blob: 27dc9e43c3e202adc441616cd1607cc4f76d95ad [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1+ */
#include <arpa/inet.h>
#include "af-list.h"
#include "alloc-util.h"
#include "bpf-firewall.h"
#include "bus-util.h"
#include "cgroup-util.h"
#include "cgroup.h"
#include "dbus-cgroup.h"
#include "dbus-util.h"
#include "errno-util.h"
#include "fd-util.h"
#include "fileio.h"
#include "limits-util.h"
#include "path-util.h"
BUS_DEFINE_PROPERTY_GET(bus_property_get_tasks_max, "t", TasksMax, tasks_max_resolve);
static BUS_DEFINE_PROPERTY_GET_ENUM(property_get_cgroup_device_policy, cgroup_device_policy, CGroupDevicePolicy);
static int property_get_cgroup_mask(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupMask *mask = userdata;
CGroupController ctrl;
int r;
assert(bus);
assert(reply);
r = sd_bus_message_open_container(reply, 'a', "s");
if (r < 0)
return r;
for (ctrl = 0; ctrl < _CGROUP_CONTROLLER_MAX; ctrl++) {
if ((*mask & CGROUP_CONTROLLER_TO_MASK(ctrl)) == 0)
continue;
r = sd_bus_message_append(reply, "s", cgroup_controller_to_string(ctrl));
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_delegate_controllers(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
assert(bus);
assert(reply);
assert(c);
if (!c->delegate)
return sd_bus_message_append(reply, "as", 0);
return property_get_cgroup_mask(bus, path, interface, property, reply, &c->delegate_controllers, error);
}
static int property_get_cpuset(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CPUSet *cpus = userdata;
_cleanup_free_ uint8_t *array = NULL;
size_t allocated;
assert(bus);
assert(reply);
assert(cpus);
(void) cpu_set_to_dbus(cpus, &array, &allocated);
return sd_bus_message_append_array(reply, 'y', array, allocated);
}
static int property_get_io_device_weight(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupIODeviceWeight *w;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(st)");
if (r < 0)
return r;
LIST_FOREACH(device_weights, w, c->io_device_weights) {
r = sd_bus_message_append(reply, "(st)", w->path, w->weight);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_io_device_limits(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupIODeviceLimit *l;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(st)");
if (r < 0)
return r;
LIST_FOREACH(device_limits, l, c->io_device_limits) {
CGroupIOLimitType type;
type = cgroup_io_limit_type_from_string(property);
if (type < 0 || l->limits[type] == cgroup_io_limit_defaults[type])
continue;
r = sd_bus_message_append(reply, "(st)", l->path, l->limits[type]);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_io_device_latency(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupIODeviceLatency *l;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(st)");
if (r < 0)
return r;
LIST_FOREACH(device_latencies, l, c->io_device_latencies) {
r = sd_bus_message_append(reply, "(st)", l->path, l->target_usec);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_blockio_device_weight(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupBlockIODeviceWeight *w;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(st)");
if (r < 0)
return r;
LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
r = sd_bus_message_append(reply, "(st)", w->path, w->weight);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_blockio_device_bandwidths(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupBlockIODeviceBandwidth *b;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(st)");
if (r < 0)
return r;
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
uint64_t v;
if (streq(property, "BlockIOReadBandwidth"))
v = b->rbps;
else
v = b->wbps;
if (v == CGROUP_LIMIT_MAX)
continue;
r = sd_bus_message_append(reply, "(st)", b->path, v);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_device_allow(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
CGroupContext *c = userdata;
CGroupDeviceAllow *a;
int r;
assert(bus);
assert(reply);
assert(c);
r = sd_bus_message_open_container(reply, 'a', "(ss)");
if (r < 0)
return r;
LIST_FOREACH(device_allow, a, c->device_allow) {
unsigned k = 0;
char rwm[4];
if (a->r)
rwm[k++] = 'r';
if (a->w)
rwm[k++] = 'w';
if (a->m)
rwm[k++] = 'm';
rwm[k] = 0;
r = sd_bus_message_append(reply, "(ss)", a->path, rwm);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
static int property_get_ip_address_access(
sd_bus *bus,
const char *path,
const char *interface,
const char *property,
sd_bus_message *reply,
void *userdata,
sd_bus_error *error) {
IPAddressAccessItem** items = userdata, *i;
int r;
