blob: 7fc6152caf422f405bb15534c404370f2155ff18 [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1+ */
#include <blkid.h>
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <ftw.h>
#include <getopt.h>
#include <limits.h>
#include <linux/magic.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <unistd.h>
#include "sd-id128.h"
#include "alloc-util.h"
#include "blkid-util.h"
#include "bootspec.h"
#include "copy.h"
#include "dirent-util.h"
#include "efivars.h"
#include "env-util.h"
#include "escape.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "locale-util.h"
#include "main-func.h"
#include "mkdir.h"
#include "pager.h"
#include "parse-util.h"
#include "pretty-print.h"
#include "random-util.h"
#include "rm-rf.h"
#include "stat-util.h"
#include "stdio-util.h"
#include "string-util.h"
#include "strv.h"
#include "terminal-util.h"
#include "tmpfile-util.h"
#include "umask-util.h"
#include "utf8.h"
#include "util.h"
#include "verbs.h"
#include "virt.h"
static char *arg_esp_path = NULL;
static char *arg_xbootldr_path = NULL;
static bool arg_print_esp_path = false;
static bool arg_print_dollar_boot_path = false;
static bool arg_touch_variables = true;
static PagerFlags arg_pager_flags = 0;
STATIC_DESTRUCTOR_REGISTER(arg_esp_path, freep);
STATIC_DESTRUCTOR_REGISTER(arg_xbootldr_path, freep);
static const char *arg_dollar_boot_path(void) {
/* $BOOT shall be the XBOOTLDR partition if it exists, and otherwise the ESP */
return arg_xbootldr_path ?: arg_esp_path;
}
static int acquire_esp(
bool unprivileged_mode,
uint32_t *ret_part,
uint64_t *ret_pstart,
uint64_t *ret_psize,
sd_id128_t *ret_uuid) {
char *np;
int r;
/* Find the ESP, and log about errors. Note that find_esp_and_warn() will log in all error cases on
* its own, except for ENOKEY (which is good, we want to show our own message in that case,
* suggesting use of --esp-path=) and EACCESS (only when we request unprivileged mode; in this case
* we simply eat up the error here, so that --list and --status work too, without noise about
* this). */
r = find_esp_and_warn(arg_esp_path, unprivileged_mode, &np, ret_part, ret_pstart, ret_psize, ret_uuid);
if (r == -ENOKEY)
return log_error_errno(r,
"Couldn't find EFI system partition. It is recommended to mount it to /boot or /efi.\n"
"Alternatively, use --esp-path= to specify path to mount point.");
if (r < 0)
return r;
free_and_replace(arg_esp_path, np);
log_debug("Using EFI System Partition at %s.", arg_esp_path);
return 1;
}
static int acquire_xbootldr(bool unprivileged_mode, sd_id128_t *ret_uuid) {
char *np;
int r;
r = find_xbootldr_and_warn(arg_xbootldr_path, unprivileged_mode, &np, ret_uuid);
if (r == -ENOKEY) {
log_debug_errno(r, "Didn't find an XBOOTLDR partition, using the ESP as $BOOT.");
if (ret_uuid)
*ret_uuid = SD_ID128_NULL;
arg_xbootldr_path = mfree(arg_xbootldr_path);
return 0;
}
if (r < 0)
return r;
free_and_replace(arg_xbootldr_path, np);
log_debug("Using XBOOTLDR partition at %s as $BOOT.", arg_xbootldr_path);
return 1;
}
/* search for "#### LoaderInfo: systemd-boot 218 ####" string inside the binary */
static int get_file_version(int fd, char **v) {
struct stat st;
char *buf;
const char *s, *e;
char *x = NULL;
int r = 0;
assert(fd >= 0);
assert(v);
if (fstat(fd, &st) < 0)
return log_error_errno(errno, "Failed to stat EFI binary: %m");
r = stat_verify_regular(&st);
if (r < 0)
return log_error_errno(r, "EFI binary is not a regular file: %m");
if (st.st_size < 27) {
*v = NULL;
return 0;
}
buf = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (buf == MAP_FAILED)
return log_error_errno(errno, "Failed to memory map EFI binary: %m");
s = memmem(buf, st.st_size - 8, "#### LoaderInfo: ", 17);
if (!s)
goto finish;
s += 17;
e = memmem(s, st.st_size - (s - buf), " ####", 5);
if (!e || e - s < 3) {
r = log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Malformed version string.");
goto finish;
}
x = strndup(s, e - s);
if (!x) {
r = log_oom();
goto finish;
}
r = 1;
finish:
(void) munmap(buf, st.st_size);
*v = x;
return r;
}
static int enumerate_binaries(const char *esp_path, const char *path, const char *prefix) {
_cleanup_closedir_ DIR *d = NULL;
struct dirent *de;
const char *p;
int c = 0, r;
assert(esp_path);
assert(path);
p = prefix_roota(esp_path, path);
d = opendir(p);
if (!d) {
if (errno == ENOENT)
return 0;
return log_error_errno(errno, "Failed to read \"%s\": %m", p);
}
FOREACH_DIRENT(de, d, break) {
_cleanup_free_ char *v = NULL;
_cleanup_close_ int fd = -1;
if (!endswith_no_case(de->d_name, ".efi"))
continue;
if (prefix && !startswith_no_case(de->d_name, prefix))
continue;
fd = openat(dirfd(d), de->d_name, O_RDONLY|O_CLOEXEC);
if (fd < 0)
return log_error_errno(errno, "Failed to open \"%s/%s\" for reading: %m", p, de->d_name);
r = get_file_version(fd, &v);
if (r < 0)
return r;
if (r > 0)
printf(" File: %s/%s/%s (%s%s%s)\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), path, de->d_name, ansi_highlight(), v, ansi_normal());
else
printf(" File: %s/%s/%s\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), path, de->d_name);
c++;
}
return c;
}
static int status_binaries(const char *esp_path, sd_id128_t partition) {
int r;
printf("Available Boot Loaders on ESP:\n");
if (!esp_path) {
printf(" ESP: Cannot find or access mount point of ESP.\n\n");
return -ENOENT;
}
printf(" ESP: %s", esp_path);
if (!sd_id128_is_null(partition))
printf(" (/dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR ")", SD_ID128_FORMAT_VAL(partition));
