| /* SPDX-License-Identifier: LGPL-2.1+ */ |
| /*** |
| This file is part of systemd. |
| |
| Copyright 2010 Lennart Poettering |
| |
| systemd is free software; you can redistribute it and/or modify it |
| under the terms of the GNU Lesser General Public License as published by |
| the Free Software Foundation; either version 2.1 of the License, or |
| (at your option) any later version. |
| |
| systemd is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public License |
| along with systemd; If not, see <http://www.gnu.org/licenses/>. |
| ***/ |
| |
| #include <errno.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/prctl.h> |
| #include <sys/stat.h> |
| #include <unistd.h> |
| |
| #include "sd-id128.h" |
| #include "sd-messages.h" |
| |
| #include "alloc-util.h" |
| #include "bus-common-errors.h" |
| #include "bus-util.h" |
| #include "cgroup-util.h" |
| #include "dbus-unit.h" |
| #include "dbus.h" |
| #include "dropin.h" |
| #include "escape.h" |
| #include "execute.h" |
| #include "fd-util.h" |
| #include "fileio-label.h" |
| #include "format-util.h" |
| #include "fs-util.h" |
| #include "id128-util.h" |
| #include "io-util.h" |
| #include "load-dropin.h" |
| #include "load-fragment.h" |
| #include "log.h" |
| #include "macro.h" |
| #include "missing.h" |
| #include "mkdir.h" |
| #include "parse-util.h" |
| #include "path-util.h" |
| #include "process-util.h" |
| #include "set.h" |
| #include "signal-util.h" |
| #include "sparse-endian.h" |
| #include "special.h" |
| #include "specifier.h" |
| #include "stat-util.h" |
| #include "stdio-util.h" |
| #include "string-table.h" |
| #include "string-util.h" |
| #include "strv.h" |
| #include "umask-util.h" |
| #include "unit-name.h" |
| #include "unit.h" |
| #include "user-util.h" |
| #include "virt.h" |
| |
| const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = { |
| [UNIT_SERVICE] = &service_vtable, |
| [UNIT_SOCKET] = &socket_vtable, |
| [UNIT_TARGET] = &target_vtable, |
| [UNIT_DEVICE] = &device_vtable, |
| [UNIT_MOUNT] = &mount_vtable, |
| [UNIT_AUTOMOUNT] = &automount_vtable, |
| [UNIT_SWAP] = &swap_vtable, |
| [UNIT_TIMER] = &timer_vtable, |
| [UNIT_PATH] = &path_vtable, |
| [UNIT_SLICE] = &slice_vtable, |
| [UNIT_SCOPE] = &scope_vtable, |
| }; |
| |
| static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency); |
| |
| Unit *unit_new(Manager *m, size_t size) { |
| Unit *u; |
| |
| assert(m); |
| assert(size >= sizeof(Unit)); |
| |
| u = malloc0(size); |
| if (!u) |
| return NULL; |
| |
| u->names = set_new(&string_hash_ops); |
| if (!u->names) |
| return mfree(u); |
| |
| u->manager = m; |
| u->type = _UNIT_TYPE_INVALID; |
| u->default_dependencies = true; |
| u->unit_file_state = _UNIT_FILE_STATE_INVALID; |
| u->unit_file_preset = -1; |
| u->on_failure_job_mode = JOB_REPLACE; |
| u->cgroup_inotify_wd = -1; |
| u->job_timeout = USEC_INFINITY; |
| u->job_running_timeout = USEC_INFINITY; |
| u->ref_uid = UID_INVALID; |
| u->ref_gid = GID_INVALID; |
| u->cpu_usage_last = NSEC_INFINITY; |
| u->cgroup_bpf_state = UNIT_CGROUP_BPF_INVALIDATED; |
| |
| u->ip_accounting_ingress_map_fd = -1; |
| u->ip_accounting_egress_map_fd = -1; |
| u->ipv4_allow_map_fd = -1; |
| u->ipv6_allow_map_fd = -1; |
| u->ipv4_deny_map_fd = -1; |
| u->ipv6_deny_map_fd = -1; |
| |
| u->last_section_private = -1; |
| |
| RATELIMIT_INIT(u->start_limit, m->default_start_limit_interval, m->default_start_limit_burst); |
| RATELIMIT_INIT(u->auto_stop_ratelimit, 10 * USEC_PER_SEC, 16); |
| |
| return u; |
| } |
| |
| int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret) { |
| Unit *u; |
| int r; |
| |
| u = unit_new(m, size); |
| if (!u) |
| return -ENOMEM; |
| |
| r = unit_add_name(u, name); |
| if (r < 0) { |
| unit_free(u); |
| return r; |
| } |
| |
| *ret = u; |
| return r; |
| } |
| |
| bool unit_has_name(Unit *u, const char *name) { |
| assert(u); |
| assert(name); |
| |
| return set_contains(u->names, (char*) name); |
| } |
| |
| static void unit_init(Unit *u) { |
| CGroupContext *cc; |
| ExecContext *ec; |
| KillContext *kc; |
| |
| assert(u); |
| assert(u->manager); |
| assert(u->type >= 0); |
| |
| cc = unit_get_cgroup_context(u); |
| if (cc) { |
| cgroup_context_init(cc); |
| |
| /* Copy in the manager defaults into the cgroup |
| * context, _before_ the rest of the settings have |
| * been initialized */ |
| |
| cc->cpu_accounting = u->manager->default_cpu_accounting; |
| cc->io_accounting = u->manager->default_io_accounting; |
| cc->ip_accounting = u->manager->default_ip_accounting; |
| cc->blockio_accounting = u->manager->default_blockio_accounting; |
| cc->memory_accounting = u->manager->default_memory_accounting; |
| cc->tasks_accounting = u->manager->default_tasks_accounting; |
| cc->ip_accounting = u->manager->default_ip_accounting; |
| |
| if (u->type != UNIT_SLICE) |
| cc->tasks_max = u->manager->default_tasks_max; |
| } |
| |
| ec = unit_get_exec_context(u); |
| if (ec) { |
| exec_context_init(ec); |
| |
| ec->keyring_mode = MANAGER_IS_SYSTEM(u->manager) ? |
| EXEC_KEYRING_PRIVATE : EXEC_KEYRING_INHERIT; |
| } |
| |
| kc = unit_get_kill_context(u); |
| if (kc) |
| kill_context_init(kc); |
| |
| if (UNIT_VTABLE(u)->init) |
| UNIT_VTABLE(u)->init(u); |
| } |
| |
| int unit_add_name(Unit *u, const char *text) { |
| _cleanup_free_ char *s = NULL, *i = NULL; |
| UnitType t; |
| int r; |
| |
| assert(u); |
| assert(text); |
| |
| if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) { |
| |
| if (!u->instance) |
| return -EINVAL; |
| |
