0; |
| |
| assert(u->in_cgroup_empty_queue); |
| u->in_cgroup_empty_queue = false; |
| LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u); |
| |
| if (m->cgroup_empty_queue) { |
| /* More stuff queued, let's make sure we remain enabled */ |
| r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT); |
| if (r < 0) |
| log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m"); |
| } |
| |
| unit_add_to_gc_queue(u); |
| |
| if (UNIT_VTABLE(u)->notify_cgroup_empty) |
| UNIT_VTABLE(u)->notify_cgroup_empty(u); |
| |
| return 0; |
| } |
| |
| void unit_add_to_cgroup_empty_queue(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| /* Note that there are four different ways how cgroup empty events reach us: |
| * |
| * 1. On the unified hierarchy we get an inotify event on the cgroup |
| * |
| * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket |
| * |
| * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus |
| * |
| * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as |
| * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications. |
| * |
| * Regardless which way we got the notification, we'll verify it here, and then add it to a separate |
| * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use |
| * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending |
| * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the |
| * case for scope units). */ |
| |
| if (u->in_cgroup_empty_queue) |
| return; |
| |
| /* Let's verify that the cgroup is really empty */ |
| if (!u->cgroup_path) |
| return; |
| |
| r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path); |
| if (r < 0) { |
| log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path); |
| return; |
| } |
| if (r == 0) |
| return; |
| |
| LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u); |
| u->in_cgroup_empty_queue = true; |
| |
| /* Trigger the defer event */ |
| r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT); |
| if (r < 0) |
| log_debug_errno(r, "Failed to enable cgroup empty event source: %m"); |
| } |
| |
| int unit_check_oom(Unit *u) { |
| _cleanup_free_ char *oom_kill = NULL; |
| bool increased; |
| uint64_t c; |
| int r; |
| |
| if (!u->cgroup_path) |
| return 0; |
| |
| r = cg_get_keyed_attribute("memory", u->cgroup_path, "memory.events", STRV_MAKE("oom_kill"), &oom_kill); |
| if (r < 0) |
| return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m"); |
| |
| r = safe_atou64(oom_kill, &c); |
| if (r < 0) |
| return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m"); |
| |
| increased = c > u->oom_kill_last; |
| u->oom_kill_last = c; |
| |
| if (!increased) |
| return 0; |
| |
| log_struct(LOG_NOTICE, |
| "MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR, |
| LOG_UNIT_ID(u), |
| LOG_UNIT_INVOCATION_ID(u), |
| LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer.")); |
| |
| if (UNIT_VTABLE(u)->notify_cgroup_oom) |
| UNIT_VTABLE(u)->notify_cgroup_oom(u); |
| |
| return 1; |
| } |
| |
| static int on_cgroup_oom_event(sd_event_source *s, void *userdata) { |
| Manager *m = userdata; |
| Unit *u; |
| int r; |
| |
| assert(s); |
| assert(m); |
| |
| u = m->cgroup_oom_queue; |
| if (!u) |
| return 0; |
| |
| assert(u->in_cgroup_oom_queue); |
| u->in_cgroup_oom_queue = false; |
| LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u); |
| |
| if (m->cgroup_oom_queue) { |
| /* More stuff queued, let's make sure we remain enabled */ |
| r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT); |
| if (r < 0) |
| log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m"); |
| } |
| |
| (void) unit_check_oom(u); |
| return 0; |
| } |
| |
| static void unit_add_to_cgroup_oom_queue(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| if (u->in_cgroup_oom_queue) |
| return; |
| if (!u->cgroup_path) |
| return; |
| |
| LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u); |
| u->in_cgroup_oom_queue = true; |
| |
