| /* SPDX-License-Identifier: LGPL-2.1+ */ |
| |
| #include <dirent.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <linux/magic.h> |
| #include <sched.h> |
| #include <sys/stat.h> |
| #include <sys/statvfs.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include "alloc-util.h" |
| #include "dirent-util.h" |
| #include "fd-util.h" |
| #include "fs-util.h" |
| #include "macro.h" |
| #include "missing.h" |
| #include "parse-util.h" |
| #include "stat-util.h" |
| #include "string-util.h" |
| |
| int is_symlink(const char *path) { |
| struct stat info; |
| |
| assert(path); |
| |
| if (lstat(path, &info) < 0) |
| return -errno; |
| |
| return !!S_ISLNK(info.st_mode); |
| } |
| |
| int is_dir(const char* path, bool follow) { |
| struct stat st; |
| int r; |
| |
| assert(path); |
| |
| if (follow) |
| r = stat(path, &st); |
| else |
| r = lstat(path, &st); |
| if (r < 0) |
| return -errno; |
| |
| return !!S_ISDIR(st.st_mode); |
| } |
| |
| int is_dir_fd(int fd) { |
| struct stat st; |
| |
| if (fstat(fd, &st) < 0) |
| return -errno; |
| |
| return !!S_ISDIR(st.st_mode); |
| } |
| |
| int is_device_node(const char *path) { |
| struct stat info; |
| |
| assert(path); |
| |
| if (lstat(path, &info) < 0) |
| return -errno; |
| |
| return !!(S_ISBLK(info.st_mode) || S_ISCHR(info.st_mode)); |
| } |
| |
| int dir_is_empty_at(int dir_fd, const char *path) { |
| _cleanup_close_ int fd = -1; |
| _cleanup_closedir_ DIR *d = NULL; |
| struct dirent *de; |
| |
| if (path) |
| fd = openat(dir_fd, path, O_RDONLY|O_DIRECTORY|O_CLOEXEC); |
| else |
| fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); |
| if (fd < 0) |
| return -errno; |
| |
| d = fdopendir(fd); |
| if (!d) |
| return -errno; |
| fd = -1; |
| |
| FOREACH_DIRENT(de, d, return -errno) |
| return 0; |
| |
| return 1; |
| } |
| |
| bool null_or_empty(struct stat *st) { |
| assert(st); |
| |
| if (S_ISREG(st->st_mode) && st->st_size <= 0) |
| return true; |
| |
| /* We don't want to hardcode the major/minor of /dev/null, |
| * hence we do a simpler "is this a device node?" check. */ |
| |
| if (S_ISCHR(st->st_mode) || S_ISBLK(st->st_mode)) |
| return true; |
| |
| return false; |
| } |
| |
| int null_or_empty_path(const char *fn) { |
| struct stat st; |
| |
| assert(fn); |
| |
| if (stat(fn, &st) < 0) |
| return -errno; |
| |
| return null_or_empty(&st); |
| } |
| |
| int null_or_empty_fd(int fd) { |
| struct stat st; |
| |
| assert(fd >= 0); |
| |
| if (fstat(fd, &st) < 0) |
| return -errno; |
| |
| return null_or_empty(&st); |
| } |
| |
| int path_is_read_only_fs(const char *path) { |
| struct statvfs st; |
| |
| assert(path); |
| |
| if (statvfs(path, &st) < 0) |
| return -errno; |
| |
| if (st.f_flag & ST_RDONLY) |
| return true; |
| |
| /* On NFS, statvfs() might not reflect whether we can actually |
| * write to the remote share. Let's try again with |
| * access(W_OK) which is more reliable, at least sometimes. */ |
| if (access(path, W_OK) < 0 && errno == EROFS) |
| return true; |
| |
| return false; |
| } |
| |
| int files_same(const char *filea, const char *fileb, int flags) { |
| struct stat a, b; |
| |
| assert(filea); |
| assert(fileb); |
| |
| if (fstatat(AT_FDCWD, filea, &a, flags) < 0) |
| return -errno; |
| |
| if (fstatat(AT_FDCWD, fileb, &b, flags) < 0) |
| return -errno; |
| |
| return a.st_dev == b.st_dev && |