| r = unit_name_replace_instance(text, u->instance, &s); |
| if (r < 0) |
| return r; |
| } else { |
| s = strdup(text); |
| if (!s) |
| return -ENOMEM; |
| } |
| |
| if (set_contains(u->names, s)) |
| return 0; |
| if (hashmap_contains(u->manager->units, s)) |
| return -EEXIST; |
| |
| if (!unit_name_is_valid(s, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) |
| return -EINVAL; |
| |
| t = unit_name_to_type(s); |
| if (t < 0) |
| return -EINVAL; |
| |
| if (u->type != _UNIT_TYPE_INVALID && t != u->type) |
| return -EINVAL; |
| |
| r = unit_name_to_instance(s, &i); |
| if (r < 0) |
| return r; |
| |
| if (i && !unit_type_may_template(t)) |
| return -EINVAL; |
| |
| /* Ensure that this unit is either instanced or not instanced, |
| * but not both. Note that we do allow names with different |
| * instance names however! */ |
| if (u->type != _UNIT_TYPE_INVALID && !u->instance != !i) |
| return -EINVAL; |
| |
| if (!unit_type_may_alias(t) && !set_isempty(u->names)) |
| return -EEXIST; |
| |
| if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES) |
| return -E2BIG; |
| |
| r = set_put(u->names, s); |
| if (r < 0) |
| return r; |
| assert(r > 0); |
| |
| r = hashmap_put(u->manager->units, s, u); |
| if (r < 0) { |
| (void) set_remove(u->names, s); |
| return r; |
| } |
| |
| if (u->type == _UNIT_TYPE_INVALID) { |
| u->type = t; |
| u->id = s; |
| u->instance = i; |
| |
| LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u); |
| |
| unit_init(u); |
| |
| i = NULL; |
| } |
| |
| s = NULL; |
| |
| unit_add_to_dbus_queue(u); |
| return 0; |
| } |
| |
| int unit_choose_id(Unit *u, const char *name) { |
| _cleanup_free_ char *t = NULL; |
| char *s, *i; |
| int r; |
| |
| assert(u); |
| assert(name); |
| |
| if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) { |
| |
| if (!u->instance) |
| return -EINVAL; |
| |
| r = unit_name_replace_instance(name, u->instance, &t); |
| if (r < 0) |
| return r; |
| |
| name = t; |
| } |
| |
| /* Selects one of the names of this unit as the id */ |
| s = set_get(u->names, (char*) name); |
| if (!s) |
| return -ENOENT; |
| |
| /* Determine the new instance from the new id */ |
| r = unit_name_to_instance(s, &i); |
| if (r < 0) |
| return r; |
| |
| u->id = s; |
| |
| free(u->instance); |
| u->instance = i; |
| |
| unit_add_to_dbus_queue(u); |
| |
| return 0; |
| } |
| |
| int unit_set_description(Unit *u, const char *description) { |
| int r; |
| |
| assert(u); |
| |
| r = free_and_strdup(&u->description, empty_to_null(description)); |
| if (r < 0) |
| return r; |
| if (r > 0) |
| unit_add_to_dbus_queue(u); |
| |
| return 0; |
| } |
| |
| bool unit_check_gc(Unit *u) { |
| UnitActiveState state; |
| int r; |
| |
| assert(u); |
| |
| /* Checks whether the unit is ready to be unloaded for garbage collection. Returns true, when the unit shall |
| * stay around, false if there's no reason to keep it loaded. |
| * |
| * References from other units are *not* checked here. Instead, this is done |
| * in unit_gc_sweep(), but using markers to properly collect dependency loops. |
| */ |
| |
| if (u->job) |
| return true; |
| |
| if (u->nop_job) |
| return true; |
| |
| state = unit_active_state(u); |
| |
| /* If the unit is inactive and failed and no job is queued for it, then release its runtime resources */ |
| if (UNIT_IS_INACTIVE_OR_FAILED(state) && |
| UNIT_VTABLE(u)->release_resources) |
| UNIT_VTABLE(u)->release_resources(u); |
| |
| if (u->perpetual) |
| return true; |
| |
| if (sd_bus_track_count(u->bus_track) > 0) |
| return true; |
| |
| /* But we keep the unit object around for longer when it is referenced or configured to not be gc'ed */ |
| switch (u->collect_mode) { |
| |
| case COLLECT_INACTIVE: |
| if (state != UNIT_INACTIVE) |
| return true; |
| |
| break; |
| |
| case COLLECT_INACTIVE_OR_FAILED: |
| if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED)) |
| return true; |
| |
| break; |
| |
| default: |
| assert_not_reached("Unknown garbage collection mode"); |
| } |
| |
| if (u->cgroup_path) { |
| /* If the unit has a cgroup, then check whether there's anything in it. If so, we should stay |
| * around. Units with active processes should never be collected. */ |
| |
| r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path); |
| if (r < 0) |
| log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path); |
| if (r <= 0) |
| return true; |
| } |
| |
| if (UNIT_VTABLE(u)->check_gc) |
| if (UNIT_VTABLE(u)->check_gc(u)) |
| return true; |
| |
| return false; |
| } |
| |
| void unit_add_to_load_queue(Unit *u) { |
| assert(u); |
| assert(u->type != _UNIT_TYPE_INVALID); |
| |
| if (u->load_state != UNIT_STUB || u->in_load_queue) |
| return; |
| |
| LIST_PREPEND(load_queue, u->manager->load_queue, u); |
| u->in_load_queue = true; |
| } |
| |
| void unit_add_to_cleanup_queue(Unit *u) { |
| assert(u); |
| |
| if (u->in_cleanup_queue) |
| return; |
| |
| LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u); |
| u->in_cleanup_queue = true; |
| } |
| |
| void unit_add_to_gc_queue(Unit *u) { |
| assert(u); |
| |
| if (u->in_gc_queue || u->in_cleanup_queue) |
| return; |
| |
| if (unit_check_gc(u)) |
| return; |
| |
| LIST_PREPEND(gc_queue, u->manager->gc_unit_queue, u); |
| u->in_gc_queue = true; |
| } |
| |
| void unit_add_to_dbus_queue(Unit *u) { |
| assert(u); |
| assert(u->type != _UNIT_TYPE_INVALID); |
| |
| if (u->load_state == UNIT_STUB || u->in_dbus_queue) |
| return; |
| |
| /* Shortcut things if nobody cares */ |
