blob: 64763d930081fc238cd34ec8180dc9c72cf8e574 [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1+ */
#include <errno.h>
#include <stdio.h>
#include <sys/prctl.h>
#include <sys/xattr.h>
#include <unistd.h>
#if HAVE_ELFUTILS
#include <dwarf.h>
#include <elfutils/libdwfl.h>
#endif
#include "sd-daemon.h"
#include "sd-journal.h"
#include "sd-login.h"
#include "sd-messages.h"
#include "acl-util.h"
#include "alloc-util.h"
#include "capability-util.h"
#include "cgroup-util.h"
#include "compress.h"
#include "conf-parser.h"
#include "copy.h"
#include "coredump-vacuum.h"
#include "dirent-util.h"
#include "escape.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "io-util.h"
#include "journal-importer.h"
#include "log.h"
#include "macro.h"
#include "main-func.h"
#include "memory-util.h"
#include "mkdir.h"
#include "parse-util.h"
#include "process-util.h"
#include "signal-util.h"
#include "socket-util.h"
#include "special.h"
#include "stacktrace.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "tmpfile-util.h"
#include "user-util.h"
/* The maximum size up to which we process coredumps */
#define PROCESS_SIZE_MAX ((uint64_t) (2LLU*1024LLU*1024LLU*1024LLU))
/* The maximum size up to which we leave the coredump around on disk */
#define EXTERNAL_SIZE_MAX PROCESS_SIZE_MAX
/* The maximum size up to which we store the coredump in the journal */
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
#define JOURNAL_SIZE_MAX ((size_t) (767LU*1024LU*1024LU))
#else
/* oss-fuzz limits memory usage. */
#define JOURNAL_SIZE_MAX ((size_t) (10LU*1024LU*1024LU))
#endif
/* Make sure to not make this larger than the maximum journal entry
* size. See DATA_SIZE_MAX in journal-importer.h. */
assert_cc(JOURNAL_SIZE_MAX <= DATA_SIZE_MAX);
enum {
/* We use these as array indexes for our process metadata cache.
*
* The first indices of the cache stores the same metadata as the ones passed by
* the kernel via argv[], ie the strings array passed by the kernel according to
* our pattern defined in /proc/sys/kernel/core_pattern (see man:core(5)). */
META_ARGV_PID, /* %P: as seen in the initial pid namespace */
META_ARGV_UID, /* %u: as seen in the initial user namespace */
META_ARGV_GID, /* %g: as seen in the initial user namespace */
META_ARGV_SIGNAL, /* %s: number of signal causing dump */
META_ARGV_TIMESTAMP, /* %t: time of dump, expressed as seconds since the Epoch (we expand this to µs granularity) */
META_ARGV_RLIMIT, /* %c: core file size soft resource limit */
META_ARGV_HOSTNAME, /* %h: hostname */
_META_ARGV_MAX,
/* The following indexes are cached for a couple of special fields we use (and
* thereby need to be retrieved quickly) for naming coredump files, and attaching
* xattrs. Unlike the previous ones they are retrieved from the runtime
* environment. */
META_COMM = _META_ARGV_MAX,
_META_MANDATORY_MAX,
/* The rest are similar to the previous ones except that we won't fail if one of
* them is missing. */
META_EXE = _META_MANDATORY_MAX,
META_UNIT,
_META_MAX
};
static const char * const meta_field_names[_META_MAX] = {
[META_ARGV_PID] = "COREDUMP_PID=",
[META_ARGV_UID] = "COREDUMP_UID=",
[META_ARGV_GID] = "COREDUMP_GID=",
[META_ARGV_SIGNAL] = "COREDUMP_SIGNAL=",
[META_ARGV_TIMESTAMP] = "COREDUMP_TIMESTAMP=",
[META_ARGV_RLIMIT] = "COREDUMP_RLIMIT=",
[META_ARGV_HOSTNAME] = "COREDUMP_HOSTNAME=",
[META_COMM] = "COREDUMP_COMM=",
[META_EXE] = "COREDUMP_EXE=",
[META_UNIT] = "COREDUMP_UNIT=",
};
typedef struct Context {
const char *meta[_META_MAX];
pid_t pid;
bool is_pid1;
bool is_journald;
} Context;
typedef enum CoredumpStorage {
COREDUMP_STORAGE_NONE,
COREDUMP_STORAGE_EXTERNAL,
COREDUMP_STORAGE_JOURNAL,
_COREDUMP_STORAGE_MAX,
_COREDUMP_STORAGE_INVALID = -1
} CoredumpStorage;
static const char* const coredump_storage_table[_COREDUMP_STORAGE_MAX] = {
[COREDUMP_STORAGE_NONE] = "none",
[COREDUMP_STORAGE_EXTERNAL] = "external",
[COREDUMP_STORAGE_JOURNAL] = "journal",
};
DEFINE_PRIVATE_STRING_TABLE_LOOKUP(coredump_storage, CoredumpStorage);
static DEFINE_CONFIG_PARSE_ENUM(config_parse_coredump_storage, coredump_storage, CoredumpStorage, "Failed to parse storage setting");