| a.st_ino == b.st_ino; |
| } |
| |
| bool is_fs_type(const struct statfs *s, statfs_f_type_t magic_value) { |
| assert(s); |
| assert_cc(sizeof(statfs_f_type_t) >= sizeof(s->f_type)); |
| |
| return F_TYPE_EQUAL(s->f_type, magic_value); |
| } |
| |
| int fd_is_fs_type(int fd, statfs_f_type_t magic_value) { |
| struct statfs s; |
| |
| if (fstatfs(fd, &s) < 0) |
| return -errno; |
| |
| return is_fs_type(&s, magic_value); |
| } |
| |
| int path_is_fs_type(const char *path, statfs_f_type_t magic_value) { |
| _cleanup_close_ int fd = -1; |
| |
| fd = open(path, O_RDONLY|O_CLOEXEC|O_NOCTTY|O_PATH); |
| if (fd < 0) |
| return -errno; |
| |
| return fd_is_fs_type(fd, magic_value); |
| } |
| |
| bool is_temporary_fs(const struct statfs *s) { |
| return is_fs_type(s, TMPFS_MAGIC) || |
| is_fs_type(s, RAMFS_MAGIC); |
| } |
| |
| bool is_network_fs(const struct statfs *s) { |
| return is_fs_type(s, CIFS_MAGIC_NUMBER) || |
| is_fs_type(s, CODA_SUPER_MAGIC) || |
| is_fs_type(s, NCP_SUPER_MAGIC) || |
| is_fs_type(s, NFS_SUPER_MAGIC) || |
| is_fs_type(s, SMB_SUPER_MAGIC) || |
| is_fs_type(s, V9FS_MAGIC) || |
| is_fs_type(s, AFS_SUPER_MAGIC) || |
| is_fs_type(s, OCFS2_SUPER_MAGIC); |
| } |
| |
| int fd_is_temporary_fs(int fd) { |
| struct statfs s; |
| |
| if (fstatfs(fd, &s) < 0) |
| return -errno; |
| |
| return is_temporary_fs(&s); |
| } |
| |
| int fd_is_network_fs(int fd) { |
| struct statfs s; |
| |
| if (fstatfs(fd, &s) < 0) |
| return -errno; |
| |
| return is_network_fs(&s); |
| } |
| |
| int fd_is_network_ns(int fd) { |
| struct statfs s; |
| int r; |
| |
| /* Checks whether the specified file descriptor refers to a network namespace. On old kernels there's no nice |
| * way to detect that, hence on those we'll return a recognizable error (EUCLEAN), so that callers can handle |
| * this somewhat nicely. |
| * |
| * This function returns > 0 if the fd definitely refers to a network namespace, 0 if it definitely does not |
| * refer to a network namespace, -EUCLEAN if we can't determine, and other negative error codes on error. */ |
| |
| if (fstatfs(fd, &s) < 0) |
| return -errno; |
| |
| if (!is_fs_type(&s, NSFS_MAGIC)) { |
| /* On really old kernels, there was no "nsfs", and network namespace sockets belonged to procfs |
| * instead. Handle that in a somewhat smart way. */ |
| |
| if (is_fs_type(&s, PROC_SUPER_MAGIC)) { |
| struct statfs t; |
| |
| /* OK, so it is procfs. Let's see if our own network namespace is procfs, too. If so, then the |
| * passed fd might refer to a network namespace, but we can't know for sure. In that case, |
| * return a recognizable error. */ |
| |
| if (statfs("/proc/self/ns/net", &t) < 0) |
| return -errno; |
| |
| if (s.f_type == t.f_type) |
| return -EUCLEAN; /* It's possible, we simply don't know */ |
| } |
| |
| return 0; /* No! */ |
| } |
| |
| r = ioctl(fd, NS_GET_NSTYPE); |
| if (r < 0) { |
| if (errno == ENOTTY) /* Old kernels didn't know this ioctl, let's also return a recognizable error in that case */ |
| return -EUCLEAN; |
| |
| return -errno; |
| } |
| |
| return r == CLONE_NEWNET; |
| } |
| |
| int path_is_temporary_fs(const char *path) { |
| _cleanup_close_ int fd = -1; |
| |
| fd = open(path, O_RDONLY|O_CLOEXEC|O_NOCTTY|O_PATH); |
| if (fd < 0) |
| return -errno; |
| |
| return fd_is_temporary_fs(fd); |
| } |
| |