| if (sd_bus_track_count(u->manager->subscribed) <= 0 && |
| sd_bus_track_count(u->bus_track) <= 0 && |
| set_isempty(u->manager->private_buses)) { |
| u->sent_dbus_new_signal = true; |
| return; |
| } |
| |
| LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u); |
| u->in_dbus_queue = true; |
| } |
| |
| static void bidi_set_free(Unit *u, Hashmap *h) { |
| Unit *other; |
| Iterator i; |
| void *v; |
| |
| assert(u); |
| |
| /* Frees the hashmap and makes sure we are dropped from the inverse pointers */ |
| |
| HASHMAP_FOREACH_KEY(v, other, h, i) { |
| UnitDependency d; |
| |
| for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) |
| hashmap_remove(other->dependencies[d], u); |
| |
| unit_add_to_gc_queue(other); |
| } |
| |
| hashmap_free(h); |
| } |
| |
| static void unit_remove_transient(Unit *u) { |
| char **i; |
| |
| assert(u); |
| |
| if (!u->transient) |
| return; |
| |
| if (u->fragment_path) |
| (void) unlink(u->fragment_path); |
| |
| STRV_FOREACH(i, u->dropin_paths) { |
| _cleanup_free_ char *p = NULL, *pp = NULL; |
| |
| p = dirname_malloc(*i); /* Get the drop-in directory from the drop-in file */ |
| if (!p) |
| continue; |
| |
| pp = dirname_malloc(p); /* Get the config directory from the drop-in directory */ |
| if (!pp) |
| continue; |
| |
| /* Only drop transient drop-ins */ |
| if (!path_equal(u->manager->lookup_paths.transient, pp)) |
| continue; |
| |
| (void) unlink(*i); |
| (void) rmdir(p); |
| } |
| } |
| |
| static void unit_free_requires_mounts_for(Unit *u) { |
| assert(u); |
| |
| for (;;) { |
| _cleanup_free_ char *path; |
| |
| path = hashmap_steal_first_key(u->requires_mounts_for); |
| if (!path) |
| break; |
| else { |
| char s[strlen(path) + 1]; |
| |
| PATH_FOREACH_PREFIX_MORE(s, path) { |
| char *y; |
| Set *x; |
| |
| x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y); |
| if (!x) |
| continue; |
| |
| (void) set_remove(x, u); |
| |
| if (set_isempty(x)) { |
| (void) hashmap_remove(u->manager->units_requiring_mounts_for, y); |
| free(y); |
| set_free(x); |
| } |
| } |
| } |
| } |
| |
| u->requires_mounts_for = hashmap_free(u->requires_mounts_for); |
| } |
| |
| static void unit_done(Unit *u) { |
| ExecContext *ec; |
| CGroupContext *cc; |
| |
| assert(u); |
| |
| if (u->type < 0) |
| return; |
| |
| if (UNIT_VTABLE(u)->done) |
| UNIT_VTABLE(u)->done(u); |
| |
| ec = unit_get_exec_context(u); |
| if (ec) |
| exec_context_done(ec); |
| |
| cc = unit_get_cgroup_context(u); |
| if (cc) |
| cgroup_context_done(cc); |
| } |
| |
| void unit_free(Unit *u) { |
| UnitDependency d; |
| Iterator i; |
| char *t; |
| |
| if (!u) |
| return; |
| |
| u->transient_file = safe_fclose(u->transient_file); |
| |
| if (!MANAGER_IS_RELOADING(u->manager)) |
| unit_remove_transient(u); |
| |
| bus_unit_send_removed_signal(u); |
| |
| unit_done(u); |
| |
| sd_bus_slot_unref(u->match_bus_slot); |
| |
| sd_bus_track_unref(u->bus_track); |
| u->deserialized_refs = strv_free(u->deserialized_refs); |
| |
| unit_free_requires_mounts_for(u); |
| |
| SET_FOREACH(t, u->names, i) |
| hashmap_remove_value(u->manager->units, t, u); |
| |
| if (!sd_id128_is_null(u->invocation_id)) |
| hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u); |
| |
| if (u->job) { |
| Job *j = u->job; |
| job_uninstall(j); |
| job_free(j); |
| } |
| |
| if (u->nop_job) { |
| Job *j = u->nop_job; |
| job_uninstall(j); |
| job_free(j); |
| } |
| |
| for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) |
| bidi_set_free(u, u->dependencies[d]); |
| |
| if (u->on_console) |
| manager_unref_console(u->manager); |
| |
| unit_release_cgroup(u); |
| |
| if (!MANAGER_IS_RELOADING(u->manager)) |
| unit_unlink_state_files(u); |
| |
| unit_unref_uid_gid(u, false); |
| |
| (void) manager_update_failed_units(u->manager, u, false); |
| set_remove(u->manager->startup_units, u); |
| |
| unit_unwatch_all_pids(u); |
| |
| unit_ref_unset(&u->slice); |
| while (u->refs_by_target) |
| unit_ref_unset(u->refs_by_target); |
| |
| if (u->type != _UNIT_TYPE_INVALID) |
| LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u); |
| |
| if (u->in_load_queue) |
| LIST_REMOVE(load_queue, u->manager->load_queue, u); |
| |
| if (u->in_dbus_queue) |
| LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u); |
| |
| if (u->in_gc_queue) |
| LIST_REMOVE(gc_queue, u->manager->gc_unit_queue, u); |
| |
| if (u->in_cgroup_realize_queue) |
| LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u); |
| |
| if (u->in_cgroup_empty_queue) |
| LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u); |
| |
| if (u->in_cleanup_queue) |
| LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u); |
| |
| safe_close(u->ip_accounting_ingress_map_fd); |
| safe_close(u->ip_accounting_egress_map_fd); |
| |
| safe_close(u->ipv4_allow_map_fd); |
| safe_close(u->ipv6_allow_map_fd); |
| safe_close(u->ipv4_deny_map_fd); |
| safe_close(u->ipv6_deny_map_fd); |
| |
| bpf_program_unref(u->ip_bpf_ingress); |
| bpf_program_unref(u->ip_bpf_egress); |
| |
| condition_free_list(u->conditions); |
| condition_free_list(u->asserts); |
| |
| free(u->description); |
| strv_free(u->documentation); |
| free(u->fragment_path); |
| free(u->source_path); |
| strv_free(u->dropin_paths); |
| free(u->instance); |
| |
| free(u->job_timeout_reboot_arg); |
| |
| set_free_free(u->names); |
| |
| free(u->reboot_arg); |
| |
| free(u); |
| } |
| |
| UnitActiveState unit_active_state(Unit *u) { |
| assert(u); |
| |
| if (u->load_state == UNIT_MERGED) |
| return unit_active_state(unit_follow_merge(u)); |
| |
