blob: fbf52e55f1a55d40dc31b8cf3f427df85606df49 [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1+ */
#include "alloc-util.h"
#include "cgroup-util.h"
#include "limits-util.h"
#include "memory-util.h"
#include "parse-util.h"
#include "process-util.h"
#include "procfs-util.h"
#include "string-util.h"
uint64_t physical_memory(void) {
_cleanup_free_ char *root = NULL, *value = NULL;
uint64_t mem, lim;
size_t ps;
long sc;
int r;
/* We return this as uint64_t in case we are running as 32bit process on a 64bit kernel with huge amounts of
* memory.
*
* In order to support containers nicely that have a configured memory limit we'll take the minimum of the
* physically reported amount of memory and the limit configured for the root cgroup, if there is any. */
sc = sysconf(_SC_PHYS_PAGES);
assert(sc > 0);
ps = page_size();
mem = (uint64_t) sc * (uint64_t) ps;
r = cg_get_root_path(&root);
if (r < 0) {
log_debug_errno(r, "Failed to determine root cgroup, ignoring cgroup memory limit: %m");
return mem;
}
r = cg_all_unified();
if (r < 0) {
log_debug_errno(r, "Failed to determine root unified mode, ignoring cgroup memory limit: %m");
return mem;
}
if (r > 0) {
r = cg_get_attribute("memory", root, "memory.max", &value);
if (r < 0) {
log_debug_errno(r, "Failed to read memory.max cgroup attribute, ignoring cgroup memory limit: %m");
return mem;
}
if (streq(value, "max"))
return mem;
} else {
r = cg_get_attribute("memory", root, "memory.limit_in_bytes", &value);
if (r < 0) {
log_debug_errno(r, "Failed to read memory.limit_in_bytes cgroup attribute, ignoring cgroup memory limit: %m");
return mem;
}
}
r = safe_atou64(value, &lim);
if (r < 0) {
log_debug_errno(r, "Failed to parse cgroup memory limit '%s', ignoring: %m", value);
return mem;
}
if (lim == UINT64_MAX)
return mem;
/* Make sure the limit is a multiple of our own page size */
lim /= ps;
lim *= ps;
return MIN(mem, lim);
}
uint64_t physical_memory_scale(uint64_t v, uint64_t max) {
uint64_t p, m, ps, r;
assert(max > 0);
/* Returns the physical memory size, multiplied by v divided by max. Returns UINT64_MAX on overflow. On success
* the result is a multiple of the page size (rounds down). */
ps = page_size();
assert(ps > 0);
p = physical_memory() / ps;
assert(p > 0);
m = p * v;
if (m / p != v)
return UINT64_MAX;
m /= max;
r = m * ps;
if (r / ps != m)
return UINT64_MAX;
return r;
}
uint64_t system_tasks_max(void) {
uint64_t a = TASKS_MAX, b = TASKS_MAX;
_cleanup_free_ char *root = NULL;
int r;
/* Determine the maximum number of tasks that may run on this system. We check three sources to determine this
* limit:
*
* a) the maximum tasks value the kernel allows on this architecture
* b) the cgroups pids_max attribute for the system
* c) the kernel's configured maximum PID value
*
* And then pick the smallest of the three */
r = procfs_tasks_get_limit(&a);
if (r < 0)
log_debug_errno(r, "Failed to read maximum number of tasks from /proc, ignoring: %m");
r = cg_get_root_path(&root);
if (r < 0)
log_debug_errno(r, "Failed to determine cgroup root path, ignoring: %m");
else {
_cleanup_free_ char *value = NULL;
r = cg_get_attribute("pids", root, "pids.max", &value);
if (r < 0)
log_debug_errno(r, "Failed to read pids.max attribute of cgroup root, ignoring: %m");
else if (!streq(value, "max")) {
r = safe_atou64(value, &b);
if (r < 0)
log_debug_errno(r, "Failed to parse pids.max attribute of cgroup root, ignoring: %m");
}
}
return MIN3(TASKS_MAX,
a <= 0 ? TASKS_MAX : a,
b <= 0 ? TASKS_MAX : b);
}
uint64_t system_tasks_max_scale(uint64_t v, uint64_t max) {
uint64_t t, m;
assert(max > 0);
/* Multiply the system's task value by the fraction v/max. Hence, if max==100 this calculates percentages
* relative to the system's maximum number of tasks. Returns UINT64_MAX on overflow. */
t = system_tasks_max();
assert(t > 0);
m = t * v;
if (m / t != v) /* overflow? */
return UINT64_MAX;
return m / max;
}