| /* SPDX-License-Identifier: LGPL-2.1+ */ |
| |
| #include <errno.h> |
| |
| #include "sd-id128.h" |
| #include "sd-messages.h" |
| |
| #include "alloc-util.h" |
| #include "async.h" |
| #include "dbus-job.h" |
| #include "dbus.h" |
| #include "escape.h" |
| #include "fileio.h" |
| #include "job.h" |
| #include "log.h" |
| #include "macro.h" |
| #include "parse-util.h" |
| #include "set.h" |
| #include "special.h" |
| #include "stdio-util.h" |
| #include "string-table.h" |
| #include "string-util.h" |
| #include "strv.h" |
| #include "terminal-util.h" |
| #include "unit.h" |
| #include "virt.h" |
| |
| Job* job_new_raw(Unit *unit) { |
| Job *j; |
| |
| /* used for deserialization */ |
| |
| assert(unit); |
| |
| j = new0(Job, 1); |
| if (!j) |
| return NULL; |
| |
| j->manager = unit->manager; |
| j->unit = unit; |
| j->type = _JOB_TYPE_INVALID; |
| j->reloaded = false; |
| |
| return j; |
| } |
| |
| Job* job_new(Unit *unit, JobType type) { |
| Job *j; |
| |
| assert(type < _JOB_TYPE_MAX); |
| |
| j = job_new_raw(unit); |
| if (!j) |
| return NULL; |
| |
| j->id = j->manager->current_job_id++; |
| j->type = type; |
| |
| /* We don't link it here, that's what job_dependency() is for */ |
| |
| return j; |
| } |
| |
| void job_unlink(Job *j) { |
| assert(j); |
| assert(!j->installed); |
| assert(!j->transaction_prev); |
| assert(!j->transaction_next); |
| assert(!j->subject_list); |
| assert(!j->object_list); |
| |
| if (j->in_run_queue) { |
| LIST_REMOVE(run_queue, j->manager->run_queue, j); |
| j->in_run_queue = false; |
| } |
| |
| if (j->in_dbus_queue) { |
| LIST_REMOVE(dbus_queue, j->manager->dbus_job_queue, j); |
| j->in_dbus_queue = false; |
| } |
| |
| if (j->in_gc_queue) { |
| LIST_REMOVE(gc_queue, j->manager->gc_job_queue, j); |
| j->in_gc_queue = false; |
| } |
| |
| j->timer_event_source = sd_event_source_unref(j->timer_event_source); |
| } |
| |
| void job_free(Job *j) { |
| assert(j); |
| assert(!j->installed); |
| assert(!j->transaction_prev); |
| assert(!j->transaction_next); |
| assert(!j->subject_list); |
| assert(!j->object_list); |
| |
| job_unlink(j); |
| |
| sd_bus_track_unref(j->bus_track); |
| strv_free(j->deserialized_clients); |
| |
| free(j); |
| } |
| |
| static void job_set_state(Job *j, JobState state) { |
| assert(j); |
| assert(state >= 0); |
| assert(state < _JOB_STATE_MAX); |
| |
| if (j->state == state) |
| return; |
| |
| j->state = state; |
| |
| if (!j->installed) |
| return; |
| |
| if (j->state == JOB_RUNNING) |
| j->unit->manager->n_running_jobs++; |
| else { |
| assert(j->state == JOB_WAITING); |
| assert(j->unit->manager->n_running_jobs > 0); |
| |
| j->unit->manager->n_running_jobs--; |
| |
| if (j->unit->manager->n_running_jobs <= 0) |
| j->unit->manager->jobs_in_progress_event_source = sd_event_source_unref(j->unit->manager->jobs_in_progress_event_source); |
| } |
| } |
| |
| void job_uninstall(Job *j) { |
| Job **pj; |
| |
| assert(j->installed); |
| |
| job_set_state(j, JOB_WAITING); |
| |
| pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job; |
| assert(*pj == j); |
| |
| /* Detach from next 'bigger' objects */ |
| |
| /* daemon-reload should be transparent to job observers */ |
| if (!MANAGER_IS_RELOADING(j->manager)) |
| bus_job_send_removed_signal(j); |
| |
| *pj = NULL; |
| |
| unit_add_to_gc_queue(j->unit); |
| |
| hashmap_remove(j->manager->jobs, UINT32_TO_PTR(j->id)); |
| j->installed = false; |
| } |
| |
| static bool job_type_allows_late_merge(JobType t) { |
| /* Tells whether it is OK to merge a job of type 't' with an already |
| * running job. |
| * Reloads cannot be merged this way. Think of the sequence: |
| * 1. Reload of a daemon is in progress; the daemon has already loaded |
| * its config file, but hasn't completed the reload operation yet. |
| * 2. Edit foo's config file. |
| * 3. Trigger another reload to have the daemon use the new config. |
| * Should the second reload job be merged into the first one, the daemon |
| * would not know about the new config. |
| * JOB_RESTART jobs on the other hand can be merged, because they get |
| * patched into JOB_START after stopping the unit. So if we see a |
| * JOB_RESTART running, it means the unit hasn't stopped yet and at |
| * this time the merge is still allowed. */ |
| return t != JOB_RELOAD; |
| } |
| |
| static void job_merge_into_installed(Job *j, Job *other) { |
| assert(j->installed); |
| assert(j->unit == other->unit); |
| |
| if (j->type != JOB_NOP) |
| job_type_merge_and_collapse(&j->type, other->type, j->unit); |
| else |
| assert(other->type == JOB_NOP); |
| |
| j->irreversible = j->irreversible || other->irreversible; |
| j->ignore_order = j->ignore_order || other->ignore_order; |
| } |
| |
| Job* job_install(Job *j) { |
| Job **pj; |
| Job *uj; |
| |
| assert(!j->installed); |
| assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION); |
| assert(j->state == JOB_WAITING); |
| |
| pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job; |
| uj = *pj; |
| |
| if (uj) { |
| if (job_type_is_conflicting(uj->type, j->type)) |
| job_finish_and_invalidate(uj, JOB_CANCELED, false, false); |
| else { |
| /* not conflicting, i.e. mergeable */ |
| |
| if (uj->state == JOB_WAITING || |
| (job_type_allows_late_merge(j->type) && job_type_is_superset(uj->type, j->type))) { |
| job_merge_into_installed(uj, j); |
