| /* SPDX-License-Identifier: LGPL-2.1+ */ |
| /*** |
| This file is part of systemd. |
| |
| Copyright 2015 Lennart Poettering |
| |
| systemd is free software; you can redistribute it and/or modify it |
| under the terms of the GNU Lesser General Public License as published by |
| the Free Software Foundation; either version 2.1 of the License, or |
| (at your option) any later version. |
| |
| systemd is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public License |
| along with systemd; If not, see <http://www.gnu.org/licenses/>. |
| ***/ |
| |
| #include "sd-messages.h" |
| |
| #include "alloc-util.h" |
| #include "conf-files.h" |
| #include "def.h" |
| #include "dns-domain.h" |
| #include "fd-util.h" |
| #include "fileio.h" |
| #include "hexdecoct.h" |
| #include "parse-util.h" |
| #include "resolved-dns-trust-anchor.h" |
| #include "resolved-dns-dnssec.h" |
| #include "set.h" |
| #include "string-util.h" |
| #include "strv.h" |
| |
| static const char trust_anchor_dirs[] = CONF_PATHS_NULSTR("dnssec-trust-anchors.d"); |
| |
| /* The first DS RR from https://data.iana.org/root-anchors/root-anchors.xml, retrieved December 2015 */ |
| static const uint8_t root_digest1[] = |
| { 0x49, 0xAA, 0xC1, 0x1D, 0x7B, 0x6F, 0x64, 0x46, 0x70, 0x2E, 0x54, 0xA1, 0x60, 0x73, 0x71, 0x60, |
| 0x7A, 0x1A, 0x41, 0x85, 0x52, 0x00, 0xFD, 0x2C, 0xE1, 0xCD, 0xDE, 0x32, 0xF2, 0x4E, 0x8F, 0xB5 }; |
| |
| /* The second DS RR from https://data.iana.org/root-anchors/root-anchors.xml, retrieved February 2017 */ |
| static const uint8_t root_digest2[] = |
| { 0xE0, 0x6D, 0x44, 0xB8, 0x0B, 0x8F, 0x1D, 0x39, 0xA9, 0x5C, 0x0B, 0x0D, 0x7C, 0x65, 0xD0, 0x84, |
| 0x58, 0xE8, 0x80, 0x40, 0x9B, 0xBC, 0x68, 0x34, 0x57, 0x10, 0x42, 0x37, 0xC7, 0xF8, 0xEC, 0x8D }; |
| |
| static bool dns_trust_anchor_knows_domain_positive(DnsTrustAnchor *d, const char *name) { |
| assert(d); |
| |
| /* Returns true if there's an entry for the specified domain |
| * name in our trust anchor */ |
| |
| return |
| hashmap_contains(d->positive_by_key, &DNS_RESOURCE_KEY_CONST(DNS_CLASS_IN, DNS_TYPE_DNSKEY, name)) || |
| hashmap_contains(d->positive_by_key, &DNS_RESOURCE_KEY_CONST(DNS_CLASS_IN, DNS_TYPE_DS, name)); |
| } |
| |
| static int add_root_ksk( |
| DnsAnswer *answer, |
| DnsResourceKey *key, |
| uint16_t key_tag, |
| uint8_t algorithm, |
| uint8_t digest_type, |
| const void *digest, |
| size_t digest_size) { |
| |
| _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL; |
| int r; |
| |
| rr = dns_resource_record_new(key); |
| if (!rr) |
| return -ENOMEM; |
| |
| rr->ds.key_tag = key_tag; |
| rr->ds.algorithm = algorithm; |
| rr->ds.digest_type = digest_type; |
| rr->ds.digest_size = digest_size; |
| rr->ds.digest = memdup(digest, rr->ds.digest_size); |
| if (!rr->ds.digest) |
| return -ENOMEM; |
| |
| r = dns_answer_add(answer, rr, 0, DNS_ANSWER_AUTHENTICATED); |
| if (r < 0) |
| return r; |
| |
| return 0; |
| } |
| |
| static int dns_trust_anchor_add_builtin_positive(DnsTrustAnchor *d) { |
| _cleanup_(dns_answer_unrefp) DnsAnswer *answer = NULL; |
| _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL; |
| int r; |
| |
| assert(d); |
| |
| r = hashmap_ensure_allocated(&d->positive_by_key, &dns_resource_key_hash_ops); |
| if (r < 0) |
| return r; |
| |
| /* Only add the built-in trust anchor if there's neither a DS nor a DNSKEY defined for the root domain. That |
