| /* SPDX-License-Identifier: LGPL-2.1+ */ |
| |
| #include "siphash24.h" |
| #include "util.h" |
| |
| #define ITERATIONS 10000000ULL |
| |
| static void do_test(const uint8_t *in, size_t len, const uint8_t *key) { |
| struct siphash state = {}; |
| uint64_t out; |
| unsigned i, j; |
| |
| out = siphash24(in, len, key); |
| assert_se(out == 0xa129ca6149be45e5); |
| |
| /* verify the internal state as given in the above paper */ |
| siphash24_init(&state, key); |
| assert_se(state.v0 == 0x7469686173716475); |
| assert_se(state.v1 == 0x6b617f6d656e6665); |
| assert_se(state.v2 == 0x6b7f62616d677361); |
| assert_se(state.v3 == 0x7b6b696e727e6c7b); |
| siphash24_compress(in, len, &state); |
| assert_se(state.v0 == 0x4a017198de0a59e0); |
| assert_se(state.v1 == 0x0d52f6f62a4f59a4); |
| assert_se(state.v2 == 0x634cb3577b01fd3d); |
| assert_se(state.v3 == 0xa5224d6f55c7d9c8); |
| out = siphash24_finalize(&state); |
| assert_se(out == 0xa129ca6149be45e5); |
| assert_se(state.v0 == 0xf6bcd53893fecff1); |
| assert_se(state.v1 == 0x54b9964c7ea0d937); |
| assert_se(state.v2 == 0x1b38329c099bb55a); |
| assert_se(state.v3 == 0x1814bb89ad7be679); |
| |
| /* verify that decomposing the input in three chunks gives the |
| same result */ |
| for (i = 0; i < len; i++) { |
| for (j = i; j < len; j++) { |
| siphash24_init(&state, key); |
| siphash24_compress(in, i, &state); |
| siphash24_compress(&in[i], j - i, &state); |
| siphash24_compress(&in[j], len - j, &state); |
| out = siphash24_finalize(&state); |
| assert_se(out == 0xa129ca6149be45e5); |
| } |
| } |
| } |
| |
| static void test_short_hashes(void) { |
| const uint8_t one[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, |
| 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16 }; |
| const uint8_t key[16] = { 0x22, 0x24, 0x41, 0x22, 0x55, 0x77, 0x88, 0x07, |
| 0x23, 0x09, 0x23, 0x14, 0x0c, 0x33, 0x0e, 0x0f}; |
| uint8_t two[sizeof one] = {}; |
| |
| struct siphash state1 = {}, state2 = {}; |
| unsigned i, j; |
| |
| siphash24_init(&state1, key); |
| siphash24_init(&state2, key); |
| |
| /* hashing 1, 2, 3, 4, 5, ..., 16 bytes, with the byte after the buffer different */ |
| for (i = 1; i <= sizeof one; i++) { |
| siphash24_compress(one, i, &state1); |
| |
| two[i-1] = one[i-1]; |
| siphash24_compress(two, i, &state2); |
| |
| assert_se(memcmp(&state1, &state2, sizeof state1) == 0); |
| } |
| |
| /* hashing n and 1, n and 2, n and 3, ..., n-1 and 1, n-2 and 2, ... */ |
| for (i = sizeof one; i > 0; i--) { |
| zero(two); |
| |
| for (j = 1; j <= sizeof one; j++) { |
| siphash24_compress(one, i, &state1); |
| siphash24_compress(one, j, &state1); |
| |
| siphash24_compress(one, i, &state2); |
| two[j-1] = one[j-1]; |
| siphash24_compress(two, j, &state2); |
| |
| assert_se(memcmp(&state1, &state2, sizeof state1) == 0); |
| } |
| } |
| } |
| |
| /* see https://131002.net/siphash/siphash.pdf, Appendix A */ |
| int main(int argc, char *argv[]) { |
| const uint8_t in[15] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e }; |
| const uint8_t key[16] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; |
| uint8_t in_buf[20]; |
| |
| /* Test with same input but different alignments. */ |
| memcpy(in_buf, in, sizeof(in)); |
| do_test(in_buf, sizeof(in), key); |
| memcpy(in_buf + 1, in, sizeof(in)); |
| do_test(in_buf + 1, sizeof(in), key); |
| memcpy(in_buf + 2, in, sizeof(in)); |
| do_test(in_buf + 2, sizeof(in), key); |
| memcpy(in_buf + 4, in, sizeof(in)); |
| do_test(in_buf + 4, sizeof(in), key); |
| |
| test_short_hashes(); |
| } |