| /* SPDX-License-Identifier: LGPL-2.1+ */ |
| |
| #include <net/if.h> |
| |
| #include "af-list.h" |
| #include "alloc-util.h" |
| #include "dns-domain.h" |
| #include "resolved-dns-answer.h" |
| #include "resolved-dns-cache.h" |
| #include "resolved-dns-packet.h" |
| #include "string-util.h" |
| |
| /* Never cache more than 4K entries. RFC 1536, Section 5 suggests to |
| * leave DNS caches unbounded, but that's crazy. */ |
| #define CACHE_MAX 4096 |
| |
| /* We never keep any item longer than 2h in our cache */ |
| #define CACHE_TTL_MAX_USEC (2 * USEC_PER_HOUR) |
| |
| /* How long to cache strange rcodes, i.e. rcodes != SUCCESS and != NXDOMAIN (specifically: that's only SERVFAIL for |
| * now) */ |
| #define CACHE_TTL_STRANGE_RCODE_USEC (30 * USEC_PER_SEC) |
| |
| typedef enum DnsCacheItemType DnsCacheItemType; |
| typedef struct DnsCacheItem DnsCacheItem; |
| |
| enum DnsCacheItemType { |
| DNS_CACHE_POSITIVE, |
| DNS_CACHE_NODATA, |
| DNS_CACHE_NXDOMAIN, |
| DNS_CACHE_RCODE, /* "strange" RCODE (effective only SERVFAIL for now) */ |
| }; |
| |
| struct DnsCacheItem { |
| DnsCacheItemType type; |
| DnsResourceKey *key; |
| DnsResourceRecord *rr; |
| int rcode; |
| |
| usec_t until; |
| bool authenticated:1; |
| bool shared_owner:1; |
| |
| int ifindex; |
| int owner_family; |
| union in_addr_union owner_address; |
| |
| unsigned prioq_idx; |
| LIST_FIELDS(DnsCacheItem, by_key); |
| }; |
| |
| static const char *dns_cache_item_type_to_string(DnsCacheItem *item) { |
| assert(item); |
| |
| switch (item->type) { |
| |
| case DNS_CACHE_POSITIVE: |
| return "POSITIVE"; |
| |
| case DNS_CACHE_NODATA: |
| return "NODATA"; |
| |
| case DNS_CACHE_NXDOMAIN: |
| return "NXDOMAIN"; |
| |
| case DNS_CACHE_RCODE: |
| return dns_rcode_to_string(item->rcode); |
| } |
| |
| return NULL; |
| } |
| |
| static void dns_cache_item_free(DnsCacheItem *i) { |
| if (!i) |
| return; |
| |
| dns_resource_record_unref(i->rr); |
| dns_resource_key_unref(i->key); |
| free(i); |
| } |
| |
| DEFINE_TRIVIAL_CLEANUP_FUNC(DnsCacheItem*, dns_cache_item_free); |
| |
| static void dns_cache_item_unlink_and_free(DnsCache *c, DnsCacheItem *i) { |
| DnsCacheItem *first; |
| |
| assert(c); |
| |
| if (!i) |
| return; |
| |
| first = hashmap_get(c->by_key, i->key); |
| LIST_REMOVE(by_key, first, i); |
| |
| if (first) |
| assert_se(hashmap_replace(c->by_key, first->key, first) >= 0); |
| else |
| hashmap_remove(c->by_key, i->key); |
| |
| prioq_remove(c->by_expiry, i, &i->prioq_idx); |
| |
| dns_cache_item_free(i); |
| } |
| |
| static bool dns_cache_remove_by_rr(DnsCache *c, DnsResourceRecord *rr) { |
| DnsCacheItem *first, *i; |
| int r; |
| |
| first = hashmap_get(c->by_key, rr->key); |
| LIST_FOREACH(by_key, i, first) { |
| r = dns_resource_record_equal(i->rr, rr); |
| if (r < 0) |
| return r; |
| if (r > 0) { |
| dns_cache_item_unlink_and_free(c, i); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool dns_cache_remove_by_key(DnsCache *c, DnsResourceKey *key) { |
| DnsCacheItem *first, *i, *n; |
| |
| assert(c); |
| assert(key); |
| |
| first = hashmap_remove(c->by_key, key); |
| if (!first) |
| return false; |
| |
| LIST_FOREACH_SAFE(by_key, i, n, first) { |
| prioq_remove(c->by_expiry, i, &i->prioq_idx); |
| dns_cache_item_free(i); |
| } |
| |
| return true; |
| } |
| |
| void dns_cache_flush(DnsCache *c) { |
| DnsResourceKey *key; |
| |
| assert(c); |
| |
| while ((key = hashmap_first_key(c->by_key))) |
| dns_cache_remove_by_key(c, key); |
| |
| assert(hashmap_size(c->by_key) == 0); |
| assert(prioq_size(c->by_expiry) == 0); |
| |
| c->by_key = hashmap_free(c->by_key); |
