| /* SPDX-License-Identifier: LGPL-2.1+ */ |
| |
| #include <alloca.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <sched.h> |
| #include <signal.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/mman.h> |
| #include <sys/prctl.h> |
| #include <sys/statfs.h> |
| #include <sys/sysmacros.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include "alloc-util.h" |
| #include "btrfs-util.h" |
| #include "build.h" |
| #include "cgroup-util.h" |
| #include "def.h" |
| #include "device-nodes.h" |
| #include "dirent-util.h" |
| #include "env-file.h" |
| #include "env-util.h" |
| #include "fd-util.h" |
| #include "fileio.h" |
| #include "format-util.h" |
| #include "hashmap.h" |
| #include "hostname-util.h" |
| #include "log.h" |
| #include "macro.h" |
| #include "missing.h" |
| #include "parse-util.h" |
| #include "path-util.h" |
| #include "process-util.h" |
| #include "procfs-util.h" |
| #include "set.h" |
| #include "signal-util.h" |
| #include "stat-util.h" |
| #include "string-util.h" |
| #include "strv.h" |
| #include "time-util.h" |
| #include "umask-util.h" |
| #include "user-util.h" |
| #include "util.h" |
| #include "virt.h" |
| |
| int saved_argc = 0; |
| char **saved_argv = NULL; |
| static int saved_in_initrd = -1; |
| |
| size_t page_size(void) { |
| static thread_local size_t pgsz = 0; |
| long r; |
| |
| if (_likely_(pgsz > 0)) |
| return pgsz; |
| |
| r = sysconf(_SC_PAGESIZE); |
| assert(r > 0); |
| |
| pgsz = (size_t) r; |
| return pgsz; |
| } |
| |
| bool plymouth_running(void) { |
| return access("/run/plymouth/pid", F_OK) >= 0; |
| } |
| |
| bool display_is_local(const char *display) { |
| assert(display); |
| |
| return |
| display[0] == ':' && |
| display[1] >= '0' && |
| display[1] <= '9'; |
| } |
| |
| bool kexec_loaded(void) { |
| _cleanup_free_ char *s = NULL; |
| |
| if (read_one_line_file("/sys/kernel/kexec_loaded", &s) < 0) |
| return false; |
| |
| return s[0] == '1'; |
| } |
| |
| int prot_from_flags(int flags) { |
| |
| switch (flags & O_ACCMODE) { |
| |
| case O_RDONLY: |
| return PROT_READ; |
| |
| case O_WRONLY: |
| return PROT_WRITE; |
| |
| case O_RDWR: |
| return PROT_READ|PROT_WRITE; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| bool in_initrd(void) { |
| struct statfs s; |
| int r; |
| |
| if (saved_in_initrd >= 0) |
| return saved_in_initrd; |
| |
| /* We make two checks here: |
| * |
| * 1. the flag file /etc/initrd-release must exist |
| * 2. the root file system must be a memory file system |
| * |
| * The second check is extra paranoia, since misdetecting an |
| * initrd can have bad consequences due the initrd |
| * emptying when transititioning to the main systemd. |
| */ |
| |
| r = getenv_bool_secure("SYSTEMD_IN_INITRD"); |
| if (r < 0 && r != -ENXIO) |
| log_debug_errno(r, "Failed to parse $SYSTEMD_IN_INITRD, ignoring: %m"); |
| |
| if (r >= 0) |
| saved_in_initrd = r > 0; |
| else |
| saved_in_initrd = access("/etc/initrd-release", F_OK) >= 0 && |
| statfs("/", &s) >= 0 && |
| is_temporary_fs(&s); |