| /* After a reload it might happen that a unit is not correctly |
| * loaded but still has a process around. That's why we won't |
| * shortcut failed loading to UNIT_INACTIVE_FAILED. */ |
| |
| return UNIT_VTABLE(u)->active_state(u); |
| } |
| |
| const char* unit_sub_state_to_string(Unit *u) { |
| assert(u); |
| |
| return UNIT_VTABLE(u)->sub_state_to_string(u); |
| } |
| |
| static int set_complete_move(Set **s, Set **other) { |
| assert(s); |
| assert(other); |
| |
| if (!other) |
| return 0; |
| |
| if (*s) |
| return set_move(*s, *other); |
| else { |
| *s = *other; |
| *other = NULL; |
| } |
| |
| return 0; |
| } |
| |
| static int hashmap_complete_move(Hashmap **s, Hashmap **other) { |
| assert(s); |
| assert(other); |
| |
| if (!*other) |
| return 0; |
| |
| if (*s) |
| return hashmap_move(*s, *other); |
| else { |
| *s = *other; |
| *other = NULL; |
| } |
| |
| return 0; |
| } |
| |
| static int merge_names(Unit *u, Unit *other) { |
| char *t; |
| Iterator i; |
| int r; |
| |
| assert(u); |
| assert(other); |
| |
| r = set_complete_move(&u->names, &other->names); |
| if (r < 0) |
| return r; |
| |
| set_free_free(other->names); |
| other->names = NULL; |
| other->id = NULL; |
| |
| SET_FOREACH(t, u->names, i) |
| assert_se(hashmap_replace(u->manager->units, t, u) == 0); |
| |
| return 0; |
| } |
| |
| static int reserve_dependencies(Unit *u, Unit *other, UnitDependency d) { |
| unsigned n_reserve; |
| |
| assert(u); |
| assert(other); |
| assert(d < _UNIT_DEPENDENCY_MAX); |
| |
| /* |
| * If u does not have this dependency set allocated, there is no need |
| * to reserve anything. In that case other's set will be transferred |
| * as a whole to u by complete_move(). |
| */ |
| if (!u->dependencies[d]) |
| return 0; |
| |
| /* merge_dependencies() will skip a u-on-u dependency */ |
| n_reserve = hashmap_size(other->dependencies[d]) - !!hashmap_get(other->dependencies[d], u); |
| |
| return hashmap_reserve(u->dependencies[d], n_reserve); |
| } |
| |
| static void merge_dependencies(Unit *u, Unit *other, const char *other_id, UnitDependency d) { |
| Iterator i; |
| Unit *back; |
| void *v; |
| int r; |
| |
| /* Merges all dependencies of type 'd' of the unit 'other' into the deps of the unit 'u' */ |
| |
| assert(u); |
| assert(other); |
| assert(d < _UNIT_DEPENDENCY_MAX); |
| |
| /* Fix backwards pointers. Let's iterate through all dependendent units of the other unit. */ |
| HASHMAP_FOREACH_KEY(v, back, other->dependencies[d], i) { |
| UnitDependency k; |
| |
| /* Let's now iterate through the dependencies of that dependencies of the other units, looking for |
| * pointers back, and let's fix them up, to instead point to 'u'. */ |
| |
| for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++) { |
| if (back == u) { |
| /* Do not add dependencies between u and itself. */ |
| if (hashmap_remove(back->dependencies[k], other)) |
| maybe_warn_about_dependency(u, other_id, k); |
| } else { |
| UnitDependencyInfo di_u, di_other, di_merged; |
| |
| /* Let's drop this dependency between "back" and "other", and let's create it between |
| * "back" and "u" instead. Let's merge the bit masks of the dependency we are moving, |
| * and any such dependency which might already exist */ |
| |
| di_other.data = hashmap_get(back->dependencies[k], other); |
| if (!di_other.data) |
| continue; /* dependency isn't set, let's try the next one */ |
| |
| di_u.data = hashmap_get(back->dependencies[k], u); |
| |
| di_merged = (UnitDependencyInfo) { |
| .origin_mask = di_u.origin_mask | di_other.origin_mask, |
| .destination_mask = di_u.destination_mask | di_other.destination_mask, |
| }; |
| |
| r = hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data); |
| if (r < 0) |
| log_warning_errno(r, "Failed to remove/replace: back=%s other=%s u=%s: %m", back->id, other_id, u->id); |
| assert(r >= 0); |
| |
| /* assert_se(hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data) >= 0); */ |
| } |
| } |
| |
| } |
| |
| /* Also do not move dependencies on u to itself */ |
| back = hashmap_remove(other->dependencies[d], u); |
| if (back) |
| maybe_warn_about_dependency(u, other_id, d); |
| |
| /* The move cannot fail. The caller must have performed a reservation. */ |
| assert_se(hashmap_complete_move(&u->dependencies[d], &other->dependencies[d]) == 0); |
| |
| other->dependencies[d] = hashmap_free(other->dependencies[d]); |
| } |
| |
| int unit_merge(Unit *u, Unit *other) { |
| UnitDependency d; |
| const char *other_id = NULL; |
| int r; |
| |
| assert(u); |
| assert(other); |
| assert(u->manager == other->manager); |
| assert(u->type != _UNIT_TYPE_INVALID); |
| |
| other = unit_follow_merge(other); |
| |
| if (other == u) |
| return 0; |
| |
| if (u->type != other->type) |
| return -EINVAL; |
| |
| if (!u->instance != !other->instance) |
| return -EINVAL; |
| |
| if (!unit_type_may_alias(u->type)) /* Merging only applies to unit names that support aliases */ |
| return -EEXIST; |
| |
| if (!IN_SET(other->load_state, UNIT_STUB, UNIT_NOT_FOUND)) |
| return -EEXIST; |
| |
| if (other->job) |
| return -EEXIST; |
| |
| if (other->nop_job) |
| return -EEXIST; |
| |
| if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other))) |
| return -EEXIST; |
| |
| if (other->id) |
| other_id = strdupa(other->id); |
| |
| /* Make reservations to ensure merge_dependencies() won't fail */ |
| for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) { |
| r = reserve_dependencies(u, other, d); |
| /* |