static CoredumpStorage arg_storage = COREDUMP_STORAGE_EXTERNAL;
static bool arg_compress = true;
static uint64_t arg_process_size_max = PROCESS_SIZE_MAX;
static uint64_t arg_external_size_max = EXTERNAL_SIZE_MAX;
static uint64_t arg_journal_size_max = JOURNAL_SIZE_MAX;
static uint64_t arg_keep_free = (uint64_t) -1;
static uint64_t arg_max_use = (uint64_t) -1;
static int parse_config(void) {
static const ConfigTableItem items[] = {
{ "Coredump", "Storage", config_parse_coredump_storage, 0, &arg_storage },
{ "Coredump", "Compress", config_parse_bool, 0, &arg_compress },
{ "Coredump", "ProcessSizeMax", config_parse_iec_uint64, 0, &arg_process_size_max },
{ "Coredump", "ExternalSizeMax", config_parse_iec_uint64, 0, &arg_external_size_max },
{ "Coredump", "JournalSizeMax", config_parse_iec_size, 0, &arg_journal_size_max },
{ "Coredump", "KeepFree", config_parse_iec_uint64, 0, &arg_keep_free },
{ "Coredump", "MaxUse", config_parse_iec_uint64, 0, &arg_max_use },
{}
};
return config_parse_many_nulstr(PKGSYSCONFDIR "/coredump.conf",
CONF_PATHS_NULSTR("systemd/coredump.conf.d"),
"Coredump\0",
config_item_table_lookup, items,
CONFIG_PARSE_WARN, NULL);
}
static uint64_t storage_size_max(void) {
if (arg_storage == COREDUMP_STORAGE_EXTERNAL)
return arg_external_size_max;
if (arg_storage == COREDUMP_STORAGE_JOURNAL)
return arg_journal_size_max;
assert(arg_storage == COREDUMP_STORAGE_NONE);
return 0;
}
static int fix_acl(int fd, uid_t uid) {
#if HAVE_ACL
_cleanup_(acl_freep) acl_t acl = NULL;
acl_entry_t entry;
acl_permset_t permset;
int r;
assert(fd >= 0);
if (uid_is_system(uid) || uid_is_dynamic(uid) || uid == UID_NOBODY)
return 0;
/* Make sure normal users can read (but not write or delete)
* their own coredumps */
acl = acl_get_fd(fd);
if (!acl)
return log_error_errno(errno, "Failed to get ACL: %m");
if (acl_create_entry(&acl, &entry) < 0 ||
acl_set_tag_type(entry, ACL_USER) < 0 ||
acl_set_qualifier(entry, &uid) < 0)
return log_error_errno(errno, "Failed to patch ACL: %m");
if (acl_get_permset(entry, &permset) < 0 ||
acl_add_perm(permset, ACL_READ) < 0)
return log_warning_errno(errno, "Failed to patch ACL: %m");
r = calc_acl_mask_if_needed(&acl);
if (r < 0)
return log_warning_errno(r, "Failed to patch ACL: %m");
if (acl_set_fd(fd, acl) < 0)
return log_error_errno(errno, "Failed to apply ACL: %m");
#endif
return 0;
}
static int fix_xattr(int fd, const Context *context) {
static const char * const xattrs[_META_MAX] = {
[META_ARGV_PID] = "user.coredump.pid",
[META_ARGV_UID] = "user.coredump.uid",
[META_ARGV_GID] = "user.coredump.gid",
[META_ARGV_SIGNAL] = "user.coredump.signal",
[META_ARGV_TIMESTAMP] = "user.coredump.timestamp",
[META_ARGV_RLIMIT] = "user.coredump.rlimit",
[META_ARGV_HOSTNAME] = "user.coredump.hostname",
[META_COMM] = "user.coredump.comm",
[META_EXE] = "user.coredump.exe",
};
int r = 0;
unsigned i;
assert(fd >= 0);
/* Attach some metadata to coredumps via extended
* attributes. Just because we can. */
for (i = 0; i < _META_MAX; i++) {
int k;
if (isempty(context->meta[i]) || !xattrs[i])
continue;
k = fsetxattr(fd, xattrs[i], context->meta[i], strlen(context->meta[i]), XATTR_CREATE);
if (k < 0 && r == 0)
r = -errno;
}
return r;
}
#define filename_escape(s) xescape((s), "./ ")
static const char *coredump_tmpfile_name(const char *s) {
return s ? s : "(unnamed temporary file)";
}
static int fix_permissions(
int fd,
const char *filename,
const char *target,
const Context *context,
uid_t uid) {
int r;
assert(fd >= 0);
assert(target);
assert(context);
/* Ignore errors on these */
(void) fchmod(fd, 0640);
(void) fix_acl(fd, uid);
(void) fix_xattr(fd, context);
if (fsync(fd) < 0)
return log_error_errno(errno, "Failed to sync coredump %s: %m", coredump_tmpfile_name(filename));
(void) fsync_directory_of_file(fd);
r = link_tmpfile(fd, filename, target);
if (r < 0)
return log_error_errno(r, "Failed to move coredump %s into place: %m", target);
return 0;
}
static int maybe_remove_external_coredump(const char *filename, uint64_t size) {
/* Returns 1 if might remove, 0 if will not remove, < 0 on error. */
if (arg_storage == COREDUMP_STORAGE_EXTERNAL &&