printf("\n");
r = enumerate_binaries(esp_path, "EFI/systemd", NULL);
if (r < 0)
goto finish;
if (r == 0)
log_info("systemd-boot not installed in ESP.");
r = enumerate_binaries(esp_path, "EFI/BOOT", "boot");
if (r < 0)
goto finish;
if (r == 0)
log_info("No default/fallback boot loader installed in ESP.");
r = 0;
finish:
printf("\n");
return r;
}
static int print_efi_option(uint16_t id, bool in_order) {
_cleanup_free_ char *title = NULL;
_cleanup_free_ char *path = NULL;
sd_id128_t partition;
bool active;
int r = 0;
r = efi_get_boot_option(id, &title, &partition, &path, &active);
if (r < 0)
return r;
/* print only configured entries with partition information */
if (!path || sd_id128_is_null(partition))
return 0;
efi_tilt_backslashes(path);
printf(" Title: %s%s%s\n", ansi_highlight(), strna(title), ansi_normal());
printf(" ID: 0x%04X\n", id);
printf(" Status: %sactive%s\n", active ? "" : "in", in_order ? ", boot-order" : "");
printf(" Partition: /dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR "\n",
SD_ID128_FORMAT_VAL(partition));
printf(" File: %s%s\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), path);
printf("\n");
return 0;
}
static int status_variables(void) {
_cleanup_free_ uint16_t *options = NULL, *order = NULL;
int n_options, n_order, i;
n_options = efi_get_boot_options(&options);
if (n_options == -ENOENT)
return log_error_errno(n_options,
"Failed to access EFI variables, efivarfs"
" needs to be available at /sys/firmware/efi/efivars/.");
if (n_options < 0)
return log_error_errno(n_options, "Failed to read EFI boot entries: %m");
n_order = efi_get_boot_order(&order);
if (n_order == -ENOENT)
n_order = 0;
else if (n_order < 0)
return log_error_errno(n_order, "Failed to read EFI boot order: %m");
/* print entries in BootOrder first */
printf("Boot Loaders Listed in EFI Variables:\n");
for (i = 0; i < n_order; i++)
print_efi_option(order[i], true);
/* print remaining entries */
for (i = 0; i < n_options; i++) {
int j;
for (j = 0; j < n_order; j++)
if (options[i] == order[j])
goto next_option;
print_efi_option(options[i], false);
next_option:
continue;
}
return 0;
}
static int boot_entry_file_check(const char *root, const char *p) {
_cleanup_free_ char *path;
path = path_join(root, p);
if (!path)
return log_oom();
if (access(path, F_OK) < 0)
return -errno;
return 0;
}
static void boot_entry_file_list(const char *field, const char *root, const char *p, int *ret_status) {
int status = boot_entry_file_check(root, p);
printf("%13s%s ", strempty(field), field ? ":" : " ");
if (status < 0) {
errno = -status;
printf("%s%s%s (%m)\n", ansi_highlight_red(), p, ansi_normal());
} else
printf("%s\n", p);
if (*ret_status == 0 && status < 0)
*ret_status = status;
}
static int boot_entry_show(const BootEntry *e, bool show_as_default) {
int status = 0;
/* Returns 0 on success, negative on processing error, and positive if something is wrong with the
boot entry itself. */
assert(e);
printf(" title: %s%s%s" "%s%s%s\n",
ansi_highlight(), boot_entry_title(e), ansi_normal(),
ansi_highlight_green(), show_as_default ? " (default)" : "", ansi_normal());
if (e->id)
printf(" id: %s\n", e->id);
if (e->path) {
_cleanup_free_ char *link = NULL;
/* Let's urlify the link to make it easy to view in an editor, but only if it is a text
* file. Unified images are binary ELFs, and EFI variables are not pure text either. */
if (e->type == BOOT_ENTRY_CONF)
(void) terminal_urlify_path(e->path, NULL, &link);
printf(" source: %s\n", link ?: e->path);
}
if (e->version)
printf(" version: %s\n", e->version);
if (e->machine_id)
printf(" machine-id: %s\n", e->machine_id);
if (e->architecture)
printf(" architecture: %s\n", e->architecture);
if (e->kernel)
boot_entry_file_list("linux", e->root, e->kernel, &status);
char **s;
STRV_FOREACH(s, e->initrd)
boot_entry_file_list(s == e->initrd ? "initrd" : NULL,
e->root,
*s,
&status);
if (!strv_isempty(e->options)) {
_cleanup_free_ char *t = NULL, *t2 = NULL;
_cleanup_strv_free_ char **ts = NULL;
t = strv_join(e->options, " ");
if (!t)
return log_oom();
ts = strv_split_newlines(t);
if (!ts)
return log_oom();
t2 = strv_join(ts, "\n ");
if (!t2)
return log_oom();
printf(" options: %s\n", t2);
}
if (e->device_tree)
boot_entry_file_list("devicetree", e->root, e->device_tree, &status);
return -status;
}
static int status_entries(
const char *esp_path,
sd_id128_t esp_partition_uuid,
const char *xbootldr_path,
sd_id128_t xbootldr_partition_uuid) {
_cleanup_(boot_config_free) BootConfig config = {};
sd_id128_t dollar_boot_partition_uuid;
const char *dollar_boot_path;
int r;
assert(esp_path || xbootldr_path);
if (xbootldr_path) {
dollar_boot_path = xbootldr_path;
dollar_boot_partition_uuid = xbootldr_partition_uuid;
} else {
dollar_boot_path = esp_path;
dollar_boot_partition_uuid = esp_partition_uuid;
}
printf("Boot Loader Entries:\n"
" $BOOT: %s", dollar_boot_path);
if (!sd_id128_is_null(dollar_boot_partition_uuid))
printf(" (/dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR ")",
SD_ID128_FORMAT_VAL(dollar_boot_partition_uuid));
printf("\n\n");
r = boot_entries_load_config(esp_path, xbootldr_path, &config);
if (r < 0)
return r;
if (config.default_entry < 0)
printf("%zu entries, no entry could be determined as default.\n", config.n_entries);
else {
printf("Default Boot Loader Entry:\n");
r = boot_entry_show(config.entries + config.default_entry, false);
if (r > 0)
/* < 0 is already logged by the function itself, let's just emit an extra warning if
