blob: 86305e70ebff96fe1865abdd99ddcd623e1dbd12 [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1+ */
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sys/reboot.h>
#include <sys/stat.h>
#include <unistd.h>
#if HAVE_SECCOMP
#include <seccomp.h>
#endif
#if HAVE_VALGRIND_VALGRIND_H
#include <valgrind/valgrind.h>
#endif
#include "sd-bus.h"
#include "sd-daemon.h"
#include "sd-messages.h"
#include "alloc-util.h"
#include "architecture.h"
#include "build.h"
#include "bus-error.h"
#include "bus-util.h"
#include "capability-util.h"
#include "cgroup-util.h"
#include "clock-util.h"
#include "conf-parser.h"
#include "cpu-set-util.h"
#include "dbus.h"
#include "dbus-manager.h"
#include "def.h"
#include "emergency-action.h"
#include "env-util.h"
#include "exit-status.h"
#include "fd-util.h"
#include "fdset.h"
#include "fileio.h"
#include "format-util.h"
#include "fs-util.h"
#include "hostname-setup.h"
#include "ima-setup.h"
#include "killall.h"
#include "kmod-setup.h"
#include "limits-util.h"
#include "load-fragment.h"
#include "log.h"
#include "loopback-setup.h"
#include "machine-id-setup.h"
#include "manager.h"
#include "missing.h"
#include "mount-setup.h"
#include "os-util.h"
#include "pager.h"
#include "parse-util.h"
#include "path-util.h"
#include "pretty-print.h"
#include "proc-cmdline.h"
#include "process-util.h"
#include "raw-clone.h"
#include "rlimit-util.h"
#if HAVE_SECCOMP
#include "seccomp-util.h"
#endif
#include "selinux-setup.h"
#include "selinux-util.h"
#include "signal-util.h"
#include "smack-setup.h"
#include "special.h"
#include "stat-util.h"
#include "stdio-util.h"
#include "strv.h"
#include "switch-root.h"
#include "sysctl-util.h"
#include "terminal-util.h"
#include "umask-util.h"
#include "user-util.h"
#include "util.h"
#include "virt.h"
#include "watchdog.h"
#if HAS_FEATURE_ADDRESS_SANITIZER
#include <sanitizer/lsan_interface.h>
#endif
static enum {
ACTION_RUN,
ACTION_HELP,
ACTION_VERSION,
ACTION_TEST,
ACTION_DUMP_CONFIGURATION_ITEMS,
ACTION_DUMP_BUS_PROPERTIES,
} arg_action = ACTION_RUN;
static char *arg_default_unit = NULL;
static bool arg_system = false;
static bool arg_dump_core = true;
static int arg_crash_chvt = -1;
static bool arg_crash_shell = false;
static bool arg_crash_reboot = false;
static char *arg_confirm_spawn = NULL;
static ShowStatus arg_show_status = _SHOW_STATUS_INVALID;
static bool arg_switched_root = false;
static PagerFlags arg_pager_flags = 0;
static bool arg_service_watchdogs = true;
static ExecOutput arg_default_std_output = EXEC_OUTPUT_JOURNAL;
static ExecOutput arg_default_std_error = EXEC_OUTPUT_INHERIT;
static usec_t arg_default_restart_usec = DEFAULT_RESTART_USEC;
static usec_t arg_default_timeout_start_usec = DEFAULT_TIMEOUT_USEC;
static usec_t arg_default_timeout_stop_usec = DEFAULT_TIMEOUT_USEC;
static usec_t arg_default_start_limit_interval = DEFAULT_START_LIMIT_INTERVAL;
static unsigned arg_default_start_limit_burst = DEFAULT_START_LIMIT_BURST;
static usec_t arg_runtime_watchdog = 0;
static usec_t arg_shutdown_watchdog = 10 * USEC_PER_MINUTE;
static char *arg_early_core_pattern = NULL;
static char *arg_watchdog_device = NULL;
static char **arg_default_environment = NULL;
static struct rlimit *arg_default_rlimit[_RLIMIT_MAX] = {};
static uint64_t arg_capability_bounding_set = CAP_ALL;
static bool arg_no_new_privs = false;
static nsec_t arg_timer_slack_nsec = NSEC_INFINITY;
static usec_t arg_default_timer_accuracy_usec = 1 * USEC_PER_MINUTE;
static Set* arg_syscall_archs = NULL;
static FILE* arg_serialization = NULL;
static int arg_default_cpu_accounting = -1;
static bool arg_default_io_accounting = false;
static bool arg_default_ip_accounting = false;
static bool arg_default_blockio_accounting = false;
static bool arg_default_memory_accounting = MEMORY_ACCOUNTING_DEFAULT;
static bool arg_default_tasks_accounting = true;
static uint64_t arg_default_tasks_max = UINT64_MAX;
static sd_id128_t arg_machine_id = {};
static EmergencyAction arg_cad_burst_action = EMERGENCY_ACTION_REBOOT_FORCE;
_noreturn_ static void freeze_or_exit_or_reboot(void) {
/* If we are running in a container, let's prefer exiting, after all we can propagate an exit code to
* the container manager, and thus inform it that something went wrong. */
if (detect_container() > 0) {
log_emergency("Exiting PID 1...");
_exit(EXIT_EXCEPTION);
}
if (arg_crash_reboot) {
log_notice("Rebooting in 10s...");
(void) sleep(10);
log_notice("Rebooting now...");
(void) reboot(RB_AUTOBOOT);
log_emergency_errno(errno, "Failed to reboot: %m");
}
log_emergency("Freezing execution.");
freeze();
}
_noreturn_ static void crash(int sig) {
struct sigaction sa;
pid_t pid;
if (getpid_cached() != 1)
/* Pass this on immediately, if this is not PID 1 */
(void) raise(sig);
else if (!arg_dump_core)
log_emergency("Caught <%s>, not dumping core.", signal_to_string(sig));
else {
sa = (struct sigaction) {
.sa_handler = nop_signal_handler,
.sa_flags = SA_NOCLDSTOP|SA_RESTART,
};
/* We want to wait for the core process, hence let's enable SIGCHLD */
(void) sigaction(SIGCHLD, &sa, NULL);
pid = raw_clone(SIGCHLD);
if (pid < 0)
log_emergency_errno(errno, "Caught <%s>, cannot fork for core dump: %m", signal_to_string(sig));
else if (pid == 0) {
/* Enable default signal handler for core dump */
sa = (struct sigaction) {
.sa_handler = SIG_DFL,
};
(void) sigaction(sig, &sa, NULL);
/* Don't limit the coredump size */
(void) setrlimit(RLIMIT_CORE, &RLIMIT_MAKE_CONST(RLIM_INFINITY));
/* Just to be sure... */
(void) chdir("/");
/* Raise the signal again */
pid = raw_getpid();
(void) kill(pid, sig); /* raise() would kill the parent */
assert_not_reached("We shouldn't be here...");
_exit(EXIT_EXCEPTION);
} else {
siginfo_t status;
int r;
/* Order things nicely. */
r = wait_for_terminate(pid, &status);
if (r < 0)
log_emergency_errno(r, "Caught <%s>, waitpid() failed: %m", signal_to_string(sig));
else if (status.si_code != CLD_DUMPED)
log_emergency("Caught <%s>, core dump failed (child "PID_FMT", code=%s, status=%i/%s).",
signal_to_string(sig),
pid, sigchld_code_to_string(status.si_code),
status.si_status,
strna(status.si_code == CLD_EXITED
? exit_status_to_string(status.si_status, EXIT_STATUS_MINIMAL)
: signal_to_string(status.si_status)));
else
log_emergency("Caught <%s>, dumped core as pid "PID_FMT".", signal_to_string(sig), pid);
}
}
if (arg_crash_chvt >= 0)
(void) chvt(arg_crash_chvt);
sa = (struct sigaction) {
.sa_handler = SIG_IGN,
.sa_flags = SA_NOCLDSTOP|SA_NOCLDWAIT|SA_RESTART,
};
/* Let the kernel reap children for us */
(void) sigaction(SIGCHLD, &sa, NULL);
if (arg_crash_shell) {
log_notice("Executing crash shell in 10s...");
(void) sleep(10);
pid = raw_clone(SIGCHLD);
if (pid < 0)
log_emergency_errno(errno, "Failed to fork off crash shell: %m");
else if (pid == 0) {
(void) setsid();
(void) make_console_stdio();
(void) rlimit_nofile_safe();
(void) execle("/bin/sh", "/bin/sh", NULL, environ);
log_emergency_errno(errno, "execle() failed: %m");
_exit(EXIT_EXCEPTION);
} else {
log_info("Spawned crash shell as PID "PID_FMT".", pid);
(void) wait_for_terminate(pid, NULL);
}
}
freeze_or_exit_or_reboot();
}
static void install_crash_handler(void) {
static const struct sigaction sa = {
.sa_handler = crash,
.sa_flags = SA_NODEFER, /* So that we can raise the signal again from the signal handler */
};
int r;
/* We ignore the return value here, since, we don't mind if we
* cannot set up a crash handler */
r = sigaction_many(&sa, SIGNALS_CRASH_HANDLER, -1);
if (r < 0)
log_debug_errno(r, "I had trouble setting up the crash handler, ignoring: %m");
}
static int console_setup(void) {
_cleanup_close_ int tty_fd = -1;
int r;
tty_fd = open_terminal("/dev/console", O_WRONLY|O_NOCTTY|O_CLOEXEC);
if (tty_fd < 0)
return log_error_errno(tty_fd, "Failed to open /dev/console: %m");
/* We don't want to force text mode. plymouth may be showing
* pictures already from initrd. */
r = reset_terminal_fd(tty_fd, false);
if (r < 0)
return log_error_errno(r, "Failed to reset /dev/console: %m");
return 0;
}
static int parse_crash_chvt(const char *value) {
int b;
if (safe_atoi(value, &arg_crash_chvt) >= 0)
return 0;
b = parse_boolean(value);
if (b < 0)
return b;
if (b > 0)
arg_crash_chvt = 0; /* switch to where kmsg goes */
else
arg_crash_chvt = -1; /* turn off switching */
return 0;
}
static int parse_confirm_spawn(const char *value, char **console) {
char *s;
int r;
r = value ? parse_boolean(value) : 1;
if (r == 0) {
*console = NULL;
return 0;
}
if (r > 0) /* on with default tty */
s = strdup("/dev/console");
else if (is_path(value)) /* on with fully qualified path */
s = strdup(value);
else /* on with only a tty file name, not a fully qualified path */
s = strjoin("/dev/", value);
if (!s)
return -ENOMEM;
*console = s;
return 0;
}
static int set_machine_id(const char *m) {
sd_id128_t t;
assert(m);
if (sd_id128_from_string(m, &t) < 0)
return -EINVAL;
if (sd_id128_is_null(t))
return -EINVAL;
arg_machine_id = t;
return 0;
}
static int parse_proc_cmdline_item(const char *key, const char *value, void *data) {
int r;
assert(key);
if (STR_IN_SET(key, "systemd.unit", "rd.systemd.unit")) {
if (proc_cmdline_value_missing(key, value))
return 0;
if (!unit_name_is_valid(value, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
log_warning("Unit name specified on %s= is not valid, ignoring: %s", key, value);