| * way users have an easy way to override the root domain DS/DNSKEY data. */ |
| if (dns_trust_anchor_knows_domain_positive(d, ".")) |
| return 0; |
| |
| key = dns_resource_key_new(DNS_CLASS_IN, DNS_TYPE_DS, ""); |
| if (!key) |
| return -ENOMEM; |
| |
| answer = dns_answer_new(2); |
| if (!answer) |
| return -ENOMEM; |
| |
| /* Add the two RRs from https://data.iana.org/root-anchors/root-anchors.xml */ |
| r = add_root_ksk(answer, key, 19036, DNSSEC_ALGORITHM_RSASHA256, DNSSEC_DIGEST_SHA256, root_digest1, sizeof(root_digest1)); |
| if (r < 0) |
| return r; |
| |
| r = add_root_ksk(answer, key, 20326, DNSSEC_ALGORITHM_RSASHA256, DNSSEC_DIGEST_SHA256, root_digest2, sizeof(root_digest2)); |
| if (r < 0) |
| return r; |
| |
| r = hashmap_put(d->positive_by_key, key, answer); |
| if (r < 0) |
| return r; |
| |
| answer = NULL; |
| return 0; |
| } |
| |
| static int dns_trust_anchor_add_builtin_negative(DnsTrustAnchor *d) { |
| |
| static const char private_domains[] = |
| /* RFC 6761 says that .test is a special domain for |
| * testing and not to be installed in the root zone */ |
| "test\0" |
| |
| /* RFC 6761 says that these reverse IP lookup ranges |
| * are for private addresses, and hence should not |
| * show up in the root zone */ |
| "10.in-addr.arpa\0" |
| "16.172.in-addr.arpa\0" |
| "17.172.in-addr.arpa\0" |
| "18.172.in-addr.arpa\0" |
| "19.172.in-addr.arpa\0" |
| "20.172.in-addr.arpa\0" |
| "21.172.in-addr.arpa\0" |
| "22.172.in-addr.arpa\0" |
| "23.172.in-addr.arpa\0" |
| "24.172.in-addr.arpa\0" |
| "25.172.in-addr.arpa\0" |
| "26.172.in-addr.arpa\0" |
| "27.172.in-addr.arpa\0" |
| "28.172.in-addr.arpa\0" |
| "29.172.in-addr.arpa\0" |
| "30.172.in-addr.arpa\0" |
| "31.172.in-addr.arpa\0" |
| "168.192.in-addr.arpa\0" |
| |
| /* The same, but for IPv6. */ |
| "d.f.ip6.arpa\0" |
| |
| /* RFC 6762 reserves the .local domain for Multicast |
| * DNS, it hence cannot appear in the root zone. (Note |
| * that we by default do not route .local traffic to |
| * DNS anyway, except when a configured search domain |
| * suggests so.) */ |
| "local\0" |
| |
| /* These two are well known, popular private zone |
| * TLDs, that are blocked from delegation, according |
| * to: |
| * http://icannwiki.com/Name_Collision#NGPC_Resolution |
| * |
| * There's also ongoing work on making this official |
| * in an RRC: |
| * https://www.ietf.org/archive/id/draft-chapin-additional-reserved-tlds-02.txt */ |
| "home\0" |
| "corp\0" |
| |
| /* The following four TLDs are suggested for private |
| * zones in RFC 6762, Appendix G, and are hence very |
| * unlikely to be made official TLDs any day soon */ |
| "lan\0" |
| "intranet\0" |
| "internal\0" |
| "private\0"; |
| |
| const char *name; |
| int r; |
| |
| assert(d); |
| |
| /* Only add the built-in trust anchor if there's no negative |
| * trust anchor defined at all. This enables easy overriding |
| * of negative trust anchors. */ |
| |
| if (set_size(d->negative_by_name) > 0) |
| return 0; |
| |
| r = set_ensure_allocated(&d->negative_by_name, &dns_name_hash_ops); |
| if (r < 0) |
| return r; |
| |
| /* We add a couple of domains as default negative trust |
| * anchors, where it's very unlikely they will be installed in |
| * the root zone. If they exist they must be private, and thus |