size <= arg_external_size_max)
return 0;
if (!filename)
return 1;
if (unlink(filename) < 0 && errno != ENOENT)
return log_error_errno(errno, "Failed to unlink %s: %m", filename);
return 1;
}
static int make_filename(const Context *context, char **ret) {
_cleanup_free_ char *c = NULL, *u = NULL, *p = NULL, *t = NULL;
sd_id128_t boot = {};
int r;
assert(context);
c = filename_escape(context->meta[META_COMM]);
if (!c)
return -ENOMEM;
u = filename_escape(context->meta[META_ARGV_UID]);
if (!u)
return -ENOMEM;
r = sd_id128_get_boot(&boot);
if (r < 0)
return r;
p = filename_escape(context->meta[META_ARGV_PID]);
if (!p)
return -ENOMEM;
t = filename_escape(context->meta[META_ARGV_TIMESTAMP]);
if (!t)
return -ENOMEM;
if (asprintf(ret,
"/var/lib/systemd/coredump/core.%s.%s." SD_ID128_FORMAT_STR ".%s.%s",
c,
u,
SD_ID128_FORMAT_VAL(boot),
p,
t) < 0)
return -ENOMEM;
return 0;
}
static int save_external_coredump(
const Context *context,
int input_fd,
char **ret_filename,
int *ret_node_fd,
int *ret_data_fd,
uint64_t *ret_size,
bool *ret_truncated) {
_cleanup_free_ char *fn = NULL, *tmp = NULL;
_cleanup_close_ int fd = -1;
uint64_t rlimit, process_limit, max_size;
struct stat st;
uid_t uid;
int r;
assert(context);
assert(ret_filename);
assert(ret_node_fd);
assert(ret_data_fd);
assert(ret_size);
r = parse_uid(context->meta[META_ARGV_UID], &uid);
if (r < 0)
return log_error_errno(r, "Failed to parse UID: %m");
r = safe_atou64(context->meta[META_ARGV_RLIMIT], &rlimit);
if (r < 0)
return log_error_errno(r, "Failed to parse resource limit '%s': %m",
context->meta[META_ARGV_RLIMIT]);
if (rlimit < page_size()) {
/* Is coredumping disabled? Then don't bother saving/processing the
* coredump. Anything below PAGE_SIZE cannot give a readable coredump
* (the kernel uses ELF_EXEC_PAGESIZE which is not easily accessible, but
* is usually the same as PAGE_SIZE. */
return log_info_errno(SYNTHETIC_ERRNO(EBADSLT),
"Resource limits disable core dumping for process %s (%s).",
context->meta[META_ARGV_PID], context->meta[META_COMM]);
}
process_limit = MAX(arg_process_size_max, storage_size_max());
if (process_limit == 0)
return log_debug_errno(SYNTHETIC_ERRNO(EBADSLT),
"Limits for coredump processing and storage are both 0, not dumping core.");
/* Never store more than the process configured, or than we actually shall keep or process */
max_size = MIN(rlimit, process_limit);
r = make_filename(context, &fn);
if (r < 0)
return log_error_errno(r, "Failed to determine coredump file name: %m");
(void) mkdir_p_label("/var/lib/systemd/coredump", 0755);
fd = open_tmpfile_linkable(fn, O_RDWR|O_CLOEXEC, &tmp);
if (fd < 0)
return log_error_errno(fd, "Failed to create temporary file for coredump %s: %m", fn);
r = copy_bytes(input_fd, fd, max_size, 0);
if (r < 0) {
log_error_errno(r, "Cannot store coredump of %s (%s): %m",
context->meta[META_ARGV_PID], context->meta[META_COMM]);
goto fail;
}
*ret_truncated = r == 1;
if (*ret_truncated)
log_struct(LOG_INFO,
LOG_MESSAGE("Core file was truncated to %zu bytes.", max_size),
"SIZE_LIMIT=%zu", max_size,
"MESSAGE_ID=" SD_MESSAGE_TRUNCATED_CORE_STR);
if (fstat(fd, &st) < 0) {
log_error_errno(errno, "Failed to fstat core file %s: %m", coredump_tmpfile_name(tmp));
goto fail;
}
if (lseek(fd, 0, SEEK_SET) == (off_t) -1) {
log_error_errno(errno, "Failed to seek on %s: %m", coredump_tmpfile_name(tmp));
goto fail;
}
#if HAVE_XZ || HAVE_LZ4
/* If we will remove the coredump anyway, do not compress. */
if (arg_compress && !maybe_remove_external_coredump(NULL, st.st_size)) {
_cleanup_free_ char *fn_compressed = NULL, *tmp_compressed = NULL;
_cleanup_close_ int fd_compressed = -1;
fn_compressed = strjoin(fn, COMPRESSED_EXT);
if (!fn_compressed) {
log_oom();
goto uncompressed;
}
fd_compressed = open_tmpfile_linkable(fn_compressed, O_RDWR|O_CLOEXEC, &tmp_compressed);
if (fd_compressed < 0) {
log_error_errno(fd_compressed, "Failed to create temporary file for coredump %s: %m", fn_compressed);
goto uncompressed;
}
r = compress_stream(fd, fd_compressed, -1);
if (r < 0) {
log_error_errno(r, "Failed to compress %s: %m", coredump_tmpfile_name(tmp_compressed));