else if (in_initrd() == !!startswith(key, "rd.")) {
if (free_and_strdup(&arg_default_unit, value) < 0)
return log_oom();
}
} else if (proc_cmdline_key_streq(key, "systemd.dump_core")) {
r = value ? parse_boolean(value) : true;
if (r < 0)
log_warning_errno(r, "Failed to parse dump core switch %s, ignoring: %m", value);
else
arg_dump_core = r;
} else if (proc_cmdline_key_streq(key, "systemd.early_core_pattern")) {
if (proc_cmdline_value_missing(key, value))
return 0;
if (path_is_absolute(value))
(void) parse_path_argument_and_warn(value, false, &arg_early_core_pattern);
else
log_warning("Specified core pattern '%s' is not an absolute path, ignoring.", value);
} else if (proc_cmdline_key_streq(key, "systemd.crash_chvt")) {
if (!value)
arg_crash_chvt = 0; /* turn on */
else {
r = parse_crash_chvt(value);
if (r < 0)
log_warning_errno(r, "Failed to parse crash chvt switch %s, ignoring: %m", value);
}
} else if (proc_cmdline_key_streq(key, "systemd.crash_shell")) {
r = value ? parse_boolean(value) : true;
if (r < 0)
log_warning_errno(r, "Failed to parse crash shell switch %s, ignoring: %m", value);
else
arg_crash_shell = r;
} else if (proc_cmdline_key_streq(key, "systemd.crash_reboot")) {
r = value ? parse_boolean(value) : true;
if (r < 0)
log_warning_errno(r, "Failed to parse crash reboot switch %s, ignoring: %m", value);
else
arg_crash_reboot = r;
} else if (proc_cmdline_key_streq(key, "systemd.confirm_spawn")) {
char *s;
r = parse_confirm_spawn(value, &s);
if (r < 0)
log_warning_errno(r, "Failed to parse confirm_spawn switch %s, ignoring: %m", value);
else
free_and_replace(arg_confirm_spawn, s);
} else if (proc_cmdline_key_streq(key, "systemd.service_watchdogs")) {
r = value ? parse_boolean(value) : true;
if (r < 0)
log_warning_errno(r, "Failed to parse service watchdog switch %s, ignoring: %m", value);
else
arg_service_watchdogs = r;
} else if (proc_cmdline_key_streq(key, "systemd.show_status")) {
if (value) {
r = parse_show_status(value, &arg_show_status);
if (r < 0)
log_warning_errno(r, "Failed to parse show status switch %s, ignoring: %m", value);
} else
arg_show_status = SHOW_STATUS_YES;
} else if (proc_cmdline_key_streq(key, "systemd.default_standard_output")) {
if (proc_cmdline_value_missing(key, value))
return 0;
r = exec_output_from_string(value);
if (r < 0)
log_warning_errno(r, "Failed to parse default standard output switch %s, ignoring: %m", value);
else
arg_default_std_output = r;
} else if (proc_cmdline_key_streq(key, "systemd.default_standard_error")) {
if (proc_cmdline_value_missing(key, value))
return 0;
r = exec_output_from_string(value);
if (r < 0)
log_warning_errno(r, "Failed to parse default standard error switch %s, ignoring: %m", value);
else
arg_default_std_error = r;
} else if (streq(key, "systemd.setenv")) {
if (proc_cmdline_value_missing(key, value))
return 0;
if (env_assignment_is_valid(value)) {
char **env;
env = strv_env_set(arg_default_environment, value);
if (!env)
return log_oom();
arg_default_environment = env;
} else
log_warning("Environment variable name '%s' is not valid. Ignoring.", value);
} else if (proc_cmdline_key_streq(key, "systemd.machine_id")) {
if (proc_cmdline_value_missing(key, value))
return 0;
r = set_machine_id(value);
if (r < 0)
log_warning_errno(r, "MachineID '%s' is not valid, ignoring: %m", value);
} else if (proc_cmdline_key_streq(key, "systemd.default_timeout_start_sec")) {
if (proc_cmdline_value_missing(key, value))
return 0;
r = parse_sec(value, &arg_default_timeout_start_usec);
if (r < 0)
log_warning_errno(r, "Failed to parse default start timeout '%s', ignoring: %m", value);
if (arg_default_timeout_start_usec <= 0)
arg_default_timeout_start_usec = USEC_INFINITY;
} else if (proc_cmdline_key_streq(key, "systemd.watchdog_device")) {
if (proc_cmdline_value_missing(key, value))
return 0;
(void) parse_path_argument_and_warn(value, false, &arg_watchdog_device);
} else if (streq(key, "quiet") && !value) {
if (arg_show_status == _SHOW_STATUS_INVALID)
arg_show_status = SHOW_STATUS_AUTO;
} else if (streq(key, "debug") && !value) {
/* Note that log_parse_environment() handles 'debug'
* too, and sets the log level to LOG_DEBUG. */
if (detect_container() > 0)
log_set_target(LOG_TARGET_CONSOLE);
} else if (!value) {
const char *target;
/* SysV compatibility */
target = runlevel_to_target(key);
if (target)
return free_and_strdup(&arg_default_unit, target);
}
return 0;
}
#define DEFINE_SETTER(name, func, descr) \
static int name(const char *unit, \
const char *filename, \
unsigned line, \
const char *section, \
unsigned section_line, \
const char *lvalue, \
int ltype, \
const char *rvalue, \
void *data, \
void *userdata) { \
\
int r; \
\
assert(filename); \
assert(lvalue); \
assert(rvalue); \
\
r = func(rvalue); \
if (r < 0) \
log_syntax(unit, LOG_ERR, filename, line, r, \
"Invalid " descr "'%s': %m", \
rvalue); \
\
return 0; \
}
DEFINE_SETTER(config_parse_level2, log_set_max_level_from_string, "log level");
DEFINE_SETTER(config_parse_target, log_set_target_from_string, "target");
DEFINE_SETTER(config_parse_color, log_show_color_from_string, "color" );
DEFINE_SETTER(config_parse_location, log_show_location_from_string, "location");
static int config_parse_cpu_affinity2(
const char *unit,
const char *filename,
unsigned line,
const char *section,
unsigned section_line,
const char *lvalue,
int ltype,
const char *rvalue,
void *data,
void *userdata) {
_cleanup_cpu_free_ cpu_set_t *c = NULL;
int ncpus;
ncpus = parse_cpu_set_and_warn(rvalue, &c, unit, filename, line, lvalue);
if (ncpus < 0)
return ncpus;
if (sched_setaffinity(0, CPU_ALLOC_SIZE(ncpus), c) < 0)
log_warning_errno(errno, "Failed to set CPU affinity: %m");
return 0;
}
static int config_parse_show_status(
const char* unit,
const char *filename,
unsigned line,
const char *section,
unsigned section_line,
const char *lvalue,
int ltype,
const char *rvalue,
void *data,
void *userdata) {
int k;
ShowStatus *b = data;
assert(filename);
assert(lvalue);
assert(rvalue);
assert(data);
k = parse_show_status(rvalue, b);
if (k < 0) {
log_syntax(unit, LOG_ERR, filename, line, k, "Failed to parse show status setting, ignoring: %s", rvalue);
return 0;
}
return 0;
}
static int config_parse_output_restricted(
const char* unit,
const char *filename,
unsigned line,
const char *section,
unsigned section_line,
const char *lvalue,
int ltype,
const char *rvalue,
void *data,
void *userdata) {
ExecOutput t, *eo = data;
assert(filename);
assert(lvalue);
assert(rvalue);
assert(data);
t = exec_output_from_string(rvalue);
if (t < 0) {
log_syntax(unit, LOG_ERR, filename, line, 0, "Failed to parse output type, ignoring: %s", rvalue);
return 0;
}
if (IN_SET(t, EXEC_OUTPUT_SOCKET, EXEC_OUTPUT_NAMED_FD, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND)) {
log_syntax(unit, LOG_ERR, filename, line, 0, "Standard output types socket, fd:, file:, append: are not supported as defaults, ignoring: %s", rvalue);
return 0;
}
*eo = t;
return 0;
}
static int config_parse_crash_chvt(
const char* unit,
const char *filename,
unsigned line,
const char *section,
unsigned section_line,
const char *lvalue,
int ltype,
const char *rvalue,
void *data,
void *userdata) {
int r;
assert(filename);
assert(lvalue);
assert(rvalue);
r = parse_crash_chvt(rvalue);
if (r < 0) {
log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse CrashChangeVT= setting, ignoring: %s", rvalue);
return 0;
}
return 0;
}
static int parse_config_file(void) {
const ConfigTableItem items[] = {
{ "Manager", "LogLevel", config_parse_level2, 0, NULL },
{ "Manager", "LogTarget", config_parse_target, 0, NULL },
{ "Manager", "LogColor", config_parse_color, 0, NULL },
{ "Manager", "LogLocation", config_parse_location, 0, NULL },
{ "Manager", "DumpCore", config_parse_bool, 0, &arg_dump_core },
{ "Manager", "CrashChVT", /* legacy */ config_parse_crash_chvt, 0, NULL },
{ "Manager", "CrashChangeVT", config_parse_crash_chvt, 0, NULL },
{ "Manager", "CrashShell", config_parse_bool, 0, &arg_crash_shell },
{ "Manager", "CrashReboot", config_parse_bool, 0, &arg_crash_reboot },
{ "Manager", "ShowStatus", config_parse_show_status, 0, &arg_show_status },
{ "Manager", "CPUAffinity", config_parse_cpu_affinity2, 0, NULL },
{ "Manager", "JoinControllers", config_parse_warn_compat, DISABLED_CONFIGURATION, NULL },
{ "Manager", "RuntimeWatchdogSec", config_parse_sec, 0, &arg_runtime_watchdog },
{ "Manager", "ShutdownWatchdogSec", config_parse_sec, 0, &arg_shutdown_watchdog },
{ "Manager", "WatchdogDevice", config_parse_path, 0, &arg_watchdog_device },
{ "Manager", "CapabilityBoundingSet", config_parse_capability_set, 0, &arg_capability_bounding_set },
{ "Manager", "NoNewPrivileges", config_parse_bool, 0, &arg_no_new_privs },
#if HAVE_SECCOMP
{ "Manager", "SystemCallArchitectures", config_parse_syscall_archs, 0, &arg_syscall_archs },
#endif
{ "Manager", "TimerSlackNSec", config_parse_nsec, 0, &arg_timer_slack_nsec },
{ "Manager", "DefaultTimerAccuracySec", config_parse_sec, 0, &arg_default_timer_accuracy_usec },
{ "Manager", "DefaultStandardOutput", config_parse_output_restricted,0, &arg_default_std_output },
{ "Manager", "DefaultStandardError", config_parse_output_restricted,0, &arg_default_std_error },
{ "Manager", "DefaultTimeoutStartSec", config_parse_sec, 0, &arg_default_timeout_start_usec },
{ "Manager", "DefaultTimeoutStopSec", config_parse_sec, 0, &arg_default_timeout_stop_usec },