| * We don't rollback reservations if we fail. We don't have |
| * a way to undo reservations. A reservation is not a leak. |
| */ |
| if (r < 0) |
| return r; |
| } |
| |
| /* Merge names */ |
| r = merge_names(u, other); |
| if (r < 0) |
| return r; |
| |
| /* Redirect all references */ |
| while (other->refs_by_target) |
| unit_ref_set(other->refs_by_target, other->refs_by_target->source, u); |
| |
| /* Merge dependencies */ |
| for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) |
| merge_dependencies(u, other, other_id, d); |
| |
| other->load_state = UNIT_MERGED; |
| other->merged_into = u; |
| |
| /* If there is still some data attached to the other node, we |
| * don't need it anymore, and can free it. */ |
| if (other->load_state != UNIT_STUB) |
| if (UNIT_VTABLE(other)->done) |
| UNIT_VTABLE(other)->done(other); |
| |
| unit_add_to_dbus_queue(u); |
| unit_add_to_cleanup_queue(other); |
| |
| return 0; |
| } |
| |
| int unit_merge_by_name(Unit *u, const char *name) { |
| _cleanup_free_ char *s = NULL; |
| Unit *other; |
| int r; |
| |
| assert(u); |
| assert(name); |
| |
| if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) { |
| if (!u->instance) |
| return -EINVAL; |
| |
| r = unit_name_replace_instance(name, u->instance, &s); |
| if (r < 0) |
| return r; |
| |
| name = s; |
| } |
| |
| other = manager_get_unit(u->manager, name); |
| if (other) |
| return unit_merge(u, other); |
| |
| return unit_add_name(u, name); |
| } |
| |
| Unit* unit_follow_merge(Unit *u) { |
| assert(u); |
| |
| while (u->load_state == UNIT_MERGED) |
| assert_se(u = u->merged_into); |
| |
| return u; |
| } |
| |
| int unit_add_exec_dependencies(Unit *u, ExecContext *c) { |
| ExecDirectoryType dt; |
| char **dp; |
| int r; |
| |
| assert(u); |
| assert(c); |
| |
| if (c->working_directory) { |
| r = unit_require_mounts_for(u, c->working_directory, UNIT_DEPENDENCY_FILE); |
| if (r < 0) |
| return r; |
| } |
| |
| if (c->root_directory) { |
| r = unit_require_mounts_for(u, c->root_directory, UNIT_DEPENDENCY_FILE); |
| if (r < 0) |
| return r; |
| } |
| |
| if (c->root_image) { |
| r = unit_require_mounts_for(u, c->root_image, UNIT_DEPENDENCY_FILE); |
| if (r < 0) |
| return r; |
| } |
| |
| for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) { |
| if (!u->manager->prefix[dt]) |
| continue; |
| |
| STRV_FOREACH(dp, c->directories[dt].paths) { |
| _cleanup_free_ char *p; |
| |
| p = strjoin(u->manager->prefix[dt], "/", *dp); |
| if (!p) |
| return -ENOMEM; |
| |
| r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE); |
| if (r < 0) |
| return r; |
| } |
| } |
| |
| if (!MANAGER_IS_SYSTEM(u->manager)) |
| return 0; |
| |
| if (c->private_tmp) { |
| const char *p; |
| |
| FOREACH_STRING(p, "/tmp", "/var/tmp") { |
| r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE); |
| if (r < 0) |
| return r; |
| } |
| |
| r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_TMPFILES_SETUP_SERVICE, NULL, true, UNIT_DEPENDENCY_FILE); |
| if (r < 0) |
| return r; |
| } |
| |
| if (!IN_SET(c->std_output, |
| EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE, |
| EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE, |
| EXEC_OUTPUT_SYSLOG, EXEC_OUTPUT_SYSLOG_AND_CONSOLE) && |
| !IN_SET(c->std_error, |
| EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE, |
| EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE, |
| EXEC_OUTPUT_SYSLOG, EXEC_OUTPUT_SYSLOG_AND_CONSOLE)) |
| return 0; |
| |
| /* If syslog or kernel logging is requested, make sure our own |
| * logging daemon is run first. */ |
| |
| r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, NULL, true, UNIT_DEPENDENCY_FILE); |
| if (r < 0) |
| return r; |
| |
| return 0; |
| } |
| |
| const char *unit_description(Unit *u) { |
| assert(u); |
| |
| if (u->description) |
| return u->description; |
| |
| return strna(u->id); |
| } |
| |
| static void print_unit_dependency_mask(FILE *f, const char *kind, UnitDependencyMask mask, bool *space) { |
| const struct { |
| UnitDependencyMask mask; |
| const char *name; |
| } table[] = { |
| { UNIT_DEPENDENCY_FILE, "file" }, |
| { UNIT_DEPENDENCY_IMPLICIT, "implicit" }, |
| { UNIT_DEPENDENCY_DEFAULT, "default" }, |
| { UNIT_DEPENDENCY_UDEV, "udev" }, |
| { UNIT_DEPENDENCY_PATH, "path" }, |
| { UNIT_DEPENDENCY_MOUNTINFO_IMPLICIT, "mountinfo-implicit" }, |
| { UNIT_DEPENDENCY_MOUNTINFO_DEFAULT, "mountinfo-default" }, |
| { UNIT_DEPENDENCY_PROC_SWAP, "proc-swap" }, |
| }; |
| size_t i; |
| |
| assert(f); |
| assert(kind); |
| assert(space); |
| |
| for (i = 0; i < ELEMENTSOF(table); i++) { |
| |
| if (mask == 0) |
| break; |
| |
| if ((mask & table[i].mask) == table[i].mask) { |
| if (*space) |
| fputc(' ', f); |
| else |
| *space = true; |
| |
| fputs(kind, f); |
| fputs("-", f); |
| fputs(table[i].name, f); |
| |
| mask &= ~table[i].mask; |
| } |
| } |
| |
| assert(mask == 0); |
| } |
| |
| void unit_dump(Unit *u, FILE *f, const char *prefix) { |
| char *t, **j; |
| UnitDependency d; |
| Iterator i; |
| const char *prefix2; |
| char |
| timestamp0[FORMAT_TIMESTAMP_MAX], |
| timestamp1[FORMAT_TIMESTAMP_MAX], |
| timestamp2[FORMAT_TIMESTAMP_MAX], |
| timestamp3[FORMAT_TIMESTAMP_MAX], |
| timestamp4[FORMAT_TIMESTAMP_MAX], |
| timespan[FORMAT_TIMESPAN_MAX]; |
| Unit *following; |
| _cleanup_set_free_ Set *following_set = NULL; |
| const char *n; |
| CGroupMask m; |
| int r; |
| |
| assert(u); |
| assert(u->type >= 0); |
| |
| prefix = strempty(prefix); |
| prefix2 = strjoina(prefix, "\t"); |
| |
| fprintf(f, |