| /* Trigger the defer event */ |
| if (!u->manager->cgroup_oom_event_source) { |
| _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL; |
| |
| r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager); |
| if (r < 0) { |
| log_error_errno(r, "Failed to create cgroup oom event source: %m"); |
| return; |
| } |
| |
| r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_NORMAL-8); |
| if (r < 0) { |
| log_error_errno(r, "Failed to set priority of cgroup oom event source: %m"); |
| return; |
| } |
| |
| (void) sd_event_source_set_description(s, "cgroup-oom"); |
| u->manager->cgroup_oom_event_source = TAKE_PTR(s); |
| } |
| |
| r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT); |
| if (r < 0) |
| log_error_errno(r, "Failed to enable cgroup oom event source: %m"); |
| } |
| |
| static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) { |
| Manager *m = userdata; |
| |
| assert(s); |
| assert(fd >= 0); |
| assert(m); |
| |
| for (;;) { |
| union inotify_event_buffer buffer; |
| struct inotify_event *e; |
| ssize_t l; |
| |
| l = read(fd, &buffer, sizeof(buffer)); |
| if (l < 0) { |
| if (IN_SET(errno, EINTR, EAGAIN)) |
| return 0; |
| |
| return log_error_errno(errno, "Failed to read control group inotify events: %m"); |
| } |
| |
| FOREACH_INOTIFY_EVENT(e, buffer, l) { |
| Unit *u; |
| |
| if (e->wd < 0) |
| /* Queue overflow has no watch descriptor */ |
| continue; |
| |
| if (e->mask & IN_IGNORED) |
| /* The watch was just removed */ |
| continue; |
| |
| /* Note that inotify might deliver events for a watch even after it was removed, |
| * because it was queued before the removal. Let's ignore this here safely. */ |
| |
| u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd)); |
| if (u) |
| unit_add_to_cgroup_empty_queue(u); |
| |
| u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd)); |
| if (u) |
| unit_add_to_cgroup_oom_queue(u); |
| } |
| } |
| } |
| |
| static int cg_bpf_mask_supported(CGroupMask *ret) { |
| CGroupMask mask = 0; |
| int r; |
| |
| /* BPF-based firewall */ |
| r = bpf_firewall_supported(); |
| if (r > 0) |
| mask |= CGROUP_MASK_BPF_FIREWALL; |
| |
| /* BPF-based device access control */ |
| r = bpf_devices_supported(); |
| if (r > 0) |
| mask |= CGROUP_MASK_BPF_DEVICES; |
| |
| *ret = mask; |
| return 0; |
| } |
| |
| int manager_setup_cgroup(Manager *m) { |
| _cleanup_free_ char *path = NULL; |
| const char *scope_path; |
| CGroupController c; |
| int r, all_unified; |
| CGroupMask mask; |
| char *e; |
| |
| assert(m); |
| |
| /* 1. Determine hierarchy */ |
| m->cgroup_root = mfree(m->cgroup_root); |
| r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root); |
| if (r < 0) |
| return log_error_errno(r, "Cannot determine cgroup we are running in: %m"); |
| |
| /* Chop off the init scope, if we are already located in it */ |
| e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE); |
| |
| /* LEGACY: Also chop off the system slice if we are in |
| * it. This is to support live upgrades from older systemd |
| * versions where PID 1 was moved there. Also see |
| * cg_get_root_path(). */ |
| if (!e && MANAGER_IS_SYSTEM(m)) { |
| e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE); |
| if (!e) |
| e = endswith(m->cgroup_root, "/system"); /* even more legacy */ |
| } |
| if (e) |
| *e = 0; |
| |
| /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can |
| * easily prepend it everywhere. */ |
| delete_trailing_chars(m->cgroup_root, "/"); |
| |
| /* 2. Show data */ |
| r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path); |
| if (r < 0) |
| return log_error_errno(r, "Cannot find cgroup mount point: %m"); |
| |
| r = cg_unified(); |
| if (r < 0) |
| return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m"); |
| |
| all_unified = cg_all_unified(); |
| if (all_unified < 0) |
| return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m"); |
| if (all_unified > 0) |