r = sd_bus_message_open_container(reply, 'a', "(iayu)");
if (r < 0)
return r;
LIST_FOREACH(items, i, *items) {
r = sd_bus_message_open_container(reply, 'r', "iayu");
if (r < 0)
return r;
r = sd_bus_message_append(reply, "i", i->family);
if (r < 0)
return r;
r = sd_bus_message_append_array(reply, 'y', &i->address, FAMILY_ADDRESS_SIZE(i->family));
if (r < 0)
return r;
r = sd_bus_message_append(reply, "u", (uint32_t) i->prefixlen);
if (r < 0)
return r;
r = sd_bus_message_close_container(reply);
if (r < 0)
return r;
}
return sd_bus_message_close_container(reply);
}
const sd_bus_vtable bus_cgroup_vtable[] = {
SD_BUS_VTABLE_START(0),
SD_BUS_PROPERTY("Delegate", "b", bus_property_get_bool, offsetof(CGroupContext, delegate), 0),
SD_BUS_PROPERTY("DelegateControllers", "as", property_get_delegate_controllers, 0, 0),
SD_BUS_PROPERTY("CPUAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, cpu_accounting), 0),
SD_BUS_PROPERTY("CPUWeight", "t", NULL, offsetof(CGroupContext, cpu_weight), 0),
SD_BUS_PROPERTY("StartupCPUWeight", "t", NULL, offsetof(CGroupContext, startup_cpu_weight), 0),
SD_BUS_PROPERTY("CPUShares", "t", NULL, offsetof(CGroupContext, cpu_shares), 0),
SD_BUS_PROPERTY("StartupCPUShares", "t", NULL, offsetof(CGroupContext, startup_cpu_shares), 0),
SD_BUS_PROPERTY("CPUQuotaPerSecUSec", "t", bus_property_get_usec, offsetof(CGroupContext, cpu_quota_per_sec_usec), 0),
SD_BUS_PROPERTY("CPUQuotaPeriodUSec", "t", bus_property_get_usec, offsetof(CGroupContext, cpu_quota_period_usec), 0),
SD_BUS_PROPERTY("AllowedCPUs", "ay", property_get_cpuset, offsetof(CGroupContext, cpuset_cpus), 0),
SD_BUS_PROPERTY("AllowedMemoryNodes", "ay", property_get_cpuset, offsetof(CGroupContext, cpuset_mems), 0),
SD_BUS_PROPERTY("IOAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, io_accounting), 0),
SD_BUS_PROPERTY("IOWeight", "t", NULL, offsetof(CGroupContext, io_weight), 0),
SD_BUS_PROPERTY("StartupIOWeight", "t", NULL, offsetof(CGroupContext, startup_io_weight), 0),
SD_BUS_PROPERTY("IODeviceWeight", "a(st)", property_get_io_device_weight, 0, 0),
SD_BUS_PROPERTY("IOReadBandwidthMax", "a(st)", property_get_io_device_limits, 0, 0),
SD_BUS_PROPERTY("IOWriteBandwidthMax", "a(st)", property_get_io_device_limits, 0, 0),
SD_BUS_PROPERTY("IOReadIOPSMax", "a(st)", property_get_io_device_limits, 0, 0),
SD_BUS_PROPERTY("IOWriteIOPSMax", "a(st)", property_get_io_device_limits, 0, 0),
SD_BUS_PROPERTY("IODeviceLatencyTargetUSec", "a(st)", property_get_io_device_latency, 0, 0),
SD_BUS_PROPERTY("BlockIOAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, blockio_accounting), 0),
SD_BUS_PROPERTY("BlockIOWeight", "t", NULL, offsetof(CGroupContext, blockio_weight), 0),
SD_BUS_PROPERTY("StartupBlockIOWeight", "t", NULL, offsetof(CGroupContext, startup_blockio_weight), 0),
SD_BUS_PROPERTY("BlockIODeviceWeight", "a(st)", property_get_blockio_device_weight, 0, 0),
SD_BUS_PROPERTY("BlockIOReadBandwidth", "a(st)", property_get_blockio_device_bandwidths, 0, 0),
SD_BUS_PROPERTY("BlockIOWriteBandwidth", "a(st)", property_get_blockio_device_bandwidths, 0, 0),
SD_BUS_PROPERTY("MemoryAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, memory_accounting), 0),
SD_BUS_PROPERTY("DefaultMemoryLow", "t", NULL, offsetof(CGroupContext, default_memory_low), 0),
SD_BUS_PROPERTY("DefaultMemoryMin", "t", NULL, offsetof(CGroupContext, default_memory_min), 0),
SD_BUS_PROPERTY("MemoryMin", "t", NULL, offsetof(CGroupContext, memory_min), 0),
SD_BUS_PROPERTY("MemoryLow", "t", NULL, offsetof(CGroupContext, memory_low), 0),
SD_BUS_PROPERTY("MemoryHigh", "t", NULL, offsetof(CGroupContext, memory_high), 0),
SD_BUS_PROPERTY("MemoryMax", "t", NULL, offsetof(CGroupContext, memory_max), 0),
SD_BUS_PROPERTY("MemorySwapMax", "t", NULL, offsetof(CGroupContext, memory_swap_max), 0),
SD_BUS_PROPERTY("MemoryLimit", "t", NULL, offsetof(CGroupContext, memory_limit), 0),
SD_BUS_PROPERTY("DevicePolicy", "s", property_get_cgroup_device_policy, offsetof(CGroupContext, device_policy), 0),
SD_BUS_PROPERTY("DeviceAllow", "a(ss)", property_get_device_allow, 0, 0),
SD_BUS_PROPERTY("TasksAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, tasks_accounting), 0),
SD_BUS_PROPERTY("TasksMax", "t", bus_property_get_tasks_max, offsetof(CGroupContext, tasks_max), 0),
SD_BUS_PROPERTY("IPAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, ip_accounting), 0),
SD_BUS_PROPERTY("IPAddressAllow", "a(iayu)", property_get_ip_address_access, offsetof(CGroupContext, ip_address_allow), 0),
SD_BUS_PROPERTY("IPAddressDeny", "a(iayu)", property_get_ip_address_access, offsetof(CGroupContext, ip_address_deny), 0),