| "%s-> Unit %s:\n" |
| "%s\tDescription: %s\n" |
| "%s\tInstance: %s\n" |
| "%s\tUnit Load State: %s\n" |
| "%s\tUnit Active State: %s\n" |
| "%s\tState Change Timestamp: %s\n" |
| "%s\tInactive Exit Timestamp: %s\n" |
| "%s\tActive Enter Timestamp: %s\n" |
| "%s\tActive Exit Timestamp: %s\n" |
| "%s\tInactive Enter Timestamp: %s\n" |
| "%s\tGC Check Good: %s\n" |
| "%s\tNeed Daemon Reload: %s\n" |
| "%s\tTransient: %s\n" |
| "%s\tPerpetual: %s\n" |
| "%s\tGarbage Collection Mode: %s\n" |
| "%s\tSlice: %s\n" |
| "%s\tCGroup: %s\n" |
| "%s\tCGroup realized: %s\n", |
| prefix, u->id, |
| prefix, unit_description(u), |
| prefix, strna(u->instance), |
| prefix, unit_load_state_to_string(u->load_state), |
| prefix, unit_active_state_to_string(unit_active_state(u)), |
| prefix, strna(format_timestamp(timestamp0, sizeof(timestamp0), u->state_change_timestamp.realtime)), |
| prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->inactive_exit_timestamp.realtime)), |
| prefix, strna(format_timestamp(timestamp2, sizeof(timestamp2), u->active_enter_timestamp.realtime)), |
| prefix, strna(format_timestamp(timestamp3, sizeof(timestamp3), u->active_exit_timestamp.realtime)), |
| prefix, strna(format_timestamp(timestamp4, sizeof(timestamp4), u->inactive_enter_timestamp.realtime)), |
| prefix, yes_no(unit_check_gc(u)), |
| prefix, yes_no(unit_need_daemon_reload(u)), |
| prefix, yes_no(u->transient), |
| prefix, yes_no(u->perpetual), |
| prefix, collect_mode_to_string(u->collect_mode), |
| prefix, strna(unit_slice_name(u)), |
| prefix, strna(u->cgroup_path), |
| prefix, yes_no(u->cgroup_realized)); |
| |
| if (u->cgroup_realized_mask != 0) { |
| _cleanup_free_ char *s = NULL; |
| (void) cg_mask_to_string(u->cgroup_realized_mask, &s); |
| fprintf(f, "%s\tCGroup realized mask: %s\n", prefix, strnull(s)); |
| } |
| if (u->cgroup_enabled_mask != 0) { |
| _cleanup_free_ char *s = NULL; |
| (void) cg_mask_to_string(u->cgroup_enabled_mask, &s); |
| fprintf(f, "%s\tCGroup enabled mask: %s\n", prefix, strnull(s)); |
| } |
| m = unit_get_own_mask(u); |
| if (m != 0) { |
| _cleanup_free_ char *s = NULL; |
| (void) cg_mask_to_string(m, &s); |
| fprintf(f, "%s\tCGroup own mask: %s\n", prefix, strnull(s)); |
| } |
| m = unit_get_members_mask(u); |
| if (m != 0) { |
| _cleanup_free_ char *s = NULL; |
| (void) cg_mask_to_string(m, &s); |
| fprintf(f, "%s\tCGroup members mask: %s\n", prefix, strnull(s)); |
| } |
| |
| SET_FOREACH(t, u->names, i) |
| fprintf(f, "%s\tName: %s\n", prefix, t); |
| |
| if (!sd_id128_is_null(u->invocation_id)) |
| fprintf(f, "%s\tInvocation ID: " SD_ID128_FORMAT_STR "\n", |
| prefix, SD_ID128_FORMAT_VAL(u->invocation_id)); |
| |
| STRV_FOREACH(j, u->documentation) |
| fprintf(f, "%s\tDocumentation: %s\n", prefix, *j); |
| |
| following = unit_following(u); |
| if (following) |
| fprintf(f, "%s\tFollowing: %s\n", prefix, following->id); |
| |
| r = unit_following_set(u, &following_set); |
| if (r >= 0) { |
| Unit *other; |
| |
| SET_FOREACH(other, following_set, i) |
| fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id); |
| } |
| |
| if (u->fragment_path) |
| fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path); |
| |
| if (u->source_path) |
| fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path); |
| |
| STRV_FOREACH(j, u->dropin_paths) |
| fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j); |
| |
| if (u->failure_action != EMERGENCY_ACTION_NONE) |
| fprintf(f, "%s\tFailure Action: %s\n", prefix, emergency_action_to_string(u->failure_action)); |
| if (u->success_action != EMERGENCY_ACTION_NONE) |
| fprintf(f, "%s\tSuccess Action: %s\n", prefix, emergency_action_to_string(u->success_action)); |
| |
| if (u->job_timeout != USEC_INFINITY) |
| fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0)); |
| |
| if (u->job_timeout_action != EMERGENCY_ACTION_NONE) |
| fprintf(f, "%s\tJob Timeout Action: %s\n", prefix, emergency_action_to_string(u->job_timeout_action)); |
| |
| if (u->job_timeout_reboot_arg) |
| fprintf(f, "%s\tJob Timeout Reboot Argument: %s\n", prefix, u->job_timeout_reboot_arg); |
| |
| condition_dump_list(u->conditions, f, prefix, condition_type_to_string); |
| condition_dump_list(u->asserts, f, prefix, assert_type_to_string); |
| |
| if (dual_timestamp_is_set(&u->condition_timestamp)) |
| fprintf(f, |
| "%s\tCondition Timestamp: %s\n" |
| "%s\tCondition Result: %s\n", |
| prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->condition_timestamp.realtime)), |
| prefix, yes_no(u->condition_result)); |
| |
| if (dual_timestamp_is_set(&u->assert_timestamp)) |
| fprintf(f, |
| "%s\tAssert Timestamp: %s\n" |
| "%s\tAssert Result: %s\n", |
| prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->assert_timestamp.realtime)), |
| prefix, yes_no(u->assert_result)); |
| |
| for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) { |
| UnitDependencyInfo di; |
| Unit *other; |
| |
| HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d], i) { |
| bool space = false; |
| |
| fprintf(f, "%s\t%s: %s (", prefix, unit_dependency_to_string(d), other->id); |
| |
| print_unit_dependency_mask(f, "origin", di.origin_mask, &space); |
| print_unit_dependency_mask(f, "destination", di.destination_mask, &space); |
| |
| fputs(")\n", f); |
| } |
| } |
| |
| if (!hashmap_isempty(u->requires_mounts_for)) { |
| UnitDependencyInfo di; |
| const char *path; |
| |
| HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for, i) { |
| bool space = false; |
| |
| fprintf(f, "%s\tRequiresMountsFor: %s (", prefix, path); |