| log_unit_debug(uj->unit, |
| "Merged into installed job %s/%s as %u", |
| uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id); |
| return uj; |
| } else { |
| /* already running and not safe to merge into */ |
| /* Patch uj to become a merged job and re-run it. */ |
| /* XXX It should be safer to queue j to run after uj finishes, but it is |
| * not currently possible to have more than one installed job per unit. */ |
| job_merge_into_installed(uj, j); |
| log_unit_debug(uj->unit, |
| "Merged into running job, re-running: %s/%s as %u", |
| uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id); |
| |
| job_set_state(uj, JOB_WAITING); |
| return uj; |
| } |
| } |
| } |
| |
| /* Install the job */ |
| *pj = j; |
| j->installed = true; |
| |
| j->manager->n_installed_jobs++; |
| log_unit_debug(j->unit, |
| "Installed new job %s/%s as %u", |
| j->unit->id, job_type_to_string(j->type), (unsigned) j->id); |
| |
| job_add_to_gc_queue(j); |
| |
| return j; |
| } |
| |
| int job_install_deserialized(Job *j) { |
| Job **pj; |
| |
| assert(!j->installed); |
| |
| if (j->type < 0 || j->type >= _JOB_TYPE_MAX_IN_TRANSACTION) { |
| log_debug("Invalid job type %s in deserialization.", strna(job_type_to_string(j->type))); |
| return -EINVAL; |
| } |
| |
| pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job; |
| if (*pj) { |
| log_unit_debug(j->unit, "Unit already has a job installed. Not installing deserialized job."); |
| return -EEXIST; |
| } |
| |
| *pj = j; |
| j->installed = true; |
| j->reloaded = true; |
| |
| if (j->state == JOB_RUNNING) |
| j->unit->manager->n_running_jobs++; |
| |
| log_unit_debug(j->unit, |
| "Reinstalled deserialized job %s/%s as %u", |
| j->unit->id, job_type_to_string(j->type), (unsigned) j->id); |
| return 0; |
| } |
| |
| JobDependency* job_dependency_new(Job *subject, Job *object, bool matters, bool conflicts) { |
| JobDependency *l; |
| |
| assert(object); |
| |
| /* Adds a new job link, which encodes that the 'subject' job |
| * needs the 'object' job in some way. If 'subject' is NULL |
| * this means the 'anchor' job (i.e. the one the user |
| * explicitly asked for) is the requester. */ |
| |
| l = new0(JobDependency, 1); |
| if (!l) |
| return NULL; |
| |
| l->subject = subject; |
| l->object = object; |
| l->matters = matters; |
| l->conflicts = conflicts; |
| |
| if (subject) |
| LIST_PREPEND(subject, subject->subject_list, l); |
| |
| LIST_PREPEND(object, object->object_list, l); |
| |
| return l; |
| } |
| |
| void job_dependency_free(JobDependency *l) { |
| assert(l); |
| |
| if (l->subject) |
| LIST_REMOVE(subject, l->subject->subject_list, l); |
| |
| LIST_REMOVE(object, l->object->object_list, l); |
| |
| free(l); |
| } |
| |
| void job_dump(Job *j, FILE*f, const char *prefix) { |
| assert(j); |
| assert(f); |
| |
| prefix = strempty(prefix); |
| |
| fprintf(f, |
| "%s-> Job %u:\n" |
| "%s\tAction: %s -> %s\n" |
| "%s\tState: %s\n" |
| "%s\tIrreversible: %s\n" |
| "%s\tMay GC: %s\n", |
| prefix, j->id, |
| prefix, j->unit->id, job_type_to_string(j->type), |
| prefix, job_state_to_string(j->state), |
| prefix, yes_no(j->irreversible), |
| prefix, yes_no(job_may_gc(j))); |
| } |
| |
| /* |
| * Merging is commutative, so imagine the matrix as symmetric. We store only |
| * its lower triangle to avoid duplication. We don't store the main diagonal, |
| * because A merged with A is simply A. |
| * |
| * If the resulting type is collapsed immediately afterwards (to get rid of |
| * the JOB_RELOAD_OR_START, which lies outside the lookup function's domain), |
| * the following properties hold: |
| * |
| * Merging is associative! A merged with B, and then merged with C is the same |
| * as A merged with the result of B merged with C. |
| * |
| * Mergeability is transitive! If A can be merged with B and B with C then |
| * A also with C. |
| * |
| * Also, if A merged with B cannot be merged with C, then either A or B cannot |
| * be merged with C either. |
| */ |
| static const JobType job_merging_table[] = { |
| /* What \ With * JOB_START JOB_VERIFY_ACTIVE JOB_STOP JOB_RELOAD */ |
| /*********************************************************************************/ |
| /*JOB_START */ |
| /*JOB_VERIFY_ACTIVE */ JOB_START, |
| /*JOB_STOP */ -1, -1, |
| /*JOB_RELOAD */ JOB_RELOAD_OR_START, JOB_RELOAD, -1, |
| /*JOB_RESTART */ JOB_RESTART, JOB_RESTART, -1, JOB_RESTART, |
| }; |
| |
| JobType job_type_lookup_merge(JobType a, JobType b) { |
| assert_cc(ELEMENTSOF(job_merging_table) == _JOB_TYPE_MAX_MERGING * (_JOB_TYPE_MAX_MERGING - 1) / 2); |
| assert(a >= 0 && a < _JOB_TYPE_MAX_MERGING); |
| assert(b >= 0 && b < _JOB_TYPE_MAX_MERGING); |
| |
| if (a == b) |
| return a; |
| |
| if (a < b) { |
| JobType tmp = a; |
| a = b; |
| b = tmp; |
| } |
| |
| return job_merging_table[(a - 1) * a / 2 + b]; |
| } |
| |
| bool job_type_is_redundant(JobType a, UnitActiveState b) { |
| switch (a) { |
| |
| case JOB_START: |
| return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING); |
| |
| case JOB_STOP: |
| return IN_SET(b, UNIT_INACTIVE, UNIT_FAILED); |
| |
| case JOB_VERIFY_ACTIVE: |
| return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING); |
| |
| case JOB_RELOAD: |
| return |
| b == UNIT_RELOADING; |
| |
| case JOB_RESTART: |
| return |
| b == UNIT_ACTIVATING; |
| |
| case JOB_NOP: |