goto fail_compressed;
}
r = fix_permissions(fd_compressed, tmp_compressed, fn_compressed, context, uid);
if (r < 0)
goto fail_compressed;
/* OK, this worked, we can get rid of the uncompressed version now */
if (tmp)
unlink_noerrno(tmp);
*ret_filename = TAKE_PTR(fn_compressed); /* compressed */
*ret_node_fd = TAKE_FD(fd_compressed); /* compressed */
*ret_data_fd = TAKE_FD(fd); /* uncompressed */
*ret_size = (uint64_t) st.st_size; /* uncompressed */
return 0;
fail_compressed:
if (tmp_compressed)
(void) unlink(tmp_compressed);
}
uncompressed:
#endif
r = fix_permissions(fd, tmp, fn, context, uid);
if (r < 0)
goto fail;
*ret_filename = TAKE_PTR(fn);
*ret_data_fd = TAKE_FD(fd);
*ret_node_fd = -1;
*ret_size = (uint64_t) st.st_size;
return 0;
fail:
if (tmp)
(void) unlink(tmp);
return r;
}
static int allocate_journal_field(int fd, size_t size, char **ret, size_t *ret_size) {
_cleanup_free_ char *field = NULL;
ssize_t n;
assert(fd >= 0);
assert(ret);
assert(ret_size);
if (lseek(fd, 0, SEEK_SET) == (off_t) -1)
return log_warning_errno(errno, "Failed to seek: %m");
field = malloc(9 + size);
if (!field) {
log_warning("Failed to allocate memory for coredump, coredump will not be stored.");
return -ENOMEM;
}
memcpy(field, "COREDUMP=", 9);
n = read(fd, field + 9, size);
if (n < 0)
return log_error_errno((int) n, "Failed to read core data: %m");
if ((size_t) n < size)
return log_error_errno(SYNTHETIC_ERRNO(EIO),
"Core data too short.");
*ret = TAKE_PTR(field);
*ret_size = size + 9;
return 0;
}
/* Joins /proc/[pid]/fd/ and /proc/[pid]/fdinfo/ into the following lines:
* 0:/dev/pts/23
* pos: 0
* flags: 0100002
*
* 1:/dev/pts/23
* pos: 0
* flags: 0100002
*
* 2:/dev/pts/23
* pos: 0
* flags: 0100002
* EOF
*/
static int compose_open_fds(pid_t pid, char **open_fds) {
_cleanup_closedir_ DIR *proc_fd_dir = NULL;
_cleanup_close_ int proc_fdinfo_fd = -1;
_cleanup_free_ char *buffer = NULL;
_cleanup_fclose_ FILE *stream = NULL;
const char *fddelim = "", *path;
struct dirent *dent = NULL;
size_t size = 0;
int r;
assert(pid >= 0);
assert(open_fds != NULL);
path = procfs_file_alloca(pid, "fd");
proc_fd_dir = opendir(path);
if (!proc_fd_dir)
return -errno;
proc_fdinfo_fd = openat(dirfd(proc_fd_dir), "../fdinfo", O_DIRECTORY|O_NOFOLLOW|O_CLOEXEC|O_PATH);
if (proc_fdinfo_fd < 0)
return -errno;
stream = open_memstream_unlocked(&buffer, &size);
if (!stream)
return -ENOMEM;
FOREACH_DIRENT(dent, proc_fd_dir, return -errno) {
_cleanup_fclose_ FILE *fdinfo = NULL;
_cleanup_free_ char *fdname = NULL;
int fd;
r = readlinkat_malloc(dirfd(proc_fd_dir), dent->d_name, &fdname);
if (r < 0)
return r;
fprintf(stream, "%s%s:%s\n", fddelim, dent->d_name, fdname);
fddelim = "\n";
/* Use the directory entry from /proc/[pid]/fd with /proc/[pid]/fdinfo */
fd = openat(proc_fdinfo_fd, dent->d_name, O_NOFOLLOW|O_CLOEXEC|O_RDONLY);
if (fd < 0)
continue;
fdinfo = fdopen(fd, "r");
if (!fdinfo) {
safe_close(fd);
continue;
}
for (;;) {
_cleanup_free_ char *line = NULL;
r = read_line(fdinfo, LONG_LINE_MAX, &line);
if (r < 0)
return r;
if (r == 0)
break;
fputs(line, stream);
fputc('\n', stream);
}
}
errno = 0;
stream = safe_fclose(stream);
if (errno > 0)
return -errno;
*open_fds = TAKE_PTR(buffer);
return 0;
}
static int get_process_ns(pid_t pid, const char *namespace, ino_t *ns) {
const char *p;
struct stat stbuf;
_cleanup_close_ int proc_ns_dir_fd;
p = procfs_file_alloca(pid, "ns");
proc_ns_dir_fd = open(p, O_DIRECTORY | O_CLOEXEC | O_RDONLY);
if (proc_ns_dir_fd < 0)
return -errno;
if (fstatat(proc_ns_dir_fd, namespace, &stbuf, /* flags */0) < 0)
return -errno;
*ns = stbuf.st_ino;
return 0;
}
static int get_mount_namespace_leader(pid_t pid, pid_t *container_pid) {
pid_t cpid = pid, ppid = 0;
ino_t proc_mntns;
int r = 0;
r = get_process_ns(pid, "mnt", &proc_mntns);
if (r < 0)
return r;
for (;;) {
ino_t parent_mntns;
r = get_process_ppid(cpid, &ppid);
if (r < 0)
return r;
r = get_process_ns(ppid, "mnt", &parent_mntns);
if (r < 0)
return r;
if (proc_mntns != parent_mntns)
break;
if (ppid == 1)
return -ENOENT;
cpid = ppid;
}
*container_pid = ppid;
return 0;
}
/* Returns 1 if the parent was found.