| c->by_expiry = prioq_free(c->by_expiry); |
| } |
| |
| static void dns_cache_make_space(DnsCache *c, unsigned add) { |
| assert(c); |
| |
| if (add <= 0) |
| return; |
| |
| /* Makes space for n new entries. Note that we actually allow |
| * the cache to grow beyond CACHE_MAX, but only when we shall |
| * add more RRs to the cache than CACHE_MAX at once. In that |
| * case the cache will be emptied completely otherwise. */ |
| |
| for (;;) { |
| _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL; |
| DnsCacheItem *i; |
| |
| if (prioq_size(c->by_expiry) <= 0) |
| break; |
| |
| if (prioq_size(c->by_expiry) + add < CACHE_MAX) |
| break; |
| |
| i = prioq_peek(c->by_expiry); |
| assert(i); |
| |
| /* Take an extra reference to the key so that it |
| * doesn't go away in the middle of the remove call */ |
| key = dns_resource_key_ref(i->key); |
| dns_cache_remove_by_key(c, key); |
| } |
| } |
| |
| void dns_cache_prune(DnsCache *c) { |
| usec_t t = 0; |
| |
| assert(c); |
| |
| /* Remove all entries that are past their TTL */ |
| |
| for (;;) { |
| DnsCacheItem *i; |
| char key_str[DNS_RESOURCE_KEY_STRING_MAX]; |
| |
| i = prioq_peek(c->by_expiry); |
| if (!i) |
| break; |
| |
| if (t <= 0) |
| t = now(clock_boottime_or_monotonic()); |
| |
| if (i->until > t) |
| break; |
| |
| /* Depending whether this is an mDNS shared entry |
| * either remove only this one RR or the whole RRset */ |
| log_debug("Removing %scache entry for %s (expired "USEC_FMT"s ago)", |
| i->shared_owner ? "shared " : "", |
| dns_resource_key_to_string(i->key, key_str, sizeof key_str), |
| (t - i->until) / USEC_PER_SEC); |
| |
| if (i->shared_owner) |
| dns_cache_item_unlink_and_free(c, i); |
| else { |
| _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL; |
| |
| /* Take an extra reference to the key so that it |
| * doesn't go away in the middle of the remove call */ |
| key = dns_resource_key_ref(i->key); |
| dns_cache_remove_by_key(c, key); |
| } |
| } |
| } |
| |
| static int dns_cache_item_prioq_compare_func(const void *a, const void *b) { |
| const DnsCacheItem *x = a, *y = b; |
| |
| if (x->until < y->until) |
| return -1; |
| if (x->until > y->until) |
| return 1; |
| return 0; |
| } |
| |
| static int dns_cache_init(DnsCache *c) { |
| int r; |
| |
| assert(c); |
| |
| r = prioq_ensure_allocated(&c->by_expiry, dns_cache_item_prioq_compare_func); |
| if (r < 0) |
| return r; |
| |
| r = hashmap_ensure_allocated(&c->by_key, &dns_resource_key_hash_ops); |
| if (r < 0) |
| return r; |
| |
| return r; |
| } |
| |
| static int dns_cache_link_item(DnsCache *c, DnsCacheItem *i) { |
| DnsCacheItem *first; |
| int r; |
| |
| assert(c); |
| assert(i); |
| |
| r = prioq_put(c->by_expiry, i, &i->prioq_idx); |
| if (r < 0) |
| return r; |
| |
| first = hashmap_get(c->by_key, i->key); |
| if (first) { |
| _cleanup_(dns_resource_key_unrefp) DnsResourceKey *k = NULL; |
| |
| /* Keep a reference to the original key, while we manipulate the list. */ |
| k = dns_resource_key_ref(first->key); |
| |
| /* Now, try to reduce the number of keys we keep */ |
| dns_resource_key_reduce(&first->key, &i->key); |
| |
| if (first->rr) |
| dns_resource_key_reduce(&first->rr->key, &i->key); |
| if (i->rr) |
| dns_resource_key_reduce(&i->rr->key, &i->key); |
| |
| LIST_PREPEND(by_key, first, i); |
| assert_se(hashmap_replace(c->by_key, first->key, first) >= 0); |
| } else { |
| r = hashmap_put(c->by_key, i->key, i); |
| if (r < 0) { |
| prioq_remove(c->by_expiry, i, &i->prioq_idx); |
| return r; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static DnsCacheItem* dns_cache_get(DnsCache *c, DnsResourceRecord *rr) { |