| return true; |
| |
| default: |
| assert_not_reached("Invalid job type"); |
| } |
| } |
| |
| JobType job_type_collapse(JobType t, Unit *u) { |
| UnitActiveState s; |
| |
| switch (t) { |
| |
| case JOB_TRY_RESTART: |
| s = unit_active_state(u); |
| if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s)) |
| return JOB_NOP; |
| |
| return JOB_RESTART; |
| |
| case JOB_TRY_RELOAD: |
| s = unit_active_state(u); |
| if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s)) |
| return JOB_NOP; |
| |
| return JOB_RELOAD; |
| |
| case JOB_RELOAD_OR_START: |
| s = unit_active_state(u); |
| if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s)) |
| return JOB_START; |
| |
| return JOB_RELOAD; |
| |
| default: |
| return t; |
| } |
| } |
| |
| int job_type_merge_and_collapse(JobType *a, JobType b, Unit *u) { |
| JobType t; |
| |
| t = job_type_lookup_merge(*a, b); |
| if (t < 0) |
| return -EEXIST; |
| |
| *a = job_type_collapse(t, u); |
| return 0; |
| } |
| |
| static bool job_is_runnable(Job *j) { |
| Iterator i; |
| Unit *other; |
| void *v; |
| |
| assert(j); |
| assert(j->installed); |
| |
| /* Checks whether there is any job running for the units this |
| * job needs to be running after (in the case of a 'positive' |
| * job type) or before (in the case of a 'negative' job |
| * type. */ |
| |
| /* Note that unit types have a say in what is runnable, |
| * too. For example, if they return -EAGAIN from |
| * unit_start() they can indicate they are not |
| * runnable yet. */ |
| |
| /* First check if there is an override */ |
| if (j->ignore_order) |
| return true; |
| |
| if (j->type == JOB_NOP) |
| return true; |
| |
| if (IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) { |
| /* Immediate result is that the job is or might be |
| * started. In this case let's wait for the |
| * dependencies, regardless whether they are |
| * starting or stopping something. */ |
| |
| HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) |
| if (other->job) |
| return false; |
| } |
| |
| /* Also, if something else is being stopped and we should |
| * change state after it, then let's wait. */ |
| |
| HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) |
| if (other->job && |
| IN_SET(other->job->type, JOB_STOP, JOB_RESTART)) |
| return false; |
| |
| /* This means that for a service a and a service b where b |
| * shall be started after a: |
| * |
| * start a + start b → 1st step start a, 2nd step start b |
| * start a + stop b → 1st step stop b, 2nd step start a |
| * stop a + start b → 1st step stop a, 2nd step start b |
| * stop a + stop b → 1st step stop b, 2nd step stop a |
| * |
| * This has the side effect that restarts are properly |
| * synchronized too. */ |
| |
| return true; |
| } |
| |
| static void job_change_type(Job *j, JobType newtype) { |
| assert(j); |
| |
| log_unit_debug(j->unit, |
| "Converting job %s/%s -> %s/%s", |
| j->unit->id, job_type_to_string(j->type), |
| j->unit->id, job_type_to_string(newtype)); |
| |
| j->type = newtype; |
| } |
| |
| static int job_perform_on_unit(Job **j) { |
| uint32_t id; |
| Manager *m; |
| JobType t; |
| Unit *u; |
| int r; |
| |
| /* While we execute this operation the job might go away (for |
| * example: because it finishes immediately or is replaced by |
| * a new, conflicting job.) To make sure we don't access a |
| * freed job later on we store the id here, so that we can |
| * verify the job is still valid. */ |
| |
| assert(j); |
| assert(*j); |
| |
| m = (*j)->manager; |
| u = (*j)->unit; |
| t = (*j)->type; |
| id = (*j)->id; |
| |
| switch (t) { |
| case JOB_START: |
| r = unit_start(u); |
| break; |
| |
| case JOB_RESTART: |
| t = JOB_STOP; |
| _fallthrough_; |
| case JOB_STOP: |
| r = unit_stop(u); |
| break; |
| |
| case JOB_RELOAD: |
| r = unit_reload(u); |
| break; |
| |
| default: |
| assert_not_reached("Invalid job type"); |
| } |
| |
| /* Log if the job still exists and the start/stop/reload function |
| * actually did something. */ |
| *j = manager_get_job(m, id); |
| if (*j && r > 0) |
| unit_status_emit_starting_stopping_reloading(u, t); |
| |
| return r; |
| } |
| |
| int job_run_and_invalidate(Job *j) { |
| int r; |
| |
| assert(j); |
| assert(j->installed); |
| assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION); |
| assert(j->in_run_queue); |
| |
| LIST_REMOVE(run_queue, j->manager->run_queue, j); |
| j->in_run_queue = false; |
| |
| if (j->state != JOB_WAITING) |
| return 0; |
| |
| if (!job_is_runnable(j)) |
| return -EAGAIN; |
| |
| job_start_timer(j, true); |
| job_set_state(j, JOB_RUNNING); |
| job_add_to_dbus_queue(j); |
| |
| switch (j->type) { |
| |
| case JOB_VERIFY_ACTIVE: { |
| UnitActiveState t = unit_active_state(j->unit); |
| if (UNIT_IS_ACTIVE_OR_RELOADING(t)) |
| r = -EALREADY; |
| else if (t == UNIT_ACTIVATING) |
| r = -EAGAIN; |
| else |
| r = -EBADR; |
| break; |
| } |
| |
| case JOB_START: |
| case JOB_STOP: |
| case JOB_RESTART: |
| r = job_perform_on_unit(&j); |
| |
| /* If the unit type does not support starting/stopping, |
| * then simply wait. */ |
| if (r == -EBADR) |
| r = 0; |
| break; |
| |
| case JOB_RELOAD: |
| r = job_perform_on_unit(&j); |
| break; |
| |
| case JOB_NOP: |
| r = -EALREADY; |
| break; |
| |
| default: |
| assert_not_reached("Unknown job type"); |
| } |
| |
| if (j) { |
| if (r == -EALREADY) |