* Returns 0 if there is not a process we can call the pid's
* container parent (the pid's process isn't 'containerized').
* Returns a negative number on errors.
*/
static int get_process_container_parent_cmdline(pid_t pid, char** cmdline) {
int r = 0;
pid_t container_pid;
const char *proc_root_path;
struct stat root_stat, proc_root_stat;
/* To compare inodes of / and /proc/[pid]/root */
if (stat("/", &root_stat) < 0)
return -errno;
proc_root_path = procfs_file_alloca(pid, "root");
if (stat(proc_root_path, &proc_root_stat) < 0)
return -errno;
/* The process uses system root. */
if (proc_root_stat.st_ino == root_stat.st_ino) {
*cmdline = NULL;
return 0;
}
r = get_mount_namespace_leader(pid, &container_pid);
if (r < 0)
return r;
r = get_process_cmdline(container_pid, SIZE_MAX, 0, cmdline);
if (r < 0)
return r;
return 1;
}
static int change_uid_gid(const Context *context) {
uid_t uid;
gid_t gid;
int r;
r = parse_uid(context->meta[META_ARGV_UID], &uid);
if (r < 0)
return r;
if (uid <= SYSTEM_UID_MAX) {
const char *user = "systemd-coredump";
r = get_user_creds(&user, &uid, &gid, NULL, NULL, 0);
if (r < 0) {
log_warning_errno(r, "Cannot resolve %s user. Proceeding to dump core as root: %m", user);
uid = gid = 0;
}
} else {
r = parse_gid(context->meta[META_ARGV_GID], &gid);
if (r < 0)
return r;
}
return drop_privileges(uid, gid, 0);
}
static int submit_coredump(
Context *context,
struct iovec_wrapper *iovw,
int input_fd) {
_cleanup_close_ int coredump_fd = -1, coredump_node_fd = -1;
_cleanup_free_ char *filename = NULL, *coredump_data = NULL;
_cleanup_free_ char *stacktrace = NULL;
char *core_message;
uint64_t coredump_size = UINT64_MAX;
bool truncated = false;
int r;
assert(context);
assert(iovw);
assert(input_fd >= 0);
/* Vacuum before we write anything again */
(void) coredump_vacuum(-1, arg_keep_free, arg_max_use);
/* Always stream the coredump to disk, if that's possible */
r = save_external_coredump(context, input_fd,
&filename, &coredump_node_fd, &coredump_fd, &coredump_size, &truncated);
if (r < 0)
/* Skip whole core dumping part */
goto log;
/* If we don't want to keep the coredump on disk, remove it now, as later on we
* will lack the privileges for it. However, we keep the fd to it, so that we can
* still process it and log it. */
r = maybe_remove_external_coredump(filename, coredump_size);
if (r < 0)
return r;
if (r == 0) {
(void) iovw_put_string_field(iovw, "COREDUMP_FILENAME=", filename);
} else if (arg_storage == COREDUMP_STORAGE_EXTERNAL)
log_info("The core will not be stored: size %"PRIu64" is greater than %"PRIu64" (the configured maximum)",
coredump_size, arg_external_size_max);
/* Vacuum again, but exclude the coredump we just created */
(void) coredump_vacuum(coredump_node_fd >= 0 ? coredump_node_fd : coredump_fd, arg_keep_free, arg_max_use);
/* Now, let's drop privileges to become the user who owns the segfaulted process
* and allocate the coredump memory under the user's uid. This also ensures that
* the credentials journald will see are the ones of the coredumping user, thus
* making sure the user gets access to the core dump. Let's also get rid of all
* capabilities, if we run as root, we won't need them anymore. */
r = change_uid_gid(context);
if (r < 0)
return log_error_errno(r, "Failed to drop privileges: %m");
#if HAVE_ELFUTILS
/* Try to get a stack trace if we can */
if (coredump_size > arg_process_size_max) {
log_debug("Not generating stack trace: core size %"PRIu64" is greater "
"than %"PRIu64" (the configured maximum)",
coredump_size, arg_process_size_max);
} else
coredump_make_stack_trace(coredump_fd, context->meta[META_EXE], &stacktrace);
#endif
log:
core_message = strjoina("Process ", context->meta[META_ARGV_PID],
" (", context->meta[META_COMM], ") of user ",
context->meta[META_ARGV_UID], " dumped core.",
context->is_journald && filename ? "\nCoredump diverted to " : NULL,
context->is_journald && filename ? filename : NULL);
core_message = strjoina(core_message, stacktrace ? "\n\n" : NULL, stacktrace);
if (context->is_journald) {
/* We cannot log to the journal, so just print the message.