| |
| return saved_in_initrd; |
| } |
| |
| void in_initrd_force(bool value) { |
| saved_in_initrd = value; |
| } |
| |
| /* hey glibc, APIs with callbacks without a user pointer are so useless */ |
| void *xbsearch_r(const void *key, const void *base, size_t nmemb, size_t size, |
| __compar_d_fn_t compar, void *arg) { |
| size_t l, u, idx; |
| const void *p; |
| int comparison; |
| |
| assert(!size_multiply_overflow(nmemb, size)); |
| |
| l = 0; |
| u = nmemb; |
| while (l < u) { |
| idx = (l + u) / 2; |
| p = (const uint8_t*) base + idx * size; |
| comparison = compar(key, p, arg); |
| if (comparison < 0) |
| u = idx; |
| else if (comparison > 0) |
| l = idx + 1; |
| else |
| return (void *)p; |
| } |
| return NULL; |
| } |
| |
| bool memeqzero(const void *data, size_t length) { |
| /* Does the buffer consist entirely of NULs? |
| * Copied from https://github.com/systemd/casync/, copied in turn from |
| * https://github.com/rustyrussell/ccan/blob/master/ccan/mem/mem.c#L92, |
| * which is licensed CC-0. |
| */ |
| |
| const uint8_t *p = data; |
| size_t i; |
| |
| /* Check first 16 bytes manually */ |
| for (i = 0; i < 16; i++, length--) { |
| if (length == 0) |
| return true; |
| if (p[i]) |
| return false; |
| } |
| |
| /* Now we know first 16 bytes are NUL, memcmp with self. */ |
| return memcmp(data, p + i, length) == 0; |
| } |
| |
| int on_ac_power(void) { |
| bool found_offline = false, found_online = false; |
| _cleanup_closedir_ DIR *d = NULL; |
| struct dirent *de; |
| |
| d = opendir("/sys/class/power_supply"); |
| if (!d) |
| return errno == ENOENT ? true : -errno; |
| |
| FOREACH_DIRENT(de, d, return -errno) { |
| _cleanup_close_ int fd = -1, device = -1; |
| char contents[6]; |
| ssize_t n; |
| |
| device = openat(dirfd(d), de->d_name, O_DIRECTORY|O_RDONLY|O_CLOEXEC|O_NOCTTY); |
| if (device < 0) { |
| if (IN_SET(errno, ENOENT, ENOTDIR)) |
| continue; |
| |
| return -errno; |
| } |
| |
| fd = openat(device, "type", O_RDONLY|O_CLOEXEC|O_NOCTTY); |
| if (fd < 0) { |
| if (errno == ENOENT) |
| continue; |
| |
| return -errno; |
| } |
| |
| n = read(fd, contents, sizeof(contents)); |
| if (n < 0) |
| return -errno; |
| |
| if (n != 6 || memcmp(contents, "Mains\n", 6)) |
| continue; |
| |
| safe_close(fd); |
| fd = openat(device, "online", O_RDONLY|O_CLOEXEC|O_NOCTTY); |
| if (fd < 0) { |
| if (errno == ENOENT) |
| continue; |
| |
| return -errno; |
| } |
| |
| n = read(fd, contents, sizeof(contents)); |
| if (n < 0) |
| return -errno; |
| |
| if (n != 2 || contents[1] != '\n') |
| return -EIO; |
| |
| if (contents[0] == '1') { |
| found_online = true; |
| break; |
| } else if (contents[0] == '0') |
| found_offline = true; |
| else |
| return -EIO; |
| } |
| |
| return found_online || !found_offline; |
| } |
| |
| int container_get_leader(const char *machine, pid_t *pid) { |
| _cleanup_free_ char *s = NULL, *class = NULL; |
| const char *p; |
| pid_t leader; |
| int r; |
| |
| assert(machine); |
| assert(pid); |
| |