| DnsCacheItem *i; |
| |
| assert(c); |
| assert(rr); |
| |
| LIST_FOREACH(by_key, i, hashmap_get(c->by_key, rr->key)) |
| if (i->rr && dns_resource_record_equal(i->rr, rr) > 0) |
| return i; |
| |
| return NULL; |
| } |
| |
| static usec_t calculate_until(DnsResourceRecord *rr, uint32_t nsec_ttl, usec_t timestamp, bool use_soa_minimum) { |
| uint32_t ttl; |
| usec_t u; |
| |
| assert(rr); |
| |
| ttl = MIN(rr->ttl, nsec_ttl); |
| if (rr->key->type == DNS_TYPE_SOA && use_soa_minimum) { |
| /* If this is a SOA RR, and it is requested, clamp to |
| * the SOA's minimum field. This is used when we do |
| * negative caching, to determine the TTL for the |
| * negative caching entry. See RFC 2308, Section |
| * 5. */ |
| |
| if (ttl > rr->soa.minimum) |
| ttl = rr->soa.minimum; |
| } |
| |
| u = ttl * USEC_PER_SEC; |
| if (u > CACHE_TTL_MAX_USEC) |
| u = CACHE_TTL_MAX_USEC; |
| |
| if (rr->expiry != USEC_INFINITY) { |
| usec_t left; |
| |
| /* Make use of the DNSSEC RRSIG expiry info, if we |
| * have it */ |
| |
| left = LESS_BY(rr->expiry, now(CLOCK_REALTIME)); |
| if (u > left) |
| u = left; |
| } |
| |
| return timestamp + u; |
| } |
| |
| static void dns_cache_item_update_positive( |
| DnsCache *c, |
| DnsCacheItem *i, |
| DnsResourceRecord *rr, |
| bool authenticated, |
| bool shared_owner, |
| usec_t timestamp, |
| int ifindex, |
| int owner_family, |
| const union in_addr_union *owner_address) { |
| |
| assert(c); |
| assert(i); |
| assert(rr); |
| assert(owner_address); |
| |
| i->type = DNS_CACHE_POSITIVE; |
| |
| if (!i->by_key_prev) |
| /* We are the first item in the list, we need to |
| * update the key used in the hashmap */ |
| |
| assert_se(hashmap_replace(c->by_key, rr->key, i) >= 0); |
| |
| dns_resource_record_ref(rr); |
| dns_resource_record_unref(i->rr); |
| i->rr = rr; |
| |
| dns_resource_key_unref(i->key); |
| i->key = dns_resource_key_ref(rr->key); |
| |
| i->until = calculate_until(rr, (uint32_t) -1, timestamp, false); |
| i->authenticated = authenticated; |
| i->shared_owner = shared_owner; |
| |
| i->ifindex = ifindex; |
| |
| i->owner_family = owner_family; |
| i->owner_address = *owner_address; |
| |
| prioq_reshuffle(c->by_expiry, i, &i->prioq_idx); |
| } |
| |
| static int dns_cache_put_positive( |
| DnsCache *c, |
| DnsResourceRecord *rr, |
| bool authenticated, |
| bool shared_owner, |
| usec_t timestamp, |
| int ifindex, |
| int owner_family, |
| const union in_addr_union *owner_address) { |
| |
| _cleanup_(dns_cache_item_freep) DnsCacheItem *i = NULL; |
| DnsCacheItem *existing; |
| char key_str[DNS_RESOURCE_KEY_STRING_MAX], ifname[IF_NAMESIZE]; |
| int r, k; |
| |
| assert(c); |
| assert(rr); |
| assert(owner_address); |
| |
| /* Never cache pseudo RRs */ |
| if (dns_class_is_pseudo(rr->key->class)) |
| return 0; |
| if (dns_type_is_pseudo(rr->key->type)) |
| return 0; |
| |
| /* New TTL is 0? Delete this specific entry... */ |
| if (rr->ttl <= 0) { |
| k = dns_cache_remove_by_rr(c, rr); |
| log_debug("%s: %s", |
| k > 0 ? "Removed zero TTL entry from cache" : "Not caching zero TTL cache entry", |
| dns_resource_key_to_string(rr->key, key_str, sizeof key_str)); |
| return 0; |
| } |
| |
| /* Entry exists already? Update TTL, timestamp and owner */ |
| existing = dns_cache_get(c, rr); |
| if (existing) { |
| dns_cache_item_update_positive( |
| c, |
| existing, |
| rr, |
| authenticated, |
| shared_owner, |
| timestamp, |
| ifindex, |
| owner_family, |
| owner_address); |
| return 0; |
| } |
| |
| /* Otherwise, add the new RR */ |
| r = dns_cache_init(c); |