| |
| print_unit_dependency_mask(f, "origin", di.origin_mask, &space); |
| print_unit_dependency_mask(f, "destination", di.destination_mask, &space); |
| |
| fputs(")\n", f); |
| } |
| } |
| |
| if (u->load_state == UNIT_LOADED) { |
| |
| fprintf(f, |
| "%s\tStopWhenUnneeded: %s\n" |
| "%s\tRefuseManualStart: %s\n" |
| "%s\tRefuseManualStop: %s\n" |
| "%s\tDefaultDependencies: %s\n" |
| "%s\tOnFailureJobMode: %s\n" |
| "%s\tIgnoreOnIsolate: %s\n", |
| prefix, yes_no(u->stop_when_unneeded), |
| prefix, yes_no(u->refuse_manual_start), |
| prefix, yes_no(u->refuse_manual_stop), |
| prefix, yes_no(u->default_dependencies), |
| prefix, job_mode_to_string(u->on_failure_job_mode), |
| prefix, yes_no(u->ignore_on_isolate)); |
| |
| if (UNIT_VTABLE(u)->dump) |
| UNIT_VTABLE(u)->dump(u, f, prefix2); |
| |
| } else if (u->load_state == UNIT_MERGED) |
| fprintf(f, |
| "%s\tMerged into: %s\n", |
| prefix, u->merged_into->id); |
| else if (u->load_state == UNIT_ERROR) |
| fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror(-u->load_error)); |
| |
| for (n = sd_bus_track_first(u->bus_track); n; n = sd_bus_track_next(u->bus_track)) |
| fprintf(f, "%s\tBus Ref: %s\n", prefix, n); |
| |
| if (u->job) |
| job_dump(u->job, f, prefix2); |
| |
| if (u->nop_job) |
| job_dump(u->nop_job, f, prefix2); |
| } |
| |
| /* Common implementation for multiple backends */ |
| int unit_load_fragment_and_dropin(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| /* Load a .{service,socket,...} file */ |
| r = unit_load_fragment(u); |
| if (r < 0) |
| return r; |
| |
| if (u->load_state == UNIT_STUB) |
| return -ENOENT; |
| |
| /* Load drop-in directory data. If u is an alias, we might be reloading the |
| * target unit needlessly. But we cannot be sure which drops-ins have already |
| * been loaded and which not, at least without doing complicated book-keeping, |
| * so let's always reread all drop-ins. */ |
| return unit_load_dropin(unit_follow_merge(u)); |
| } |
| |
| /* Common implementation for multiple backends */ |
| int unit_load_fragment_and_dropin_optional(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| /* Same as unit_load_fragment_and_dropin(), but whether |
| * something can be loaded or not doesn't matter. */ |
| |
| /* Load a .service file */ |
| r = unit_load_fragment(u); |
| if (r < 0) |
| return r; |
| |
| if (u->load_state == UNIT_STUB) |
| u->load_state = UNIT_LOADED; |
| |
| /* Load drop-in directory data */ |
| return unit_load_dropin(unit_follow_merge(u)); |
| } |
| |
| int unit_add_default_target_dependency(Unit *u, Unit *target) { |
| assert(u); |
| assert(target); |
| |
| if (target->type != UNIT_TARGET) |
| return 0; |
| |
| /* Only add the dependency if both units are loaded, so that |
| * that loop check below is reliable */ |
| if (u->load_state != UNIT_LOADED || |
| target->load_state != UNIT_LOADED) |
| return 0; |
| |
| /* If either side wants no automatic dependencies, then let's |
| * skip this */ |
| if (!u->default_dependencies || |
| !target->default_dependencies) |
| return 0; |
| |
| /* Don't create loops */ |
| if (hashmap_get(target->dependencies[UNIT_BEFORE], u)) |
| return 0; |
| |
| return unit_add_dependency(target, UNIT_AFTER, u, true, UNIT_DEPENDENCY_DEFAULT); |
| } |
| |
| static int unit_add_target_dependencies(Unit *u) { |
| |
| static const UnitDependency deps[] = { |
| UNIT_REQUIRED_BY, |
| UNIT_REQUISITE_OF, |
| UNIT_WANTED_BY, |
| UNIT_BOUND_BY |
| }; |
| |
| unsigned k; |
| int r = 0; |
| |
| assert(u); |
| |
| for (k = 0; k < ELEMENTSOF(deps); k++) { |
| Unit *target; |
| Iterator i; |
| void *v; |
| |
| HASHMAP_FOREACH_KEY(v, target, u->dependencies[deps[k]], i) { |
| r = unit_add_default_target_dependency(u, target); |
| if (r < 0) |
| return r; |
| } |
| } |
| |
| return r; |
| } |
| |
| static int unit_add_slice_dependencies(Unit *u) { |
| UnitDependencyMask mask; |
| assert(u); |
| |
| if (!UNIT_HAS_CGROUP_CONTEXT(u)) |
| return 0; |
| |
| /* Slice units are implicitly ordered against their parent slices (as this relationship is encoded in the |
| name), while all other units are ordered based on configuration (as in their case Slice= configures the |
| relationship). */ |
| mask = u->type == UNIT_SLICE ? UNIT_DEPENDENCY_IMPLICIT : UNIT_DEPENDENCY_FILE; |
| |
| if (UNIT_ISSET(u->slice)) |
| return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, UNIT_DEREF(u->slice), true, mask); |
| |
| if (unit_has_name(u, SPECIAL_ROOT_SLICE)) |
| return 0; |
| |
| return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, NULL, true, mask); |
| } |
| |
| static int unit_add_mount_dependencies(Unit *u) { |
| UnitDependencyInfo di; |
| const char *path; |
| Iterator i; |
| int r; |
| |
| assert(u); |
| |
| HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for, i) { |
| char prefix[strlen(path) + 1]; |
| |
| PATH_FOREACH_PREFIX_MORE(prefix, path) { |
| _cleanup_free_ char *p = NULL; |
| Unit *m; |
| |
| r = unit_name_from_path(prefix, ".mount", &p); |
| if (r < 0) |
| return r; |
| |
| m = manager_get_unit(u->manager, p); |
| if (!m) { |
| /* Make sure to load the mount unit if |
| * it exists. If so the dependencies |
| * on this unit will be added later |
| * during the loading of the mount |
| * unit. */ |
| (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m); |
| continue; |
| } |
| if (m == u) |
| continue; |
| |
| if (m->load_state != UNIT_LOADED) |
| continue; |
| |
| r = unit_add_dependency(u, UNIT_AFTER, m, true, di.origin_mask); |