| log_debug("Unified cgroup hierarchy is located at %s.", path); |
| else { |
| r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER); |
| if (r < 0) |
| return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m"); |
| if (r > 0) |
| log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path); |
| else |
| log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path); |
| } |
| |
| /* 3. Allocate cgroup empty defer event source */ |
| m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source); |
| r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m); |
| if (r < 0) |
| return log_error_errno(r, "Failed to create cgroup empty event source: %m"); |
| |
| /* Schedule cgroup empty checks early, but after having processed service notification messages or |
| * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of |
| * notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */ |
| r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m"); |
| |
| r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF); |
| if (r < 0) |
| return log_error_errno(r, "Failed to disable cgroup empty event source: %m"); |
| |
| (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty"); |
| |
| /* 4. Install notifier inotify object, or agent */ |
| if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) { |
| |
| /* In the unified hierarchy we can get cgroup empty notifications via inotify. */ |
| |
| m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source); |
| safe_close(m->cgroup_inotify_fd); |
| |
| m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC); |
| if (m->cgroup_inotify_fd < 0) |
| return log_error_errno(errno, "Failed to create control group inotify object: %m"); |
| |
| r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m); |
| if (r < 0) |
| return log_error_errno(r, "Failed to watch control group inotify object: %m"); |
| |
| /* Process cgroup empty notifications early. Note that when this event is dispatched it'll |
| * just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see |
| * handling of cgroup agent notifications, for the classic cgroup hierarchy support. */ |
| r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-9); |
| if (r < 0) |
| return log_error_errno(r, "Failed to set priority of inotify event source: %m"); |
| |
| (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify"); |
| |
| } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) { |
| |
| /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable, |
| * since it does not generate events when control groups with children run empty. */ |
| |
| r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH); |
| if (r < 0) |
| log_warning_errno(r, "Failed to install release agent, ignoring: %m"); |
| else if (r > 0) |
| log_debug("Installed release agent."); |
| else if (r == 0) |
| log_debug("Release agent already installed."); |
| } |
| |
| /* 5. Make sure we are in the special "init.scope" unit in the root slice. */ |
| scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE); |
| r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0); |
| if (r >= 0) { |
| /* Also, move all other userspace processes remaining in the root cgroup into that scope. */ |
| r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0); |
| if (r < 0) |
| log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m"); |
| |
| /* 6. And pin it, so that it cannot be unmounted */ |
| safe_close(m->pin_cgroupfs_fd); |
| m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK); |
| if (m->pin_cgroupfs_fd < 0) |
| return log_error_errno(errno, "Failed to open pin file: %m"); |
| |
| } else if (!MANAGER_IS_TEST_RUN(m)) |
| return log_error_errno(r, "Failed to create %s control group: %m", scope_path); |
| |
| /* 7. Always enable hierarchical support if it exists... */ |
| if (!all_unified && !MANAGER_IS_TEST_RUN(m)) |
| (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1"); |
| |