| if (r < 0) |
| return r; |
| |
| dns_cache_make_space(c, 1); |
| |
| i = new0(DnsCacheItem, 1); |
| if (!i) |
| return -ENOMEM; |
| |
| i->type = DNS_CACHE_POSITIVE; |
| i->key = dns_resource_key_ref(rr->key); |
| i->rr = dns_resource_record_ref(rr); |
| i->until = calculate_until(rr, (uint32_t) -1, timestamp, false); |
| i->authenticated = authenticated; |
| i->shared_owner = shared_owner; |
| i->ifindex = ifindex; |
| i->owner_family = owner_family; |
| i->owner_address = *owner_address; |
| i->prioq_idx = PRIOQ_IDX_NULL; |
| |
| r = dns_cache_link_item(c, i); |
| if (r < 0) |
| return r; |
| |
| if (DEBUG_LOGGING) { |
| _cleanup_free_ char *t = NULL; |
| |
| (void) in_addr_to_string(i->owner_family, &i->owner_address, &t); |
| |
| log_debug("Added positive %s%s cache entry for %s "USEC_FMT"s on %s/%s/%s", |
| i->authenticated ? "authenticated" : "unauthenticated", |
| i->shared_owner ? " shared" : "", |
| dns_resource_key_to_string(i->key, key_str, sizeof key_str), |
| (i->until - timestamp) / USEC_PER_SEC, |
| i->ifindex == 0 ? "*" : strna(if_indextoname(i->ifindex, ifname)), |
| af_to_name_short(i->owner_family), |
| strna(t)); |
| } |
| |
| i = NULL; |
| return 0; |
| } |
| |
| static int dns_cache_put_negative( |
| DnsCache *c, |
| DnsResourceKey *key, |
| int rcode, |
| bool authenticated, |
| uint32_t nsec_ttl, |
| usec_t timestamp, |
| DnsResourceRecord *soa, |
| int owner_family, |
| const union in_addr_union *owner_address) { |
| |
| _cleanup_(dns_cache_item_freep) DnsCacheItem *i = NULL; |
| char key_str[DNS_RESOURCE_KEY_STRING_MAX]; |
| int r; |
| |
| assert(c); |
| assert(key); |
| assert(owner_address); |
| |
| /* Never cache pseudo RR keys. DNS_TYPE_ANY is particularly |
| * important to filter out as we use this as a pseudo-type for |
| * NXDOMAIN entries */ |
| if (dns_class_is_pseudo(key->class)) |
| return 0; |
| if (dns_type_is_pseudo(key->type)) |
| return 0; |
| |
| if (IN_SET(rcode, DNS_RCODE_SUCCESS, DNS_RCODE_NXDOMAIN)) { |
| if (!soa) |
| return 0; |
| |
| /* For negative replies, check if we have a TTL of a SOA */ |
| if (nsec_ttl <= 0 || soa->soa.minimum <= 0 || soa->ttl <= 0) { |
| log_debug("Not caching negative entry with zero SOA/NSEC/NSEC3 TTL: %s", |
| dns_resource_key_to_string(key, key_str, sizeof key_str)); |
| return 0; |
| } |
| } else if (rcode != DNS_RCODE_SERVFAIL) |
| return 0; |
| |
| r = dns_cache_init(c); |
| if (r < 0) |
| return r; |
| |
| dns_cache_make_space(c, 1); |
| |
| i = new0(DnsCacheItem, 1); |
| if (!i) |
| return -ENOMEM; |
| |
| i->type = |
| rcode == DNS_RCODE_SUCCESS ? DNS_CACHE_NODATA : |
| rcode == DNS_RCODE_NXDOMAIN ? DNS_CACHE_NXDOMAIN : DNS_CACHE_RCODE; |
| i->until = |
| i->type == DNS_CACHE_RCODE ? timestamp + CACHE_TTL_STRANGE_RCODE_USEC : |
| calculate_until(soa, nsec_ttl, timestamp, true); |
| i->authenticated = authenticated; |
| i->owner_family = owner_family; |
| i->owner_address = *owner_address; |
| i->prioq_idx = PRIOQ_IDX_NULL; |
| i->rcode = rcode; |
| |
| if (i->type == DNS_CACHE_NXDOMAIN) { |
| /* NXDOMAIN entries should apply equally to all types, so we use ANY as |
| * a pseudo type for this purpose here. */ |
| i->key = dns_resource_key_new(key->class, DNS_TYPE_ANY, dns_resource_key_name(key)); |
| if (!i->key) |
| return -ENOMEM; |
| |
| /* Make sure to remove any previous entry for this |
| * specific ANY key. (For non-ANY keys the cache data |
| * is already cleared by the caller.) Note that we |
| * don't bother removing positive or NODATA cache |
| * items in this case, because it would either be slow |
| * or require explicit indexing by name */ |