* The target was set previously to something safe. */
log_dispatch(LOG_ERR, 0, core_message);
return 0;
}
(void) iovw_put_string_field(iovw, "MESSAGE=", core_message);
if (truncated)
(void) iovw_put_string_field(iovw, "COREDUMP_TRUNCATED=", "1");
/* Optionally store the entire coredump in the journal */
if (arg_storage == COREDUMP_STORAGE_JOURNAL) {
if (coredump_size <= arg_journal_size_max) {
size_t sz = 0;
/* Store the coredump itself in the journal */
r = allocate_journal_field(coredump_fd, (size_t) coredump_size, &coredump_data, &sz);
if (r >= 0) {
if (iovw_put(iovw, coredump_data, sz) >= 0)
TAKE_PTR(coredump_data);
} else
log_warning_errno(r, "Failed to attach the core to the journal entry: %m");
} else
log_info("The core will not be stored: size %"PRIu64" is greater than %"PRIu64" (the configured maximum)",
coredump_size, arg_journal_size_max);
}
r = sd_journal_sendv(iovw->iovec, iovw->count);
if (r < 0)
return log_error_errno(r, "Failed to log coredump: %m");
return 0;
}
static int save_context(Context *context, const struct iovec_wrapper *iovw) {
unsigned n, i, count = 0;
const char *unit;
int r;
assert(context);
assert(iovw);
assert(iovw->count >= _META_ARGV_MAX);
/* The context does not allocate any memory on its own */
for (n = 0; n < iovw->count; n++) {
struct iovec *iovec = iovw->iovec + n;
for (i = 0; i < ELEMENTSOF(meta_field_names); i++) {
char *p;
/* Note that these strings are NUL terminated, because we made sure that a
* trailing NUL byte is in the buffer, though not included in the iov_len
* count (see process_socket() and gather_pid_metadata_*()) */
assert(((char*) iovec->iov_base)[iovec->iov_len] == 0);
p = startswith(iovec->iov_base, meta_field_names[i]);
if (p) {
context->meta[i] = p;
count++;
break;
}
}
}
if (!context->meta[META_ARGV_PID])
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"Failed to find the PID of crashing process");
r = parse_pid(context->meta[META_ARGV_PID], &context->pid);
if (r < 0)
return log_error_errno(r, "Failed to parse PID \"%s\": %m", context->meta[META_ARGV_PID]);
unit = context->meta[META_UNIT];
context->is_pid1 = streq(context->meta[META_ARGV_PID], "1") || streq_ptr(unit, SPECIAL_INIT_SCOPE);
context->is_journald = streq_ptr(unit, SPECIAL_JOURNALD_SERVICE);
return 0;
}
static int process_socket(int fd) {
_cleanup_close_ int input_fd = -1;
Context context = {};
struct iovec_wrapper iovw = {};
struct iovec iovec;
int i, r;
assert(fd >= 0);
log_setup_service();
log_debug("Processing coredump received on stdin...");
for (;;) {
union {
struct cmsghdr cmsghdr;
uint8_t buf[CMSG_SPACE(sizeof(int))];
} control = {};
struct msghdr mh = {
.msg_control = &control,
.msg_controllen = sizeof(control),
.msg_iovlen = 1,
};
ssize_t n;
ssize_t l;
l = next_datagram_size_fd(fd);
if (l < 0) {
r = log_error_errno(l, "Failed to determine datagram size to read: %m");
goto finish;
}
iovec.iov_len = l;
iovec.iov_base = malloc(l + 1);
if (!iovec.iov_base) {
r = log_oom();
goto finish;
}
mh.msg_iov = &iovec;
n = recvmsg_safe(fd, &mh, MSG_CMSG_CLOEXEC);
if (n < 0) {
free(iovec.iov_base);
r = log_error_errno(n, "Failed to receive datagram: %m");
goto finish;
}
/* The final zero-length datagram carries the file descriptor and tells us
* that we're done. */
if (n == 0) {
struct cmsghdr *cmsg, *found = NULL;
free(iovec.iov_base);
CMSG_FOREACH(cmsg, &mh) {
if (cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SCM_RIGHTS &&
cmsg->cmsg_len == CMSG_LEN(sizeof(int))) {
assert(!found);
found = cmsg;
}
}
if (!found) {
cmsg_close_all(&mh);
r = log_error_errno(SYNTHETIC_ERRNO(EBADMSG),
"Coredump file descriptor missing.");
goto finish;
}
assert(input_fd < 0);
input_fd = *(int*) CMSG_DATA(found);
break;
} else
cmsg_close_all(&mh);
/* Add trailing NUL byte, in case these are strings */
((char*) iovec.iov_base)[n] = 0;
iovec.iov_len = (size_t) n;
r = iovw_put(&iovw, iovec.iov_base, iovec.iov_len);
if (r < 0)
goto finish;
}
/* Make sure we got all data we really need */
assert(input_fd >= 0);
r = save_context(&context, &iovw);
if (r < 0)
goto finish;
/* Make sure we received at least all fields we need. */
for (i = 0; i < _META_MANDATORY_MAX; i++)
if (!context.meta[i]) {
r = log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"A mandatory argument (%i) has not been sent, aborting.",
i);
goto finish;
}
r = submit_coredump(&context, &iovw, input_fd);
finish:
iovw_free_contents(&iovw, true);
return r;
}
static int send_iovec(const struct iovec_wrapper *iovw, int input_fd) {
static const union sockaddr_union sa = {
.un.sun_family = AF_UNIX,
.un.sun_path = "/run/systemd/coredump",
};
_cleanup_close_ int fd = -1;
size_t i;
int r;
assert(iovw);
assert(input_fd >= 0);
fd = socket(AF_UNIX, SOCK_SEQPACKET|SOCK_CLOEXEC, 0);
if (fd < 0)
return log_error_errno(errno, "Failed to create coredump socket: %m");
if (connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0)
return log_error_errno(errno, "Failed to connect to coredump service: %m");
for (i = 0; i < iovw->count; i++) {
struct msghdr mh = {
.msg_iov = iovw->iovec + i,
.msg_iovlen = 1,
};
struct iovec copy[2];
for (;;) {
if (sendmsg(fd, &mh, MSG_NOSIGNAL) >= 0)
break;
if (errno == EMSGSIZE && mh.msg_iov[0].iov_len > 0) {
/* This field didn't fit? That's a pity. Given that this is
* just metadata, let's truncate the field at half, and try
* again. We append three dots, in order to show that this is
* truncated. */
if (mh.msg_iov != copy) {
/* We don't want to modify the caller's iovec, hence
* let's create our own array, consisting of two new
* iovecs, where the first is a (truncated) copy of
* what we want to send, and the second one contains
* the trailing dots. */
copy[0] = iovw->iovec[i];