| /* 8. Figure out which controllers are supported */ |
| r = cg_mask_supported(&m->cgroup_supported); |
| if (r < 0) |
| return log_error_errno(r, "Failed to determine supported controllers: %m"); |
| |
| /* 9. Figure out which bpf-based pseudo-controllers are supported */ |
| r = cg_bpf_mask_supported(&mask); |
| if (r < 0) |
| return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m"); |
| m->cgroup_supported |= mask; |
| |
| /* 10. Log which controllers are supported */ |
| for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) |
| log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c))); |
| |
| return 0; |
| } |
| |
| void manager_shutdown_cgroup(Manager *m, bool delete) { |
| assert(m); |
| |
| /* We can't really delete the group, since we are in it. But |
| * let's trim it. */ |
| if (delete && m->cgroup_root && m->test_run_flags != MANAGER_TEST_RUN_MINIMAL) |
| (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false); |
| |
| m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source); |
| |
| m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit); |
| m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit); |
| |
| m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source); |
| m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd); |
| |
| m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd); |
| |
| m->cgroup_root = mfree(m->cgroup_root); |
| } |
| |
| Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) { |
| char *p; |
| Unit *u; |
| |
| assert(m); |
| assert(cgroup); |
| |
| u = hashmap_get(m->cgroup_unit, cgroup); |
| if (u) |
| return u; |
| |
| p = strdupa(cgroup); |
| for (;;) { |
| char *e; |
| |
| e = strrchr(p, '/'); |
| if (!e || e == p) |
| return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE); |
| |
| *e = 0; |
| |
| u = hashmap_get(m->cgroup_unit, p); |
| if (u) |
| return u; |
| } |
| } |
| |
| Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) { |
| _cleanup_free_ char *cgroup = NULL; |
| |
| assert(m); |
| |
| if (!pid_is_valid(pid)) |
| return NULL; |
| |
| if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0) |
| return NULL; |
| |
| return manager_get_unit_by_cgroup(m, cgroup); |
| } |
| |
| Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) { |
| Unit *u, **array; |
| |
| assert(m); |
| |
| /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most |
| * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most |
| * relevant one as children of the process will be assigned to that one, too, before all else. */ |
| |
| if (!pid_is_valid(pid)) |
| return NULL; |
| |
| if (pid == getpid_cached()) |
| return hashmap_get(m->units, SPECIAL_INIT_SCOPE); |
| |
| u = manager_get_unit_by_pid_cgroup(m, pid); |
| if (u) |
| return u; |
| |
| u = hashmap_get(m->watch_pids, PID_TO_PTR(pid)); |
| if (u) |
| return u; |
| |
| array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid)); |
| if (array) |
| return array[0]; |
| |
| return NULL; |
| } |
| |
| int manager_notify_cgroup_empty(Manager *m, const char *cgroup) { |
| Unit *u; |
| |
| assert(m); |
| assert(cgroup); |
| |
| /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process |
| * or from the --system instance */ |
| |
| log_debug("Got cgroup empty notification for: %s", cgroup); |
| |
| u = manager_get_unit_by_cgroup(m, cgroup); |
| if (!u) |
| return 0; |
| |
| unit_add_to_cgroup_empty_queue(u); |
| return 1; |
| } |
| |
| int unit_get_memory_current(Unit *u, uint64_t *ret) { |
| _cleanup_free_ char *v = NULL; |
| int r; |
| |
| assert(u); |
| assert(ret); |
| |
| if (!UNIT_CGROUP_BOOL(u, memory_accounting)) |
| return -ENODATA; |
| |
| if (!u->cgroup_path) |
| return -ENODATA; |
| |
| /* The root cgroup doesn't expose this information, let's get it from /proc instead */ |
| if (unit_has_host_root_cgroup(u)) |
| return procfs_memory_get_used(ret); |
| |
| if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0) |