the default entry is broken */
printf("\nWARNING: default boot entry is broken\n");
}
return 0;
}
static int compare_product(const char *a, const char *b) {
size_t x, y;
assert(a);
assert(b);
x = strcspn(a, " ");
y = strcspn(b, " ");
if (x != y)
return x < y ? -1 : x > y ? 1 : 0;
return strncmp(a, b, x);
}
static int compare_version(const char *a, const char *b) {
assert(a);
assert(b);
a += strcspn(a, " ");
a += strspn(a, " ");
b += strcspn(b, " ");
b += strspn(b, " ");
return strverscmp(a, b);
}
static int version_check(int fd_from, const char *from, int fd_to, const char *to) {
_cleanup_free_ char *a = NULL, *b = NULL;
int r;
assert(fd_from >= 0);
assert(from);
assert(fd_to >= 0);
assert(to);
r = get_file_version(fd_from, &a);
if (r < 0)
return r;
if (r == 0)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"Source file \"%s\" does not carry version information!",
from);
r = get_file_version(fd_to, &b);
if (r < 0)
return r;
if (r == 0 || compare_product(a, b) != 0)
return log_notice_errno(SYNTHETIC_ERRNO(EEXIST),
"Skipping \"%s\", since it's owned by another boot loader.",
to);
if (compare_version(a, b) < 0)
return log_warning_errno(SYNTHETIC_ERRNO(ESTALE), "Skipping \"%s\", since a newer boot loader version exists already.", to);
return 0;
}
static int copy_file_with_version_check(const char *from, const char *to, bool force) {
_cleanup_close_ int fd_from = -1, fd_to = -1;
_cleanup_free_ char *t = NULL;
int r;
fd_from = open(from, O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd_from < 0)
return log_error_errno(errno, "Failed to open \"%s\" for reading: %m", from);
if (!force) {
fd_to = open(to, O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd_to < 0) {
if (errno != -ENOENT)
return log_error_errno(errno, "Failed to open \"%s\" for reading: %m", to);
} else {
r = version_check(fd_from, from, fd_to, to);
if (r < 0)
return r;
if (lseek(fd_from, 0, SEEK_SET) == (off_t) -1)
return log_error_errno(errno, "Failed to seek in \"%s\": %m", from);
fd_to = safe_close(fd_to);
}
}
r = tempfn_random(to, NULL, &t);
if (r < 0)
return log_oom();
RUN_WITH_UMASK(0000) {
fd_to = open(t, O_WRONLY|O_CREAT|O_CLOEXEC|O_EXCL|O_NOFOLLOW, 0644);
if (fd_to < 0)
return log_error_errno(errno, "Failed to open \"%s\" for writing: %m", t);
}
r = copy_bytes(fd_from, fd_to, (uint64_t) -1, COPY_REFLINK);
if (r < 0) {
(void) unlink(t);
return log_error_errno(r, "Failed to copy data from \"%s\" to \"%s\": %m", from, t);
}
(void) copy_times(fd_from, fd_to, 0);
if (fsync(fd_to) < 0) {
(void) unlink_noerrno(t);
return log_error_errno(errno, "Failed to copy data from \"%s\" to \"%s\": %m", from, t);
}
(void) fsync_directory_of_file(fd_to);
if (renameat(AT_FDCWD, t, AT_FDCWD, to) < 0) {
(void) unlink_noerrno(t);
return log_error_errno(errno, "Failed to rename \"%s\" to \"%s\": %m", t, to);
}
log_info("Copied \"%s\" to \"%s\".", from, to);
return 0;
}
static int mkdir_one(const char *prefix, const char *suffix) {
_cleanup_free_ char *p = NULL;
p = path_join(prefix, suffix);
if (mkdir(p, 0700) < 0) {
if (errno != EEXIST)
return log_error_errno(errno, "Failed to create \"%s\": %m", p);
} else
log_info("Created \"%s\".", p);
return 0;
}
static const char *const esp_subdirs[] = {
/* The directories to place in the ESP */
"EFI",
"EFI/systemd",
"EFI/BOOT",
"loader",
NULL
};
static const char *const dollar_boot_subdirs[] = {
/* The directories to place in the XBOOTLDR partition or the ESP, depending what exists */
"loader",
"loader/entries", /* Type #1 entries */
"EFI",
"EFI/Linux", /* Type #2 entries */
NULL
};
static int create_subdirs(const char *root, const char * const *subdirs) {
const char *const *i;
int r;
STRV_FOREACH(i, subdirs) {
r = mkdir_one(root, *i);
if (r < 0)
return r;
}
return 0;
}
static int copy_one_file(const char *esp_path, const char *name, bool force) {
const char *e;
char *p, *q;
int r;
p = strjoina(BOOTLIBDIR "/", name);
q = strjoina(esp_path, "/EFI/systemd/", name);
r = copy_file_with_version_check(p, q, force);
e = startswith(name, "systemd-boot");
if (e) {
int k;
char *v;
/* Create the EFI default boot loader name (specified for removable devices) */
v = strjoina(esp_path, "/EFI/BOOT/BOOT", e);
ascii_strupper(strrchr(v, '/') + 1);
k = copy_file_with_version_check(p, v, force);
if (k < 0 && r == 0)
r = k;
}
return r;
}
static int install_binaries(const char *esp_path, bool force) {
struct dirent *de;
_cleanup_closedir_ DIR *d = NULL;
int r = 0;
d = opendir(BOOTLIBDIR);
if (!d)
return log_error_errno(errno, "Failed to open \""BOOTLIBDIR"\": %m");
FOREACH_DIRENT(de, d, return log_error_errno(errno, "Failed to read \""BOOTLIBDIR"\": %m")) {
int k;
if (!endswith_no_case(de->d_name, ".efi"))
continue;
k = copy_one_file(esp_path, de->d_name, force);
if (k < 0 && r == 0)
r = k;
}
return r;
}
static bool same_entry(uint16_t id, sd_id128_t uuid, const char *path) {
_cleanup_free_ char *opath = NULL;
sd_id128_t ouuid;
int r;
r = efi_get_boot_option(id, NULL, &ouuid, &opath, NULL);
if (r < 0)
return false;
if (!sd_id128_equal(uuid, ouuid))
return false;
if (!streq_ptr(path, opath))
return false;
return true;
}
static int find_slot(sd_id128_t uuid, const char *path, uint16_t *id) {
_cleanup_free_ uint16_t *options = NULL;
int n, i;
n = efi_get_boot_options(&options);
if (n < 0)
return n;
/* find already existing systemd-boot entry */
for (i = 0; i < n; i++)
if (same_entry(options[i], uuid, path)) {
*id = options[i];