SD_BUS_PROPERTY("IPIngressFilterPath", "as", NULL, offsetof(CGroupContext, ip_filters_ingress), 0),
SD_BUS_PROPERTY("IPEgressFilterPath", "as", NULL, offsetof(CGroupContext, ip_filters_egress), 0),
SD_BUS_PROPERTY("DisableControllers", "as", property_get_cgroup_mask, offsetof(CGroupContext, disable_controllers), 0),
SD_BUS_VTABLE_END
};
static int bus_cgroup_set_transient_property(
Unit *u,
CGroupContext *c,
const char *name,
sd_bus_message *message,
UnitWriteFlags flags,
sd_bus_error *error) {
int r;
assert(u);
assert(c);
assert(name);
assert(message);
flags |= UNIT_PRIVATE;
if (streq(name, "Delegate")) {
int b;
if (!UNIT_VTABLE(u)->can_delegate)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Delegation not available for unit type");
r = sd_bus_message_read(message, "b", &b);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
c->delegate = b;
c->delegate_controllers = b ? _CGROUP_MASK_ALL : 0;
unit_write_settingf(u, flags, name, "Delegate=%s", yes_no(b));
}
return 1;
} else if (STR_IN_SET(name, "DelegateControllers", "DisableControllers")) {
CGroupMask mask = 0;
if (streq(name, "DelegateControllers") && !UNIT_VTABLE(u)->can_delegate)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Delegation not available for unit type");
r = sd_bus_message_enter_container(message, 'a', "s");
if (r < 0)
return r;
for (;;) {
CGroupController cc;
const char *t;
r = sd_bus_message_read(message, "s", &t);
if (r < 0)
return r;
if (r == 0)
break;
cc = cgroup_controller_from_string(t);
if (cc < 0)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Unknown cgroup controller '%s'", t);
mask |= CGROUP_CONTROLLER_TO_MASK(cc);
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *t = NULL;
r = cg_mask_to_string(mask, &t);
if (r < 0)
return r;
if (streq(name, "DelegateControllers")) {
c->delegate = true;
if (mask == 0)
c->delegate_controllers = 0;
else
c->delegate_controllers |= mask;
unit_write_settingf(u, flags, name, "Delegate=%s", strempty(t));
} else if (streq(name, "DisableControllers")) {
if (mask == 0)
c->disable_controllers = 0;
else
c->disable_controllers |= mask;
unit_write_settingf(u, flags, name, "%s=%s", name, strempty(t));
}
}
return 1;
} else if (STR_IN_SET(name, "IPIngressFilterPath", "IPEgressFilterPath")) {
char ***filters;
size_t n = 0;
filters = streq(name, "IPIngressFilterPath") ? &c->ip_filters_ingress : &c->ip_filters_egress;
r = sd_bus_message_enter_container(message, 'a', "s");
if (r < 0)
return r;
for (;;) {
const char *path;
r = sd_bus_message_read(message, "s", &path);
if (r < 0)
return r;
if (r == 0)
break;
if (!path_is_normalized(path) || !path_is_absolute(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects a normalized absolute path.", name);
if (!UNIT_WRITE_FLAGS_NOOP(flags) && !strv_contains(*filters, path)) {
r = strv_extend(filters, path);
if (r < 0)
return log_oom();
}
n++;
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
char **entry;
size_t size = 0;
if (n == 0)
*filters = strv_free(*filters);
unit_invalidate_cgroup_bpf(u);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs(name, f);
fputs("=\n", f);
STRV_FOREACH(entry, *filters)
fprintf(f, "%s=%s\n", name, *entry);
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
if (*filters) {
r = bpf_firewall_supported();
if (r < 0)
return r;
if (r != BPF_FIREWALL_SUPPORTED_WITH_MULTI) {
static bool warned = false;
log_full(warned ? LOG_DEBUG : LOG_WARNING,
"Transient unit %s configures an IP firewall with BPF, but the local system does not support BPF/cgroup firewalling with multiple filters.\n"
"Starting this unit will fail! (This warning is only shown for the first started transient unit using IP firewalling.)", u->id);
warned = true;
}
}
}
return 1;
}
return 0;
}
static int bus_cgroup_set_boolean(
Unit *u,
const char *name,
bool *p,
CGroupMask mask,
sd_bus_message *message,
UnitWriteFlags flags,
sd_bus_error *error) {
int b, r;
assert(p);
r = sd_bus_message_read(message, "b", &b);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
*p = b;
unit_invalidate_cgroup(u, mask);
unit_write_settingf(u, flags, name, "%s=%s", name, yes_no(b));
}
return 1;
}
#define BUS_DEFINE_SET_CGROUP_WEIGHT(function, mask, check, val) \
static int bus_cgroup_set_##function( \
Unit *u, \
const char *name, \
uint64_t *p, \
sd_bus_message *message, \
UnitWriteFlags flags, \
sd_bus_error *error) { \
\
uint64_t v; \
int r; \
\
assert(p); \
\
r = sd_bus_message_read(message, "t", &v); \
if (r < 0) \
return r; \
\
if (!check(v)) \
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, \