| return -ENODATA; |
| |
| r = cg_all_unified(); |
| if (r < 0) |
| return r; |
| if (r > 0) |
| r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v); |
| else |
| r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v); |
| if (r == -ENOENT) |
| return -ENODATA; |
| if (r < 0) |
| return r; |
| |
| return safe_atou64(v, ret); |
| } |
| |
| int unit_get_tasks_current(Unit *u, uint64_t *ret) { |
| _cleanup_free_ char *v = NULL; |
| int r; |
| |
| assert(u); |
| assert(ret); |
| |
| if (!UNIT_CGROUP_BOOL(u, tasks_accounting)) |
| return -ENODATA; |
| |
| if (!u->cgroup_path) |
| return -ENODATA; |
| |
| /* The root cgroup doesn't expose this information, let's get it from /proc instead */ |
| if (unit_has_host_root_cgroup(u)) |
| return procfs_tasks_get_current(ret); |
| |
| if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0) |
| return -ENODATA; |
| |
| r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v); |
| if (r == -ENOENT) |
| return -ENODATA; |
| if (r < 0) |
| return r; |
| |
| return safe_atou64(v, ret); |
| } |
| |
| static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) { |
| _cleanup_free_ char *v = NULL; |
| uint64_t ns; |
| int r; |
| |
| assert(u); |
| assert(ret); |
| |
| if (!u->cgroup_path) |
| return -ENODATA; |
| |
| /* The root cgroup doesn't expose this information, let's get it from /proc instead */ |
| if (unit_has_host_root_cgroup(u)) |
| return procfs_cpu_get_usage(ret); |
| |
| /* Requisite controllers for CPU accounting are not enabled */ |
| if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0) |
| return -ENODATA; |
| |
| r = cg_all_unified(); |
| if (r < 0) |
| return r; |
| if (r > 0) { |
| _cleanup_free_ char *val = NULL; |
| uint64_t us; |
| |
| r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val); |
| if (IN_SET(r, -ENOENT, -ENXIO)) |
| return -ENODATA; |
| if (r < 0) |
| return r; |
| |
| r = safe_atou64(val, &us); |
| if (r < 0) |
| return r; |
| |
| ns = us * NSEC_PER_USEC; |
| } else { |
| r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v); |
| if (r == -ENOENT) |
| return -ENODATA; |
| if (r < 0) |
| return r; |
| |
| r = safe_atou64(v, &ns); |
| if (r < 0) |
| return r; |
| } |
| |
| *ret = ns; |
| return 0; |
| } |
| |
| int unit_get_cpu_usage(Unit *u, nsec_t *ret) { |
| nsec_t ns; |
| int r; |
| |
| assert(u); |
| |
| /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was |
| * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply |
| * call this function with a NULL return value. */ |
| |
| if (!UNIT_CGROUP_BOOL(u, cpu_accounting)) |
| return -ENODATA; |
| |
| r = unit_get_cpu_usage_raw(u, &ns); |
| if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) { |
| /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our |
| * cached value. */ |
| |
| if (ret) |
| *ret = u->cpu_usage_last; |
| return 0; |
| } |
| if (r < 0) |
| return r; |
| |
| if (ns > u->cpu_usage_base) |
| ns -= u->cpu_usage_base; |
| else |
| ns = 0; |
| |
| u->cpu_usage_last = ns; |
| if (ret) |
| *ret = ns; |
| |
| return 0; |
| } |
| |
| int unit_get_ip_accounting( |
| Unit *u, |
| CGroupIPAccountingMetric metric, |
| uint64_t *ret) { |
| |
| uint64_t value; |
| int fd, r; |
| |
| assert(u); |
| assert(metric >= 0); |
| assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX); |
| assert(ret); |
| |
| if (!UNIT_CGROUP_BOOL(u, ip_accounting)) |
| return -ENODATA; |
| |
| fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ? |
| u->ip_accounting_ingress_map_fd : |
| u->ip_accounting_egress_map_fd; |
| if (fd < 0) |
| return -ENODATA; |
| |
| if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES)) |
| r = bpf_firewall_read_accounting(fd, &value, NULL); |
| else |
| r = bpf_firewall_read_accounting(fd, NULL, &value); |
| if (r < 0) |
| return r; |
| |
| /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile |
| * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the |