| dns_cache_remove_by_key(c, key); |
| } else |
| i->key = dns_resource_key_ref(key); |
| |
| r = dns_cache_link_item(c, i); |
| if (r < 0) |
| return r; |
| |
| log_debug("Added %s cache entry for %s "USEC_FMT"s", |
| dns_cache_item_type_to_string(i), |
| dns_resource_key_to_string(i->key, key_str, sizeof key_str), |
| (i->until - timestamp) / USEC_PER_SEC); |
| |
| i = NULL; |
| return 0; |
| } |
| |
| static void dns_cache_remove_previous( |
| DnsCache *c, |
| DnsResourceKey *key, |
| DnsAnswer *answer) { |
| |
| DnsResourceRecord *rr; |
| DnsAnswerFlags flags; |
| |
| assert(c); |
| |
| /* First, if we were passed a key (i.e. on LLMNR/DNS, but |
| * not on mDNS), delete all matching old RRs, so that we only |
| * keep complete by_key in place. */ |
| if (key) |
| dns_cache_remove_by_key(c, key); |
| |
| /* Second, flush all entries matching the answer, unless this |
| * is an RR that is explicitly marked to be "shared" between |
| * peers (i.e. mDNS RRs without the flush-cache bit set). */ |
| DNS_ANSWER_FOREACH_FLAGS(rr, flags, answer) { |
| if ((flags & DNS_ANSWER_CACHEABLE) == 0) |
| continue; |
| |
| if (flags & DNS_ANSWER_SHARED_OWNER) |
| continue; |
| |
| dns_cache_remove_by_key(c, rr->key); |
| } |
| } |
| |
| static bool rr_eligible(DnsResourceRecord *rr) { |
| assert(rr); |
| |
| /* When we see an NSEC/NSEC3 RR, we'll only cache it if it is from the lower zone, not the upper zone, since |
| * that's where the interesting bits are (with exception of DS RRs). Of course, this way we cannot derive DS |
| * existence from any cached NSEC/NSEC3, but that should be fine. */ |
| |
| switch (rr->key->type) { |
| |
| case DNS_TYPE_NSEC: |
| return !bitmap_isset(rr->nsec.types, DNS_TYPE_NS) || |
| bitmap_isset(rr->nsec.types, DNS_TYPE_SOA); |
| |
| case DNS_TYPE_NSEC3: |
| return !bitmap_isset(rr->nsec3.types, DNS_TYPE_NS) || |
| bitmap_isset(rr->nsec3.types, DNS_TYPE_SOA); |
| |
| default: |
| return true; |
| } |
| } |
| |
| int dns_cache_put( |
| DnsCache *c, |
| DnsResourceKey *key, |
| int rcode, |
| DnsAnswer *answer, |
| bool authenticated, |
| uint32_t nsec_ttl, |
| usec_t timestamp, |
| int owner_family, |
| const union in_addr_union *owner_address) { |
| |
| DnsResourceRecord *soa = NULL, *rr; |
| bool weird_rcode = false; |
| DnsAnswerFlags flags; |
| unsigned cache_keys; |
| int r, ifindex; |
| |
| assert(c); |
| assert(owner_address); |
| |
| dns_cache_remove_previous(c, key, answer); |
| |
| /* We only care for positive replies and NXDOMAINs, on all other replies we will simply flush the respective |
| * entries, and that's it. (Well, with one further exception: since some DNS zones (akamai!) return SERVFAIL |
| * consistently for some lookups, and forwarders tend to propagate that we'll cache that too, but only for a |
| * short time.) */ |
| |
| if (IN_SET(rcode, DNS_RCODE_SUCCESS, DNS_RCODE_NXDOMAIN)) { |
| if (dns_answer_size(answer) <= 0) { |
| if (key) { |
| char key_str[DNS_RESOURCE_KEY_STRING_MAX]; |
| |
| log_debug("Not caching negative entry without a SOA record: %s", |
| dns_resource_key_to_string(key, key_str, sizeof key_str)); |
| } |
| return 0; |
| } |
| |
| } else { |
| /* Only cache SERVFAIL as "weird" rcode for now. We can add more later, should that turn out to be |
| * beneficial. */ |
| if (rcode != DNS_RCODE_SERVFAIL) |
| return 0; |
| |
| weird_rcode = true; |
| } |
| |
| cache_keys = dns_answer_size(answer); |
| if (key) |
| cache_keys++; |
| |
| /* Make some space for our new entries */ |
| dns_cache_make_space(c, cache_keys); |
| |
| if (timestamp <= 0) |
| timestamp = now(clock_boottime_or_monotonic()); |