{ "Manager", "DefaultRestartSec", config_parse_sec, 0, &arg_default_restart_usec },
{ "Manager", "DefaultStartLimitInterval", config_parse_sec, 0, &arg_default_start_limit_interval }, /* obsolete alias */
{ "Manager", "DefaultStartLimitIntervalSec",config_parse_sec, 0, &arg_default_start_limit_interval },
{ "Manager", "DefaultStartLimitBurst", config_parse_unsigned, 0, &arg_default_start_limit_burst },
{ "Manager", "DefaultEnvironment", config_parse_environ, 0, &arg_default_environment },
{ "Manager", "DefaultLimitCPU", config_parse_rlimit, RLIMIT_CPU, arg_default_rlimit },
{ "Manager", "DefaultLimitFSIZE", config_parse_rlimit, RLIMIT_FSIZE, arg_default_rlimit },
{ "Manager", "DefaultLimitDATA", config_parse_rlimit, RLIMIT_DATA, arg_default_rlimit },
{ "Manager", "DefaultLimitSTACK", config_parse_rlimit, RLIMIT_STACK, arg_default_rlimit },
{ "Manager", "DefaultLimitCORE", config_parse_rlimit, RLIMIT_CORE, arg_default_rlimit },
{ "Manager", "DefaultLimitRSS", config_parse_rlimit, RLIMIT_RSS, arg_default_rlimit },
{ "Manager", "DefaultLimitNOFILE", config_parse_rlimit, RLIMIT_NOFILE, arg_default_rlimit },
{ "Manager", "DefaultLimitAS", config_parse_rlimit, RLIMIT_AS, arg_default_rlimit },
{ "Manager", "DefaultLimitNPROC", config_parse_rlimit, RLIMIT_NPROC, arg_default_rlimit },
{ "Manager", "DefaultLimitMEMLOCK", config_parse_rlimit, RLIMIT_MEMLOCK, arg_default_rlimit },
{ "Manager", "DefaultLimitLOCKS", config_parse_rlimit, RLIMIT_LOCKS, arg_default_rlimit },
{ "Manager", "DefaultLimitSIGPENDING", config_parse_rlimit, RLIMIT_SIGPENDING, arg_default_rlimit },
{ "Manager", "DefaultLimitMSGQUEUE", config_parse_rlimit, RLIMIT_MSGQUEUE, arg_default_rlimit },
{ "Manager", "DefaultLimitNICE", config_parse_rlimit, RLIMIT_NICE, arg_default_rlimit },
{ "Manager", "DefaultLimitRTPRIO", config_parse_rlimit, RLIMIT_RTPRIO, arg_default_rlimit },
{ "Manager", "DefaultLimitRTTIME", config_parse_rlimit, RLIMIT_RTTIME, arg_default_rlimit },
{ "Manager", "DefaultCPUAccounting", config_parse_tristate, 0, &arg_default_cpu_accounting },
{ "Manager", "DefaultIOAccounting", config_parse_bool, 0, &arg_default_io_accounting },
{ "Manager", "DefaultIPAccounting", config_parse_bool, 0, &arg_default_ip_accounting },
{ "Manager", "DefaultBlockIOAccounting", config_parse_bool, 0, &arg_default_blockio_accounting },
{ "Manager", "DefaultMemoryAccounting", config_parse_bool, 0, &arg_default_memory_accounting },
{ "Manager", "DefaultTasksAccounting", config_parse_bool, 0, &arg_default_tasks_accounting },
{ "Manager", "DefaultTasksMax", config_parse_tasks_max, 0, &arg_default_tasks_max },
{ "Manager", "CtrlAltDelBurstAction", config_parse_emergency_action, 0, &arg_cad_burst_action },
{}
};
const char *fn, *conf_dirs_nulstr;
fn = arg_system ?
PKGSYSCONFDIR "/system.conf" :
PKGSYSCONFDIR "/user.conf";
conf_dirs_nulstr = arg_system ?
CONF_PATHS_NULSTR("systemd/system.conf.d") :
CONF_PATHS_NULSTR("systemd/user.conf.d");
(void) config_parse_many_nulstr(fn, conf_dirs_nulstr, "Manager\0", config_item_table_lookup, items, CONFIG_PARSE_WARN, NULL);
/* Traditionally "0" was used to turn off the default unit timeouts. Fix this up so that we used USEC_INFINITY
* like everywhere else. */
if (arg_default_timeout_start_usec <= 0)
arg_default_timeout_start_usec = USEC_INFINITY;
if (arg_default_timeout_stop_usec <= 0)
arg_default_timeout_stop_usec = USEC_INFINITY;
return 0;
}
static void set_manager_defaults(Manager *m) {
assert(m);
/* Propagates the various default unit property settings into the manager object, i.e. properties that do not
* affect the manager itself, but are just what newly allocated units will have set if they haven't set
* anything else. (Also see set_manager_settings() for the settings that affect the manager's own behaviour) */
m->default_timer_accuracy_usec = arg_default_timer_accuracy_usec;
m->default_std_output = arg_default_std_output;
m->default_std_error = arg_default_std_error;
m->default_timeout_start_usec = arg_default_timeout_start_usec;
m->default_timeout_stop_usec = arg_default_timeout_stop_usec;
m->default_restart_usec = arg_default_restart_usec;
m->default_start_limit_interval = arg_default_start_limit_interval;
m->default_start_limit_burst = arg_default_start_limit_burst;
/* On 4.15+ with unified hierarchy, CPU accounting is essentially free as it doesn't require the CPU
* controller to be enabled, so the default is to enable it unless we got told otherwise. */
if (arg_default_cpu_accounting >= 0)
m->default_cpu_accounting = arg_default_cpu_accounting;
else
m->default_cpu_accounting = cpu_accounting_is_cheap();
m->default_io_accounting = arg_default_io_accounting;
m->default_ip_accounting = arg_default_ip_accounting;
m->default_blockio_accounting = arg_default_blockio_accounting;
m->default_memory_accounting = arg_default_memory_accounting;
m->default_tasks_accounting = arg_default_tasks_accounting;
m->default_tasks_max = arg_default_tasks_max;
(void) manager_set_default_rlimits(m, arg_default_rlimit);
(void) manager_default_environment(m);
(void) manager_transient_environment_add(m, arg_default_environment);
}
static void set_manager_settings(Manager *m) {
assert(m);
/* Propagates the various manager settings into the manager object, i.e. properties that effect the manager
* itself (as opposed to just being inherited into newly allocated units, see set_manager_defaults() above). */
m->confirm_spawn = arg_confirm_spawn;
m->service_watchdogs = arg_service_watchdogs;
m->runtime_watchdog = arg_runtime_watchdog;
m->shutdown_watchdog = arg_shutdown_watchdog;
m->cad_burst_action = arg_cad_burst_action;
manager_set_show_status(m, arg_show_status);
}
static int parse_argv(int argc, char *argv[]) {
enum {
ARG_LOG_LEVEL = 0x100,
ARG_LOG_TARGET,
ARG_LOG_COLOR,
ARG_LOG_LOCATION,
ARG_UNIT,
ARG_SYSTEM,
ARG_USER,
ARG_TEST,
ARG_NO_PAGER,
ARG_VERSION,
ARG_DUMP_CONFIGURATION_ITEMS,
ARG_DUMP_BUS_PROPERTIES,
ARG_DUMP_CORE,
ARG_CRASH_CHVT,
ARG_CRASH_SHELL,
ARG_CRASH_REBOOT,
ARG_CONFIRM_SPAWN,
ARG_SHOW_STATUS,
ARG_DESERIALIZE,
ARG_SWITCHED_ROOT,
ARG_DEFAULT_STD_OUTPUT,
ARG_DEFAULT_STD_ERROR,
ARG_MACHINE_ID,
ARG_SERVICE_WATCHDOGS,
};
static const struct option options[] = {
{ "log-level", required_argument, NULL, ARG_LOG_LEVEL },
{ "log-target", required_argument, NULL, ARG_LOG_TARGET },
{ "log-color", optional_argument, NULL, ARG_LOG_COLOR },
{ "log-location", optional_argument, NULL, ARG_LOG_LOCATION },
{ "unit", required_argument, NULL, ARG_UNIT },
{ "system", no_argument, NULL, ARG_SYSTEM },
{ "user", no_argument, NULL, ARG_USER },
{ "test", no_argument, NULL, ARG_TEST },
{ "no-pager", no_argument, NULL, ARG_NO_PAGER },
{ "help", no_argument, NULL, 'h' },
{ "version", no_argument, NULL, ARG_VERSION },
{ "dump-configuration-items", no_argument, NULL, ARG_DUMP_CONFIGURATION_ITEMS },
{ "dump-bus-properties", no_argument, NULL, ARG_DUMP_BUS_PROPERTIES },
{ "dump-core", optional_argument, NULL, ARG_DUMP_CORE },
{ "crash-chvt", required_argument, NULL, ARG_CRASH_CHVT },
{ "crash-shell", optional_argument, NULL, ARG_CRASH_SHELL },
{ "crash-reboot", optional_argument, NULL, ARG_CRASH_REBOOT },
{ "confirm-spawn", optional_argument, NULL, ARG_CONFIRM_SPAWN },
{ "show-status", optional_argument, NULL, ARG_SHOW_STATUS },
{ "deserialize", required_argument, NULL, ARG_DESERIALIZE },
{ "switched-root", no_argument, NULL, ARG_SWITCHED_ROOT },
{ "default-standard-output", required_argument, NULL, ARG_DEFAULT_STD_OUTPUT, },
{ "default-standard-error", required_argument, NULL, ARG_DEFAULT_STD_ERROR, },
{ "machine-id", required_argument, NULL, ARG_MACHINE_ID },
{ "service-watchdogs", required_argument, NULL, ARG_SERVICE_WATCHDOGS },
{}
};
int c, r;
assert(argc >= 1);
assert(argv);
if (getpid_cached() == 1)
opterr = 0;
while ((c = getopt_long(argc, argv, "hDbsz:", options, NULL)) >= 0)
switch (c) {
case ARG_LOG_LEVEL:
r = log_set_max_level_from_string(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse log level \"%s\": %m", optarg);
break;
case ARG_LOG_TARGET:
r = log_set_target_from_string(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse log target \"%s\": %m", optarg);
break;
case ARG_LOG_COLOR:
if (optarg) {
r = log_show_color_from_string(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse log color setting \"%s\": %m",
optarg);
} else
log_show_color(true);
break;
case ARG_LOG_LOCATION:
if (optarg) {
r = log_show_location_from_string(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse log location setting \"%s\": %m",
optarg);
} else
log_show_location(true);
break;
case ARG_DEFAULT_STD_OUTPUT:
r = exec_output_from_string(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse default standard output setting \"%s\": %m",
optarg);
arg_default_std_output = r;
break;
case ARG_DEFAULT_STD_ERROR:
r = exec_output_from_string(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse default standard error output setting \"%s\": %m",
optarg);
arg_default_std_error = r;
break;
case ARG_UNIT:
r = free_and_strdup(&arg_default_unit, optarg);
if (r < 0)
return log_error_errno(r, "Failed to set default unit \"%s\": %m", optarg);
break;
case ARG_SYSTEM:
arg_system = true;
break;
case ARG_USER:
arg_system = false;
break;
case ARG_TEST:
arg_action = ACTION_TEST;
break;
case ARG_NO_PAGER:
arg_pager_flags |= PAGER_DISABLE;
break;
case ARG_VERSION:
arg_action = ACTION_VERSION;
break;
case ARG_DUMP_CONFIGURATION_ITEMS:
arg_action = ACTION_DUMP_CONFIGURATION_ITEMS;
break;
case ARG_DUMP_BUS_PROPERTIES:
arg_action = ACTION_DUMP_BUS_PROPERTIES;
break;
case ARG_DUMP_CORE:
if (!optarg)
arg_dump_core = true;
else {
r = parse_boolean(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse dump core boolean: \"%s\": %m",
optarg);
arg_dump_core = r;
}
break;
case ARG_CRASH_CHVT:
r = parse_crash_chvt(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse crash virtual terminal index: \"%s\": %m",
optarg);
break;
case ARG_CRASH_SHELL:
if (!optarg)
arg_crash_shell = true;
else {
r = parse_boolean(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse crash shell boolean: \"%s\": %m",
optarg);
arg_crash_shell = r;
}
break;
case ARG_CRASH_REBOOT:
if (!optarg)
arg_crash_reboot = true;
else {
r = parse_boolean(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse crash shell boolean: \"%s\": %m",
optarg);
arg_crash_reboot = r;
}
break;
case ARG_CONFIRM_SPAWN:
arg_confirm_spawn = mfree(arg_confirm_spawn);
r = parse_confirm_spawn(optarg, &arg_confirm_spawn);
if (r < 0)
return log_error_errno(r, "Failed to parse confirm spawn option: \"%s\": %m",
optarg);
break;
case ARG_SERVICE_WATCHDOGS:
r = parse_boolean(optarg);
if (r < 0)
return log_error_errno(r, "Failed to parse service watchdogs boolean: \"%s\": %m",
optarg);
arg_service_watchdogs = r;
break;
case ARG_SHOW_STATUS:
if (optarg) {
r = parse_show_status(optarg, &arg_show_status);
if (r < 0)
return log_error_errno(r, "Failed to parse show status boolean: \"%s\": %m",
optarg);
} else
arg_show_status = SHOW_STATUS_YES;
break;
case ARG_DESERIALIZE: {
int fd;
FILE *f;
r = safe_atoi(optarg, &fd);
if (r < 0)
log_error_errno(r, "Failed to parse deserialize option \"%s\": %m", optarg);
if (fd < 0)
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"Invalid deserialize fd: %d",
fd);
(void) fd_cloexec(fd, true);
f = fdopen(fd, "r");
if (!f)
return log_error_errno(errno, "Failed to open serialization fd %d: %m", fd);
safe_fclose(arg_serialization);
arg_serialization = f;
break;
}
case ARG_SWITCHED_ROOT:
arg_switched_root = true;
break;
case ARG_MACHINE_ID:
r = set_machine_id(optarg);
if (r < 0)
return log_error_errno(r, "MachineID '%s' is not valid: %m", optarg);
break;
case 'h':
arg_action = ACTION_HELP;
break;
case 'D':
log_set_max_level(LOG_DEBUG);
break;
case 'b':
case 's':
case 'z':
/* Just to eat away the sysvinit kernel
* cmdline args without getopt() error
* messages that we'll parse in
* parse_proc_cmdline_word() or ignore. */
case '?':
if (getpid_cached() != 1)
return -EINVAL;
else
return 0;
default:
assert_not_reached("Unhandled option code.");
}
if (optind < argc && getpid_cached() != 1) {
/* Hmm, when we aren't run as init system
* let's complain about excess arguments */
return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
"Excess arguments.");
}
return 0;
}
static int help(void) {
_cleanup_free_ char *link = NULL;
int r;
r = terminal_urlify_man("systemd", "1", &link);
if (r < 0)
return log_oom();
printf("%s [OPTIONS...]\n\n"
"Starts up and maintains the system or user services.\n\n"
" -h --help Show this help\n"
" --version Show version\n"
" --test Determine startup sequence, dump it and exit\n"
" --no-pager Do not pipe output into a pager\n"
" --dump-configuration-items Dump understood unit configuration items\n"
" --dump-bus-properties Dump exposed bus properties\n"
" --unit=UNIT Set default unit\n"
" --system Run a system instance, even if PID != 1\n"
" --user Run a user instance\n"
" --dump-core[=BOOL] Dump core on crash\n"
" --crash-vt=NR Change to specified VT on crash\n"
" --crash-reboot[=BOOL] Reboot on crash\n"
" --crash-shell[=BOOL] Run shell on crash\n"
" --confirm-spawn[=BOOL] Ask for confirmation when spawning processes\n"
" --show-status[=BOOL] Show status updates on the console during bootup\n"
" --log-target=TARGET Set log target (console, journal, kmsg, journal-or-kmsg, null)\n"
" --log-level=LEVEL Set log level (debug, info, notice, warning, err, crit, alert, emerg)\n"
" --log-color[=BOOL] Highlight important log messages\n"
" --log-location[=BOOL] Include code location in log messages\n"
" --default-standard-output= Set default standard output for services\n"
" --default-standard-error= Set default standard error output for services\n"
"\nSee the %s for details.\n"
, program_invocation_short_name
, link
);
return 0;
}
static int prepare_reexecute(
Manager *m,
FILE **ret_f,
FDSet **ret_fds,
bool switching_root) {
_cleanup_fdset_free_ FDSet *fds = NULL;
_cleanup_fclose_ FILE *f = NULL;
int r;
assert(m);
assert(ret_f);
assert(ret_fds);
r = manager_open_serialization(m, &f);
if (r < 0)
return log_error_errno(r, "Failed to create serialization file: %m");
/* Make sure nothing is really destructed when we shut down */
m->n_reloading++;
bus_manager_send_reloading(m, true);
fds = fdset_new();
if (!fds)
return log_oom();
r = manager_serialize(m, f, fds, switching_root);
if (r < 0)
return r;
if (fseeko(f, 0, SEEK_SET) == (off_t) -1)
return log_error_errno(errno, "Failed to rewind serialization fd: %m");
r = fd_cloexec(fileno(f), false);
if (r < 0)
return log_error_errno(r, "Failed to disable O_CLOEXEC for serialization: %m");
r = fdset_cloexec(fds, false);
if (r < 0)
return log_error_errno(r, "Failed to disable O_CLOEXEC for serialization fds: %m");
*ret_f = TAKE_PTR(f);
*ret_fds = TAKE_PTR(fds);
return 0;
}
static void bump_file_max_and_nr_open(void) {
/* Let's bump fs.file-max and fs.nr_open to their respective maximums. On current kernels large numbers of file
* descriptors are no longer a performance problem and their memory is properly tracked by memcg, thus counting
* them and limiting them in another two layers of limits is unnecessary and just complicates things. This
* function hence turns off 2 of the 4 levels of limits on file descriptors, and makes RLIMIT_NOLIMIT (soft +
* hard) the only ones that really matter. */
#if BUMP_PROC_SYS_FS_FILE_MAX || BUMP_PROC_SYS_FS_NR_OPEN
_cleanup_free_ char *t = NULL;
int r;
#endif
#if BUMP_PROC_SYS_FS_FILE_MAX
/* The maximum the kernel allows for this since 5.2 is LONG_MAX, use that. (Previously thing where
* different but the operation would fail silently.) */
if (asprintf(&t, "%li\n", LONG_MAX) < 0) {
log_oom();
return;
}
r = sysctl_write("fs/file-max", t);
if (r < 0)
log_full_errno(IN_SET(r, -EROFS, -EPERM, -EACCES) ? LOG_DEBUG : LOG_WARNING, r, "Failed to bump fs.file-max, ignoring: %m");
#endif
#if BUMP_PROC_SYS_FS_FILE_MAX && BUMP_PROC_SYS_FS_NR_OPEN
t = mfree(t);
#endif
#if BUMP_PROC_SYS_FS_NR_OPEN
int v = INT_MAX;
/* Arg! The kernel enforces maximum and minimum values on the fs.nr_open, but we don't really know what they
* are. The expression by which the maximum is determined is dependent on the architecture, and is something we
* don't really want to copy to userspace, as it is dependent on implementation details of the kernel. Since
* the kernel doesn't expose the maximum value to us, we can only try and hope. Hence, let's start with
* INT_MAX, and then keep halving the value until we find one that works. Ugly? Yes, absolutely, but kernel
* APIs are kernel APIs, so what do can we do... 🤯 */
for (;;) {
int k;
v &= ~(__SIZEOF_POINTER__ - 1); /* Round down to next multiple of the pointer size */
if (v < 1024) {
log_warning("Can't bump fs.nr_open, value too small.");
break;
}
k = read_nr_open();
if (k < 0) {
log_error_errno(k, "Failed to read fs.nr_open: %m");
break;
}
if (k >= v) { /* Already larger */
log_debug("Skipping bump, value is already larger.");
break;
}
if (asprintf(&t, "%i\n", v) < 0) {
log_oom();
return;
}
r = sysctl_write("fs/nr_open", t);
t = mfree(t);
if (r == -EINVAL) {
log_debug("Couldn't write fs.nr_open as %i, halving it.", v);
v /= 2;
continue;
}
if (r < 0) {
log_full_errno(IN_SET(r, -EROFS, -EPERM, -EACCES) ? LOG_DEBUG : LOG_WARNING, r, "Failed to bump fs.nr_open, ignoring: %m");
break;
}
log_debug("Successfully bumped fs.nr_open to %i", v);
break;
}
#endif
}
static int bump_rlimit_nofile(struct rlimit *saved_rlimit) {
struct rlimit new_rlimit;
int r, nr;
assert(saved_rlimit);
/* Save the original RLIMIT_NOFILE so that we can reset it later when transitioning from the initrd to the main
* systemd or suchlike. */
if (getrlimit(RLIMIT_NOFILE, saved_rlimit) < 0)
return log_warning_errno(errno, "Reading RLIMIT_NOFILE failed, ignoring: %m");
/* Get the underlying absolute limit the kernel enforces */
nr = read_nr_open();
/* Make sure forked processes get limits based on the original kernel setting */
if (!arg_default_rlimit[RLIMIT_NOFILE]) {
struct rlimit *rl;
rl = newdup(struct rlimit, saved_rlimit, 1);
if (!rl)
return log_oom();
/* Bump the hard limit for system services to a substantially higher value. The default hard limit
* current kernels set is pretty low (4K), mostly for historical reasons. According to kernel
* developers, the fd handling in recent kernels has been optimized substantially enough, so that we
* can bump the limit now, without paying too high a price in memory or performance. Note however that
* we only bump the hard limit, not the soft limit. That's because select() works the way it works, and
* chokes on fds >= 1024. If we'd bump the soft limit globally, it might accidentally happen to