| r = job_finish_and_invalidate(j, JOB_DONE, true, true); |
| else if (r == -EBADR) |
| r = job_finish_and_invalidate(j, JOB_SKIPPED, true, false); |
| else if (r == -ENOEXEC) |
| r = job_finish_and_invalidate(j, JOB_INVALID, true, false); |
| else if (r == -EPROTO) |
| r = job_finish_and_invalidate(j, JOB_ASSERT, true, false); |
| else if (r == -EOPNOTSUPP) |
| r = job_finish_and_invalidate(j, JOB_UNSUPPORTED, true, false); |
| else if (r == -ENOLINK) |
| r = job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false); |
| else if (r == -ESTALE) |
| r = job_finish_and_invalidate(j, JOB_ONCE, true, false); |
| else if (r == -EAGAIN) |
| job_set_state(j, JOB_WAITING); |
| else if (r < 0) |
| r = job_finish_and_invalidate(j, JOB_FAILED, true, false); |
| } |
| |
| return r; |
| } |
| |
| _pure_ static const char *job_get_status_message_format(Unit *u, JobType t, JobResult result) { |
| |
| static const char *const generic_finished_start_job[_JOB_RESULT_MAX] = { |
| [JOB_DONE] = "Started %s.", |
| [JOB_TIMEOUT] = "Timed out starting %s.", |
| [JOB_FAILED] = "Failed to start %s.", |
| [JOB_DEPENDENCY] = "Dependency failed for %s.", |
| [JOB_ASSERT] = "Assertion failed for %s.", |
| [JOB_UNSUPPORTED] = "Starting of %s not supported.", |
| [JOB_COLLECTED] = "Unnecessary job for %s was removed.", |
| [JOB_ONCE] = "Unit %s has been started before and cannot be started again." |
| }; |
| static const char *const generic_finished_stop_job[_JOB_RESULT_MAX] = { |
| [JOB_DONE] = "Stopped %s.", |
| [JOB_FAILED] = "Stopped (with error) %s.", |
| [JOB_TIMEOUT] = "Timed out stopping %s.", |
| }; |
| static const char *const generic_finished_reload_job[_JOB_RESULT_MAX] = { |
| [JOB_DONE] = "Reloaded %s.", |
| [JOB_FAILED] = "Reload failed for %s.", |
| [JOB_TIMEOUT] = "Timed out reloading %s.", |
| }; |
| /* When verify-active detects the unit is inactive, report it. |
| * Most likely a DEPEND warning from a requisiting unit will |
| * occur next and it's nice to see what was requisited. */ |
| static const char *const generic_finished_verify_active_job[_JOB_RESULT_MAX] = { |
| [JOB_SKIPPED] = "%s is not active.", |
| }; |
| |
| const UnitStatusMessageFormats *format_table; |
| const char *format; |
| |
| assert(u); |
| assert(t >= 0); |
| assert(t < _JOB_TYPE_MAX); |
| |
| if (IN_SET(t, JOB_START, JOB_STOP, JOB_RESTART)) { |
| format_table = &UNIT_VTABLE(u)->status_message_formats; |
| if (format_table) { |
| format = t == JOB_START ? format_table->finished_start_job[result] : |
| format_table->finished_stop_job[result]; |
| if (format) |
| return format; |
| } |
| } |
| |
| /* Return generic strings */ |
| if (t == JOB_START) |
| return generic_finished_start_job[result]; |
| else if (IN_SET(t, JOB_STOP, JOB_RESTART)) |
| return generic_finished_stop_job[result]; |
| else if (t == JOB_RELOAD) |
| return generic_finished_reload_job[result]; |
| else if (t == JOB_VERIFY_ACTIVE) |
| return generic_finished_verify_active_job[result]; |
| |
| return NULL; |
| } |
| |
| static const struct { |
| const char *color, *word; |
| } job_print_status_messages [_JOB_RESULT_MAX] = { |
| [JOB_DONE] = { ANSI_OK_COLOR, " OK " }, |
| [JOB_TIMEOUT] = { ANSI_HIGHLIGHT_RED, " TIME " }, |
| [JOB_FAILED] = { ANSI_HIGHLIGHT_RED, "FAILED" }, |
| [JOB_DEPENDENCY] = { ANSI_HIGHLIGHT_YELLOW, "DEPEND" }, |
| [JOB_SKIPPED] = { ANSI_HIGHLIGHT, " INFO " }, |
| [JOB_ASSERT] = { ANSI_HIGHLIGHT_YELLOW, "ASSERT" }, |
| [JOB_UNSUPPORTED] = { ANSI_HIGHLIGHT_YELLOW, "UNSUPP" }, |
| /* JOB_COLLECTED */ |
| [JOB_ONCE] = { ANSI_HIGHLIGHT_RED, " ONCE " }, |
| }; |
| |
| static void job_print_status_message(Unit *u, JobType t, JobResult result) { |
| const char *format; |
| const char *status; |
| |
| assert(u); |
| assert(t >= 0); |
| assert(t < _JOB_TYPE_MAX); |
| |
| /* Reload status messages have traditionally not been printed to console. */ |
| if (t == JOB_RELOAD) |
| return; |
| |
| if (!job_print_status_messages[result].word) |
| return; |
| |
| format = job_get_status_message_format(u, t, result); |
| if (!format) |
| return; |
| |
| if (log_get_show_color()) |
| status = strjoina(job_print_status_messages[result].color, |
| job_print_status_messages[result].word, |
| ANSI_NORMAL); |
| else |
| status = job_print_status_messages[result].word; |
| |
| if (result != JOB_DONE) |
| manager_flip_auto_status(u->manager, true); |
| |
| DISABLE_WARNING_FORMAT_NONLITERAL; |
| unit_status_printf(u, status, format); |
| REENABLE_WARNING; |
| |
| if (t == JOB_START && result == JOB_FAILED) { |
| _cleanup_free_ char *quoted; |
| |
| quoted = shell_maybe_quote(u->id, ESCAPE_BACKSLASH); |
| manager_status_printf(u->manager, STATUS_TYPE_NORMAL, NULL, "See 'systemctl status %s' for details.", strna(quoted)); |
| } |
| } |
| |
| static void job_log_status_message(Unit *u, JobType t, JobResult result) { |
| const char *format, *mid; |
| char buf[LINE_MAX]; |
| static const int job_result_log_level[_JOB_RESULT_MAX] = { |
| [JOB_DONE] = LOG_INFO, |
| [JOB_CANCELED] = LOG_INFO, |
| [JOB_TIMEOUT] = LOG_ERR, |
| [JOB_FAILED] = LOG_ERR, |
| [JOB_DEPENDENCY] = LOG_WARNING, |
| [JOB_SKIPPED] = LOG_NOTICE, |
| [JOB_INVALID] = LOG_INFO, |
| [JOB_ASSERT] = LOG_WARNING, |
| [JOB_UNSUPPORTED] = LOG_WARNING, |
| [JOB_COLLECTED] = LOG_INFO, |
| [JOB_ONCE] = LOG_ERR, |
| }; |
| |
| assert(u); |
| assert(t >= 0); |