"Value specified in %s is out of range", name); \
\
if (!UNIT_WRITE_FLAGS_NOOP(flags)) { \
*p = v; \
unit_invalidate_cgroup(u, mask); \
\
if (v == (val)) \
unit_write_settingf(u, flags, name, \
"%s=", name); \
else \
unit_write_settingf(u, flags, name, \
"%s=%" PRIu64, name, v); \
} \
\
return 1; \
}
#define BUS_DEFINE_SET_CGROUP_LIMIT(function, mask, scale, minimum) \
static int bus_cgroup_set_##function( \
Unit *u, \
const char *name, \
uint64_t *p, \
sd_bus_message *message, \
UnitWriteFlags flags, \
sd_bus_error *error) { \
\
uint64_t v; \
int r; \
\
assert(p); \
\
r = sd_bus_message_read(message, "t", &v); \
if (r < 0) \
return r; \
\
if (v < minimum) \
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, \
"Value specified in %s is out of range", name); \
\
if (!UNIT_WRITE_FLAGS_NOOP(flags)) { \
*p = v; \
unit_invalidate_cgroup(u, mask); \
\
if (v == CGROUP_LIMIT_MAX) \
unit_write_settingf(u, flags, name, \
"%s=infinity", name); \
else \
unit_write_settingf(u, flags, name, \
"%s=%" PRIu64, name, v); \
} \
\
return 1; \
} \
static int bus_cgroup_set_##function##_scale( \
Unit *u, \
const char *name, \
uint64_t *p, \
sd_bus_message *message, \
UnitWriteFlags flags, \
sd_bus_error *error) { \
\
uint64_t v; \
uint32_t raw; \
int r; \
\
assert(p); \
\
r = sd_bus_message_read(message, "u", &raw); \
if (r < 0) \
return r; \
\
v = scale(raw, UINT32_MAX); \
if (v < minimum || v >= UINT64_MAX) \
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, \
"Value specified in %s is out of range", name); \
\
if (!UNIT_WRITE_FLAGS_NOOP(flags)) { \
*p = v; \
unit_invalidate_cgroup(u, mask); \
\
/* Prepare to chop off suffix */ \
assert_se(endswith(name, "Scale")); \
\
uint32_t scaled = DIV_ROUND_UP((uint64_t) raw * 1000, (uint64_t) UINT32_MAX); \
unit_write_settingf(u, flags, name, "%.*s=%" PRIu32 ".%" PRIu32 "%%", \
(int)(strlen(name) - strlen("Scale")), name, \
scaled / 10, scaled % 10); \
} \
\
return 1; \
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtype-limits"
BUS_DEFINE_SET_CGROUP_WEIGHT(cpu_weight, CGROUP_MASK_CPU, CGROUP_WEIGHT_IS_OK, CGROUP_WEIGHT_INVALID);
BUS_DEFINE_SET_CGROUP_WEIGHT(cpu_shares, CGROUP_MASK_CPU, CGROUP_CPU_SHARES_IS_OK, CGROUP_CPU_SHARES_INVALID);
BUS_DEFINE_SET_CGROUP_WEIGHT(io_weight, CGROUP_MASK_IO, CGROUP_WEIGHT_IS_OK, CGROUP_WEIGHT_INVALID);
BUS_DEFINE_SET_CGROUP_WEIGHT(blockio_weight, CGROUP_MASK_BLKIO, CGROUP_BLKIO_WEIGHT_IS_OK, CGROUP_BLKIO_WEIGHT_INVALID);
BUS_DEFINE_SET_CGROUP_LIMIT(memory, CGROUP_MASK_MEMORY, physical_memory_scale, 1);
BUS_DEFINE_SET_CGROUP_LIMIT(memory_protection, CGROUP_MASK_MEMORY, physical_memory_scale, 0);
BUS_DEFINE_SET_CGROUP_LIMIT(swap, CGROUP_MASK_MEMORY, physical_memory_scale, 0);
#pragma GCC diagnostic pop
static int bus_cgroup_set_tasks_max(
Unit *u,
const char *name,
TasksMax *p,
sd_bus_message *message,
UnitWriteFlags flags,
sd_bus_error *error) {
uint64_t v;
int r;
assert(p);
r = sd_bus_message_read(message, "t", &v);
if (r < 0)
return r;
if (v < 1)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS,
"Value specified in %s is out of range", name);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
*p = (TasksMax) { .value = v, .scale = 0 }; /* When .scale==0, .value is the absolute value */
unit_invalidate_cgroup(u, CGROUP_MASK_PIDS);
if (v == CGROUP_LIMIT_MAX)
unit_write_settingf(u, flags, name,
"%s=infinity", name);
else
unit_write_settingf(u, flags, name,
"%s=%" PRIu64, name, v);
}
return 1;
}
static int bus_cgroup_set_tasks_max_scale(
Unit *u,
const char *name,
TasksMax *p,
sd_bus_message *message,
UnitWriteFlags flags,
sd_bus_error *error) {
uint32_t v;
int r;
assert(p);
r = sd_bus_message_read(message, "u", &v);
if (r < 0)
return r;
if (v < 1 || v >= UINT32_MAX)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS,
"Value specified in %s is out of range", name);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
*p = (TasksMax) { v, UINT32_MAX }; /* .scale is not 0, so this is interpreted as v/UINT32_MAX. */
unit_invalidate_cgroup(u, CGROUP_MASK_PIDS);
uint32_t scaled = DIV_ROUND_UP((uint64_t) v * 100U, (uint64_t) UINT32_MAX);
unit_write_settingf(u, flags, name, "%s=%" PRIu32 ".%" PRIu32 "%%", "TasksMax",
scaled / 10, scaled % 10);
}
return 1;
}
int bus_cgroup_set_property(
Unit *u,
CGroupContext *c,
const char *name,
sd_bus_message *message,
UnitWriteFlags flags,
sd_bus_error *error) {
CGroupIOLimitType iol_type;
int r;
assert(u);
assert(c);
assert(name);
assert(message);
flags |= UNIT_PRIVATE;
if (streq(name, "CPUAccounting"))