* unexpecting programs that they get fds higher than what they can process using select(). By only
* bumping the hard limit but leaving the low limit as it is we avoid this pitfall: programs that are
* written by folks aware of the select() problem in mind (and thus use poll()/epoll instead of
* select(), the way everybody should) can explicitly opt into high fds by bumping their soft limit
* beyond 1024, to the hard limit we pass. */
if (arg_system)
rl->rlim_max = MIN((rlim_t) nr, MAX(rl->rlim_max, (rlim_t) HIGH_RLIMIT_NOFILE));
/* If for some reason we were invoked with a soft limit above 1024 (which should never
* happen!, but who knows what we get passed in from pam_limit when invoked as --user
* instance), then lower what we pass on to not confuse our children */
rl->rlim_cur = MIN(rl->rlim_cur, (rlim_t) FD_SETSIZE);
arg_default_rlimit[RLIMIT_NOFILE] = rl;
}
/* Calculate the new limits to use for us. Never lower from what we inherited. */
new_rlimit = (struct rlimit) {
.rlim_cur = MAX((rlim_t) nr, saved_rlimit->rlim_cur),
.rlim_max = MAX((rlim_t) nr, saved_rlimit->rlim_max),
};
/* Shortcut if nothing changes. */
if (saved_rlimit->rlim_max >= new_rlimit.rlim_max &&
saved_rlimit->rlim_cur >= new_rlimit.rlim_cur) {
log_debug("RLIMIT_NOFILE is already as high or higher than we need it, not bumping.");
return 0;
}
/* Bump up the resource limit for ourselves substantially, all the way to the maximum the kernel allows, for
* both hard and soft. */
r = setrlimit_closest(RLIMIT_NOFILE, &new_rlimit);
if (r < 0)
return log_warning_errno(r, "Setting RLIMIT_NOFILE failed, ignoring: %m");
return 0;
}
static int bump_rlimit_memlock(struct rlimit *saved_rlimit) {
struct rlimit new_rlimit;
int r;
assert(saved_rlimit);
/* BPF_MAP_TYPE_LPM_TRIE bpf maps are charged against RLIMIT_MEMLOCK, even if we have CAP_IPC_LOCK which should
* normally disable such checks. We need them to implement IPAccessAllow= and IPAccessDeny=, hence let's bump
* the value high enough for our user. */
if (getrlimit(RLIMIT_MEMLOCK, saved_rlimit) < 0)
return log_warning_errno(errno, "Reading RLIMIT_MEMLOCK failed, ignoring: %m");
/* Pass the original value down to invoked processes */
if (!arg_default_rlimit[RLIMIT_MEMLOCK]) {
struct rlimit *rl;
rl = newdup(struct rlimit, saved_rlimit, 1);
if (!rl)
return log_oom();
arg_default_rlimit[RLIMIT_MEMLOCK] = rl;
}
/* Using MAX() on resource limits only is safe if RLIM_INFINITY is > 0. POSIX declares that rlim_t
* must be unsigned, hence this is a given, but let's make this clear here. */
assert_cc(RLIM_INFINITY > 0);
new_rlimit = (struct rlimit) {
.rlim_cur = MAX(HIGH_RLIMIT_MEMLOCK, saved_rlimit->rlim_cur),
.rlim_max = MAX(HIGH_RLIMIT_MEMLOCK, saved_rlimit->rlim_max),
};
if (saved_rlimit->rlim_max >= new_rlimit.rlim_cur &&
saved_rlimit->rlim_cur >= new_rlimit.rlim_max) {
log_debug("RLIMIT_MEMLOCK is already as high or higher than we need it, not bumping.");
return 0;
}
r = setrlimit_closest(RLIMIT_MEMLOCK, &new_rlimit);
if (r < 0)
return log_warning_errno(r, "Setting RLIMIT_MEMLOCK failed, ignoring: %m");
return 0;
}
static void test_usr(void) {
/* Check that /usr is either on the same file system as / or mounted already. */
if (dir_is_empty("/usr") <= 0)
return;
log_warning("/usr appears to be on its own filesystem and is not already mounted. This is not a supported setup. "
"Some things will probably break (sometimes even silently) in mysterious ways. "
"Consult http://freedesktop.org/wiki/Software/systemd/separate-usr-is-broken for more information.");
}
static int enforce_syscall_archs(Set *archs) {
#if HAVE_SECCOMP
int r;
if (!is_seccomp_available())
return 0;
r = seccomp_restrict_archs(arg_syscall_archs);
if (r < 0)
return log_error_errno(r, "Failed to enforce system call architecture restrication: %m");
#endif
return 0;
}
static int status_welcome(void) {
_cleanup_free_ char *pretty_name = NULL, *ansi_color = NULL;
int r;
if (IN_SET(arg_show_status, SHOW_STATUS_NO, SHOW_STATUS_AUTO))
return 0;
r = parse_os_release(NULL,
"PRETTY_NAME", &pretty_name,
"ANSI_COLOR", &ansi_color,
NULL);
if (r < 0)
log_full_errno(r == -ENOENT ? LOG_DEBUG : LOG_WARNING, r,
"Failed to read os-release file, ignoring: %m");
if (log_get_show_color())
return status_printf(NULL, 0,
"\nWelcome to \x1B[%sm%s\x1B[0m!\n",
isempty(ansi_color) ? "1" : ansi_color,
isempty(pretty_name) ? "Linux" : pretty_name);
else
return status_printf(NULL, 0,
"\nWelcome to %s!\n",
isempty(pretty_name) ? "Linux" : pretty_name);
}
static int write_container_id(void) {
const char *c;
int r;
c = getenv("container");
if (isempty(c))
return 0;
RUN_WITH_UMASK(0022)
r = write_string_file("/run/systemd/container", c, WRITE_STRING_FILE_CREATE);
if (r < 0)
return log_warning_errno(r, "Failed to write /run/systemd/container, ignoring: %m");
return 1;
}
static int bump_unix_max_dgram_qlen(void) {
_cleanup_free_ char *qlen = NULL;
unsigned long v;
int r;
/* Let's bump the net.unix.max_dgram_qlen sysctl. The kernel default of 16 is simply too low. We set the value
* really really early during boot, so that it is actually applied to all our sockets, including the
* $NOTIFY_SOCKET one. */
r = read_one_line_file("/proc/sys/net/unix/max_dgram_qlen", &qlen);
if (r < 0)
return log_full_errno(r == -ENOENT ? LOG_DEBUG : LOG_WARNING, r, "Failed to read AF_UNIX datagram queue length, ignoring: %m");
r = safe_atolu(qlen, &v);
if (r < 0)
return log_warning_errno(r, "Failed to parse AF_UNIX datagram queue length '%s', ignoring: %m", qlen);
if (v >= DEFAULT_UNIX_MAX_DGRAM_QLEN)
return 0;
r = write_string_filef("/proc/sys/net/unix/max_dgram_qlen", WRITE_STRING_FILE_DISABLE_BUFFER, "%lu", DEFAULT_UNIX_MAX_DGRAM_QLEN);
if (r < 0)
return log_full_errno(IN_SET(r, -EROFS, -EPERM, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to bump AF_UNIX datagram queue length, ignoring: %m");
return 1;
}
static int fixup_environment(void) {
_cleanup_free_ char *term = NULL;
const char *t;
int r;
/* Only fix up the environment when we are started as PID 1 */
if (getpid_cached() != 1)
return 0;
/* We expect the environment to be set correctly if run inside a container. */
if (detect_container() > 0)
return 0;
/* When started as PID1, the kernel uses /dev/console for our stdios and uses TERM=linux whatever the backend
* device used by the console. We try to make a better guess here since some consoles might not have support
* for color mode for example.
*
* However if TERM was configured through the kernel command line then leave it alone. */
r = proc_cmdline_get_key("TERM", 0, &term);
if (r < 0)
return r;
t = term ?: default_term_for_tty("/dev/console");
if (setenv("TERM", t, 1) < 0)
return -errno;
return 0;
}
static void redirect_telinit(int argc, char *argv[]) {
/* This is compatibility support for SysV, where calling init as a user is identical to telinit. */
#if HAVE_SYSV_COMPAT
if (getpid_cached() == 1)
return;
if (!strstr(program_invocation_short_name, "init"))
return;
execv(SYSTEMCTL_BINARY_PATH, argv);
log_error_errno(errno, "Failed to exec " SYSTEMCTL_BINARY_PATH ": %m");
exit(EXIT_FAILURE);
#endif
}
static int become_shutdown(
const char *shutdown_verb,
int retval) {
char log_level[DECIMAL_STR_MAX(int) + 1],
exit_code[DECIMAL_STR_MAX(uint8_t) + 1],
timeout[DECIMAL_STR_MAX(usec_t) + 1];
const char* command_line[13] = {
SYSTEMD_SHUTDOWN_BINARY_PATH,
shutdown_verb,
"--timeout", timeout,
"--log-level", log_level,
"--log-target",
};
_cleanup_strv_free_ char **env_block = NULL;
size_t pos = 7;
int r;
assert(shutdown_verb);
assert(!command_line[pos]);
env_block = strv_copy(environ);
xsprintf(log_level, "%d", log_get_max_level());
xsprintf(timeout, "%" PRI_USEC "us", arg_default_timeout_stop_usec);
switch (log_get_target()) {
case LOG_TARGET_KMSG:
case LOG_TARGET_JOURNAL_OR_KMSG:
case LOG_TARGET_SYSLOG_OR_KMSG:
command_line[pos++] = "kmsg";
break;
case LOG_TARGET_NULL:
command_line[pos++] = "null";
break;
case LOG_TARGET_CONSOLE:
default:
command_line[pos++] = "console";
break;
};
if (log_get_show_color())
command_line[pos++] = "--log-color";
if (log_get_show_location())
command_line[pos++] = "--log-location";
if (streq(shutdown_verb, "exit")) {
command_line[pos++] = "--exit-code";
command_line[pos++] = exit_code;
xsprintf(exit_code, "%d", retval);
}
assert(pos < ELEMENTSOF(command_line));
if (streq(shutdown_verb, "reboot") &&
arg_shutdown_watchdog > 0 &&
arg_shutdown_watchdog != USEC_INFINITY) {
char *e;
/* If we reboot let's set the shutdown
* watchdog and tell the shutdown binary to
* repeatedly ping it */
r = watchdog_set_timeout(&arg_shutdown_watchdog);
watchdog_close(r < 0);
/* Tell the binary how often to ping, ignore failure */
if (asprintf(&e, "WATCHDOG_USEC="USEC_FMT, arg_shutdown_watchdog) > 0)
(void) strv_consume(&env_block, e);
if (arg_watchdog_device &&
asprintf(&e, "WATCHDOG_DEVICE=%s", arg_watchdog_device) > 0)
(void) strv_consume(&env_block, e);
} else
watchdog_close(true);
/* Avoid the creation of new processes forked by the
* kernel; at this point, we will not listen to the
* signals anyway */
if (detect_container() <= 0)
(void) cg_uninstall_release_agent(SYSTEMD_CGROUP_CONTROLLER);
execve(SYSTEMD_SHUTDOWN_BINARY_PATH, (char **) command_line, env_block);
return -errno;
}
static void initialize_clock(void) {
int r;
if (clock_is_localtime(NULL) > 0) {
int min;
/*
* The very first call of settimeofday() also does a time warp in the kernel.