| if (streq(machine, ".host")) { |
| *pid = 1; |
| return 0; |
| } |
| |
| if (!machine_name_is_valid(machine)) |
| return -EINVAL; |
| |
| p = strjoina("/run/systemd/machines/", machine); |
| r = parse_env_file(NULL, p, |
| "LEADER", &s, |
| "CLASS", &class); |
| if (r == -ENOENT) |
| return -EHOSTDOWN; |
| if (r < 0) |
| return r; |
| if (!s) |
| return -EIO; |
| |
| if (!streq_ptr(class, "container")) |
| return -EIO; |
| |
| r = parse_pid(s, &leader); |
| if (r < 0) |
| return r; |
| if (leader <= 1) |
| return -EIO; |
| |
| *pid = leader; |
| return 0; |
| } |
| |
| int namespace_open(pid_t pid, int *pidns_fd, int *mntns_fd, int *netns_fd, int *userns_fd, int *root_fd) { |
| _cleanup_close_ int pidnsfd = -1, mntnsfd = -1, netnsfd = -1, usernsfd = -1; |
| int rfd = -1; |
| |
| assert(pid >= 0); |
| |
| if (mntns_fd) { |
| const char *mntns; |
| |
| mntns = procfs_file_alloca(pid, "ns/mnt"); |
| mntnsfd = open(mntns, O_RDONLY|O_NOCTTY|O_CLOEXEC); |
| if (mntnsfd < 0) |
| return -errno; |
| } |
| |
| if (pidns_fd) { |
| const char *pidns; |
| |
| pidns = procfs_file_alloca(pid, "ns/pid"); |
| pidnsfd = open(pidns, O_RDONLY|O_NOCTTY|O_CLOEXEC); |
| if (pidnsfd < 0) |
| return -errno; |
| } |
| |
| if (netns_fd) { |
| const char *netns; |
| |
| netns = procfs_file_alloca(pid, "ns/net"); |
| netnsfd = open(netns, O_RDONLY|O_NOCTTY|O_CLOEXEC); |
| if (netnsfd < 0) |
| return -errno; |
| } |
| |
| if (userns_fd) { |
| const char *userns; |
| |
| userns = procfs_file_alloca(pid, "ns/user"); |
| usernsfd = open(userns, O_RDONLY|O_NOCTTY|O_CLOEXEC); |
| if (usernsfd < 0 && errno != ENOENT) |
| return -errno; |
| } |
| |
| if (root_fd) { |
| const char *root; |
| |
| root = procfs_file_alloca(pid, "root"); |
| rfd = open(root, O_RDONLY|O_NOCTTY|O_CLOEXEC|O_DIRECTORY); |
| if (rfd < 0) |
| return -errno; |
| } |
| |
| if (pidns_fd) |
| *pidns_fd = pidnsfd; |
| |
| if (mntns_fd) |
| *mntns_fd = mntnsfd; |
| |
| if (netns_fd) |
| *netns_fd = netnsfd; |
| |
| if (userns_fd) |
| *userns_fd = usernsfd; |
| |
| if (root_fd) |
| *root_fd = rfd; |
| |
| pidnsfd = mntnsfd = netnsfd = usernsfd = -1; |
| |
| return 0; |
| } |
| |
| int namespace_enter(int pidns_fd, int mntns_fd, int netns_fd, int userns_fd, int root_fd) { |
| if (userns_fd >= 0) { |
| /* Can't setns to your own userns, since then you could |
| * escalate from non-root to root in your own namespace, so |
| * check if namespaces equal before attempting to enter. */ |
| _cleanup_free_ char *userns_fd_path = NULL; |
| int r; |
| if (asprintf(&userns_fd_path, "/proc/self/fd/%d", userns_fd) < 0) |
| return -ENOMEM; |
| |
| r = files_same(userns_fd_path, "/proc/self/ns/user", 0); |
| if (r < 0) |
| return r; |
| if (r) |
| userns_fd = -1; |
| } |
| |
| if (pidns_fd >= 0) |
| if (setns(pidns_fd, CLONE_NEWPID) < 0) |
| return -errno; |
| |
| if (mntns_fd >= 0) |
| if (setns(mntns_fd, CLONE_NEWNS) < 0) |
| return -errno; |
| |
| if (netns_fd >= 0) |
| if (setns(netns_fd, CLONE_NEWNET) < 0) |
| return -errno; |
| |