return bus_cgroup_set_boolean(u, name, &c->cpu_accounting, get_cpu_accounting_mask(), message, flags, error);
if (streq(name, "CPUWeight"))
return bus_cgroup_set_cpu_weight(u, name, &c->cpu_weight, message, flags, error);
if (streq(name, "StartupCPUWeight"))
return bus_cgroup_set_cpu_weight(u, name, &c->startup_cpu_weight, message, flags, error);
if (streq(name, "CPUShares"))
return bus_cgroup_set_cpu_shares(u, name, &c->cpu_shares, message, flags, error);
if (streq(name, "StartupCPUShares"))
return bus_cgroup_set_cpu_shares(u, name, &c->startup_cpu_shares, message, flags, error);
if (streq(name, "IOAccounting"))
return bus_cgroup_set_boolean(u, name, &c->io_accounting, CGROUP_MASK_IO, message, flags, error);
if (streq(name, "IOWeight"))
return bus_cgroup_set_io_weight(u, name, &c->io_weight, message, flags, error);
if (streq(name, "StartupIOWeight"))
return bus_cgroup_set_io_weight(u, name, &c->startup_io_weight, message, flags, error);
if (streq(name, "BlockIOAccounting"))
return bus_cgroup_set_boolean(u, name, &c->blockio_accounting, CGROUP_MASK_BLKIO, message, flags, error);
if (streq(name, "BlockIOWeight"))
return bus_cgroup_set_blockio_weight(u, name, &c->blockio_weight, message, flags, error);
if (streq(name, "StartupBlockIOWeight"))
return bus_cgroup_set_blockio_weight(u, name, &c->startup_blockio_weight, message, flags, error);
if (streq(name, "MemoryAccounting"))
return bus_cgroup_set_boolean(u, name, &c->memory_accounting, CGROUP_MASK_MEMORY, message, flags, error);
if (streq(name, "MemoryMin")) {
r = bus_cgroup_set_memory_protection(u, name, &c->memory_min, message, flags, error);
if (r > 0)
c->memory_min_set = true;
return r;
}
if (streq(name, "MemoryLow")) {
r = bus_cgroup_set_memory_protection(u, name, &c->memory_low, message, flags, error);
if (r > 0)
c->memory_low_set = true;
return r;
}
if (streq(name, "DefaultMemoryMin")) {
r = bus_cgroup_set_memory_protection(u, name, &c->default_memory_min, message, flags, error);
if (r > 0)
c->default_memory_min_set = true;
return r;
}
if (streq(name, "DefaultMemoryLow")) {
r = bus_cgroup_set_memory_protection(u, name, &c->default_memory_low, message, flags, error);
if (r > 0)
c->default_memory_low_set = true;
return r;
}
if (streq(name, "MemoryHigh"))
return bus_cgroup_set_memory(u, name, &c->memory_high, message, flags, error);
if (streq(name, "MemorySwapMax"))
return bus_cgroup_set_swap(u, name, &c->memory_swap_max, message, flags, error);
if (streq(name, "MemoryMax"))
return bus_cgroup_set_memory(u, name, &c->memory_max, message, flags, error);
if (streq(name, "MemoryLimit"))
return bus_cgroup_set_memory(u, name, &c->memory_limit, message, flags, error);
if (streq(name, "MemoryMinScale")) {
r = bus_cgroup_set_memory_protection_scale(u, name, &c->memory_min, message, flags, error);
if (r > 0)
c->memory_min_set = true;
return r;
}
if (streq(name, "MemoryLowScale")) {
r = bus_cgroup_set_memory_protection_scale(u, name, &c->memory_low, message, flags, error);
if (r > 0)
c->memory_low_set = true;
return r;
}
if (streq(name, "DefaultMemoryMinScale")) {
r = bus_cgroup_set_memory_protection_scale(u, name, &c->default_memory_min, message, flags, error);
if (r > 0)
c->default_memory_min_set = true;
return r;
}
if (streq(name, "DefaultMemoryLowScale")) {
r = bus_cgroup_set_memory_protection_scale(u, name, &c->default_memory_low, message, flags, error);
if (r > 0)
c->default_memory_low_set = true;
return r;
}
if (streq(name, "MemoryHighScale"))
return bus_cgroup_set_memory_scale(u, name, &c->memory_high, message, flags, error);
if (streq(name, "MemorySwapMaxScale"))
return bus_cgroup_set_swap_scale(u, name, &c->memory_swap_max, message, flags, error);
if (streq(name, "MemoryMaxScale"))
return bus_cgroup_set_memory_scale(u, name, &c->memory_max, message, flags, error);
if (streq(name, "MemoryLimitScale"))
return bus_cgroup_set_memory_scale(u, name, &c->memory_limit, message, flags, error);
if (streq(name, "TasksAccounting"))
return bus_cgroup_set_boolean(u, name, &c->tasks_accounting, CGROUP_MASK_PIDS, message, flags, error);
if (streq(name, "TasksMax"))
return bus_cgroup_set_tasks_max(u, name, &c->tasks_max, message, flags, error);
if (streq(name, "TasksMaxScale"))
return bus_cgroup_set_tasks_max_scale(u, name, &c->tasks_max, message, flags, error);
if (streq(name, "CPUQuotaPerSecUSec")) {
uint64_t u64;
r = sd_bus_message_read(message, "t", &u64);
if (r < 0)
return r;
if (u64 <= 0)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "CPUQuotaPerSecUSec= value out of range");
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
c->cpu_quota_per_sec_usec = u64;