return 1;
}
/* find free slot in the sorted BootXXXX variable list */
for (i = 0; i < n; i++)
if (i != options[i]) {
*id = i;
return 1;
}
/* use the next one */
if (i == 0xffff)
return -ENOSPC;
*id = i;
return 0;
}
static int insert_into_order(uint16_t slot, bool first) {
_cleanup_free_ uint16_t *order = NULL;
uint16_t *t;
int n, i;
n = efi_get_boot_order(&order);
if (n <= 0)
/* no entry, add us */
return efi_set_boot_order(&slot, 1);
/* are we the first and only one? */
if (n == 1 && order[0] == slot)
return 0;
/* are we already in the boot order? */
for (i = 0; i < n; i++) {
if (order[i] != slot)
continue;
/* we do not require to be the first one, all is fine */
if (!first)
return 0;
/* move us to the first slot */
memmove(order + 1, order, i * sizeof(uint16_t));
order[0] = slot;
return efi_set_boot_order(order, n);
}
/* extend array */
t = reallocarray(order, n + 1, sizeof(uint16_t));
if (!t)
return -ENOMEM;
order = t;
/* add us to the top or end of the list */
if (first) {
memmove(order + 1, order, n * sizeof(uint16_t));
order[0] = slot;
} else
order[n] = slot;
return efi_set_boot_order(order, n + 1);
}
static int remove_from_order(uint16_t slot) {
_cleanup_free_ uint16_t *order = NULL;
int n, i;
n = efi_get_boot_order(&order);
if (n <= 0)
return n;
for (i = 0; i < n; i++) {
if (order[i] != slot)
continue;
if (i + 1 < n)
memmove(order + i, order + i+1, (n - i) * sizeof(uint16_t));
return efi_set_boot_order(order, n - 1);
}
return 0;
}
static int install_variables(const char *esp_path,
uint32_t part, uint64_t pstart, uint64_t psize,
sd_id128_t uuid, const char *path,
bool first) {
const char *p;
uint16_t slot;
int r;
if (!is_efi_boot()) {
log_warning("Not booted with EFI, skipping EFI variable setup.");
return 0;
}
p = prefix_roota(esp_path, path);
if (access(p, F_OK) < 0) {
if (errno == ENOENT)
return 0;
return log_error_errno(errno, "Cannot access \"%s\": %m", p);
}
r = find_slot(uuid, path, &slot);
if (r < 0)
return log_error_errno(r,
r == -ENOENT ?
"Failed to access EFI variables. Is the \"efivarfs\" filesystem mounted?" :
"Failed to determine current boot order: %m");
if (first || r == 0) {
r = efi_add_boot_option(slot, "Linux Boot Manager",
part, pstart, psize,
uuid, path);
if (r < 0)
return log_error_errno(r, "Failed to create EFI Boot variable entry: %m");
log_info("Created EFI boot entry \"Linux Boot Manager\".");
}
return insert_into_order(slot, first);
}
static int remove_boot_efi(const char *esp_path) {
_cleanup_closedir_ DIR *d = NULL;
struct dirent *de;
const char *p;
int r, c = 0;
p = prefix_roota(esp_path, "/EFI/BOOT");
d = opendir(p);
if (!d) {
if (errno == ENOENT)
return 0;
return log_error_errno(errno, "Failed to open directory \"%s\": %m", p);
}
FOREACH_DIRENT(de, d, break) {
_cleanup_close_ int fd = -1;
_cleanup_free_ char *v = NULL;
if (!endswith_no_case(de->d_name, ".efi"))
continue;
if (!startswith_no_case(de->d_name, "boot"))
continue;
fd = openat(dirfd(d), de->d_name, O_RDONLY|O_CLOEXEC);
if (fd < 0)
return log_error_errno(errno, "Failed to open \"%s/%s\" for reading: %m", p, de->d_name);
r = get_file_version(fd, &v);
if (r < 0)
return r;
if (r > 0 && startswith(v, "systemd-boot ")) {
r = unlinkat(dirfd(d), de->d_name, 0);
if (r < 0)
return log_error_errno(errno, "Failed to remove \"%s/%s\": %m", p, de->d_name);
log_info("Removed \"%s/%s\".", p, de->d_name);
}
c++;
}
return c;
}
static int rmdir_one(const char *prefix, const char *suffix) {
const char *p;
p = prefix_roota(prefix, suffix);
if (rmdir(p) < 0) {
bool ignore = IN_SET(errno, ENOENT, ENOTEMPTY);
log_full_errno(ignore ? LOG_DEBUG : LOG_ERR, errno,
"Failed to remove directory \"%s\": %m", p);
if (!ignore)
return -errno;
} else
log_info("Removed \"%s\".", p);
return 0;
}
static int remove_subdirs(const char *root, const char *const *subdirs) {
int r, q;
/* We use recursion here to destroy the directories in reverse order. Which should be safe given how
* short the array is. */
if (!subdirs[0]) /* A the end of the list */
return 0;
r = remove_subdirs(root, subdirs + 1);
q = rmdir_one(root, subdirs[0]);
return r < 0 ? r : q;
}
static int remove_machine_id_directory(const char *root, sd_id128_t machine_id) {
char buf[SD_ID128_STRING_MAX];
assert(root);
return rmdir_one(root, sd_id128_to_string(machine_id, buf));
}
static int remove_binaries(const char *esp_path) {
const char *p;
int r, q;
p = prefix_roota(esp_path, "/EFI/systemd");
r = rm_rf(p, REMOVE_ROOT|REMOVE_PHYSICAL);
q = remove_boot_efi(esp_path);
if (q < 0 && r == 0)
r = q;
return r;
}
static int remove_file(const char *root, const char *file) {
const char *p;
assert(root);
assert(file);
p = prefix_roota(root, file);
if (unlink(p) < 0) {
log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_ERR, errno,
"Failed to unlink file \"%s\": %m", p);
return errno == ENOENT ? 0 : -errno;
}
log_info("Removed \"%s\".", p);
return 1;
}
static int remove_variables(sd_id128_t uuid, const char *path, bool in_order) {
uint16_t slot;
int r;
if (!is_efi_boot())
return 0;
r = find_slot(uuid, path, &slot);
if (r != 1)
return 0;
r = efi_remove_boot_option(slot);
if (r < 0)
return r;
if (in_order)
return remove_from_order(slot);
return 0;
}
static int remove_loader_variables(void) {
const char *p;
int r = 0;
/* Remove all persistent loader variables we define */
FOREACH_STRING(p,
"LoaderConfigTimeout",
"LoaderConfigTimeoutOneShot",
"LoaderEntryDefault",
"LoaderEntryOneShot",
"LoaderSystemToken") {
int q;