| * unsigned. */ |
| |
| NULSTR_FOREACH(name, private_domains) { |
| |
| if (dns_trust_anchor_knows_domain_positive(d, name)) |
| continue; |
| |
| r = set_put_strdup(d->negative_by_name, name); |
| if (r < 0) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| static int dns_trust_anchor_load_positive(DnsTrustAnchor *d, const char *path, unsigned line, const char *s) { |
| _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL; |
| _cleanup_free_ char *domain = NULL, *class = NULL, *type = NULL; |
| _cleanup_(dns_answer_unrefp) DnsAnswer *answer = NULL; |
| DnsAnswer *old_answer = NULL; |
| const char *p = s; |
| int r; |
| |
| assert(d); |
| assert(line); |
| |
| r = extract_first_word(&p, &domain, NULL, EXTRACT_QUOTES); |
| if (r < 0) |
| return log_warning_errno(r, "Unable to parse domain in line %s:%u: %m", path, line); |
| |
| if (!dns_name_is_valid(domain)) { |
| log_warning("Domain name %s is invalid, at line %s:%u, ignoring line.", domain, path, line); |
| return -EINVAL; |
| } |
| |
| r = extract_many_words(&p, NULL, 0, &class, &type, NULL); |
| if (r < 0) |
| return log_warning_errno(r, "Unable to parse class and type in line %s:%u: %m", path, line); |
| if (r != 2) { |
| log_warning("Missing class or type in line %s:%u", path, line); |
| return -EINVAL; |
| } |
| |
| if (!strcaseeq(class, "IN")) { |
| log_warning("RR class %s is not supported, ignoring line %s:%u.", class, path, line); |
| return -EINVAL; |
| } |
| |
| if (strcaseeq(type, "DS")) { |
| _cleanup_free_ char *key_tag = NULL, *algorithm = NULL, *digest_type = NULL, *digest = NULL; |
| _cleanup_free_ void *dd = NULL; |
| uint16_t kt; |
| int a, dt; |
| size_t l; |
| |
| r = extract_many_words(&p, NULL, 0, &key_tag, &algorithm, &digest_type, &digest, NULL); |
| if (r < 0) { |
| log_warning_errno(r, "Failed to parse DS parameters on line %s:%u: %m", path, line); |
| return -EINVAL; |
| } |
| if (r != 4) { |
| log_warning("Missing DS parameters on line %s:%u", path, line); |
| return -EINVAL; |
| } |
| |
| r = safe_atou16(key_tag, &kt); |
| if (r < 0) |
| return log_warning_errno(r, "Failed to parse DS key tag %s on line %s:%u: %m", key_tag, path, line); |
| |
| a = dnssec_algorithm_from_string(algorithm); |
| if (a < 0) { |
| log_warning("Failed to parse DS algorithm %s on line %s:%u", algorithm, path, line); |
| return -EINVAL; |
| } |
| |
| dt = dnssec_digest_from_string(digest_type); |
| if (dt < 0) { |
| log_warning("Failed to parse DS digest type %s on line %s:%u", digest_type, path, line); |
| return -EINVAL; |
| } |
| |
| r = unhexmem(digest, strlen(digest), &dd, &l); |
| if (r < 0) { |
| log_warning("Failed to parse DS digest %s on line %s:%u", digest, path, line); |
| return -EINVAL; |
| } |
| |
| rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_DS, domain); |
| if (!rr) |
| return log_oom(); |
| |
| rr->ds.key_tag = kt; |
| rr->ds.algorithm = a; |
| rr->ds.digest_type = dt; |
| rr->ds.digest_size = l; |
| rr->ds.digest = dd; |
| dd = NULL; |
| |
| } else if (strcaseeq(type, "DNSKEY")) { |
| _cleanup_free_ char *flags = NULL, *protocol = NULL, *algorithm = NULL, *key = NULL; |
| _cleanup_free_ void *k = NULL; |
| uint16_t f; |
| size_t l; |
| int a; |
| |
| r = extract_many_words(&p, NULL, 0, &flags, &protocol, &algorithm, &key, NULL); |
| if (r < 0) |