| assert(t < _JOB_TYPE_MAX); |
| |
| /* Skip printing if output goes to the console, and job_print_status_message() |
| will actually print something to the console. */ |
| if (log_on_console() && job_print_status_messages[result].word) |
| return; |
| |
| format = job_get_status_message_format(u, t, result); |
| if (!format) |
| return; |
| |
| /* The description might be longer than the buffer, but that's OK, |
| * we'll just truncate it here. Note that we use snprintf() rather than |
| * xsprintf() on purpose here: we are fine with truncation and don't |
| * consider that an error. */ |
| DISABLE_WARNING_FORMAT_NONLITERAL; |
| (void) snprintf(buf, sizeof(buf), format, unit_description(u)); |
| REENABLE_WARNING; |
| |
| switch (t) { |
| |
| case JOB_START: |
| if (result == JOB_DONE) |
| mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR; |
| else |
| mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILED_STR; |
| break; |
| |
| case JOB_RELOAD: |
| mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADED_STR; |
| break; |
| |
| case JOB_STOP: |
| case JOB_RESTART: |
| mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPED_STR; |
| break; |
| |
| default: |
| log_struct(job_result_log_level[result], |
| LOG_MESSAGE("%s", buf), |
| "JOB_TYPE=%s", job_type_to_string(t), |
| "JOB_RESULT=%s", job_result_to_string(result), |
| LOG_UNIT_ID(u), |
| LOG_UNIT_INVOCATION_ID(u)); |
| return; |
| } |
| |
| log_struct(job_result_log_level[result], |
| LOG_MESSAGE("%s", buf), |
| "JOB_TYPE=%s", job_type_to_string(t), |
| "JOB_RESULT=%s", job_result_to_string(result), |
| LOG_UNIT_ID(u), |
| LOG_UNIT_INVOCATION_ID(u), |
| mid); |
| } |
| |
| static void job_emit_status_message(Unit *u, JobType t, JobResult result) { |
| assert(u); |
| |
| /* No message if the job did not actually do anything due to failed condition. */ |
| if (t == JOB_START && result == JOB_DONE && !u->condition_result) |
| return; |
| |
| job_log_status_message(u, t, result); |
| job_print_status_message(u, t, result); |
| } |
| |
| static void job_fail_dependencies(Unit *u, UnitDependency d) { |
| Unit *other; |
| Iterator i; |
| void *v; |
| |
| assert(u); |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[d], i) { |
| Job *j = other->job; |
| |
| if (!j) |
| continue; |
| if (!IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE)) |
| continue; |
| |
| job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false); |
| } |
| } |
| |
| static int job_save_pending_finished_job(Job *j) { |
| int r; |
| |
| assert(j); |
| |
| r = set_ensure_allocated(&j->manager->pending_finished_jobs, NULL); |
| if (r < 0) |
| return r; |
| |
| job_unlink(j); |
| return set_put(j->manager->pending_finished_jobs, j); |
| } |
| |
| int job_finish_and_invalidate(Job *j, JobResult result, bool recursive, bool already) { |
| Unit *u; |
| Unit *other; |
| JobType t; |
| Iterator i; |
| void *v; |
| |
| assert(j); |
| assert(j->installed); |
| assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION); |
| |
| u = j->unit; |
| t = j->type; |
| |
| j->result = result; |
| |
| log_unit_debug(u, "Job %s/%s finished, result=%s", u->id, job_type_to_string(t), job_result_to_string(result)); |
| |
| /* If this job did nothing to respective unit we don't log the status message */ |
| if (!already) |
| job_emit_status_message(u, t, result); |
| |
| /* Patch restart jobs so that they become normal start jobs */ |
| if (result == JOB_DONE && t == JOB_RESTART) { |
| |
| job_change_type(j, JOB_START); |
| job_set_state(j, JOB_WAITING); |
| |
| job_add_to_dbus_queue(j); |
| job_add_to_run_queue(j); |
| job_add_to_gc_queue(j); |
| |
| goto finish; |
| } |
| |
| if (IN_SET(result, JOB_FAILED, JOB_INVALID)) |
| j->manager->n_failed_jobs++; |
| |
| job_uninstall(j); |
| /* Keep jobs started before the reload to send singal later, free all others */ |
| if (!MANAGER_IS_RELOADING(j->manager) || |
| !j->reloaded || |
| job_save_pending_finished_job(j) < 0) |
| job_free(j); |
| |
| /* Fail depending jobs on failure */ |
| if (result != JOB_DONE && recursive) { |
| if (IN_SET(t, JOB_START, JOB_VERIFY_ACTIVE)) { |
| job_fail_dependencies(u, UNIT_REQUIRED_BY); |
| job_fail_dependencies(u, UNIT_REQUISITE_OF); |
| job_fail_dependencies(u, UNIT_BOUND_BY); |
| } else if (t == JOB_STOP) |
| job_fail_dependencies(u, UNIT_CONFLICTED_BY); |
| } |
| |
| /* Trigger OnFailure dependencies that are not generated by |
| * the unit itself. We don't treat JOB_CANCELED as failure in |
| * this context. And JOB_FAILURE is already handled by the |
| * unit itself. */ |
| if (IN_SET(result, JOB_TIMEOUT, JOB_DEPENDENCY)) { |
| log_struct(LOG_NOTICE, |
| "JOB_TYPE=%s", job_type_to_string(t), |
| "JOB_RESULT=%s", job_result_to_string(result), |
| LOG_UNIT_ID(u), |
| LOG_UNIT_MESSAGE(u, "Job %s/%s failed with result '%s'.", |
| u->id, |
| job_type_to_string(t), |
| job_result_to_string(result))); |
| |
| unit_start_on_failure(u); |
| } |
| |
| unit_trigger_notify(u); |
| |
| finish: |
| /* Try to start the next jobs that can be started */ |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_AFTER], i) |
| if (other->job) { |
| job_add_to_run_queue(other->job); |
| job_add_to_gc_queue(other->job); |
| } |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BEFORE], i) |
| if (other->job) { |
| job_add_to_run_queue(other->job); |