q = efi_set_variable(EFI_VENDOR_LOADER, p, NULL, 0);
if (q == -ENOENT)
continue;
if (q < 0) {
log_warning_errno(q, "Failed to remove %s variable: %m", p);
if (r >= 0)
r = q;
} else
log_info("Removed EFI variable %s.", p);
}
return r;
}
static int install_loader_config(const char *esp_path, sd_id128_t machine_id) {
char machine_string[SD_ID128_STRING_MAX];
_cleanup_(unlink_and_freep) char *t = NULL;
_cleanup_fclose_ FILE *f = NULL;
const char *p;
int r, fd;
p = prefix_roota(esp_path, "/loader/loader.conf");
if (access(p, F_OK) >= 0) /* Silently skip creation if the file already exists (early check) */
return 0;
fd = open_tmpfile_linkable(p, O_WRONLY|O_CLOEXEC, &t);
if (fd < 0)
return log_error_errno(fd, "Failed to open \"%s\" for writing: %m", p);
f = fdopen(fd, "w");
if (!f) {
safe_close(fd);
return log_oom();
}
fprintf(f, "#timeout 3\n"
"#console-mode keep\n"
"default %s-*\n", sd_id128_to_string(machine_id, machine_string));
r = fflush_sync_and_check(f);
if (r < 0)
return log_error_errno(r, "Failed to write \"%s\": %m", p);
r = link_tmpfile(fd, t, p);
if (r == -EEXIST)
return 0; /* Silently skip creation if the file exists now (recheck) */
if (r < 0)
return log_error_errno(r, "Failed to move \"%s\" into place: %m", p);
t = mfree(t);
return 1;
}
static int install_machine_id_directory(const char *root, sd_id128_t machine_id) {
char buf[SD_ID128_STRING_MAX];
assert(root);
return mkdir_one(root, sd_id128_to_string(machine_id, buf));
}
static int help(int argc, char *argv[], void *userdata) {
_cleanup_free_ char *link = NULL;
int r;
r = terminal_urlify_man("bootctl", "1", &link);
if (r < 0)
return log_oom();
printf("%s [COMMAND] [OPTIONS...]\n\n"
"Install, update or remove the systemd-boot EFI boot manager.\n\n"
" -h --help Show this help\n"
" --version Print version\n"
" --esp-path=PATH Path to the EFI System Partition (ESP)\n"
" --boot-path=PATH Path to the $BOOT partition\n"
" -p --print-esp-path Print path to the EFI System Partition\n"
" -x --print-boot-path Print path to the $BOOT partition\n"
" --no-variables Don't touch EFI variables\n"
" --no-pager Do not pipe output into a pager\n"
"\nBoot Loader Commands:\n"
" status Show status of installed systemd-boot and EFI variables\n"
" install Install systemd-boot to the ESP and EFI variables\n"
" update Update systemd-boot in the ESP and EFI variables\n"
" remove Remove systemd-boot from the ESP and EFI variables\n"
" random-seed Initialize random seed in ESP and EFI variables\n"
" is-installed Test whether systemd-boot is installed in the ESP\n"
"\nBoot Loader Entries Commands:\n"
" list List boot loader entries\n"
" set-default ID Set default boot loader entry\n"
" set-oneshot ID Set default boot loader entry, for next boot only\n"
"\nSee the %s for details.\n"
, program_invocation_short_name
, link);
return 0;
}
static int parse_argv(int argc, char *argv[]) {
enum {
ARG_ESP_PATH = 0x100,
ARG_BOOT_PATH,
ARG_VERSION,
ARG_NO_VARIABLES,
ARG_NO_PAGER,
};
static const struct option options[] = {
{ "help", no_argument, NULL, 'h' },
{ "version", no_argument, NULL, ARG_VERSION },
{ "esp-path", required_argument, NULL, ARG_ESP_PATH },
{ "path", required_argument, NULL, ARG_ESP_PATH }, /* Compatibility alias */
{ "boot-path", required_argument, NULL, ARG_BOOT_PATH },
{ "print-esp-path", no_argument, NULL, 'p' },
{ "print-path", no_argument, NULL, 'p' }, /* Compatibility alias */
{ "print-boot-path", no_argument, NULL, 'x' },
{ "no-variables", no_argument, NULL, ARG_NO_VARIABLES },
{ "no-pager", no_argument, NULL, ARG_NO_PAGER },
{}
};
int c, r;
assert(argc >= 0);
assert(argv);
while ((c = getopt_long(argc, argv, "hpx", options, NULL)) >= 0)
switch (c) {
case 'h':
help(0, NULL, NULL);
return 0;
case ARG_VERSION:
return version();
case ARG_ESP_PATH:
r = free_and_strdup(&arg_esp_path, optarg);
if (r < 0)
return log_oom();
break;
case ARG_BOOT_PATH:
r = free_and_strdup(&arg_xbootldr_path, optarg);
if (r < 0)
return log_oom();
break;
case 'p':
if (arg_print_dollar_boot_path)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"--print-boot-path/-x cannot be combined with --print-esp-path/-p");
arg_print_esp_path = true;
break;
case 'x':
if (arg_print_esp_path)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"--print-boot-path/-x cannot be combined with --print-esp-path/-p");
arg_print_dollar_boot_path = true;
break;
case ARG_NO_VARIABLES:
arg_touch_variables = false;
break;
case ARG_NO_PAGER:
arg_pager_flags |= PAGER_DISABLE;
break;
case '?':
return -EINVAL;
default:
assert_not_reached("Unknown option");
}
return 1;
}
static void read_loader_efi_var(const char *name, char **var) {
int r;
r = efi_get_variable_string(EFI_VENDOR_LOADER, name, var);
if (r < 0 && r != -ENOENT)
log_warning_errno(r, "Failed to read EFI variable %s: %m", name);
}
static int verb_status(int argc, char *argv[], void *userdata) {
sd_id128_t esp_uuid = SD_ID128_NULL, xbootldr_uuid = SD_ID128_NULL;
int r, k;
r = acquire_esp(geteuid() != 0, NULL, NULL, NULL, &esp_uuid);
if (arg_print_esp_path) {
if (r == -EACCES) /* If we couldn't acquire the ESP path, log about access errors (which is the only
* error the find_esp_and_warn() won't log on its own) */
return log_error_errno(r, "Failed to determine ESP location: %m");
if (r < 0)
return r;
puts(arg_esp_path);
}
r = acquire_xbootldr(geteuid() != 0, &xbootldr_uuid);
if (arg_print_dollar_boot_path) {
if (r == -EACCES)
return log_error_errno(r, "Failed to determine XBOOTLDR location: %m");