| return log_warning_errno(r, "Failed to parse DNSKEY parameters on line %s:%u: %m", path, line); |
| if (r != 4) { |
| log_warning("Missing DNSKEY parameters on line %s:%u", path, line); |
| return -EINVAL; |
| } |
| |
| if (!streq(protocol, "3")) { |
| log_warning("DNSKEY Protocol is not 3 on line %s:%u", path, line); |
| return -EINVAL; |
| } |
| |
| r = safe_atou16(flags, &f); |
| if (r < 0) |
| return log_warning_errno(r, "Failed to parse DNSKEY flags field %s on line %s:%u", flags, path, line); |
| if ((f & DNSKEY_FLAG_ZONE_KEY) == 0) { |
| log_warning("DNSKEY lacks zone key bit set on line %s:%u", path, line); |
| return -EINVAL; |
| } |
| if ((f & DNSKEY_FLAG_REVOKE)) { |
| log_warning("DNSKEY is already revoked on line %s:%u", path, line); |
| return -EINVAL; |
| } |
| |
| a = dnssec_algorithm_from_string(algorithm); |
| if (a < 0) { |
| log_warning("Failed to parse DNSKEY algorithm %s on line %s:%u", algorithm, path, line); |
| return -EINVAL; |
| } |
| |
| r = unbase64mem(key, strlen(key), &k, &l); |
| if (r < 0) |
| return log_warning_errno(r, "Failed to parse DNSKEY key data %s on line %s:%u", key, path, line); |
| |
| rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_DNSKEY, domain); |
| if (!rr) |
| return log_oom(); |
| |
| rr->dnskey.flags = f; |
| rr->dnskey.protocol = 3; |
| rr->dnskey.algorithm = a; |
| rr->dnskey.key_size = l; |
| rr->dnskey.key = k; |
| k = NULL; |
| |
| } else { |
| log_warning("RR type %s is not supported, ignoring line %s:%u.", type, path, line); |
| return -EINVAL; |
| } |
| |
| if (!isempty(p)) { |
| log_warning("Trailing garbage on line %s:%u, ignoring line.", path, line); |
| return -EINVAL; |
| } |
| |
| r = hashmap_ensure_allocated(&d->positive_by_key, &dns_resource_key_hash_ops); |
| if (r < 0) |
| return log_oom(); |
| |
| old_answer = hashmap_get(d->positive_by_key, rr->key); |
| answer = dns_answer_ref(old_answer); |
| |
| r = dns_answer_add_extend(&answer, rr, 0, DNS_ANSWER_AUTHENTICATED); |
| if (r < 0) |
| return log_error_errno(r, "Failed to add trust anchor RR: %m"); |
| |
| r = hashmap_replace(d->positive_by_key, rr->key, answer); |
| if (r < 0) |
| return log_error_errno(r, "Failed to add answer to trust anchor: %m"); |
| |
| old_answer = dns_answer_unref(old_answer); |
| answer = NULL; |
| |
| return 0; |
| } |
| |
| static int dns_trust_anchor_load_negative(DnsTrustAnchor *d, const char *path, unsigned line, const char *s) { |
| _cleanup_free_ char *domain = NULL; |
| const char *p = s; |
| int r; |
| |
| assert(d); |
| assert(line); |
| |
| r = extract_first_word(&p, &domain, NULL, EXTRACT_QUOTES); |
| if (r < 0) |
| return log_warning_errno(r, "Unable to parse line %s:%u: %m", path, line); |
| |
| if (!dns_name_is_valid(domain)) { |
| log_warning("Domain name %s is invalid, at line %s:%u, ignoring line.", domain, path, line); |
| return -EINVAL; |
| } |
| |
| if (!isempty(p)) { |
| log_warning("Trailing garbage at line %s:%u, ignoring line.", path, line); |
| return -EINVAL; |
| } |
| |
| r = set_ensure_allocated(&d->negative_by_name, &dns_name_hash_ops); |
| if (r < 0) |
| return log_oom(); |
| |
| r = set_put(d->negative_by_name, domain); |
| if (r < 0) |
| return log_oom(); |
| if (r > 0) |
| domain = NULL; |
| |
| return 0; |
| } |
| |
| static int dns_trust_anchor_load_files( |
| DnsTrustAnchor *d, |
| const char *suffix, |