| * ip_accounting_extra[] field, and add them in here transparently. */ |
| |
| *ret = value + u->ip_accounting_extra[metric]; |
| |
| return r; |
| } |
| |
| static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) { |
| static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = { |
| [CGROUP_IO_READ_BYTES] = "rbytes=", |
| [CGROUP_IO_WRITE_BYTES] = "wbytes=", |
| [CGROUP_IO_READ_OPERATIONS] = "rios=", |
| [CGROUP_IO_WRITE_OPERATIONS] = "wios=", |
| }; |
| uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {}; |
| _cleanup_free_ char *path = NULL; |
| _cleanup_fclose_ FILE *f = NULL; |
| int r; |
| |
| assert(u); |
| |
| if (!u->cgroup_path) |
| return -ENODATA; |
| |
| if (unit_has_host_root_cgroup(u)) |
| return -ENODATA; /* TODO: return useful data for the top-level cgroup */ |
| |
| r = cg_all_unified(); |
| if (r < 0) |
| return r; |
| if (r == 0) /* TODO: support cgroupv1 */ |
| return -ENODATA; |
| |
| if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_IO)) |
| return -ENODATA; |
| |
| r = cg_get_path("io", u->cgroup_path, "io.stat", &path); |
| if (r < 0) |
| return r; |
| |
| f = fopen(path, "re"); |
| if (!f) |
| return -errno; |
| |
| for (;;) { |
| _cleanup_free_ char *line = NULL; |
| const char *p; |
| |
| r = read_line(f, LONG_LINE_MAX, &line); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| break; |
| |
| p = line; |
| p += strcspn(p, WHITESPACE); /* Skip over device major/minor */ |
| p += strspn(p, WHITESPACE); /* Skip over following whitespace */ |
| |
| for (;;) { |
| _cleanup_free_ char *word = NULL; |
| |
| r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| break; |
| |
| for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) { |
| const char *x; |
| |
| x = startswith(word, field_names[i]); |
| if (x) { |
| uint64_t w; |
| |
| r = safe_atou64(x, &w); |
| if (r < 0) |
| return r; |
| |
| /* Sum up the stats of all devices */ |
| acc[i] += w; |
| break; |
| } |
| } |
| } |
| } |
| |
| memcpy(ret, acc, sizeof(acc)); |
| return 0; |
| } |
| |
| int unit_get_io_accounting( |
| Unit *u, |
| CGroupIOAccountingMetric metric, |
| bool allow_cache, |
| uint64_t *ret) { |
| |
| uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX]; |
| int r; |
| |
| /* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */ |
| |
| if (!UNIT_CGROUP_BOOL(u, io_accounting)) |
| return -ENODATA; |
| |
| if (allow_cache && u->io_accounting_last[metric] != UINT64_MAX) |
| goto done; |
| |
| r = unit_get_io_accounting_raw(u, raw); |
| if (r == -ENODATA && u->io_accounting_last[metric] != UINT64_MAX) |
| goto done; |
| if (r < 0) |
| return r; |
| |
| for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) { |
| /* Saturated subtraction */ |
| if (raw[i] > u->io_accounting_base[i]) |
| u->io_accounting_last[i] = raw[i] - u->io_accounting_base[i]; |
| else |
| u->io_accounting_last[i] = 0; |
| } |
| |
| done: |
| if (ret) |
| *ret = u->io_accounting_last[metric]; |
| |
| return 0; |
| } |
| |
| int unit_reset_cpu_accounting(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| u->cpu_usage_last = NSEC_INFINITY; |
| |
| r = unit_get_cpu_usage_raw(u, &u->cpu_usage_base); |
| if (r < 0) { |
| u->cpu_usage_base = 0; |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| int unit_reset_ip_accounting(Unit *u) { |
| int r = 0, q = 0; |
| |
| assert(u); |
| |
| if (u->ip_accounting_ingress_map_fd >= 0) |
| r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd); |
| |
| if (u->ip_accounting_egress_map_fd >= 0) |
| q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd); |
| |
| zero(u->ip_accounting_extra); |
| |
| return r < 0 ? r : q; |
| } |
| |
| int unit_reset_io_accounting(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) |
| u->io_accounting_last[i] = UINT64_MAX; |
| |
| r = unit_get_io_accounting_raw(u, u->io_accounting_base); |
| if (r < 0) { |