| job_add_to_gc_queue(other->job); |
| } |
| |
| manager_check_finished(u->manager); |
| |
| return 0; |
| } |
| |
| static int job_dispatch_timer(sd_event_source *s, uint64_t monotonic, void *userdata) { |
| Job *j = userdata; |
| Unit *u; |
| |
| assert(j); |
| assert(s == j->timer_event_source); |
| |
| log_unit_warning(j->unit, "Job %s/%s timed out.", j->unit->id, job_type_to_string(j->type)); |
| |
| u = j->unit; |
| job_finish_and_invalidate(j, JOB_TIMEOUT, true, false); |
| |
| emergency_action(u->manager, u->job_timeout_action, u->job_timeout_reboot_arg, "job timed out"); |
| |
| return 0; |
| } |
| |
| int job_start_timer(Job *j, bool job_running) { |
| int r; |
| usec_t timeout_time, old_timeout_time; |
| |
| if (job_running) { |
| j->begin_running_usec = now(CLOCK_MONOTONIC); |
| |
| if (j->unit->job_running_timeout == USEC_INFINITY) |
| return 0; |
| |
| timeout_time = usec_add(j->begin_running_usec, j->unit->job_running_timeout); |
| |
| if (j->timer_event_source) { |
| /* Update only if JobRunningTimeoutSec= results in earlier timeout */ |
| r = sd_event_source_get_time(j->timer_event_source, &old_timeout_time); |
| if (r < 0) |
| return r; |
| |
| if (old_timeout_time <= timeout_time) |
| return 0; |
| |
| return sd_event_source_set_time(j->timer_event_source, timeout_time); |
| } |
| } else { |
| if (j->timer_event_source) |
| return 0; |
| |
| j->begin_usec = now(CLOCK_MONOTONIC); |
| |
| if (j->unit->job_timeout == USEC_INFINITY) |
| return 0; |
| |
| timeout_time = usec_add(j->begin_usec, j->unit->job_timeout); |
| } |
| |
| r = sd_event_add_time( |
| j->manager->event, |
| &j->timer_event_source, |
| CLOCK_MONOTONIC, |
| timeout_time, 0, |
| job_dispatch_timer, j); |
| if (r < 0) |
| return r; |
| |
| (void) sd_event_source_set_description(j->timer_event_source, "job-start"); |
| |
| return 0; |
| } |
| |
| void job_add_to_run_queue(Job *j) { |
| assert(j); |
| assert(j->installed); |
| |
| if (j->in_run_queue) |
| return; |
| |
| if (!j->manager->run_queue) |
| sd_event_source_set_enabled(j->manager->run_queue_event_source, SD_EVENT_ONESHOT); |
| |
| LIST_PREPEND(run_queue, j->manager->run_queue, j); |
| j->in_run_queue = true; |
| } |
| |
| void job_add_to_dbus_queue(Job *j) { |
| assert(j); |
| assert(j->installed); |
| |
| if (j->in_dbus_queue) |
| return; |
| |
| /* We don't check if anybody is subscribed here, since this |
| * job might just have been created and not yet assigned to a |
| * connection/client. */ |
| |
| LIST_PREPEND(dbus_queue, j->manager->dbus_job_queue, j); |
| j->in_dbus_queue = true; |
| } |
| |
| char *job_dbus_path(Job *j) { |
| char *p; |
| |
| assert(j); |
| |
| if (asprintf(&p, "/org/freedesktop/systemd1/job/%"PRIu32, j->id) < 0) |
| return NULL; |
| |
| return p; |
| } |
| |
| int job_serialize(Job *j, FILE *f) { |
| assert(j); |
| assert(f); |
| |
| fprintf(f, "job-id=%u\n", j->id); |
| fprintf(f, "job-type=%s\n", job_type_to_string(j->type)); |
| fprintf(f, "job-state=%s\n", job_state_to_string(j->state)); |
| fprintf(f, "job-irreversible=%s\n", yes_no(j->irreversible)); |
| fprintf(f, "job-sent-dbus-new-signal=%s\n", yes_no(j->sent_dbus_new_signal)); |
| fprintf(f, "job-ignore-order=%s\n", yes_no(j->ignore_order)); |
| |
| if (j->begin_usec > 0) |
| fprintf(f, "job-begin="USEC_FMT"\n", j->begin_usec); |
| if (j->begin_running_usec > 0) |
| fprintf(f, "job-begin-running="USEC_FMT"\n", j->begin_running_usec); |
| |
| bus_track_serialize(j->bus_track, f, "subscribed"); |
| |
| /* End marker */ |
| fputc('\n', f); |
| return 0; |
| } |
| |
| int job_deserialize(Job *j, FILE *f) { |
| int r; |
| |
| assert(j); |
| assert(f); |
| |
| for (;;) { |
| _cleanup_free_ char *line = NULL; |
| char *l, *v; |
| size_t k; |
| |
| r = read_line(f, LONG_LINE_MAX, &line); |
| if (r < 0) |
| return log_error_errno(r, "Failed to read serialization line: %m"); |
| if (r == 0) |
| return 0; |
| |
| l = strstrip(line); |
| |
| /* End marker */ |
| if (isempty(l)) |
| return 0; |
| |
| k = strcspn(l, "="); |
| |
| if (l[k] == '=') { |
| l[k] = 0; |
| v = l+k+1; |
| } else |
| v = l+k; |
| |
| if (streq(l, "job-id")) { |
| |
| if (safe_atou32(v, &j->id) < 0) |
| log_debug("Failed to parse job id value %s", v); |
| |
| } else if (streq(l, "job-type")) { |
| JobType t; |
| |
| t = job_type_from_string(v); |
| if (t < 0) |
| log_debug("Failed to parse job type %s", v); |
| else if (t >= _JOB_TYPE_MAX_IN_TRANSACTION) |
| log_debug("Cannot deserialize job of type %s", v); |
| else |
| j->type = t; |
| |
| } else if (streq(l, "job-state")) { |
| JobState s; |
| |
| s = job_state_from_string(v); |
| if (s < 0) |
| log_debug("Failed to parse job state %s", v); |
| else |
| job_set_state(j, s); |
| |
| } else if (streq(l, "job-irreversible")) { |
| int b; |
| |
| b = parse_boolean(v); |
| if (b < 0) |
| log_debug("Failed to parse job irreversible flag %s", v); |
| else |
| j->irreversible = j->irreversible || b; |
| |
| } else if (streq(l, "job-sent-dbus-new-signal")) { |
| int b; |
| |
| b = parse_boolean(v); |
| if (b < 0) |
| log_debug("Failed to parse job sent_dbus_new_signal flag %s", v); |
| else |
| j->sent_dbus_new_signal = j->sent_dbus_new_signal || b; |
| |
| } else if (streq(l, "job-ignore-order")) { |
| int b; |
| |
| b = parse_boolean(v); |
| if (b < 0) |
| log_debug("Failed to parse job ignore_order flag %s", v); |