| int (*loader)(DnsTrustAnchor *d, const char *path, unsigned n, const char *line)) { |
| |
| _cleanup_strv_free_ char **files = NULL; |
| char **f; |
| int r; |
| |
| assert(d); |
| assert(suffix); |
| assert(loader); |
| |
| r = conf_files_list_nulstr(&files, suffix, NULL, 0, trust_anchor_dirs); |
| if (r < 0) |
| return log_error_errno(r, "Failed to enumerate %s trust anchor files: %m", suffix); |
| |
| STRV_FOREACH(f, files) { |
| _cleanup_fclose_ FILE *g = NULL; |
| char line[LINE_MAX]; |
| unsigned n = 0; |
| |
| g = fopen(*f, "r"); |
| if (!g) { |
| if (errno == ENOENT) |
| continue; |
| |
| log_warning_errno(errno, "Failed to open %s: %m", *f); |
| continue; |
| } |
| |
| FOREACH_LINE(line, g, log_warning_errno(errno, "Failed to read %s, ignoring: %m", *f)) { |
| char *l; |
| |
| n++; |
| |
| l = strstrip(line); |
| if (isempty(l)) |
| continue; |
| |
| if (*l == ';') |
| continue; |
| |
| (void) loader(d, *f, n, l); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int domain_name_cmp(const void *a, const void *b) { |
| char **x = (char**) a, **y = (char**) b; |
| |
| return dns_name_compare_func(*x, *y); |
| } |
| |
| static int dns_trust_anchor_dump(DnsTrustAnchor *d) { |
| DnsAnswer *a; |
| Iterator i; |
| |
| assert(d); |
| |
| if (hashmap_isempty(d->positive_by_key)) |
| log_info("No positive trust anchors defined."); |
| else { |
| log_info("Positive Trust Anchors:"); |
| HASHMAP_FOREACH(a, d->positive_by_key, i) { |
| DnsResourceRecord *rr; |
| |
| DNS_ANSWER_FOREACH(rr, a) |
| log_info("%s", dns_resource_record_to_string(rr)); |
| } |
| } |
| |
| if (set_isempty(d->negative_by_name)) |
| log_info("No negative trust anchors defined."); |
| else { |
| _cleanup_free_ char **l = NULL, *j = NULL; |
| |
| l = set_get_strv(d->negative_by_name); |
| if (!l) |
| return log_oom(); |
| |
| qsort_safe(l, set_size(d->negative_by_name), sizeof(char*), domain_name_cmp); |
| |
| j = strv_join(l, " "); |
| if (!j) |
| return log_oom(); |
| |
| log_info("Negative trust anchors: %s", j); |
| } |
| |
| return 0; |
| } |
| |
| int dns_trust_anchor_load(DnsTrustAnchor *d) { |
| int r; |
| |
| assert(d); |
| |
| /* If loading things from disk fails, we don't consider this fatal */ |
| (void) dns_trust_anchor_load_files(d, ".positive", dns_trust_anchor_load_positive); |
| (void) dns_trust_anchor_load_files(d, ".negative", dns_trust_anchor_load_negative); |
| |
| /* However, if the built-in DS fails, then we have a problem. */ |
| r = dns_trust_anchor_add_builtin_positive(d); |
| if (r < 0) |
| return log_error_errno(r, "Failed to add built-in positive trust anchor: %m"); |
| |
| r = dns_trust_anchor_add_builtin_negative(d); |
| if (r < 0) |
| return log_error_errno(r, "Failed to add built-in negative trust anchor: %m"); |
| |
| dns_trust_anchor_dump(d); |
| |
| return 0; |
| } |
| |
| void dns_trust_anchor_flush(DnsTrustAnchor *d) { |
| assert(d); |
| |
| d->positive_by_key = hashmap_free_with_destructor(d->positive_by_key, dns_answer_unref); |
| d->revoked_by_rr = set_free_with_destructor(d->revoked_by_rr, dns_resource_record_unref); |
| d->negative_by_name = set_free_free(d->negative_by_name); |
| } |
| |
| int dns_trust_anchor_lookup_positive(DnsTrustAnchor *d, const DnsResourceKey *key, DnsAnswer **ret) { |
| DnsAnswer *a; |
| |
| assert(d); |
| assert(key); |
| assert(ret); |