copy[1] = IOVEC_MAKE(((char[]){'.', '.', '.'}), 3);
mh.msg_iov = copy;
mh.msg_iovlen = 2;
}
copy[0].iov_len /= 2; /* halve it, and try again */
continue;
}
return log_error_errno(errno, "Failed to send coredump datagram: %m");
}
}
r = send_one_fd(fd, input_fd, 0);
if (r < 0)
return log_error_errno(r, "Failed to send coredump fd: %m");
return 0;
}
static int gather_pid_metadata_from_argv(
struct iovec_wrapper *iovw,
Context *context,
int argc, char **argv) {
_cleanup_free_ char *free_timestamp = NULL;
int i, r, signo;
char *t;
/* We gather all metadata that were passed via argv[] into an array of iovecs that
* we'll forward to the socket unit */
if (argc < _META_ARGV_MAX)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"Not enough arguments passed by the kernel (%i, expected %i).",
argc, _META_ARGV_MAX);
for (i = 0; i < _META_ARGV_MAX; i++) {
t = argv[i];
switch (i) {
case META_ARGV_TIMESTAMP:
/* The journal fields contain the timestamp padded with six
* zeroes, so that the kernel-supplied 1s granularity timestamps
* becomes 1µs granularity, i.e. the granularity systemd usually
* operates in. */
t = free_timestamp = strjoin(argv[i], "000000");
if (!t)
return log_oom();
break;
case META_ARGV_SIGNAL:
/* For signal, record its pretty name too */
if (safe_atoi(argv[i], &signo) >= 0 && SIGNAL_VALID(signo))
(void) iovw_put_string_field(iovw, "COREDUMP_SIGNAL_NAME=SIG",
signal_to_string(signo));
break;
default:
break;
}
r = iovw_put_string_field(iovw, meta_field_names[i], t);
if (r < 0)
return r;
}
/* Cache some of the process metadata we collected so far and that we'll need to
* access soon */
return save_context(context, iovw);
}
static int gather_pid_metadata(struct iovec_wrapper *iovw, Context *context) {
uid_t owner_uid;
pid_t pid;
char *t;
const char *p;
int r;
/* Note that if we fail on oom later on, we do not roll-back changes to the iovec
* structure. (It remains valid, with the first iovec fields initialized.) */
pid = context->pid;
/* The following is mandatory */
r = get_process_comm(pid, &t);
if (r < 0)
return log_error_errno(r, "Failed to get COMM: %m");
r = iovw_put_string_field_free(iovw, "COREDUMP_COMM=", t);
if (r < 0)
return r;
/* The following are optional but we used them if present */
r = get_process_exe(pid, &t);
if (r >= 0)
r = iovw_put_string_field_free(iovw, "COREDUMP_EXE=", t);
if (r < 0)
log_warning_errno(r, "Failed to get EXE, ignoring: %m");
if (cg_pid_get_unit(pid, &t) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_UNIT=", t);
/* The next are optional */
if (cg_pid_get_user_unit(pid, &t) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_USER_UNIT=", t);
if (sd_pid_get_session(pid, &t) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_SESSION=", t);
if (sd_pid_get_owner_uid(pid, &owner_uid) >= 0) {
r = asprintf(&t, UID_FMT, owner_uid);
if (r > 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_OWNER_UID=", t);
}
if (sd_pid_get_slice(pid, &t) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_SLICE=", t);
if (get_process_cmdline(pid, SIZE_MAX, 0, &t) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_CMDLINE=", t);
if (cg_pid_get_path_shifted(pid, NULL, &t) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_CGROUP=", t);
if (compose_open_fds(pid, &t) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_OPEN_FDS=", t);
p = procfs_file_alloca(pid, "status");
if (read_full_file(p, &t, NULL) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_PROC_STATUS=", t);
p = procfs_file_alloca(pid, "maps");
if (read_full_file(p, &t, NULL) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_PROC_MAPS=", t);
p = procfs_file_alloca(pid, "limits");
if (read_full_file(p, &t, NULL) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_PROC_LIMITS=", t);
p = procfs_file_alloca(pid, "cgroup");
if (read_full_file(p, &t, NULL) >=0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_PROC_CGROUP=", t);
p = procfs_file_alloca(pid, "mountinfo");
if (read_full_file(p, &t, NULL) >=0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_PROC_MOUNTINFO=", t);
if (get_process_cwd(pid, &t) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_CWD=", t);
if (get_process_root(pid, &t) >= 0) {
bool proc_self_root_is_slash;
proc_self_root_is_slash = strcmp(t, "/") == 0;
(void) iovw_put_string_field_free(iovw, "COREDUMP_ROOT=", t);
/* If the process' root is "/", then there is a chance it has
* mounted own root and hence being containerized. */
if (proc_self_root_is_slash && get_process_container_parent_cmdline(pid, &t) > 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_CONTAINER_CMDLINE=", t);
}
if (get_process_environ(pid, &t) >= 0)
(void) iovw_put_string_field_free(iovw, "COREDUMP_ENVIRON=", t);
/* we successfully acquired all metadata */
return save_context(context, iovw);
}
static int process_kernel(int argc, char* argv[]) {
Context context = {};
struct iovec_wrapper *iovw;
int r;
log_debug("Processing coredump received from the kernel...");
iovw = iovw_new();
if (!iovw)
return log_oom();
(void) iovw_put_string_field(iovw, "MESSAGE_ID=", SD_MESSAGE_COREDUMP_STR);
(void) iovw_put_string_field(iovw, "PRIORITY=", STRINGIFY(LOG_CRIT));
/* Collect all process metadata passed by the kernel through argv[] */
r = gather_pid_metadata_from_argv(iovw, &context, argc - 1, argv + 1);
if (r < 0)
goto finish;
/* Collect the rest of the process metadata retrieved from the runtime */
r = gather_pid_metadata(iovw, &context);
if (r < 0)
goto finish;
if (!context.is_journald) {
/* OK, now we know it's not the journal, hence we can make use of it now. */
log_set_target(LOG_TARGET_JOURNAL_OR_KMSG);
log_open();
}
/* If this is PID 1 disable coredump collection, we'll unlikely be able to process
* it later on.