u->warned_clamping_cpu_quota_period = false;
unit_invalidate_cgroup(u, CGROUP_MASK_CPU);
if (c->cpu_quota_per_sec_usec == USEC_INFINITY)
unit_write_setting(u, flags, "CPUQuota", "CPUQuota=");
else
/* config_parse_cpu_quota() requires an integer, so truncating division is used on
* purpose here. */
unit_write_settingf(u, flags, "CPUQuota",
"CPUQuota=%0.f%%",
(double) (c->cpu_quota_per_sec_usec / 10000));
}
return 1;
} else if (streq(name, "CPUQuotaPeriodUSec")) {
uint64_t u64;
r = sd_bus_message_read(message, "t", &u64);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
c->cpu_quota_period_usec = u64;
u->warned_clamping_cpu_quota_period = false;
unit_invalidate_cgroup(u, CGROUP_MASK_CPU);
if (c->cpu_quota_period_usec == USEC_INFINITY)
unit_write_setting(u, flags, "CPUQuotaPeriodSec", "CPUQuotaPeriodSec=");
else {
char v[FORMAT_TIMESPAN_MAX];
unit_write_settingf(u, flags, "CPUQuotaPeriodSec",
"CPUQuotaPeriodSec=%s",
format_timespan(v, sizeof(v), c->cpu_quota_period_usec, 1));
}
}
return 1;
} else if (STR_IN_SET(name, "AllowedCPUs", "AllowedMemoryNodes")) {
const void *a;
size_t n;
_cleanup_(cpu_set_reset) CPUSet new_set = {};
r = sd_bus_message_read_array(message, 'y', &a, &n);
if (r < 0)
return r;
r = cpu_set_from_dbus(a, n, &new_set);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *setstr = NULL;
CPUSet *set;
setstr = cpu_set_to_range_string(&new_set);
if (!setstr)
return -ENOMEM;
if (streq(name, "AllowedCPUs"))
set = &c->cpuset_cpus;
else
set = &c->cpuset_mems;
cpu_set_reset(set);
*set = new_set;
new_set = (CPUSet) {};
unit_invalidate_cgroup(u, CGROUP_MASK_CPUSET);
unit_write_settingf(u, flags, name, "%s=%s", name, setstr);
}
return 1;
} else if ((iol_type = cgroup_io_limit_type_from_string(name)) >= 0) {
const char *path;
unsigned n = 0;
uint64_t u64;
r = sd_bus_message_enter_container(message, 'a', "(st)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(st)", &path, &u64)) > 0) {
if (!path_is_normalized(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupIODeviceLimit *a = NULL, *b;
LIST_FOREACH(device_limits, b, c->io_device_limits) {
if (path_equal(path, b->path)) {
a = b;
break;
}
}
if (!a) {
CGroupIOLimitType type;
a = new0(CGroupIODeviceLimit, 1);
if (!a)
return -ENOMEM;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
a->limits[type] = cgroup_io_limit_defaults[type];
LIST_PREPEND(device_limits, c->io_device_limits, a);
}
a->limits[iol_type] = u64;
}
n++;
}
if (r < 0)
return r;
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupIODeviceLimit *a;
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
size_t size = 0;
if (n == 0) {
LIST_FOREACH(device_limits, a, c->io_device_limits)
a->limits[iol_type] = cgroup_io_limit_defaults[iol_type];
}
unit_invalidate_cgroup(u, CGROUP_MASK_IO);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fprintf(f, "%s=\n", name);
LIST_FOREACH(device_limits, a, c->io_device_limits)
if (a->limits[iol_type] != cgroup_io_limit_defaults[iol_type])
fprintf(f, "%s=%s %" PRIu64 "\n", name, a->path, a->limits[iol_type]);
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (streq(name, "IODeviceWeight")) {
const char *path;
uint64_t weight;
unsigned n = 0;
r = sd_bus_message_enter_container(message, 'a', "(st)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(st)", &path, &weight)) > 0) {
if (!path_is_normalized(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path);
if (!CGROUP_WEIGHT_IS_OK(weight) || weight == CGROUP_WEIGHT_INVALID)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "IODeviceWeight= value out of range");
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupIODeviceWeight *a = NULL, *b;
LIST_FOREACH(device_weights, b, c->io_device_weights) {
if (path_equal(b->path, path)) {
a = b;
break;
}
}
if (!a) {
a = new0(CGroupIODeviceWeight, 1);
if (!a)
return -ENOMEM;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
LIST_PREPEND(device_weights, c->io_device_weights, a);
}
a->weight = weight;
}
n++;
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
CGroupIODeviceWeight *a;
size_t size = 0;
if (n == 0) {
while (c->io_device_weights)
cgroup_context_free_io_device_weight(c, c->io_device_weights);
}
unit_invalidate_cgroup(u, CGROUP_MASK_IO);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs("IODeviceWeight=\n", f);
LIST_FOREACH(device_weights, a, c->io_device_weights)
fprintf(f, "IODeviceWeight=%s %" PRIu64 "\n", a->path, a->weight);
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (streq(name, "IODeviceLatencyTargetUSec")) {
const char *path;
uint64_t target;
unsigned n = 0;