| |
| /* We only serve DS and DNSKEY RRs. */ |
| if (!IN_SET(key->type, DNS_TYPE_DS, DNS_TYPE_DNSKEY)) |
| return 0; |
| |
| a = hashmap_get(d->positive_by_key, key); |
| if (!a) |
| return 0; |
| |
| *ret = dns_answer_ref(a); |
| return 1; |
| } |
| |
| int dns_trust_anchor_lookup_negative(DnsTrustAnchor *d, const char *name) { |
| int r; |
| |
| assert(d); |
| assert(name); |
| |
| for (;;) { |
| /* If the domain is listed as-is in the NTA database, then that counts */ |
| if (set_contains(d->negative_by_name, name)) |
| return true; |
| |
| /* If the domain isn't listed as NTA, but is listed as positive trust anchor, then that counts. See RFC |
| * 7646, section 1.1 */ |
| if (hashmap_contains(d->positive_by_key, &DNS_RESOURCE_KEY_CONST(DNS_CLASS_IN, DNS_TYPE_DS, name))) |
| return false; |
| |
| if (hashmap_contains(d->positive_by_key, &DNS_RESOURCE_KEY_CONST(DNS_CLASS_IN, DNS_TYPE_KEY, name))) |
| return false; |
| |
| /* And now, let's look at the parent, and check that too */ |
| r = dns_name_parent(&name); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| break; |
| } |
| |
| return false; |
| } |
| |
| static int dns_trust_anchor_revoked_put(DnsTrustAnchor *d, DnsResourceRecord *rr) { |
| int r; |
| |
| assert(d); |
| |
| r = set_ensure_allocated(&d->revoked_by_rr, &dns_resource_record_hash_ops); |
| if (r < 0) |
| return r; |
| |
| r = set_put(d->revoked_by_rr, rr); |
| if (r < 0) |
| return r; |
| if (r > 0) |
| dns_resource_record_ref(rr); |
| |
| return r; |
| } |
| |
| static int dns_trust_anchor_remove_revoked(DnsTrustAnchor *d, DnsResourceRecord *rr) { |
| _cleanup_(dns_answer_unrefp) DnsAnswer *new_answer = NULL; |
| DnsAnswer *old_answer; |
| int r; |
| |
| /* Remember that this is a revoked trust anchor RR */ |
| r = dns_trust_anchor_revoked_put(d, rr); |
| if (r < 0) |
| return r; |
| |
| /* Remove this from the positive trust anchor */ |
| old_answer = hashmap_get(d->positive_by_key, rr->key); |
| if (!old_answer) |
| return 0; |
| |
| new_answer = dns_answer_ref(old_answer); |
| |
| r = dns_answer_remove_by_rr(&new_answer, rr); |
| if (r <= 0) |
| return r; |
| |
| /* We found the key! Warn the user */ |
| log_struct(LOG_WARNING, |
| "MESSAGE_ID=" SD_MESSAGE_DNSSEC_TRUST_ANCHOR_REVOKED_STR, |
| LOG_MESSAGE("DNSSEC Trust anchor %s has been revoked. Please update the trust anchor, or upgrade your operating system."), strna(dns_resource_record_to_string(rr)), |
| "TRUST_ANCHOR=%s", dns_resource_record_to_string(rr), |
| NULL); |
| |
| if (dns_answer_size(new_answer) <= 0) { |
| assert_se(hashmap_remove(d->positive_by_key, rr->key) == old_answer); |
| dns_answer_unref(old_answer); |
| return 1; |
| } |
| |
| r = hashmap_replace(d->positive_by_key, new_answer->items[0].rr->key, new_answer); |
| if (r < 0) |
| return r; |
| |
| new_answer = NULL; |
| dns_answer_unref(old_answer); |
| return 1; |
| } |
| |
| static int dns_trust_anchor_check_revoked_one(DnsTrustAnchor *d, DnsResourceRecord *revoked_dnskey) { |
| DnsAnswer *a; |
| int r; |
| |
| assert(d); |
| assert(revoked_dnskey); |
| assert(revoked_dnskey->key->type == DNS_TYPE_DNSKEY); |
| assert(revoked_dnskey->dnskey.flags & DNSKEY_FLAG_REVOKE); |
| |
| a = hashmap_get(d->positive_by_key, revoked_dnskey->key); |
| if (a) { |
| DnsResourceRecord *anchor; |
| |