*
* In the rtc-in-local time mode, we set the kernel's timezone, and rely on external tools to take care
* of maintaining the RTC and do all adjustments. This matches the behavior of Windows, which leaves
* the RTC alone if the registry tells that the RTC runs in UTC.
*/
r = clock_set_timezone(&min);
if (r < 0)
log_error_errno(r, "Failed to apply local time delta, ignoring: %m");
else
log_info("RTC configured in localtime, applying delta of %i minutes to system time.", min);
} else if (!in_initrd()) {
/*
* Do a dummy very first call to seal the kernel's time warp magic.
*
* Do not call this from inside the initrd. The initrd might not carry /etc/adjtime with LOCAL, but the
* real system could be set up that way. In such case, we need to delay the time-warp or the sealing
* until we reach the real system.
*
* Do no set the kernel's timezone. The concept of local time cannot be supported reliably, the time
* will jump or be incorrect at every daylight saving time change. All kernel local time concepts will
* be treated as UTC that way.
*/
(void) clock_reset_timewarp();
}
r = clock_apply_epoch();
if (r < 0)
log_error_errno(r, "Current system time is before build time, but cannot correct: %m");
else if (r > 0)
log_info("System time before build time, advancing clock.");
}
static void initialize_coredump(bool skip_setup) {
#if ENABLE_COREDUMP
if (getpid_cached() != 1)
return;
/* Don't limit the core dump size, so that coredump handlers such as systemd-coredump (which honour the limit)
* will process core dumps for system services by default. */
if (setrlimit(RLIMIT_CORE, &RLIMIT_MAKE_CONST(RLIM_INFINITY)) < 0)
log_warning_errno(errno, "Failed to set RLIMIT_CORE: %m");
/* But at the same time, turn off the core_pattern logic by default, so that no
* coredumps are stored until the systemd-coredump tool is enabled via
* sysctl. However it can be changed via the kernel command line later so core
* dumps can still be generated during early startup and in initramfs. */
if (!skip_setup)
disable_coredumps();
#endif
}
static void initialize_core_pattern(bool skip_setup) {
int r;
if (skip_setup || !arg_early_core_pattern)
return;
if (getpid_cached() != 1)
return;
r = write_string_file("/proc/sys/kernel/core_pattern", arg_early_core_pattern, WRITE_STRING_FILE_DISABLE_BUFFER);
if (r < 0)
log_warning_errno(r, "Failed to write '%s' to /proc/sys/kernel/core_pattern, ignoring: %m", arg_early_core_pattern);
}
static void do_reexecute(
int argc,
char *argv[],
const struct rlimit *saved_rlimit_nofile,
const struct rlimit *saved_rlimit_memlock,
FDSet *fds,
const char *switch_root_dir,
const char *switch_root_init,
const char **ret_error_message) {
unsigned i, j, args_size;
const char **args;
int r;
assert(saved_rlimit_nofile);
assert(saved_rlimit_memlock);
assert(ret_error_message);
/* Close and disarm the watchdog, so that the new instance can reinitialize it, but doesn't get rebooted while
* we do that */
watchdog_close(true);
/* Reset RLIMIT_NOFILE + RLIMIT_MEMLOCK back to the kernel defaults, so that the new systemd can pass
* the kernel default to its child processes */
if (saved_rlimit_nofile->rlim_cur != 0)
(void) setrlimit(RLIMIT_NOFILE, saved_rlimit_nofile);
if (saved_rlimit_memlock->rlim_cur != RLIM_INFINITY)
(void) setrlimit(RLIMIT_MEMLOCK, saved_rlimit_memlock);
if (switch_root_dir) {
/* Kill all remaining processes from the initrd, but don't wait for them, so that we can handle the
* SIGCHLD for them after deserializing. */
broadcast_signal(SIGTERM, false, true, arg_default_timeout_stop_usec);
/* And switch root with MS_MOVE, because we remove the old directory afterwards and detach it. */
r = switch_root(switch_root_dir, "/mnt", true, MS_MOVE);
if (r < 0)
log_error_errno(r, "Failed to switch root, trying to continue: %m");
}
args_size = MAX(6, argc+1);
args = newa(const char*, args_size);
if (!switch_root_init) {
char sfd[DECIMAL_STR_MAX(int) + 1];
/* First try to spawn ourselves with the right path, and with full serialization. We do this only if
* the user didn't specify an explicit init to spawn. */
assert(arg_serialization);
assert(fds);
xsprintf(sfd, "%i", fileno(arg_serialization));
i = 0;
args[i++] = SYSTEMD_BINARY_PATH;
if (switch_root_dir)
args[i++] = "--switched-root";
args[i++] = arg_system ? "--system" : "--user";
args[i++] = "--deserialize";
args[i++] = sfd;
args[i++] = NULL;
assert(i <= args_size);
/*
* We want valgrind to print its memory usage summary before reexecution. Valgrind won't do this is on
* its own on exec(), but it will do it on exit(). Hence, to ensure we get a summary here, fork() off
* a child, let it exit() cleanly, so that it prints the summary, and wait() for it in the parent,
* before proceeding into the exec().
*/
valgrind_summary_hack();
(void) execv(args[0], (char* const*) args);
log_debug_errno(errno, "Failed to execute our own binary, trying fallback: %m");
}
/* Try the fallback, if there is any, without any serialization. We pass the original argv[] and envp[]. (Well,
* modulo the ordering changes due to getopt() in argv[], and some cleanups in envp[], but let's hope that
* doesn't matter.) */
arg_serialization = safe_fclose(arg_serialization);
fds = fdset_free(fds);
/* Reopen the console */
(void) make_console_stdio();
for (j = 1, i = 1; j < (unsigned) argc; j++)
args[i++] = argv[j];
args[i++] = NULL;
assert(i <= args_size);
/* Re-enable any blocked signals, especially important if we switch from initial ramdisk to init=... */
(void) reset_all_signal_handlers();
(void) reset_signal_mask();
(void) rlimit_nofile_safe();
if (switch_root_init) {
args[0] = switch_root_init;
(void) execv(args[0], (char* const*) args);
log_warning_errno(errno, "Failed to execute configured init, trying fallback: %m");
}
args[0] = "/sbin/init";
(void) execv(args[0], (char* const*) args);
r = -errno;
manager_status_printf(NULL, STATUS_TYPE_EMERGENCY,
ANSI_HIGHLIGHT_RED " !! " ANSI_NORMAL,
"Failed to execute /sbin/init");
if (r == -ENOENT) {
log_warning("No /sbin/init, trying fallback");
args[0] = "/bin/sh";
args[1] = NULL;
(void) execv(args[0], (char* const*) args);
log_error_errno(errno, "Failed to execute /bin/sh, giving up: %m");
} else
log_warning_errno(r, "Failed to execute /sbin/init, giving up: %m");
*ret_error_message = "Failed to execute fallback shell";
}
static int invoke_main_loop(
Manager *m,
bool *ret_reexecute,
int *ret_retval, /* Return parameters relevant for shutting down */
const char **ret_shutdown_verb, /* … */
FDSet **ret_fds, /* Return parameters for reexecuting */
char **ret_switch_root_dir, /* … */
char **ret_switch_root_init, /* … */
const char **ret_error_message) {
int r;
assert(m);
assert(ret_reexecute);
assert(ret_retval);
assert(ret_shutdown_verb);
assert(ret_fds);
assert(ret_switch_root_dir);
assert(ret_switch_root_init);
assert(ret_error_message);
for (;;) {
r = manager_loop(m);
if (r < 0) {
*ret_error_message = "Failed to run main loop";
return log_emergency_errno(r, "Failed to run main loop: %m");
}
switch ((ManagerObjective) r) {
case MANAGER_RELOAD: {
LogTarget saved_log_target;
int saved_log_level;
log_info("Reloading.");
/* First, save any overridden log level/target, then parse the configuration file, which might
* change the log level to new settings. */
saved_log_level = m->log_level_overridden ? log_get_max_level() : -1;
saved_log_target = m->log_target_overridden ? log_get_target() : _LOG_TARGET_INVALID;
r = parse_config_file();
if (r < 0)
log_warning_errno(r, "Failed to parse config file, ignoring: %m");
set_manager_defaults(m);
if (saved_log_level >= 0)
manager_override_log_level(m, saved_log_level);
if (saved_log_target >= 0)
manager_override_log_target(m, saved_log_target);
r = manager_reload(m);
if (r < 0)
/* Reloading failed before the point of no return. Let's continue running as if nothing happened. */
m->objective = MANAGER_OK;
break;
}
case MANAGER_REEXECUTE:
r = prepare_reexecute(m, &arg_serialization, ret_fds, false);
if (r < 0) {
*ret_error_message = "Failed to prepare for reexecution";
return r;
}
log_notice("Reexecuting.");
*ret_reexecute = true;
*ret_retval = EXIT_SUCCESS;
*ret_shutdown_verb = NULL;
*ret_switch_root_dir = *ret_switch_root_init = NULL;
return 0;
case MANAGER_SWITCH_ROOT:
if (!m->switch_root_init) {
r = prepare_reexecute(m, &arg_serialization, ret_fds, true);
if (r < 0) {
*ret_error_message = "Failed to prepare for reexecution";
return r;
}
} else
*ret_fds = NULL;
log_notice("Switching root.");
*ret_reexecute = true;
*ret_retval = EXIT_SUCCESS;
*ret_shutdown_verb = NULL;
/* Steal the switch root parameters */
*ret_switch_root_dir = TAKE_PTR(m->switch_root);
*ret_switch_root_init = TAKE_PTR(m->switch_root_init);
return 0;
case MANAGER_EXIT:
if (MANAGER_IS_USER(m)) {
log_debug("Exit.");
*ret_reexecute = false;
*ret_retval = m->return_value;
*ret_shutdown_verb = NULL;
*ret_fds = NULL;
*ret_switch_root_dir = *ret_switch_root_init = NULL;
return 0;
}
_fallthrough_;
case MANAGER_REBOOT:
case MANAGER_POWEROFF:
case MANAGER_HALT:
case MANAGER_KEXEC: {
static const char * const table[_MANAGER_OBJECTIVE_MAX] = {
[MANAGER_EXIT] = "exit",
[MANAGER_REBOOT] = "reboot",
[MANAGER_POWEROFF] = "poweroff",
[MANAGER_HALT] = "halt",
[MANAGER_KEXEC] = "kexec",
};
log_notice("Shutting down.");
*ret_reexecute = false;
*ret_retval = m->return_value;
assert_se(*ret_shutdown_verb = table[m->objective]);
*ret_fds = NULL;
*ret_switch_root_dir = *ret_switch_root_init = NULL;
return 0;
}
default:
assert_not_reached("Unknown or unexpected manager objective.");
}
}
}
static void log_execution_mode(bool *ret_first_boot) {
assert(ret_first_boot);
if (arg_system) {
int v;
log_info("systemd " GIT_VERSION " running in %ssystem mode. (" SYSTEMD_FEATURES ")",
arg_action == ACTION_TEST ? "test " : "" );
v = detect_virtualization();
if (v > 0)
log_info("Detected virtualization %s.", virtualization_to_string(v));