| if (userns_fd >= 0) |
| if (setns(userns_fd, CLONE_NEWUSER) < 0) |
| return -errno; |
| |
| if (root_fd >= 0) { |
| if (fchdir(root_fd) < 0) |
| return -errno; |
| |
| if (chroot(".") < 0) |
| return -errno; |
| } |
| |
| return reset_uid_gid(); |
| } |
| |
| uint64_t physical_memory(void) { |
| _cleanup_free_ char *root = NULL, *value = NULL; |
| uint64_t mem, lim; |
| size_t ps; |
| long sc; |
| int r; |
| |
| /* We return this as uint64_t in case we are running as 32bit process on a 64bit kernel with huge amounts of |
| * memory. |
| * |
| * In order to support containers nicely that have a configured memory limit we'll take the minimum of the |
| * physically reported amount of memory and the limit configured for the root cgroup, if there is any. */ |
| |
| sc = sysconf(_SC_PHYS_PAGES); |
| assert(sc > 0); |
| |
| ps = page_size(); |
| mem = (uint64_t) sc * (uint64_t) ps; |
| |
| r = cg_get_root_path(&root); |
| if (r < 0) { |
| log_debug_errno(r, "Failed to determine root cgroup, ignoring cgroup memory limit: %m"); |
| return mem; |
| } |
| |
| r = cg_all_unified(); |
| if (r < 0) { |
| log_debug_errno(r, "Failed to determine root unified mode, ignoring cgroup memory limit: %m"); |
| return mem; |
| } |
| if (r > 0) { |
| r = cg_get_attribute("memory", root, "memory.max", &value); |
| if (r < 0) { |
| log_debug_errno(r, "Failed to read memory.max cgroup attribute, ignoring cgroup memory limit: %m"); |
| return mem; |
| } |
| |
| if (streq(value, "max")) |
| return mem; |
| } else { |
| r = cg_get_attribute("memory", root, "memory.limit_in_bytes", &value); |
| if (r < 0) { |
| log_debug_errno(r, "Failed to read memory.limit_in_bytes cgroup attribute, ignoring cgroup memory limit: %m"); |
| return mem; |
| } |
| } |
| |
| r = safe_atou64(value, &lim); |
| if (r < 0) { |
| log_debug_errno(r, "Failed to parse cgroup memory limit '%s', ignoring: %m", value); |
| return mem; |
| } |
| if (lim == UINT64_MAX) |
| return mem; |
| |
| /* Make sure the limit is a multiple of our own page size */ |
| lim /= ps; |
| lim *= ps; |
| |
| return MIN(mem, lim); |
| } |
| |
| uint64_t physical_memory_scale(uint64_t v, uint64_t max) { |
| uint64_t p, m, ps, r; |
| |
| assert(max > 0); |
| |
| /* Returns the physical memory size, multiplied by v divided by max. Returns UINT64_MAX on overflow. On success |
| * the result is a multiple of the page size (rounds down). */ |
| |
| ps = page_size(); |
| assert(ps > 0); |
| |
| p = physical_memory() / ps; |
| assert(p > 0); |
| |
| m = p * v; |
| if (m / p != v) |
| return UINT64_MAX; |
| |
| m /= max; |
| |
| r = m * ps; |
| if (r / ps != m) |
| return UINT64_MAX; |
| |
| return r; |
| } |
| |
| uint64_t system_tasks_max(void) { |
| |
| uint64_t a = TASKS_MAX, b = TASKS_MAX; |
| _cleanup_free_ char *root = NULL; |
| int r; |
| |
| /* Determine the maximum number of tasks that may run on this system. We check three sources to determine this |
| * limit: |
| * |
| * a) the maximum tasks value the kernel allows on this architecture |