| |
| /* Second, add in positive entries for all contained RRs */ |
| DNS_ANSWER_FOREACH_FULL(rr, ifindex, flags, answer) { |
| if ((flags & DNS_ANSWER_CACHEABLE) == 0) |
| continue; |
| |
| r = rr_eligible(rr); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| continue; |
| |
| r = dns_cache_put_positive( |
| c, |
| rr, |
| flags & DNS_ANSWER_AUTHENTICATED, |
| flags & DNS_ANSWER_SHARED_OWNER, |
| timestamp, |
| ifindex, |
| owner_family, owner_address); |
| if (r < 0) |
| goto fail; |
| } |
| |
| if (!key) /* mDNS doesn't know negative caching, really */ |
| return 0; |
| |
| /* Third, add in negative entries if the key has no RR */ |
| r = dns_answer_match_key(answer, key, NULL); |
| if (r < 0) |
| goto fail; |
| if (r > 0) |
| return 0; |
| |
| /* But not if it has a matching CNAME/DNAME (the negative |
| * caching will be done on the canonical name, not on the |
| * alias) */ |
| r = dns_answer_find_cname_or_dname(answer, key, NULL, NULL); |
| if (r < 0) |
| goto fail; |
| if (r > 0) |
| return 0; |
| |
| /* See https://tools.ietf.org/html/rfc2308, which say that a matching SOA record in the packet is used to |
| * enable negative caching. We apply one exception though: if we are about to cache a weird rcode we do so |
| * regardless of a SOA. */ |
| r = dns_answer_find_soa(answer, key, &soa, &flags); |
| if (r < 0) |
| goto fail; |
| if (r == 0 && !weird_rcode) |
| return 0; |
| if (r > 0) { |
| /* Refuse using the SOA data if it is unsigned, but the key is |
| * signed */ |
| if (authenticated && (flags & DNS_ANSWER_AUTHENTICATED) == 0) |
| return 0; |
| } |
| |
| r = dns_cache_put_negative( |
| c, |
| key, |
| rcode, |
| authenticated, |
| nsec_ttl, |
| timestamp, |
| soa, |
| owner_family, owner_address); |
| if (r < 0) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| /* Adding all RRs failed. Let's clean up what we already |
| * added, just in case */ |
| |
| if (key) |
| dns_cache_remove_by_key(c, key); |
| |
| DNS_ANSWER_FOREACH_FLAGS(rr, flags, answer) { |
| if ((flags & DNS_ANSWER_CACHEABLE) == 0) |
| continue; |
| |
| dns_cache_remove_by_key(c, rr->key); |
| } |
| |
| return r; |
| } |
| |
| static DnsCacheItem *dns_cache_get_by_key_follow_cname_dname_nsec(DnsCache *c, DnsResourceKey *k) { |
| DnsCacheItem *i; |
| const char *n; |
| int r; |
| |
| assert(c); |
| assert(k); |
| |
| /* If we hit some OOM error, or suchlike, we don't care too |
| * much, after all this is just a cache */ |
| |
| i = hashmap_get(c->by_key, k); |
| if (i) |
| return i; |
| |
| n = dns_resource_key_name(k); |
| |
| /* Check if we have an NXDOMAIN cache item for the name, notice that we use |
| * the pseudo-type ANY for NXDOMAIN cache items. */ |
| i = hashmap_get(c->by_key, &DNS_RESOURCE_KEY_CONST(k->class, DNS_TYPE_ANY, n)); |
| if (i && i->type == DNS_CACHE_NXDOMAIN) |
| return i; |
| |
| if (dns_type_may_redirect(k->type)) { |
| /* Check if we have a CNAME record instead */ |
| i = hashmap_get(c->by_key, &DNS_RESOURCE_KEY_CONST(k->class, DNS_TYPE_CNAME, n)); |
| if (i) |
| return i; |
| |
| /* OK, let's look for cached DNAME records. */ |
| for (;;) { |
| if (isempty(n)) |
| return NULL; |
| |
| i = hashmap_get(c->by_key, &DNS_RESOURCE_KEY_CONST(k->class, DNS_TYPE_DNAME, n)); |
| if (i) |
| return i; |
| |
| /* Jump one label ahead */ |
| r = dns_name_parent(&n); |
| if (r <= 0) |
| return NULL; |
| } |
| } |
| |
| if (k->type != DNS_TYPE_NSEC) { |
| /* Check if we have an NSEC record instead for the name. */ |
| i = hashmap_get(c->by_key, &DNS_RESOURCE_KEY_CONST(k->class, DNS_TYPE_NSEC, n)); |
| if (i) |
| return i; |
| } |