if (r < 0)
return r;
const char *path = arg_dollar_boot_path();
if (!path)
return log_error_errno(SYNTHETIC_ERRNO(EACCES), "Failed to determine XBOOTLDR location: %m");
puts(path);
}
if (arg_print_esp_path || arg_print_dollar_boot_path)
return 0;
r = 0; /* If we couldn't determine the path, then don't consider that a problem from here on, just show what we
* can show */
(void) pager_open(arg_pager_flags);
if (is_efi_boot()) {
static const struct {
uint64_t flag;
const char *name;
} flags[] = {
{ EFI_LOADER_FEATURE_BOOT_COUNTING, "Boot counting" },
{ EFI_LOADER_FEATURE_CONFIG_TIMEOUT, "Menu timeout control" },
{ EFI_LOADER_FEATURE_CONFIG_TIMEOUT_ONE_SHOT, "One-shot menu timeout control" },
{ EFI_LOADER_FEATURE_ENTRY_DEFAULT, "Default entry control" },
{ EFI_LOADER_FEATURE_ENTRY_ONESHOT, "One-shot entry control" },
{ EFI_LOADER_FEATURE_XBOOTLDR, "Support for XBOOTLDR partition" },
{ EFI_LOADER_FEATURE_RANDOM_SEED, "Support for passing random seed to OS" },
};
_cleanup_free_ char *fw_type = NULL, *fw_info = NULL, *loader = NULL, *loader_path = NULL, *stub = NULL;
sd_id128_t loader_part_uuid = SD_ID128_NULL;
uint64_t loader_features = 0;
size_t i;
read_loader_efi_var("LoaderFirmwareType", &fw_type);
read_loader_efi_var("LoaderFirmwareInfo", &fw_info);
read_loader_efi_var("LoaderInfo", &loader);
read_loader_efi_var("StubInfo", &stub);
read_loader_efi_var("LoaderImageIdentifier", &loader_path);
(void) efi_loader_get_features(&loader_features);
if (loader_path)
efi_tilt_backslashes(loader_path);
k = efi_loader_get_device_part_uuid(&loader_part_uuid);
if (k < 0 && k != -ENOENT)
r = log_warning_errno(k, "Failed to read EFI variable LoaderDevicePartUUID: %m");
printf("System:\n");
printf(" Firmware: %s%s (%s)%s\n", ansi_highlight(), strna(fw_type), strna(fw_info), ansi_normal());
printf(" Secure Boot: %sd\n", enable_disable(is_efi_secure_boot()));
printf(" Setup Mode: %s\n", is_efi_secure_boot_setup_mode() ? "setup" : "user");
printf("\n");
printf("Current Boot Loader:\n");
printf(" Product: %s%s%s\n", ansi_highlight(), strna(loader), ansi_normal());
for (i = 0; i < ELEMENTSOF(flags); i++) {
if (i == 0)
printf(" Features: ");
else
printf(" ");
if (FLAGS_SET(loader_features, flags[i].flag))
printf("%s%s%s %s\n", ansi_highlight_green(), special_glyph(SPECIAL_GLYPH_CHECK_MARK), ansi_normal(), flags[i].name);
else
printf("%s%s%s %s\n", ansi_highlight_red(), special_glyph(SPECIAL_GLYPH_CROSS_MARK), ansi_normal(), flags[i].name);
}
if (stub)
printf(" Stub: %s\n", stub);
if (!sd_id128_is_null(loader_part_uuid))
printf(" ESP: /dev/disk/by-partuuid/" SD_ID128_UUID_FORMAT_STR "\n",
SD_ID128_FORMAT_VAL(loader_part_uuid));
else
printf(" ESP: n/a\n");
printf(" File: %s%s\n", special_glyph(SPECIAL_GLYPH_TREE_RIGHT), strna(loader_path));
printf("\n");
printf("Random Seed:\n");
printf(" Passed to OS: %s\n", yes_no(access("/sys/firmware/efi/efivars/LoaderRandomSeed-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", F_OK) >= 0));
printf(" System Token: %s\n", access("/sys/firmware/efi/efivars/LoaderSystemToken-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", F_OK) >= 0 ? "set" : "not set");
if (arg_esp_path) {
_cleanup_free_ char *p = NULL;
p = path_join(arg_esp_path, "/loader/random-seed");
if (!p)
return log_oom();
printf(" Exists: %s\n", yes_no(access(p, F_OK) >= 0));
}
printf("\n");
} else
printf("System:\n Not booted with EFI\n\n");
if (arg_esp_path) {
k = status_binaries(arg_esp_path, esp_uuid);
if (k < 0)
r = k;
}
if (is_efi_boot()) {
k = status_variables();
if (k < 0)
r = k;
}
if (arg_esp_path || arg_xbootldr_path) {
k = status_entries(arg_esp_path, esp_uuid, arg_xbootldr_path, xbootldr_uuid);
if (k < 0)
r = k;
}
return r;
}
static int verb_list(int argc, char *argv[], void *userdata) {
_cleanup_(boot_config_free) BootConfig config = {};
int r;
/* If we lack privileges we invoke find_esp_and_warn() in "unprivileged mode" here, which does two things: turn
* off logging about access errors and turn off potentially privileged device probing. Here we're interested in
* the latter but not the former, hence request the mode, and log about EACCES. */
r = acquire_esp(geteuid() != 0, NULL, NULL, NULL, NULL);
if (r == -EACCES) /* We really need the ESP path for this call, hence also log about access errors */
return log_error_errno(r, "Failed to determine ESP: %m");
if (r < 0)
return r;
r = acquire_xbootldr(geteuid() != 0, NULL);
if (r == -EACCES)
return log_error_errno(r, "Failed to determine XBOOTLDR partition: %m");
if (r < 0)
return r;
r = boot_entries_load_config(arg_esp_path, arg_xbootldr_path, &config);
if (r < 0)
return r;
(void) boot_entries_augment_from_loader(&config, false);
if (config.n_entries == 0)
log_info("No boot loader entries found.");
else {
size_t n;
(void) pager_open(arg_pager_flags);
printf("Boot Loader Entries:\n");
for (n = 0; n < config.n_entries; n++) {
r = boot_entry_show(config.entries + n, n == (size_t) config.default_entry);
if (r < 0)
return r;
if (n+1 < config.n_entries)
putchar('\n');
}
}
return 0;
}
static int install_random_seed(const char *esp) {
_cleanup_(unlink_and_freep) char *tmp = NULL;
_cleanup_free_ void *buffer = NULL;
_cleanup_free_ char *path = NULL;
_cleanup_close_ int fd = -1;
size_t sz, token_size;
ssize_t n;
int r;
assert(esp);
path = path_join(esp, "/loader/random-seed");
if (!path)
return log_oom();
sz = random_pool_size();
buffer = malloc(sz);
if (!buffer)
return log_oom();