| zero(u->io_accounting_base); |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| int unit_reset_accounting(Unit *u) { |
| int r, q, v; |
| |
| assert(u); |
| |
| r = unit_reset_cpu_accounting(u); |
| q = unit_reset_io_accounting(u); |
| v = unit_reset_ip_accounting(u); |
| |
| return r < 0 ? r : q < 0 ? q : v; |
| } |
| |
| void unit_invalidate_cgroup(Unit *u, CGroupMask m) { |
| assert(u); |
| |
| if (!UNIT_HAS_CGROUP_CONTEXT(u)) |
| return; |
| |
| if (m == 0) |
| return; |
| |
| /* always invalidate compat pairs together */ |
| if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO)) |
| m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO; |
| |
| if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT)) |
| m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT; |
| |
| if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */ |
| return; |
| |
| u->cgroup_invalidated_mask |= m; |
| unit_add_to_cgroup_realize_queue(u); |
| } |
| |
| void unit_invalidate_cgroup_bpf(Unit *u) { |
| assert(u); |
| |
| if (!UNIT_HAS_CGROUP_CONTEXT(u)) |
| return; |
| |
| if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */ |
| return; |
| |
| u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL; |
| unit_add_to_cgroup_realize_queue(u); |
| |
| /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access |
| * list of our children includes our own. */ |
| if (u->type == UNIT_SLICE) { |
| Unit *member; |
| Iterator i; |
| void *v; |
| |
| HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) |
| if (UNIT_DEREF(member->slice) == u) |
| unit_invalidate_cgroup_bpf(member); |
| } |
| } |
| |
| bool unit_cgroup_delegate(Unit *u) { |
| CGroupContext *c; |
| |
| assert(u); |
| |
| if (!UNIT_VTABLE(u)->can_delegate) |
| return false; |
| |
| c = unit_get_cgroup_context(u); |
| if (!c) |
| return false; |
| |
| return c->delegate; |
| } |
| |
| void manager_invalidate_startup_units(Manager *m) { |
| Iterator i; |
| Unit *u; |
| |
| assert(m); |
| |
| SET_FOREACH(u, m->startup_units, i) |
| unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO); |
| } |
| |
| static int unit_get_nice(Unit *u) { |
| ExecContext *ec; |
| |
| ec = unit_get_exec_context(u); |
| return ec ? ec->nice : 0; |
| } |
| |
| static uint64_t unit_get_cpu_weight(Unit *u) { |
| ManagerState state = manager_state(u->manager); |
| CGroupContext *cc; |
| |
| cc = unit_get_cgroup_context(u); |
| return cc ? cgroup_context_cpu_weight(cc, state) : CGROUP_WEIGHT_DEFAULT; |
| } |
| |
| int compare_job_priority(const void *a, const void *b) { |
| const Job *x = a, *y = b; |
| int nice_x, nice_y; |
| uint64_t weight_x, weight_y; |
| int ret; |
| |
| if ((ret = CMP(x->unit->type, y->unit->type)) != 0) |
| return -ret; |
| |
| weight_x = unit_get_cpu_weight(x->unit); |
| weight_y = unit_get_cpu_weight(y->unit); |
| |
| if ((ret = CMP(weight_x, weight_y)) != 0) |
| return -ret; |
| |
| nice_x = unit_get_nice(x->unit); |
| nice_y = unit_get_nice(y->unit); |
| |
| if ((ret = CMP(nice_x, nice_y)) != 0) |
| return ret; |
| |
| return strcmp(x->unit->id, y->unit->id); |
| } |
| |
| static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = { |
| [CGROUP_DEVICE_POLICY_AUTO] = "auto", |
| [CGROUP_DEVICE_POLICY_CLOSED] = "closed", |
| [CGROUP_DEVICE_POLICY_STRICT] = "strict", |
| }; |
| |
| int unit_get_cpuset(Unit *u, CPUSet *cpus, const char *name) { |
| _cleanup_free_ char *v = NULL; |
| int r; |
| |
| assert(u); |
| assert(cpus); |
| |
| if (!u->cgroup_path) |
| return -ENODATA; |
| |
| if ((u->cgroup_realized_mask & CGROUP_MASK_CPUSET) == 0) |
| return -ENODATA; |
| |
| r = cg_all_unified(); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| return -ENODATA; |
| |
| r = cg_get_attribute("cpuset", u->cgroup_path, name, &v); |
| if (r == -ENOENT) |
| return -ENODATA; |
| if (r < 0) |
| return r; |
| |
| return parse_cpu_set_full(v, cpus, false, NULL, NULL, 0, NULL); |
| } |
| |
| DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy); |