r = sd_bus_message_enter_container(message, 'a', "(st)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(st)", &path, &target)) > 0) {
if (!path_is_normalized(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupIODeviceLatency *a = NULL, *b;
LIST_FOREACH(device_latencies, b, c->io_device_latencies) {
if (path_equal(b->path, path)) {
a = b;
break;
}
}
if (!a) {
a = new0(CGroupIODeviceLatency, 1);
if (!a)
return -ENOMEM;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
LIST_PREPEND(device_latencies, c->io_device_latencies, a);
}
a->target_usec = target;
}
n++;
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
char ts[FORMAT_TIMESPAN_MAX];
CGroupIODeviceLatency *a;
size_t size = 0;
if (n == 0) {
while (c->io_device_latencies)
cgroup_context_free_io_device_latency(c, c->io_device_latencies);
}
unit_invalidate_cgroup(u, CGROUP_MASK_IO);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs("IODeviceLatencyTargetSec=\n", f);
LIST_FOREACH(device_latencies, a, c->io_device_latencies)
fprintf(f, "IODeviceLatencyTargetSec=%s %s\n",
a->path, format_timespan(ts, sizeof(ts), a->target_usec, 1));
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (STR_IN_SET(name, "BlockIOReadBandwidth", "BlockIOWriteBandwidth")) {
const char *path;
bool read = true;
unsigned n = 0;
uint64_t u64;
if (streq(name, "BlockIOWriteBandwidth"))
read = false;
r = sd_bus_message_enter_container(message, 'a', "(st)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(st)", &path, &u64)) > 0) {
if (!path_is_normalized(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupBlockIODeviceBandwidth *a = NULL, *b;
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
if (path_equal(path, b->path)) {
a = b;
break;
}
}
if (!a) {
a = new0(CGroupBlockIODeviceBandwidth, 1);
if (!a)
return -ENOMEM;
a->rbps = CGROUP_LIMIT_MAX;
a->wbps = CGROUP_LIMIT_MAX;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
LIST_PREPEND(device_bandwidths, c->blockio_device_bandwidths, a);
}
if (read)
a->rbps = u64;
else
a->wbps = u64;
}
n++;
}
if (r < 0)
return r;
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupBlockIODeviceBandwidth *a;
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
size_t size = 0;
if (n == 0) {
LIST_FOREACH(device_bandwidths, a, c->blockio_device_bandwidths) {
if (read)
a->rbps = CGROUP_LIMIT_MAX;
else
a->wbps = CGROUP_LIMIT_MAX;
}
}
unit_invalidate_cgroup(u, CGROUP_MASK_BLKIO);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
if (read) {
fputs("BlockIOReadBandwidth=\n", f);
LIST_FOREACH(device_bandwidths, a, c->blockio_device_bandwidths)
if (a->rbps != CGROUP_LIMIT_MAX)
fprintf(f, "BlockIOReadBandwidth=%s %" PRIu64 "\n", a->path, a->rbps);
} else {
fputs("BlockIOWriteBandwidth=\n", f);
LIST_FOREACH(device_bandwidths, a, c->blockio_device_bandwidths)
if (a->wbps != CGROUP_LIMIT_MAX)
fprintf(f, "BlockIOWriteBandwidth=%s %" PRIu64 "\n", a->path, a->wbps);
}
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (streq(name, "BlockIODeviceWeight")) {
const char *path;
uint64_t weight;
unsigned n = 0;
r = sd_bus_message_enter_container(message, 'a', "(st)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(st)", &path, &weight)) > 0) {
if (!path_is_normalized(path))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path);
if (!CGROUP_BLKIO_WEIGHT_IS_OK(weight) || weight == CGROUP_BLKIO_WEIGHT_INVALID)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "BlockIODeviceWeight= out of range");
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupBlockIODeviceWeight *a = NULL, *b;
LIST_FOREACH(device_weights, b, c->blockio_device_weights) {
if (path_equal(b->path, path)) {
a = b;
break;
}
}
if (!a) {
a = new0(CGroupBlockIODeviceWeight, 1);
if (!a)
return -ENOMEM;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
LIST_PREPEND(device_weights, c->blockio_device_weights, a);
}
a->weight = weight;
}
n++;
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
CGroupBlockIODeviceWeight *a;
size_t size = 0;
if (n == 0) {
while (c->blockio_device_weights)
cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
}
unit_invalidate_cgroup(u, CGROUP_MASK_BLKIO);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs("BlockIODeviceWeight=\n", f);
LIST_FOREACH(device_weights, a, c->blockio_device_weights)
fprintf(f, "BlockIODeviceWeight=%s %" PRIu64 "\n", a->path, a->weight);
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (streq(name, "DevicePolicy")) {
const char *policy;
CGroupDevicePolicy p;
r = sd_bus_message_read(message, "s", &policy);
if (r < 0)
return r;
p = cgroup_device_policy_from_string(policy);
if (p < 0)