| int stat_verify_regular(const struct stat *st) { |
| assert(st); |
| |
| /* Checks whether the specified stat() structure refers to a regular file. If not returns an appropriate error |
| * code. */ |
| |
| if (S_ISDIR(st->st_mode)) |
| return -EISDIR; |
| |
| if (S_ISLNK(st->st_mode)) |
| return -ELOOP; |
| |
| if (!S_ISREG(st->st_mode)) |
| return -EBADFD; |
| |
| return 0; |
| } |
| |
| int fd_verify_regular(int fd) { |
| struct stat st; |
| |
| assert(fd >= 0); |
| |
| if (fstat(fd, &st) < 0) |
| return -errno; |
| |
| return stat_verify_regular(&st); |
| } |
| |
| int stat_verify_directory(const struct stat *st) { |
| assert(st); |
| |
| if (S_ISLNK(st->st_mode)) |
| return -ELOOP; |
| |
| if (!S_ISDIR(st->st_mode)) |
| return -ENOTDIR; |
| |
| return 0; |
| } |
| |
| int fd_verify_directory(int fd) { |
| struct stat st; |
| |
| assert(fd >= 0); |
| |
| if (fstat(fd, &st) < 0) |
| return -errno; |
| |
| return stat_verify_directory(&st); |
| } |
| |
| int device_path_make_major_minor(mode_t mode, dev_t devno, char **ret) { |
| const char *t; |
| |
| /* Generates the /dev/{char|block}/MAJOR:MINOR path for a dev_t */ |
| |
| if (S_ISCHR(mode)) |
| t = "char"; |
| else if (S_ISBLK(mode)) |
| t = "block"; |
| else |
| return -ENODEV; |
| |
| if (asprintf(ret, "/dev/%s/%u:%u", t, major(devno), minor(devno)) < 0) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| int device_path_make_canonical(mode_t mode, dev_t devno, char **ret) { |
| _cleanup_free_ char *p = NULL; |
| int r; |
| |
| /* Finds the canonical path for a device, i.e. resolves the /dev/{char|block}/MAJOR:MINOR path to the end. */ |
| |
| assert(ret); |
| |
| if (major(devno) == 0 && minor(devno) == 0) { |
| char *s; |
| |
| /* A special hack to make sure our 'inaccessible' device nodes work. They won't have symlinks in |
| * /dev/block/ and /dev/char/, hence we handle them specially here. */ |
| |
| if (S_ISCHR(mode)) |
| s = strdup("/run/systemd/inaccessible/chr"); |
| else if (S_ISBLK(mode)) |
| s = strdup("/run/systemd/inaccessible/blk"); |
| else |
| return -ENODEV; |
| |
| if (!s) |
| return -ENOMEM; |
| |
| *ret = s; |
| return 0; |
| } |
| |
| r = device_path_make_major_minor(mode, devno, &p); |
| if (r < 0) |
| return r; |
| |
| return chase_symlinks(p, NULL, 0, ret); |
| } |
| |
| int device_path_parse_major_minor(const char *path, mode_t *ret_mode, dev_t *ret_devno) { |
| mode_t mode; |
| dev_t devno; |
| int r; |
| |
| /* Tries to extract the major/minor directly from the device path if we can. Handles /dev/block/ and /dev/char/ |
| * paths, as well out synthetic inaccessible device nodes. Never goes to disk. Returns -ENODEV if the device |
| * path cannot be parsed like this. */ |
| |
| if (path_equal(path, "/run/systemd/inaccessible/chr")) { |
| mode = S_IFCHR; |
| devno = makedev(0, 0); |
| } else if (path_equal(path, "/run/systemd/inaccessible/blk")) { |
| mode = S_IFBLK; |
| devno = makedev(0, 0); |
| } else { |
| const char *w; |
| |
| w = path_startswith(path, "/dev/block/"); |
| if (w) |
| mode = S_IFBLK; |
| else { |
| w = path_startswith(path, "/dev/char/"); |
| if (!w) |
| return -ENODEV; |
| |
| mode = S_IFCHR; |
| } |
| |
| r = parse_dev(w, &devno); |
| if (r < 0) |
| return r; |
| } |
| |
| if (ret_mode) |
| *ret_mode = mode; |
| if (ret_devno) |
| *ret_devno = devno; |
| |
| return 0; |
| } |