| else |
| j->ignore_order = j->ignore_order || b; |
| |
| } else if (streq(l, "job-begin")) { |
| unsigned long long ull; |
| |
| if (sscanf(v, "%llu", &ull) != 1) |
| log_debug("Failed to parse job-begin value %s", v); |
| else |
| j->begin_usec = ull; |
| |
| } else if (streq(l, "job-begin-running")) { |
| unsigned long long ull; |
| |
| if (sscanf(v, "%llu", &ull) != 1) |
| log_debug("Failed to parse job-begin-running value %s", v); |
| else |
| j->begin_running_usec = ull; |
| |
| } else if (streq(l, "subscribed")) { |
| |
| if (strv_extend(&j->deserialized_clients, v) < 0) |
| log_oom(); |
| } |
| } |
| } |
| |
| int job_coldplug(Job *j) { |
| int r; |
| usec_t timeout_time = USEC_INFINITY; |
| |
| assert(j); |
| |
| /* After deserialization is complete and the bus connection |
| * set up again, let's start watching our subscribers again */ |
| (void) bus_job_coldplug_bus_track(j); |
| |
| if (j->state == JOB_WAITING) |
| job_add_to_run_queue(j); |
| |
| /* Maybe due to new dependencies we don't actually need this job anymore? */ |
| job_add_to_gc_queue(j); |
| |
| /* Create timer only when job began or began running and the respective timeout is finite. |
| * Follow logic of job_start_timer() if both timeouts are finite */ |
| if (j->begin_usec == 0) |
| return 0; |
| |
| if (j->unit->job_timeout != USEC_INFINITY) |
| timeout_time = usec_add(j->begin_usec, j->unit->job_timeout); |
| |
| if (j->begin_running_usec > 0 && j->unit->job_running_timeout != USEC_INFINITY) |
| timeout_time = MIN(timeout_time, usec_add(j->begin_running_usec, j->unit->job_running_timeout)); |
| |
| if (timeout_time == USEC_INFINITY) |
| return 0; |
| |
| j->timer_event_source = sd_event_source_unref(j->timer_event_source); |
| |
| r = sd_event_add_time( |
| j->manager->event, |
| &j->timer_event_source, |
| CLOCK_MONOTONIC, |
| timeout_time, 0, |
| job_dispatch_timer, j); |
| if (r < 0) |
| log_debug_errno(r, "Failed to restart timeout for job: %m"); |
| |
| (void) sd_event_source_set_description(j->timer_event_source, "job-timeout"); |
| |
| return r; |
| } |
| |
| void job_shutdown_magic(Job *j) { |
| assert(j); |
| |
| /* The shutdown target gets some special treatment here: we |
| * tell the kernel to begin with flushing its disk caches, to |
| * optimize shutdown time a bit. Ideally we wouldn't hardcode |
| * this magic into PID 1. However all other processes aren't |
| * options either since they'd exit much sooner than PID 1 and |
| * asynchronous sync() would cause their exit to be |
| * delayed. */ |
| |
| if (j->type != JOB_START) |
| return; |
| |
| if (!MANAGER_IS_SYSTEM(j->unit->manager)) |
| return; |
| |
| if (!unit_has_name(j->unit, SPECIAL_SHUTDOWN_TARGET)) |
| return; |
| |
| /* In case messages on console has been disabled on boot */ |
| j->unit->manager->no_console_output = false; |
| |
| if (detect_container() > 0) |
| return; |
| |
| (void) asynchronous_sync(NULL); |
| } |
| |
| int job_get_timeout(Job *j, usec_t *timeout) { |
| usec_t x = USEC_INFINITY, y = USEC_INFINITY; |
| Unit *u = j->unit; |
| int r; |
| |
| assert(u); |
| |
| if (j->timer_event_source) { |
| r = sd_event_source_get_time(j->timer_event_source, &x); |
| if (r < 0) |
| return r; |
| } |
| |
| if (UNIT_VTABLE(u)->get_timeout) { |
| r = UNIT_VTABLE(u)->get_timeout(u, &y); |
| if (r < 0) |
| return r; |
| } |
| |
| if (x == USEC_INFINITY && y == USEC_INFINITY) |
| return 0; |
| |
| *timeout = MIN(x, y); |
| return 1; |
| } |
| |
| bool job_may_gc(Job *j) { |
| Unit *other; |
| Iterator i; |
| void *v; |
| |
| assert(j); |
| |
| /* Checks whether this job should be GC'ed away. We only do this for jobs of units that have no effect on their |
| * own and just track external state. For now the only unit type that qualifies for this are .device units. |
| * Returns true if the job can be collected. */ |
| |
| if (!UNIT_VTABLE(j->unit)->gc_jobs) |
| return false; |
| |
| if (sd_bus_track_count(j->bus_track) > 0) |
| return false; |
| |
| /* FIXME: So this is a bit ugly: for now we don't properly track references made via private bus connections |
| * (because it's nasty, as sd_bus_track doesn't apply to it). We simply remember that the job was once |
| * referenced by one, and reset this whenever we notice that no private bus connections are around. This means |
| * the GC is a bit too conservative when it comes to jobs created by private bus connections. */ |
| if (j->ref_by_private_bus) { |
| if (set_isempty(j->unit->manager->private_buses)) |
| j->ref_by_private_bus = false; |
| else |
| return false; |
| } |
| |
| if (j->type == JOB_NOP) |
| return false; |
| |
| /* If a job is ordered after ours, and is to be started, then it needs to wait for us, regardless if we stop or |
| * start, hence let's not GC in that case. */ |
| HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) { |
| if (!other->job) |
| continue; |
| |
| if (other->job->ignore_order) |
| continue; |
| |
| if (IN_SET(other->job->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) |
| return false; |
| } |
| |
| /* If we are going down, but something else is ordered After= us, then it needs to wait for us */ |
| if (IN_SET(j->type, JOB_STOP, JOB_RESTART)) |
| HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) { |
| if (!other->job) |
| continue; |
| |