| /* First, look for the precise DNSKEY in our trust anchor database */ |
| |
| DNS_ANSWER_FOREACH(anchor, a) { |
| |
| if (anchor->dnskey.protocol != revoked_dnskey->dnskey.protocol) |
| continue; |
| |
| if (anchor->dnskey.algorithm != revoked_dnskey->dnskey.algorithm) |
| continue; |
| |
| if (anchor->dnskey.key_size != revoked_dnskey->dnskey.key_size) |
| continue; |
| |
| /* Note that we allow the REVOKE bit to be |
| * different! It will be set in the revoked |
| * key, but unset in our version of it */ |
| if (((anchor->dnskey.flags ^ revoked_dnskey->dnskey.flags) | DNSKEY_FLAG_REVOKE) != DNSKEY_FLAG_REVOKE) |
| continue; |
| |
| if (memcmp(anchor->dnskey.key, revoked_dnskey->dnskey.key, anchor->dnskey.key_size) != 0) |
| continue; |
| |
| dns_trust_anchor_remove_revoked(d, anchor); |
| break; |
| } |
| } |
| |
| a = hashmap_get(d->positive_by_key, &DNS_RESOURCE_KEY_CONST(revoked_dnskey->key->class, DNS_TYPE_DS, dns_resource_key_name(revoked_dnskey->key))); |
| if (a) { |
| DnsResourceRecord *anchor; |
| |
| /* Second, look for DS RRs matching this DNSKEY in our trust anchor database */ |
| |
| DNS_ANSWER_FOREACH(anchor, a) { |
| |
| /* We set mask_revoke to true here, since our |
| * DS fingerprint will be the one of the |
| * unrevoked DNSKEY, but the one we got passed |
| * here has the bit set. */ |
| r = dnssec_verify_dnskey_by_ds(revoked_dnskey, anchor, true); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| continue; |
| |
| dns_trust_anchor_remove_revoked(d, anchor); |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int dns_trust_anchor_check_revoked(DnsTrustAnchor *d, DnsResourceRecord *dnskey, DnsAnswer *rrs) { |
| DnsResourceRecord *rrsig; |
| int r; |
| |
| assert(d); |
| assert(dnskey); |
| |
| /* Looks if "dnskey" is a self-signed RR that has been revoked |
| * and matches one of our trust anchor entries. If so, removes |
| * it from the trust anchor and returns > 0. */ |
| |
| if (dnskey->key->type != DNS_TYPE_DNSKEY) |
| return 0; |
| |
| /* Is this DNSKEY revoked? */ |
| if ((dnskey->dnskey.flags & DNSKEY_FLAG_REVOKE) == 0) |
| return 0; |
| |
| /* Could this be interesting to us at all? If not, |
| * there's no point in looking for and verifying a |
| * self-signed RRSIG. */ |
| if (!dns_trust_anchor_knows_domain_positive(d, dns_resource_key_name(dnskey->key))) |
| return 0; |
| |
| /* Look for a self-signed RRSIG in the other rrs belonging to this DNSKEY */ |
| DNS_ANSWER_FOREACH(rrsig, rrs) { |
| DnssecResult result; |
| |
| if (rrsig->key->type != DNS_TYPE_RRSIG) |
| continue; |
| |
| r = dnssec_rrsig_match_dnskey(rrsig, dnskey, true); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| continue; |
| |
| r = dnssec_verify_rrset(rrs, dnskey->key, rrsig, dnskey, USEC_INFINITY, &result); |
| if (r < 0) |
| return r; |
| if (result != DNSSEC_VALIDATED) |
| continue; |
| |
| /* Bingo! This is a revoked self-signed DNSKEY. Let's |
| * see if this precise one exists in our trust anchor |
| * database, too. */ |
| r = dns_trust_anchor_check_revoked_one(d, dnskey); |
| if (r < 0) |
| return r; |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| int dns_trust_anchor_is_revoked(DnsTrustAnchor *d, DnsResourceRecord *rr) { |
| assert(d); |
| |
| if (!IN_SET(rr->key->type, DNS_TYPE_DS, DNS_TYPE_DNSKEY)) |
| return 0; |
| |
| return set_contains(d->revoked_by_rr, rr); |
| } |