r = genuine_random_bytes(buffer, sz, RANDOM_BLOCK);
if (r < 0)
return log_error_errno(r, "Failed to acquire random seed: %m");
/* Normally create_subdirs() should already have created everything we need, but in case "bootctl
* random-seed" is called we want to just create the minimum we need for it, and not the full
* list. */
r = mkdir_parents(path, 0755);
if (r < 0)
return log_error_errno(r, "Failed to create parent directory for %s: %m", path);
r = tempfn_random(path, "bootctl", &tmp);
if (r < 0)
return log_oom();
fd = open(tmp, O_CREAT|O_EXCL|O_NOFOLLOW|O_NOCTTY|O_WRONLY|O_CLOEXEC, 0600);
if (fd < 0) {
tmp = mfree(tmp);
return log_error_errno(fd, "Failed to open random seed file for writing: %m");
}
n = write(fd, buffer, sz);
if (n < 0)
return log_error_errno(errno, "Failed to write random seed file: %m");
if ((size_t) n != sz)
return log_error_errno(SYNTHETIC_ERRNO(EIO), "Short write while writing random seed file.");
if (rename(tmp, path) < 0)
return log_error_errno(r, "Failed to move random seed file into place: %m");
tmp = mfree(tmp);
log_info("Random seed file %s successfully written (%zu bytes).", path, sz);
if (!arg_touch_variables)
return 0;
if (!is_efi_boot()) {
log_notice("Not booted with EFI, skipping EFI variable setup.");
return 0;
}
r = getenv_bool("SYSTEMD_WRITE_SYSTEM_TOKEN");
if (r < 0) {
if (r != -ENXIO)
log_warning_errno(r, "Failed to parse $SYSTEMD_WRITE_SYSTEM_TOKEN, ignoring.");
if (detect_vm() > 0) {
/* Let's not write a system token if we detect we are running in a VM
* environment. Why? Our default security model for the random seed uses the system
* token as a mechanism to ensure we are not vulnerable to golden master sloppiness
* issues, i.e. that people initialize the random seed file, then copy the image to
* many systems and end up with the same random seed in each that is assumed to be
* valid but in reality is the same for all machines. By storing a system token in
* the EFI variable space we can make sure that even though the random seeds on disk
* are all the same they will be different on each system under the assumption that
* the EFI variable space is maintained separate from the random seed storage. That
* is generally the case on physical systems, as the ESP is stored on persistant
* storage, and the EFI variables in NVRAM. However in virtualized environments this
* is generally not true: the EFI variable set is typically stored along with the
* disk image itself. For example, using the OVMF EFI firmware the EFI variables are
* stored in a file in the ESP itself. */
log_notice("Not installing system token, since we are running in a virtualized environment.");
return 0;
}
} else if (r == 0) {
log_notice("Not writing system token, because $SYSTEMD_WRITE_SYSTEM_TOKEN is set to false.");
return 0;
}
r = efi_get_variable(EFI_VENDOR_LOADER, "LoaderSystemToken", NULL, NULL, &token_size);
if (r == -ENODATA)
log_debug_errno(r, "LoaderSystemToken EFI variable is invalid (too short?), replacing.");
else if (r < 0) {
if (r != -ENOENT)
return log_error_errno(r, "Failed to test system token validity: %m");
} else {
if (token_size >= sz) {
/* Let's avoid writes if we can, and initialize this only once. */
log_debug("System token already written, not updating.");
return 0;
}
log_debug("Existing system token size (%zu) does not match our expectations (%zu), replacing.", token_size, sz);
}
r = genuine_random_bytes(buffer, sz, RANDOM_BLOCK);
if (r < 0)
return log_error_errno(r, "Failed to acquire random seed: %m");
/* Let's write this variable with an umask in effect, so that unprivileged users can't see the token
* and possibly get identification information or too much insight into the kernel's entropy pool
* state. */
RUN_WITH_UMASK(0077) {
r = efi_set_variable(EFI_VENDOR_LOADER, "LoaderSystemToken", buffer, sz);
if (r < 0)
return log_error_errno(r, "Failed to set LoaderSystemToken EFI variable: %m");
}
log_info("Successfully initialized system token in EFI variable with %zu bytes.", sz);
return 0;
}
static int sync_everything(void) {
int ret = 0, k;
if (arg_esp_path) {
k = syncfs_path(AT_FDCWD, arg_esp_path);
if (k < 0)
ret = log_error_errno(k, "Failed to synchronize the ESP '%s': %m", arg_esp_path);
}
if (arg_xbootldr_path) {
k = syncfs_path(AT_FDCWD, arg_xbootldr_path);
if (k < 0)
ret = log_error_errno(k, "Failed to synchronize $BOOT '%s': %m", arg_xbootldr_path);
}
return ret;
}
static int verb_install(int argc, char *argv[], void *userdata) {
sd_id128_t uuid = SD_ID128_NULL;
uint64_t pstart = 0, psize = 0;
uint32_t part = 0;
sd_id128_t machine_id;
bool install;
int r;
r = acquire_esp(false, &part, &pstart, &psize, &uuid);
if (r < 0)
return r;
r = acquire_xbootldr(false, NULL);
if (r < 0)
return r;
r = sd_id128_get_machine(&machine_id);
if (r < 0)
return log_error_errno(r, "Failed to get machine id: %m");
install = streq(argv[0], "install");
RUN_WITH_UMASK(0002) {
if (install) {
/* Don't create any of these directories when we are just updating. When we update
* we'll drop-in our files (unless there are newer ones already), but we won't create
* the directories for them in the first place. */
r = create_subdirs(arg_esp_path, esp_subdirs);
if (r < 0)
return r;
r = create_subdirs(arg_dollar_boot_path(), dollar_boot_subdirs);
if (r < 0)
return r;
}
r = install_binaries(arg_esp_path, install);
if (r < 0)
return r;
if (install) {
r = install_loader_config(arg_esp_path, machine_id);
if (r < 0)
return r;