log_info("Detected architecture %s.", architecture_to_string(uname_architecture()));
if (in_initrd()) {
*ret_first_boot = false;
log_info("Running in initial RAM disk.");
} else {
/* Let's check whether we are in first boot, i.e. whether /etc is still unpopulated. We use
* /etc/machine-id as flag file, for this: if it exists we assume /etc is populated, if it
* doesn't it's unpopulated. This allows container managers and installers to provision a
* couple of files already. If the container manager wants to provision the machine ID itself
* it should pass $container_uuid to PID 1. */
*ret_first_boot = access("/etc/machine-id", F_OK) < 0;
if (*ret_first_boot)
log_info("Running with unpopulated /etc.");
}
} else {
if (DEBUG_LOGGING) {
_cleanup_free_ char *t;
t = uid_to_name(getuid());
log_debug("systemd " GIT_VERSION " running in %suser mode for user " UID_FMT "/%s. (" SYSTEMD_FEATURES ")",
arg_action == ACTION_TEST ? " test" : "", getuid(), strna(t));
}
*ret_first_boot = false;
}
}
static int initialize_runtime(
bool skip_setup,
struct rlimit *saved_rlimit_nofile,
struct rlimit *saved_rlimit_memlock,
const char **ret_error_message) {
int r;
assert(ret_error_message);
/* Sets up various runtime parameters. Many of these initializations are conditionalized:
*
* - Some only apply to --system instances
* - Some only apply to --user instances
* - Some only apply when we first start up, but not when we reexecute
*/
if (arg_action != ACTION_RUN)
return 0;
if (arg_system) {
/* Make sure we leave a core dump without panicking the kernel. */
install_crash_handler();
if (!skip_setup) {
r = mount_cgroup_controllers();
if (r < 0) {
*ret_error_message = "Failed to mount cgroup hierarchies";
return r;
}
status_welcome();
hostname_setup();
machine_id_setup(NULL, arg_machine_id, NULL);
loopback_setup();
bump_unix_max_dgram_qlen();
bump_file_max_and_nr_open();
test_usr();
write_container_id();
}
if (arg_watchdog_device) {
r = watchdog_set_device(arg_watchdog_device);
if (r < 0)
log_warning_errno(r, "Failed to set watchdog device to %s, ignoring: %m", arg_watchdog_device);
}
if (arg_runtime_watchdog > 0 && arg_runtime_watchdog != USEC_INFINITY)
watchdog_set_timeout(&arg_runtime_watchdog);
}
if (arg_timer_slack_nsec != NSEC_INFINITY)
if (prctl(PR_SET_TIMERSLACK, arg_timer_slack_nsec) < 0)
log_warning_errno(errno, "Failed to adjust timer slack, ignoring: %m");
if (arg_system && !cap_test_all(arg_capability_bounding_set)) {
r = capability_bounding_set_drop_usermode(arg_capability_bounding_set);
if (r < 0) {
*ret_error_message = "Failed to drop capability bounding set of usermode helpers";
return log_emergency_errno(r, "Failed to drop capability bounding set of usermode helpers: %m");
}
r = capability_bounding_set_drop(arg_capability_bounding_set, true);
if (r < 0) {
*ret_error_message = "Failed to drop capability bounding set";
return log_emergency_errno(r, "Failed to drop capability bounding set: %m");
}
}
if (arg_system && arg_no_new_privs) {
if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
*ret_error_message = "Failed to disable new privileges";
return log_emergency_errno(errno, "Failed to disable new privileges: %m");
}
}
if (arg_syscall_archs) {
r = enforce_syscall_archs(arg_syscall_archs);
if (r < 0) {
*ret_error_message = "Failed to set syscall architectures";
return r;
}
}
if (!arg_system)
/* Become reaper of our children */
if (prctl(PR_SET_CHILD_SUBREAPER, 1) < 0)
log_warning_errno(errno, "Failed to make us a subreaper: %m");
/* Bump up RLIMIT_NOFILE for systemd itself */
(void) bump_rlimit_nofile(saved_rlimit_nofile);
(void) bump_rlimit_memlock(saved_rlimit_memlock);
return 0;
}
static int do_queue_default_job(
Manager *m,
const char **ret_error_message) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
Job *default_unit_job;
Unit *target = NULL;
int r;
log_debug("Activating default unit: %s", arg_default_unit);
r = manager_load_startable_unit_or_warn(m, arg_default_unit, NULL, &target);
if (r < 0) {
log_info("Falling back to rescue target: " SPECIAL_RESCUE_TARGET);
r = manager_load_startable_unit_or_warn(m, SPECIAL_RESCUE_TARGET, NULL, &target);
if (r < 0) {
*ret_error_message = r == -ERFKILL ? "Rescue target masked"
: "Failed to load rescue target";
return r;
}
}
assert(target->load_state == UNIT_LOADED);
r = manager_add_job(m, JOB_START, target, JOB_ISOLATE, NULL, &error, &default_unit_job);
if (r == -EPERM) {
log_debug_errno(r, "Default target could not be isolated, starting instead: %s", bus_error_message(&error, r));
sd_bus_error_free(&error);
r = manager_add_job(m, JOB_START, target, JOB_REPLACE, NULL, &error, &default_unit_job);
if (r < 0) {
*ret_error_message = "Failed to start default target";
return log_emergency_errno(r, "Failed to start default target: %s", bus_error_message(&error, r));
}
} else if (r < 0) {
*ret_error_message = "Failed to isolate default target";
return log_emergency_errno(r, "Failed to isolate default target: %s", bus_error_message(&error, r));
}
m->default_unit_job_id = default_unit_job->id;
return 0;
}
static void free_arguments(void) {
/* Frees all arg_* variables, with the exception of arg_serialization */
rlimit_free_all(arg_default_rlimit);
arg_default_unit = mfree(arg_default_unit);
arg_confirm_spawn = mfree(arg_confirm_spawn);
arg_default_environment = strv_free(arg_default_environment);
arg_syscall_archs = set_free(arg_syscall_archs);
}
static int load_configuration(int argc, char **argv, const char **ret_error_message) {
int r;
assert(ret_error_message);
arg_default_tasks_max = system_tasks_max_scale(DEFAULT_TASKS_MAX_PERCENTAGE, 100U);
r = parse_config_file();
if (r < 0) {
*ret_error_message = "Failed to parse config file";
return r;
}
if (arg_system) {
r = proc_cmdline_parse(parse_proc_cmdline_item, NULL, 0);
if (r < 0)
log_warning_errno(r, "Failed to parse kernel command line, ignoring: %m");
}
/* Note that this also parses bits from the kernel command line, including "debug". */
log_parse_environment();
r = parse_argv(argc, argv);
if (r < 0) {
*ret_error_message = "Failed to parse commandline arguments";
return r;
}
/* Initialize default unit */
if (!arg_default_unit) {
arg_default_unit = strdup(SPECIAL_DEFAULT_TARGET);
if (!arg_default_unit) {
*ret_error_message = "Failed to set default unit";
return log_oom();
}
}
/* Initialize the show status setting if it hasn't been set explicitly yet */
if (arg_show_status == _SHOW_STATUS_INVALID)
arg_show_status = SHOW_STATUS_YES;
return 0;
}
static int safety_checks(void) {
if (getpid_cached() == 1 &&
arg_action != ACTION_RUN)
return log_error_errno(SYNTHETIC_ERRNO(EPERM),
"Unsupported execution mode while PID 1.");
if (getpid_cached() == 1 &&
!arg_system)
return log_error_errno(SYNTHETIC_ERRNO(EPERM),
"Can't run --user mode as PID 1.");
if (arg_action == ACTION_RUN &&
arg_system &&
getpid_cached() != 1)
return log_error_errno(SYNTHETIC_ERRNO(EPERM),
"Can't run system mode unless PID 1.");
if (arg_action == ACTION_TEST &&
geteuid() == 0)
return log_error_errno(SYNTHETIC_ERRNO(EPERM),
"Don't run test mode as root.");
if (!arg_system &&
arg_action == ACTION_RUN &&
sd_booted() <= 0)
return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
"Trying to run as user instance, but the system has not been booted with systemd.");
if (!arg_system &&
arg_action == ACTION_RUN &&
!getenv("XDG_RUNTIME_DIR"))
return log_error_errno(SYNTHETIC_ERRNO(EUNATCH),
"Trying to run as user instance, but $XDG_RUNTIME_DIR is not set.");
if (arg_system &&
arg_action == ACTION_RUN &&
running_in_chroot() > 0)
return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
"Cannot be run in a chroot() environment.");
return 0;
}
static int initialize_security(
bool *loaded_policy,
dual_timestamp *security_start_timestamp,
dual_timestamp *security_finish_timestamp,
const char **ret_error_message) {
int r;
assert(loaded_policy);
assert(security_start_timestamp);
assert(security_finish_timestamp);
assert(ret_error_message);
dual_timestamp_get(security_start_timestamp);
r = mac_selinux_setup(loaded_policy);
if (r < 0) {
*ret_error_message = "Failed to load SELinux policy";
return r;
}
r = mac_smack_setup(loaded_policy);
if (r < 0) {
*ret_error_message = "Failed to load SMACK policy";
return r;
}
r = ima_setup();
if (r < 0) {
*ret_error_message = "Failed to load IMA policy";
return r;
}
dual_timestamp_get(security_finish_timestamp);
return 0;
}
static void test_summary(Manager *m) {
assert(m);
printf("-> By units:\n");
manager_dump_units(m, stdout, "\t");
printf("-> By jobs:\n");
manager_dump_jobs(m, stdout, "\t");
}
static int collect_fds(FDSet **ret_fds, const char **ret_error_message) {
int r;
assert(ret_fds);
assert(ret_error_message);
r = fdset_new_fill(ret_fds);
if (r < 0) {
*ret_error_message = "Failed to allocate fd set";
return log_emergency_errno(r, "Failed to allocate fd set: %m");
}
fdset_cloexec(*ret_fds, true);
if (arg_serialization)
assert_se(fdset_remove(*ret_fds, fileno(arg_serialization)) >= 0);
return 0;
}
static void setup_console_terminal(bool skip_setup) {
if (!arg_system)
return;
/* Become a session leader if we aren't one yet. */
(void) setsid();
/* If we are init, we connect stdin/stdout/stderr to /dev/null and make sure we don't have a controlling
* tty. */
(void) release_terminal();
/* Reset the console, but only if this is really init and we are freshly booted */
if (getpid_cached() == 1 && !skip_setup)
(void) console_setup();
}
static bool early_skip_setup_check(int argc, char *argv[]) {
bool found_deserialize = false;
int i;
/* Determine if this is a reexecution or normal bootup. We do the full command line parsing much later, so
* let's just have a quick peek here. Note that if we have switched root, do all the special setup things
* anyway, even if in that case we also do deserialization. */
for (i = 1; i < argc; i++) {
if (streq(argv[i], "--switched-root"))
return false; /* If we switched root, don't skip the setup. */