| * b) the cgroups pids_max attribute for the system |
| * c) the kernel's configured maximum PID value |
| * |
| * And then pick the smallest of the three */ |
| |
| r = procfs_tasks_get_limit(&a); |
| if (r < 0) |
| log_debug_errno(r, "Failed to read maximum number of tasks from /proc, ignoring: %m"); |
| |
| r = cg_get_root_path(&root); |
| if (r < 0) |
| log_debug_errno(r, "Failed to determine cgroup root path, ignoring: %m"); |
| else { |
| _cleanup_free_ char *value = NULL; |
| |
| r = cg_get_attribute("pids", root, "pids.max", &value); |
| if (r < 0) |
| log_debug_errno(r, "Failed to read pids.max attribute of cgroup root, ignoring: %m"); |
| else if (!streq(value, "max")) { |
| r = safe_atou64(value, &b); |
| if (r < 0) |
| log_debug_errno(r, "Failed to parse pids.max attribute of cgroup root, ignoring: %m"); |
| } |
| } |
| |
| return MIN3(TASKS_MAX, |
| a <= 0 ? TASKS_MAX : a, |
| b <= 0 ? TASKS_MAX : b); |
| } |
| |
| uint64_t system_tasks_max_scale(uint64_t v, uint64_t max) { |
| uint64_t t, m; |
| |
| assert(max > 0); |
| |
| /* Multiply the system's task value by the fraction v/max. Hence, if max==100 this calculates percentages |
| * relative to the system's maximum number of tasks. Returns UINT64_MAX on overflow. */ |
| |
| t = system_tasks_max(); |
| assert(t > 0); |
| |
| m = t * v; |
| if (m / t != v) /* overflow? */ |
| return UINT64_MAX; |
| |
| return m / max; |
| } |
| |
| int version(void) { |
| puts("systemd " STRINGIFY(PROJECT_VERSION) " (" GIT_VERSION ")\n" |
| SYSTEMD_FEATURES); |
| return 0; |
| } |
| |
| /* This is a direct translation of str_verscmp from boot.c */ |
| static bool is_digit(int c) { |
| return c >= '0' && c <= '9'; |
| } |
| |
| static int c_order(int c) { |
| if (c == 0 || is_digit(c)) |
| return 0; |
| |
| if ((c >= 'a') && (c <= 'z')) |
| return c; |
| |
| return c + 0x10000; |
| } |
| |
| int str_verscmp(const char *s1, const char *s2) { |
| const char *os1, *os2; |
| |
| assert(s1); |
| assert(s2); |
| |
| os1 = s1; |
| os2 = s2; |
| |
| while (*s1 || *s2) { |
| int first; |
| |
| while ((*s1 && !is_digit(*s1)) || (*s2 && !is_digit(*s2))) { |
| int order; |
| |
| order = c_order(*s1) - c_order(*s2); |
| if (order != 0) |
| return order; |
| s1++; |
| s2++; |
| } |
| |
| while (*s1 == '0') |
| s1++; |
| while (*s2 == '0') |
| s2++; |
| |
| first = 0; |
| while (is_digit(*s1) && is_digit(*s2)) { |
| if (first == 0) |
| first = *s1 - *s2; |
| s1++; |
| s2++; |
| } |
| |
| if (is_digit(*s1)) |
| return 1; |
| if (is_digit(*s2)) |
| return -1; |
| |
| if (first != 0) |
| return first; |
| } |
| |
| return strcmp(os1, os2); |
| } |
| |
| /* Turn off core dumps but only if we're running outside of a container. */ |
| void disable_coredumps(void) { |
| int r; |
| |
| if (detect_container() > 0) |
| return; |
| |
| r = write_string_file("/proc/sys/kernel/core_pattern", "|/bin/false", WRITE_STRING_FILE_DISABLE_BUFFER); |
| if (r < 0) |
| log_debug_errno(r, "Failed to turn off coredumps, ignoring: %m"); |
| } |