r = install_machine_id_directory(arg_dollar_boot_path(), machine_id);
if (r < 0)
return r;
r = install_random_seed(arg_esp_path);
if (r < 0)
return r;
}
}
(void) sync_everything();
if (arg_touch_variables)
r = install_variables(arg_esp_path,
part, pstart, psize, uuid,
"/EFI/systemd/systemd-boot" EFI_MACHINE_TYPE_NAME ".efi",
install);
return r;
}
static int verb_remove(int argc, char *argv[], void *userdata) {
sd_id128_t uuid = SD_ID128_NULL, machine_id;
int r, q;
r = acquire_esp(false, NULL, NULL, NULL, &uuid);
if (r < 0)
return r;
r = acquire_xbootldr(false, NULL);
if (r < 0)
return r;
r = sd_id128_get_machine(&machine_id);
if (r < 0)
return log_error_errno(r, "Failed to get machine id: %m");
r = remove_binaries(arg_esp_path);
q = remove_file(arg_esp_path, "/loader/loader.conf");
if (q < 0 && r >= 0)
r = q;
q = remove_file(arg_esp_path, "/loader/random-seed");
if (q < 0 && r >= 0)
r = q;
q = remove_subdirs(arg_esp_path, esp_subdirs);
if (q < 0 && r >= 0)
r = q;
q = remove_subdirs(arg_esp_path, dollar_boot_subdirs);
if (q < 0 && r >= 0)
r = q;
q = remove_machine_id_directory(arg_esp_path, machine_id);
if (q < 0 && r >= 0)
r = 1;
if (arg_xbootldr_path) {
/* Remove the latter two also in the XBOOTLDR partition if it exists */
q = remove_subdirs(arg_xbootldr_path, dollar_boot_subdirs);
if (q < 0 && r >= 0)
r = q;
q = remove_machine_id_directory(arg_xbootldr_path, machine_id);
if (q < 0 && r >= 0)
r = q;
}
(void) sync_everything();
if (!arg_touch_variables)
return r;
q = remove_variables(uuid, "/EFI/systemd/systemd-boot" EFI_MACHINE_TYPE_NAME ".efi", true);
if (q < 0 && r >= 0)
r = q;
q = remove_loader_variables();
if (q < 0 && r >= 0)
r = q;
return r;
}
static int verb_is_installed(int argc, char *argv[], void *userdata) {
_cleanup_free_ char *p = NULL;
int r;
r = acquire_esp(false, NULL, NULL, NULL, NULL);
if (r < 0)
return r;
/* Tests whether systemd-boot is installed. It's not obvious what to use as check here: we could
* check EFI variables, we could check what binary /EFI/BOOT/BOOT*.EFI points to, or whether the
* loader entries directory exists. Here we opted to check whether /EFI/systemd/ is non-empty, which
* should be a suitable and very minimal check for a number of reasons:
*
* → The check is architecture independent (i.e. we check if any systemd-boot loader is installed, not a
* specific one.)
*
* → It doesn't assume we are the only boot loader (i.e doesn't check if we own the main
* /EFI/BOOT/BOOT*.EFI fallback binary.
*
* → It specifically checks for systemd-boot, not for other boot loaders (which a check for
* /boot/loader/entries would do). */
p = path_join(arg_esp_path, "/EFI/systemd/");
if (!p)
return log_oom();
r = dir_is_empty(p);
if (r > 0 || r == -ENOENT) {
puts("no");
return EXIT_FAILURE;
}
if (r < 0)
return log_error_errno(r, "Failed to detect whether systemd-boot is installed: %m");
puts("yes");
return EXIT_SUCCESS;
}
static int verb_set_default(int argc, char *argv[], void *userdata) {
const char *name;
int r;
if (!is_efi_boot())
return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
"Not booted with UEFI.");
if (access("/sys/firmware/efi/efivars/LoaderInfo-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", F_OK) < 0) {
if (errno == ENOENT) {
log_error_errno(errno, "Not booted with a supported boot loader.");
return -EOPNOTSUPP;
}
return log_error_errno(errno, "Failed to detect whether boot loader supports '%s' operation: %m", argv[0]);
}
if (detect_container() > 0)
return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
"'%s' operation not supported in a container.",
argv[0]);
if (!arg_touch_variables)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"'%s' operation cannot be combined with --touch-variables=no.",
argv[0]);
name = streq(argv[0], "set-default") ? "LoaderEntryDefault" : "LoaderEntryOneShot";
if (isempty(argv[1])) {
r = efi_set_variable(EFI_VENDOR_LOADER, name, NULL, 0);
if (r < 0 && r != -ENOENT)
return log_error_errno(r, "Failed to remove EFI variale: %m");
} else {
_cleanup_free_ char16_t *encoded = NULL;
encoded = utf8_to_utf16(argv[1], strlen(argv[1]));
if (!encoded)
return log_oom();
r = efi_set_variable(EFI_VENDOR_LOADER, name, encoded, char16_strlen(encoded) * 2 + 2);
if (r < 0)
return log_error_errno(r, "Failed to update EFI variable: %m");
}
return 0;
}
static int verb_random_seed(int argc, char *argv[], void *userdata) {
int r;
r = acquire_esp(false, NULL, NULL, NULL, NULL);
if (r < 0)
return r;
r = install_random_seed(arg_esp_path);
if (r < 0)
return r;
(void) sync_everything();
return 0;
}
static int bootctl_main(int argc, char *argv[]) {
static const Verb verbs[] = {
{ "help", VERB_ANY, VERB_ANY, 0, help },
{ "status", VERB_ANY, 1, VERB_DEFAULT, verb_status },
{ "install", VERB_ANY, 1, 0, verb_install },
{ "update", VERB_ANY, 1, 0, verb_install },
{ "remove", VERB_ANY, 1, 0, verb_remove },
{ "random-seed", VERB_ANY, 1, 0, verb_random_seed },
{ "is-installed", VERB_ANY, 1, 0, verb_is_installed },
{ "list", VERB_ANY, 1, 0, verb_list },
{ "set-default", 2, 2, 0, verb_set_default },
{ "set-oneshot", 2, 2, 0, verb_set_default },
{}
};
return dispatch_verb(argc, argv, verbs, NULL);
}
static int run(int argc, char *argv[]) {
int r;
log_parse_environment();
log_open();
/* If we run in a container, automatically turn off EFI file system access */
if (detect_container() > 0)
arg_touch_variables = false;
r = parse_argv(argc, argv);
if (r <= 0)
return r;
return bootctl_main(argc, argv);
}
DEFINE_MAIN_FUNCTION(run);