else if (streq(argv[i], "--deserialize"))
found_deserialize = true;
}
return found_deserialize; /* When we are deserializing, then we are reexecuting, hence avoid the extensive setup */
}
int main(int argc, char *argv[]) {
dual_timestamp initrd_timestamp = DUAL_TIMESTAMP_NULL, userspace_timestamp = DUAL_TIMESTAMP_NULL, kernel_timestamp = DUAL_TIMESTAMP_NULL,
security_start_timestamp = DUAL_TIMESTAMP_NULL, security_finish_timestamp = DUAL_TIMESTAMP_NULL;
struct rlimit saved_rlimit_nofile = RLIMIT_MAKE_CONST(0),
saved_rlimit_memlock = RLIMIT_MAKE_CONST(RLIM_INFINITY); /* The original rlimits we passed
* in. Note we use different values
* for the two that indicate whether
* these fields are initialized! */
bool skip_setup, loaded_policy = false, queue_default_job = false, first_boot = false, reexecute = false;
char *switch_root_dir = NULL, *switch_root_init = NULL;
usec_t before_startup, after_startup;
static char systemd[] = "systemd";
char timespan[FORMAT_TIMESPAN_MAX];
const char *shutdown_verb = NULL, *error_message = NULL;
int r, retval = EXIT_FAILURE;
Manager *m = NULL;
FDSet *fds = NULL;
/* SysV compatibility: redirect init → telinit */
redirect_telinit(argc, argv);
/* Take timestamps early on */
dual_timestamp_from_monotonic(&kernel_timestamp, 0);
dual_timestamp_get(&userspace_timestamp);
/* Figure out whether we need to do initialize the system, or if we already did that because we are
* reexecuting */
skip_setup = early_skip_setup_check(argc, argv);
/* If we get started via the /sbin/init symlink then we are called 'init'. After a subsequent reexecution we
* are then called 'systemd'. That is confusing, hence let's call us systemd right-away. */
program_invocation_short_name = systemd;
(void) prctl(PR_SET_NAME, systemd);
/* Save the original command line */
save_argc_argv(argc, argv);
/* Make sure that if the user says "syslog" we actually log to the journal. */
log_set_upgrade_syslog_to_journal(true);
if (getpid_cached() == 1) {
/* When we run as PID 1 force system mode */
arg_system = true;
/* Disable the umask logic */
umask(0);
/* Make sure that at least initially we do not ever log to journald/syslogd, because it might not be
* activated yet (even though the log socket for it exists). */
log_set_prohibit_ipc(true);
/* Always reopen /dev/console when running as PID 1 or one of its pre-execve() children. This is
* important so that we never end up logging to any foreign stderr, for example if we have to log in a
* child process right before execve()'ing the actual binary, at a point in time where socket
* activation stderr/stdout area already set up. */
log_set_always_reopen_console(true);
if (detect_container() <= 0) {
/* Running outside of a container as PID 1 */
log_set_target(LOG_TARGET_KMSG);
log_open();
if (in_initrd())
initrd_timestamp = userspace_timestamp;
if (!skip_setup) {
r = mount_setup_early();
if (r < 0) {
error_message = "Failed to mount early API filesystems";
goto finish;
}
r = initialize_security(
&loaded_policy,
&security_start_timestamp,
&security_finish_timestamp,
&error_message);
if (r < 0)
goto finish;
}
if (mac_selinux_init() < 0) {
error_message = "Failed to initialize SELinux policy";
goto finish;
}
if (!skip_setup)
initialize_clock();
/* Set the default for later on, but don't actually open the logs like this for now. Note that
* if we are transitioning from the initrd there might still be journal fd open, and we
* shouldn't attempt opening that before we parsed /proc/cmdline which might redirect output
* elsewhere. */
log_set_target(LOG_TARGET_JOURNAL_OR_KMSG);
} else {
/* Running inside a container, as PID 1 */
log_set_target(LOG_TARGET_CONSOLE);
log_open();
/* For later on, see above... */
log_set_target(LOG_TARGET_JOURNAL);
/* clear the kernel timestamp,
* because we are in a container */
kernel_timestamp = DUAL_TIMESTAMP_NULL;
}
initialize_coredump(skip_setup);
r = fixup_environment();
if (r < 0) {
log_emergency_errno(r, "Failed to fix up PID 1 environment: %m");
error_message = "Failed to fix up PID1 environment";
goto finish;
}
} else {
/* Running as user instance */
arg_system = false;
log_set_target(LOG_TARGET_AUTO);
log_open();
/* clear the kernel timestamp,
* because we are not PID 1 */
kernel_timestamp = DUAL_TIMESTAMP_NULL;
}
if (arg_system) {
/* Try to figure out if we can use colors with the console. No need to do that for user instances since
* they never log into the console. */
log_show_color(colors_enabled());
r = make_null_stdio();
if (r < 0)
log_warning_errno(r, "Failed to redirect standard streams to /dev/null, ignoring: %m");
}
/* Mount /proc, /sys and friends, so that /proc/cmdline and
* /proc/$PID/fd is available. */
if (getpid_cached() == 1) {
/* Load the kernel modules early. */
if (!skip_setup)
kmod_setup();
r = mount_setup(loaded_policy);
if (r < 0) {
error_message = "Failed to mount API filesystems";
goto finish;
}
}
/* Reset all signal handlers. */
(void) reset_all_signal_handlers();
(void) ignore_signals(SIGNALS_IGNORE, -1);
r = load_configuration(argc, argv, &error_message);
if (r < 0)
goto finish;
r = safety_checks();
if (r < 0)
goto finish;
if (IN_SET(arg_action, ACTION_TEST, ACTION_HELP, ACTION_DUMP_CONFIGURATION_ITEMS, ACTION_DUMP_BUS_PROPERTIES))
(void) pager_open(arg_pager_flags);
if (arg_action != ACTION_RUN)
skip_setup = true;
if (arg_action == ACTION_HELP) {
retval = help() < 0 ? EXIT_FAILURE : EXIT_SUCCESS;
goto finish;
} else if (arg_action == ACTION_VERSION) {
retval = version();
goto finish;
} else if (arg_action == ACTION_DUMP_CONFIGURATION_ITEMS) {
unit_dump_config_items(stdout);
retval = EXIT_SUCCESS;
goto finish;
} else if (arg_action == ACTION_DUMP_BUS_PROPERTIES) {
dump_bus_properties(stdout);
retval = EXIT_SUCCESS;
goto finish;
}
assert_se(IN_SET(arg_action, ACTION_RUN, ACTION_TEST));
/* Move out of the way, so that we won't block unmounts */
assert_se(chdir("/") == 0);
if (arg_action == ACTION_RUN) {
/* A core pattern might have been specified via the cmdline. */
initialize_core_pattern(skip_setup);
/* Close logging fds, in order not to confuse collecting passed fds and terminal logic below */
log_close();
/* Remember open file descriptors for later deserialization */
r = collect_fds(&fds, &error_message);
if (r < 0)
goto finish;
/* Give up any control of the console, but make sure its initialized. */
setup_console_terminal(skip_setup);
/* Open the logging devices, if possible and necessary */
log_open();
}
log_execution_mode(&first_boot);
r = initialize_runtime(skip_setup,
&saved_rlimit_nofile,
&saved_rlimit_memlock,
&error_message);
if (r < 0)
goto finish;
r = manager_new(arg_system ? UNIT_FILE_SYSTEM : UNIT_FILE_USER,
arg_action == ACTION_TEST ? MANAGER_TEST_FULL : 0,
&m);
if (r < 0) {
log_emergency_errno(r, "Failed to allocate manager object: %m");
error_message = "Failed to allocate manager object";
goto finish;
}
m->timestamps[MANAGER_TIMESTAMP_KERNEL] = kernel_timestamp;
m->timestamps[MANAGER_TIMESTAMP_INITRD] = initrd_timestamp;
m->timestamps[MANAGER_TIMESTAMP_USERSPACE] = userspace_timestamp;
m->timestamps[manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_SECURITY_START)] = security_start_timestamp;
m->timestamps[manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_SECURITY_FINISH)] = security_finish_timestamp;
set_manager_defaults(m);
set_manager_settings(m);
manager_set_first_boot(m, first_boot);
/* Remember whether we should queue the default job */
queue_default_job = !arg_serialization || arg_switched_root;
before_startup = now(CLOCK_MONOTONIC);
r = manager_startup(m, arg_serialization, fds);
if (r < 0) {
error_message = "Failed to start up manager";
goto finish;
}
/* This will close all file descriptors that were opened, but not claimed by any unit. */
fds = fdset_free(fds);
arg_serialization = safe_fclose(arg_serialization);
if (queue_default_job) {
r = do_queue_default_job(m, &error_message);
if (r < 0)
goto finish;
}
after_startup = now(CLOCK_MONOTONIC);
log_full(arg_action == ACTION_TEST ? LOG_INFO : LOG_DEBUG,
"Loaded units and determined initial transaction in %s.",
format_timespan(timespan, sizeof(timespan), after_startup - before_startup, 100 * USEC_PER_MSEC));
if (arg_action == ACTION_TEST) {
test_summary(m);
retval = EXIT_SUCCESS;
goto finish;
}
(void) invoke_main_loop(m,
&reexecute,
&retval,
&shutdown_verb,
&fds,
&switch_root_dir,
&switch_root_init,
&error_message);
finish:
pager_close();
if (m) {
arg_shutdown_watchdog = m->shutdown_watchdog;
m = manager_free(m);
}
free_arguments();
mac_selinux_finish();
if (reexecute)
do_reexecute(argc, argv,
&saved_rlimit_nofile,
&saved_rlimit_memlock,
fds,
switch_root_dir,
switch_root_init,
&error_message); /* This only returns if reexecution failed */
arg_serialization = safe_fclose(arg_serialization);
fds = fdset_free(fds);
#if HAVE_VALGRIND_VALGRIND_H
/* If we are PID 1 and running under valgrind, then let's exit
* here explicitly. valgrind will only generate nice output on
* exit(), not on exec(), hence let's do the former not the
* latter here. */
if (getpid_cached() == 1 && RUNNING_ON_VALGRIND) {
/* Cleanup watchdog_device strings for valgrind. We need them
* in become_shutdown() so normally we cannot free them yet. */
watchdog_free_device();
arg_watchdog_device = mfree(arg_watchdog_device);
return retval;
}
#endif
#if HAS_FEATURE_ADDRESS_SANITIZER
__lsan_do_leak_check();
#endif
if (shutdown_verb) {
r = become_shutdown(shutdown_verb, retval);
log_error_errno(r, "Failed to execute shutdown binary, %s: %m", getpid_cached() == 1 ? "freezing" : "quitting");
error_message = "Failed to execute shutdown binary";
}
watchdog_free_device();
arg_watchdog_device = mfree(arg_watchdog_device);
if (getpid_cached() == 1) {
if (error_message)
manager_status_printf(NULL, STATUS_TYPE_EMERGENCY,
ANSI_HIGHLIGHT_RED "!!!!!!" ANSI_NORMAL,
"%s.", error_message);
freeze_or_exit_or_reboot();
}
return retval;
}