| if (other->job->ignore_order) |
| continue; |
| |
| return false; |
| } |
| |
| /* The logic above is kinda the inverse of the job_is_runnable() logic. Specifically, if the job "we" is |
| * ordered before the job "other": |
| * |
| * we start + other start → stay |
| * we start + other stop → gc |
| * we stop + other start → stay |
| * we stop + other stop → gc |
| * |
| * "we" are ordered after "other": |
| * |
| * we start + other start → gc |
| * we start + other stop → gc |
| * we stop + other start → stay |
| * we stop + other stop → stay |
| * |
| */ |
| |
| return true; |
| } |
| |
| void job_add_to_gc_queue(Job *j) { |
| assert(j); |
| |
| if (j->in_gc_queue) |
| return; |
| |
| if (!job_may_gc(j)) |
| return; |
| |
| LIST_PREPEND(gc_queue, j->unit->manager->gc_job_queue, j); |
| j->in_gc_queue = true; |
| } |
| |
| static int job_compare(const void *a, const void *b) { |
| Job *x = *(Job**) a, *y = *(Job**) b; |
| |
| if (x->id < y->id) |
| return -1; |
| if (x->id > y->id) |
| return 1; |
| |
| return 0; |
| } |
| |
| static size_t sort_job_list(Job **list, size_t n) { |
| Job *previous = NULL; |
| size_t a, b; |
| |
| /* Order by numeric IDs */ |
| qsort_safe(list, n, sizeof(Job*), job_compare); |
| |
| /* Filter out duplicates */ |
| for (a = 0, b = 0; a < n; a++) { |
| |
| if (previous == list[a]) |
| continue; |
| |
| previous = list[b++] = list[a]; |
| } |
| |
| return b; |
| } |
| |
| int job_get_before(Job *j, Job*** ret) { |
| _cleanup_free_ Job** list = NULL; |
| size_t n = 0, n_allocated = 0; |
| Unit *other = NULL; |
| Iterator i; |
| void *v; |
| |
| /* Returns a list of all pending jobs that need to finish before this job may be started. */ |
| |
| assert(j); |
| assert(ret); |
| |
| if (j->ignore_order) { |
| *ret = NULL; |
| return 0; |
| } |
| |
| if (IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) { |
| |
| HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) { |
| if (!other->job) |
| continue; |
| |
| if (!GREEDY_REALLOC(list, n_allocated, n+1)) |
| return -ENOMEM; |
| list[n++] = other->job; |
| } |
| } |
| |
| HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) { |
| if (!other->job) |
| continue; |
| |
| if (!IN_SET(other->job->type, JOB_STOP, JOB_RESTART)) |
| continue; |
| |
| if (!GREEDY_REALLOC(list, n_allocated, n+1)) |
| return -ENOMEM; |
| list[n++] = other->job; |
| } |
| |
| n = sort_job_list(list, n); |
| |
| *ret = TAKE_PTR(list); |
| |
| return (int) n; |
| } |
| |
| int job_get_after(Job *j, Job*** ret) { |
| _cleanup_free_ Job** list = NULL; |
| size_t n = 0, n_allocated = 0; |
| Unit *other = NULL; |
| void *v; |
| Iterator i; |
| |
| assert(j); |
| assert(ret); |
| |
| /* Returns a list of all pending jobs that are waiting for this job to finish. */ |
| |
| HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE], i) { |
| if (!other->job) |
| continue; |
| |
| if (other->job->ignore_order) |
| continue; |
| |
| if (!IN_SET(other->job->type, JOB_START, JOB_VERIFY_ACTIVE, JOB_RELOAD)) |
| continue; |
| |
| if (!GREEDY_REALLOC(list, n_allocated, n+1)) |
| return -ENOMEM; |
| list[n++] = other->job; |
| } |
| |
| if (IN_SET(j->type, JOB_STOP, JOB_RESTART)) { |
| |
| HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER], i) { |
| if (!other->job) |
| continue; |
| |
| if (other->job->ignore_order) |
| continue; |
| |
| if (!GREEDY_REALLOC(list, n_allocated, n+1)) |
| return -ENOMEM; |
| list[n++] = other->job; |
| } |
| } |
| |
| n = sort_job_list(list, n); |
| |
| *ret = TAKE_PTR(list); |
| |
| return (int) n; |
| } |
| |
| static const char* const job_state_table[_JOB_STATE_MAX] = { |
| [JOB_WAITING] = "waiting", |
| [JOB_RUNNING] = "running", |
| }; |
| |
| DEFINE_STRING_TABLE_LOOKUP(job_state, JobState); |
| |
| static const char* const job_type_table[_JOB_TYPE_MAX] = { |
| [JOB_START] = "start", |
| [JOB_VERIFY_ACTIVE] = "verify-active", |
| [JOB_STOP] = "stop", |
| [JOB_RELOAD] = "reload", |
| [JOB_RELOAD_OR_START] = "reload-or-start", |
| [JOB_RESTART] = "restart", |
| [JOB_TRY_RESTART] = "try-restart", |
| [JOB_TRY_RELOAD] = "try-reload", |
| [JOB_NOP] = "nop", |
| }; |
| |
| DEFINE_STRING_TABLE_LOOKUP(job_type, JobType); |
| |
| static const char* const job_mode_table[_JOB_MODE_MAX] = { |
| [JOB_FAIL] = "fail", |
| [JOB_REPLACE] = "replace", |
| [JOB_REPLACE_IRREVERSIBLY] = "replace-irreversibly", |
| [JOB_ISOLATE] = "isolate", |
| [JOB_FLUSH] = "flush", |
| [JOB_IGNORE_DEPENDENCIES] = "ignore-dependencies", |
| [JOB_IGNORE_REQUIREMENTS] = "ignore-requirements", |
| }; |
| |
| DEFINE_STRING_TABLE_LOOKUP(job_mode, JobMode); |
| |
| static const char* const job_result_table[_JOB_RESULT_MAX] = { |
| [JOB_DONE] = "done", |
| [JOB_CANCELED] = "canceled", |
| [JOB_TIMEOUT] = "timeout", |
| [JOB_FAILED] = "failed", |
| [JOB_DEPENDENCY] = "dependency", |
| [JOB_SKIPPED] = "skipped", |
| [JOB_INVALID] = "invalid", |
| [JOB_ASSERT] = "assert", |
| [JOB_UNSUPPORTED] = "unsupported", |
| [JOB_COLLECTED] = "collected", |
| [JOB_ONCE] = "once", |
| }; |
| |
| DEFINE_STRING_TABLE_LOOKUP(job_result, JobResult); |
| |
| const char* job_type_to_access_method(JobType t) { |
| assert(t >= 0); |
| assert(t < _JOB_TYPE_MAX); |
| |
| if (IN_SET(t, JOB_START, JOB_RESTART, JOB_TRY_RESTART)) |
| return "start"; |
| else if (t == JOB_STOP) |
| return "stop"; |
| else |
| return "reload"; |
| } |