| |
| return NULL; |
| } |
| |
| int dns_cache_lookup(DnsCache *c, DnsResourceKey *key, bool clamp_ttl, int *rcode, DnsAnswer **ret, bool *authenticated) { |
| _cleanup_(dns_answer_unrefp) DnsAnswer *answer = NULL; |
| char key_str[DNS_RESOURCE_KEY_STRING_MAX]; |
| unsigned n = 0; |
| int r; |
| bool nxdomain = false; |
| DnsCacheItem *j, *first, *nsec = NULL; |
| bool have_authenticated = false, have_non_authenticated = false; |
| usec_t current; |
| int found_rcode = -1; |
| |
| assert(c); |
| assert(key); |
| assert(rcode); |
| assert(ret); |
| assert(authenticated); |
| |
| if (key->type == DNS_TYPE_ANY || key->class == DNS_CLASS_ANY) { |
| /* If we have ANY lookups we don't use the cache, so |
| * that the caller refreshes via the network. */ |
| |
| log_debug("Ignoring cache for ANY lookup: %s", |
| dns_resource_key_to_string(key, key_str, sizeof key_str)); |
| |
| c->n_miss++; |
| |
| *ret = NULL; |
| *rcode = DNS_RCODE_SUCCESS; |
| *authenticated = false; |
| |
| return 0; |
| } |
| |
| first = dns_cache_get_by_key_follow_cname_dname_nsec(c, key); |
| if (!first) { |
| /* If one question cannot be answered we need to refresh */ |
| |
| log_debug("Cache miss for %s", |
| dns_resource_key_to_string(key, key_str, sizeof key_str)); |
| |
| c->n_miss++; |
| |
| *ret = NULL; |
| *rcode = DNS_RCODE_SUCCESS; |
| *authenticated = false; |
| |
| return 0; |
| } |
| |
| LIST_FOREACH(by_key, j, first) { |
| if (j->rr) { |
| if (j->rr->key->type == DNS_TYPE_NSEC) |
| nsec = j; |
| |
| n++; |
| } else if (j->type == DNS_CACHE_NXDOMAIN) |
| nxdomain = true; |
| else if (j->type == DNS_CACHE_RCODE) |
| found_rcode = j->rcode; |
| |
| if (j->authenticated) |
| have_authenticated = true; |
| else |
| have_non_authenticated = true; |
| } |
| |
| if (found_rcode >= 0) { |
| log_debug("RCODE %s cache hit for %s", |
| dns_rcode_to_string(found_rcode), |
| dns_resource_key_to_string(key, key_str, sizeof(key_str))); |
| |
| *ret = NULL; |
| *rcode = found_rcode; |
| *authenticated = false; |
| |
| c->n_hit++; |
| return 1; |
| } |
| |
| if (nsec && !IN_SET(key->type, DNS_TYPE_NSEC, DNS_TYPE_DS)) { |
| /* Note that we won't derive information for DS RRs from an NSEC, because we only cache NSEC RRs from |
| * the lower-zone of a zone cut, but the DS RRs are on the upper zone. */ |
| |
| log_debug("NSEC NODATA cache hit for %s", |
| dns_resource_key_to_string(key, key_str, sizeof key_str)); |
| |
| /* We only found an NSEC record that matches our name. |
| * If it says the type doesn't exist report |
| * NODATA. Otherwise report a cache miss. */ |
| |
| *ret = NULL; |
| *rcode = DNS_RCODE_SUCCESS; |
| *authenticated = nsec->authenticated; |
| |
| if (!bitmap_isset(nsec->rr->nsec.types, key->type) && |
| !bitmap_isset(nsec->rr->nsec.types, DNS_TYPE_CNAME) && |
| !bitmap_isset(nsec->rr->nsec.types, DNS_TYPE_DNAME)) { |
| c->n_hit++; |
| return 1; |
| } |
| |
| c->n_miss++; |
| return 0; |
| } |
| |
| log_debug("%s cache hit for %s", |
| n > 0 ? "Positive" : |
| nxdomain ? "NXDOMAIN" : "NODATA", |
| dns_resource_key_to_string(key, key_str, sizeof key_str)); |
| |
| if (n <= 0) { |
| c->n_hit++; |
| |
| *ret = NULL; |
| *rcode = nxdomain ? DNS_RCODE_NXDOMAIN : DNS_RCODE_SUCCESS; |
| *authenticated = have_authenticated && !have_non_authenticated; |
| return 1; |
| } |
| |
| answer = dns_answer_new(n); |
| if (!answer) |
| return -ENOMEM; |
| |
| if (clamp_ttl) |
| current = now(clock_boottime_or_monotonic()); |
| |
| LIST_FOREACH(by_key, j, first) { |
| _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL; |
| |
| if (!j->rr) |
| continue; |
| |