return -EINVAL;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
c->device_policy = p;
unit_invalidate_cgroup(u, CGROUP_MASK_DEVICES);
unit_write_settingf(u, flags, name, "DevicePolicy=%s", policy);
}
return 1;
} else if (streq(name, "DeviceAllow")) {
const char *path, *rwm;
unsigned n = 0;
r = sd_bus_message_enter_container(message, 'a', "(ss)");
if (r < 0)
return r;
while ((r = sd_bus_message_read(message, "(ss)", &path, &rwm)) > 0) {
if (!valid_device_allow_pattern(path) || strpbrk(path, WHITESPACE))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "DeviceAllow= requires device node or pattern");
if (isempty(rwm))
rwm = "rwm";
else if (!in_charset(rwm, "rwm"))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "DeviceAllow= requires combination of rwm flags");
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
CGroupDeviceAllow *a = NULL, *b;
LIST_FOREACH(device_allow, b, c->device_allow) {
if (path_equal(b->path, path)) {
a = b;
break;
}
}
if (!a) {
a = new0(CGroupDeviceAllow, 1);
if (!a)
return -ENOMEM;
a->path = strdup(path);
if (!a->path) {
free(a);
return -ENOMEM;
}
LIST_PREPEND(device_allow, c->device_allow, a);
}
a->r = !!strchr(rwm, 'r');
a->w = !!strchr(rwm, 'w');
a->m = !!strchr(rwm, 'm');
}
n++;
}
if (r < 0)
return r;
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
CGroupDeviceAllow *a;
size_t size = 0;
if (n == 0) {
while (c->device_allow)
cgroup_context_free_device_allow(c, c->device_allow);
}
unit_invalidate_cgroup(u, CGROUP_MASK_DEVICES);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs("DeviceAllow=\n", f);
LIST_FOREACH(device_allow, a, c->device_allow)
fprintf(f, "DeviceAllow=%s %s%s%s\n", a->path, a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
} else if (streq(name, "IPAccounting")) {
int b;
r = sd_bus_message_read(message, "b", &b);
if (r < 0)
return r;
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
c->ip_accounting = b;
unit_invalidate_cgroup_bpf(u);
unit_write_settingf(u, flags, name, "IPAccounting=%s", yes_no(b));
}
return 1;
} else if (STR_IN_SET(name, "IPAddressAllow", "IPAddressDeny")) {
IPAddressAccessItem **list;
size_t n = 0;
list = streq(name, "IPAddressAllow") ? &c->ip_address_allow : &c->ip_address_deny;
r = sd_bus_message_enter_container(message, 'a', "(iayu)");
if (r < 0)
return r;
for (;;) {
const void *ap;
int32_t family;
uint32_t prefixlen;
size_t an;
r = sd_bus_message_enter_container(message, 'r', "iayu");
if (r < 0)
return r;
if (r == 0)
break;
r = sd_bus_message_read(message, "i", &family);
if (r < 0)
return r;
if (!IN_SET(family, AF_INET, AF_INET6))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects IPv4 or IPv6 addresses only.", name);
r = sd_bus_message_read_array(message, 'y', &ap, &an);
if (r < 0)
return r;
if (an != FAMILY_ADDRESS_SIZE(family))
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "IP address has wrong size for family (%s, expected %zu, got %zu)",
af_to_name(family), FAMILY_ADDRESS_SIZE(family), an);
r = sd_bus_message_read(message, "u", &prefixlen);
if (r < 0)
return r;
if (prefixlen > FAMILY_ADDRESS_SIZE(family)*8)
return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Prefix length %" PRIu32 " too large for address family %s.", prefixlen, af_to_name(family));
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
IPAddressAccessItem *item;
item = new0(IPAddressAccessItem, 1);
if (!item)
return -ENOMEM;
item->family = family;
item->prefixlen = prefixlen;
memcpy(&item->address, ap, an);
LIST_PREPEND(items, *list, item);
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
n++;
}
r = sd_bus_message_exit_container(message);
if (r < 0)
return r;
*list = ip_address_access_reduce(*list);
if (!UNIT_WRITE_FLAGS_NOOP(flags)) {
_cleanup_free_ char *buf = NULL;
_cleanup_fclose_ FILE *f = NULL;
IPAddressAccessItem *item;
size_t size = 0;
if (n == 0)
*list = ip_address_access_free_all(*list);
unit_invalidate_cgroup_bpf(u);
f = open_memstream_unlocked(&buf, &size);
if (!f)
return -ENOMEM;
fputs(name, f);
fputs("=\n", f);
LIST_FOREACH(items, item, *list) {
char buffer[CONST_MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)];
errno = 0;
if (!inet_ntop(item->family, &item->address, buffer, sizeof(buffer)))
return errno_or_else(EINVAL);
fprintf(f, "%s=%s/%u\n", name, buffer, item->prefixlen);
}
r = fflush_and_check(f);
if (r < 0)
return r;
unit_write_setting(u, flags, name, buf);
}
return 1;
}
if (streq(name, "DisableControllers") || (u->transient && u->load_state == UNIT_STUB))
return bus_cgroup_set_transient_property(u, c, name, message, flags, error);
return 0;
}