*
* FIXME: maybe we should disable coredumps generation from the beginning and
* re-enable it only when we know it's either safe (ie we're not running OOM) or
* it's not pid1 ? */
if (context.is_pid1) {
log_notice("Due to PID 1 having crashed coredump collection will now be turned off.");
disable_coredumps();
}
if (context.is_journald || context.is_pid1)
r = submit_coredump(&context, iovw, STDIN_FILENO);
else
r = send_iovec(iovw, STDIN_FILENO);
finish:
iovw = iovw_free_free(iovw);
return r;
}
static int process_backtrace(int argc, char *argv[]) {
Context context = {};
struct iovec_wrapper *iovw;
char *message;
size_t i;
int r;
_cleanup_(journal_importer_cleanup) JournalImporter importer = JOURNAL_IMPORTER_INIT(STDIN_FILENO);
log_debug("Processing backtrace on stdin...");
iovw = iovw_new();
if (!iovw)
return log_oom();
(void) iovw_put_string_field(iovw, "MESSAGE_ID=", SD_MESSAGE_BACKTRACE_STR);
(void) iovw_put_string_field(iovw, "PRIORITY=", STRINGIFY(LOG_CRIT));
/* Collect all process metadata from argv[] by making sure to skip the
* '--backtrace' option */
r = gather_pid_metadata_from_argv(iovw, &context, argc - 2, argv + 2);
if (r < 0)
goto finish;
/* Collect the rest of the process metadata retrieved from the runtime */
r = gather_pid_metadata(iovw, &context);
if (r < 0)
goto finish;
for (;;) {
r = journal_importer_process_data(&importer);
if (r < 0) {
log_error_errno(r, "Failed to parse journal entry on stdin: %m");
goto finish;
}
if (r == 1 || /* complete entry */
journal_importer_eof(&importer)) /* end of data */
break;
}
if (journal_importer_eof(&importer)) {
log_warning("Did not receive a full journal entry on stdin, ignoring message sent by reporter");
message = strjoina("Process ", context.meta[META_ARGV_PID],
" (", context.meta[META_COMM], ")"
" of user ", context.meta[META_ARGV_UID],
" failed with ", context.meta[META_ARGV_SIGNAL]);
r = iovw_put_string_field(iovw, "MESSAGE=", message);
if (r < 0)
return r;
} else {
/* The imported iovecs are not supposed to be freed by us so let's store
* them at the end of the array so we can skip them while freeing the
* rest. */
for (i = 0; i < importer.iovw.count; i++) {
struct iovec *iovec = importer.iovw.iovec + i;
iovw_put(iovw, iovec->iov_base, iovec->iov_len);
}
}
r = sd_journal_sendv(iovw->iovec, iovw->count);
if (r < 0)
log_error_errno(r, "Failed to log backtrace: %m");
finish:
iovw->count -= importer.iovw.count;
iovw = iovw_free_free(iovw);
return r;
}
static int run(int argc, char *argv[]) {
int r;
/* First, log to a safe place, since we don't know what crashed and it might
* be journald which we'd rather not log to then. */
log_set_target(LOG_TARGET_KMSG);
log_open();
/* Make sure we never enter a loop */
(void) prctl(PR_SET_DUMPABLE, 0);
/* Ignore all parse errors */
(void) parse_config();
log_debug("Selected storage '%s'.", coredump_storage_to_string(arg_storage));
log_debug("Selected compression %s.", yes_no(arg_compress));
r = sd_listen_fds(false);
if (r < 0)
return log_error_errno(r, "Failed to determine the number of file descriptors: %m");
/* If we got an fd passed, we are running in coredumpd mode. Otherwise we
* are invoked from the kernel as coredump handler. */
if (r == 0) {
if (streq_ptr(argv[1], "--backtrace"))
return process_backtrace(argc, argv);
else
return process_kernel(argc, argv);
} else if (r == 1)
return process_socket(SD_LISTEN_FDS_START);
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"Received unexpected number of file descriptors.");
}
DEFINE_MAIN_FUNCTION(run);