| if (clamp_ttl) { |
| rr = dns_resource_record_ref(j->rr); |
| |
| r = dns_resource_record_clamp_ttl(&rr, LESS_BY(j->until, current) / USEC_PER_SEC); |
| if (r < 0) |
| return r; |
| } |
| |
| r = dns_answer_add(answer, rr ?: j->rr, j->ifindex, j->authenticated ? DNS_ANSWER_AUTHENTICATED : 0); |
| if (r < 0) |
| return r; |
| } |
| |
| c->n_hit++; |
| |
| *ret = answer; |
| *rcode = DNS_RCODE_SUCCESS; |
| *authenticated = have_authenticated && !have_non_authenticated; |
| answer = NULL; |
| |
| return n; |
| } |
| |
| int dns_cache_check_conflicts(DnsCache *cache, DnsResourceRecord *rr, int owner_family, const union in_addr_union *owner_address) { |
| DnsCacheItem *i, *first; |
| bool same_owner = true; |
| |
| assert(cache); |
| assert(rr); |
| |
| dns_cache_prune(cache); |
| |
| /* See if there's a cache entry for the same key. If there |
| * isn't there's no conflict */ |
| first = hashmap_get(cache->by_key, rr->key); |
| if (!first) |
| return 0; |
| |
| /* See if the RR key is owned by the same owner, if so, there |
| * isn't a conflict either */ |
| LIST_FOREACH(by_key, i, first) { |
| if (i->owner_family != owner_family || |
| !in_addr_equal(owner_family, &i->owner_address, owner_address)) { |
| same_owner = false; |
| break; |
| } |
| } |
| if (same_owner) |
| return 0; |
| |
| /* See if there's the exact same RR in the cache. If yes, then |
| * there's no conflict. */ |
| if (dns_cache_get(cache, rr)) |
| return 0; |
| |
| /* There's a conflict */ |
| return 1; |
| } |
| |
| int dns_cache_export_shared_to_packet(DnsCache *cache, DnsPacket *p) { |
| unsigned ancount = 0; |
| Iterator iterator; |
| DnsCacheItem *i; |
| int r; |
| |
| assert(cache); |
| assert(p); |
| |
| HASHMAP_FOREACH(i, cache->by_key, iterator) { |
| DnsCacheItem *j; |
| |
| LIST_FOREACH(by_key, j, i) { |
| if (!j->rr) |
| continue; |
| |
| if (!j->shared_owner) |
| continue; |
| |
| r = dns_packet_append_rr(p, j->rr, 0, NULL, NULL); |
| if (r == -EMSGSIZE && p->protocol == DNS_PROTOCOL_MDNS) { |
| /* For mDNS, if we're unable to stuff all known answers into the given packet, |
| * allocate a new one, push the RR into that one and link it to the current one. |
| */ |
| |
| DNS_PACKET_HEADER(p)->ancount = htobe16(ancount); |
| ancount = 0; |
| |
| r = dns_packet_new_query(&p->more, p->protocol, 0, true); |
| if (r < 0) |
| return r; |
| |
| /* continue with new packet */ |
| p = p->more; |
| r = dns_packet_append_rr(p, j->rr, 0, NULL, NULL); |
| } |
| |
| if (r < 0) |
| return r; |
| |
| ancount++; |
| } |
| } |
| |
| DNS_PACKET_HEADER(p)->ancount = htobe16(ancount); |
| |
| return 0; |
| } |
| |
| void dns_cache_dump(DnsCache *cache, FILE *f) { |
| Iterator iterator; |
| DnsCacheItem *i; |
| |
| if (!cache) |
| return; |
| |
| if (!f) |
| f = stdout; |
| |
| HASHMAP_FOREACH(i, cache->by_key, iterator) { |
| DnsCacheItem *j; |
| |
| LIST_FOREACH(by_key, j, i) { |
| |
| fputc('\t', f); |
| |
| if (j->rr) { |
| const char *t; |
| t = dns_resource_record_to_string(j->rr); |
| if (!t) { |
| log_oom(); |
| continue; |
| } |
| |
| fputs(t, f); |
| fputc('\n', f); |
| } else { |
| char key_str[DNS_RESOURCE_KEY_STRING_MAX]; |
| |
| fputs(dns_resource_key_to_string(j->key, key_str, sizeof key_str), f); |
| fputs(" -- ", f); |
| fputs(dns_cache_item_type_to_string(j), f); |
| fputc('\n', f); |
| } |
| } |
| } |
| } |
| |
| bool dns_cache_is_empty(DnsCache *cache) { |
| if (!cache) |
| return true; |
| |
| return hashmap_isempty(cache->by_key); |
| } |
| |
| unsigned dns_cache_size(DnsCache *cache) { |
| if (!cache) |
| return 0; |
| |
| return hashmap_size(cache->by_key); |
| } |