| if (r < 0) |
| return r; |
| |
| if (m->fragment_path) { |
| r = unit_add_dependency(u, UNIT_REQUIRES, m, true, di.origin_mask); |
| if (r < 0) |
| return r; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int unit_add_startup_units(Unit *u) { |
| CGroupContext *c; |
| int r; |
| |
| c = unit_get_cgroup_context(u); |
| if (!c) |
| return 0; |
| |
| if (c->startup_cpu_shares == CGROUP_CPU_SHARES_INVALID && |
| c->startup_io_weight == CGROUP_WEIGHT_INVALID && |
| c->startup_blockio_weight == CGROUP_BLKIO_WEIGHT_INVALID) |
| return 0; |
| |
| r = set_ensure_allocated(&u->manager->startup_units, NULL); |
| if (r < 0) |
| return r; |
| |
| return set_put(u->manager->startup_units, u); |
| } |
| |
| int unit_load(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| if (u->in_load_queue) { |
| LIST_REMOVE(load_queue, u->manager->load_queue, u); |
| u->in_load_queue = false; |
| } |
| |
| if (u->type == _UNIT_TYPE_INVALID) |
| return -EINVAL; |
| |
| if (u->load_state != UNIT_STUB) |
| return 0; |
| |
| if (u->transient_file) { |
| r = fflush_and_check(u->transient_file); |
| if (r < 0) |
| goto fail; |
| |
| u->transient_file = safe_fclose(u->transient_file); |
| u->fragment_mtime = now(CLOCK_REALTIME); |
| } |
| |
| if (UNIT_VTABLE(u)->load) { |
| r = UNIT_VTABLE(u)->load(u); |
| if (r < 0) |
| goto fail; |
| } |
| |
| if (u->load_state == UNIT_STUB) { |
| r = -ENOENT; |
| goto fail; |
| } |
| |
| if (u->load_state == UNIT_LOADED) { |
| |
| r = unit_add_target_dependencies(u); |
| if (r < 0) |
| goto fail; |
| |
| r = unit_add_slice_dependencies(u); |
| if (r < 0) |
| goto fail; |
| |
| r = unit_add_mount_dependencies(u); |
| if (r < 0) |
| goto fail; |
| |
| r = unit_add_startup_units(u); |
| if (r < 0) |
| goto fail; |
| |
| if (u->on_failure_job_mode == JOB_ISOLATE && hashmap_size(u->dependencies[UNIT_ON_FAILURE]) > 1) { |
| log_unit_error(u, "More than one OnFailure= dependencies specified but OnFailureJobMode=isolate set. Refusing."); |
| r = -EINVAL; |
| goto fail; |
| } |
| |
| if (u->job_running_timeout != USEC_INFINITY && u->job_running_timeout > u->job_timeout) |
| log_unit_warning(u, "JobRunningTimeoutSec= is greater than JobTimeoutSec=, it has no effect."); |
| |
| unit_update_cgroup_members_masks(u); |
| } |
| |
| assert((u->load_state != UNIT_MERGED) == !u->merged_into); |
| |
| unit_add_to_dbus_queue(unit_follow_merge(u)); |
| unit_add_to_gc_queue(u); |
| |
| return 0; |
| |
| fail: |
| u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND : UNIT_ERROR; |
| u->load_error = r; |
| unit_add_to_dbus_queue(u); |
| unit_add_to_gc_queue(u); |
| |
| log_unit_debug_errno(u, r, "Failed to load configuration: %m"); |
| |
| return r; |
| } |
| |
| static bool unit_condition_test_list(Unit *u, Condition *first, const char *(*to_string)(ConditionType t)) { |
| Condition *c; |
| int triggered = -1; |
| |
| assert(u); |
| assert(to_string); |
| |
| /* If the condition list is empty, then it is true */ |
| if (!first) |
| return true; |
| |
| /* Otherwise, if all of the non-trigger conditions apply and |
| * if any of the trigger conditions apply (unless there are |
| * none) we return true */ |
| LIST_FOREACH(conditions, c, first) { |
| int r; |
| |
| r = condition_test(c); |
| if (r < 0) |
| log_unit_warning(u, |
| "Couldn't determine result for %s=%s%s%s, assuming failed: %m", |
| to_string(c->type), |
| c->trigger ? "|" : "", |
| c->negate ? "!" : "", |
| c->parameter); |
| else |
| log_unit_debug(u, |
| "%s=%s%s%s %s.", |
| to_string(c->type), |
| c->trigger ? "|" : "", |
| c->negate ? "!" : "", |
| c->parameter, |
| condition_result_to_string(c->result)); |
| |
| if (!c->trigger && r <= 0) |
| return false; |
| |
| if (c->trigger && triggered <= 0) |
| triggered = r > 0; |
| } |
| |
| return triggered != 0; |
| } |
| |
| static bool unit_condition_test(Unit *u) { |
| assert(u); |
| |
| dual_timestamp_get(&u->condition_timestamp); |
| u->condition_result = unit_condition_test_list(u, u->conditions, condition_type_to_string); |
| |
| return u->condition_result; |
| } |
| |
| static bool unit_assert_test(Unit *u) { |
| assert(u); |
| |
| dual_timestamp_get(&u->assert_timestamp); |
| u->assert_result = unit_condition_test_list(u, u->asserts, assert_type_to_string); |
| |
| return u->assert_result; |
| } |
| |
| void unit_status_printf(Unit *u, const char *status, const char *unit_status_msg_format) { |
| DISABLE_WARNING_FORMAT_NONLITERAL; |
| manager_status_printf(u->manager, STATUS_TYPE_NORMAL, status, unit_status_msg_format, unit_description(u)); |
| REENABLE_WARNING; |
| } |
| |
| _pure_ static const char* unit_get_status_message_format(Unit *u, JobType t) { |
| const char *format; |
| const UnitStatusMessageFormats *format_table; |
| |
| assert(u); |
| assert(IN_SET(t, JOB_START, JOB_STOP, JOB_RELOAD)); |
| |
| if (t != JOB_RELOAD) { |
| format_table = &UNIT_VTABLE(u)->status_message_formats; |
| if (format_table) { |
| format = format_table->starting_stopping[t == JOB_STOP]; |
| if (format) |
| return format; |
| } |
| } |
| |
| /* Return generic strings */ |
| if (t == JOB_START) |
| return "Starting %s."; |
| else if (t == JOB_STOP) |
| return "Stopping %s."; |
| else |
| return "Reloading %s."; |
| } |
| |
| static void unit_status_print_starting_stopping(Unit *u, JobType t) { |
| const char *format; |
| |
| assert(u); |
| |
| /* Reload status messages have traditionally not been printed to console. */ |
| if (!IN_SET(t, JOB_START, JOB_STOP)) |
| return; |
| |
| format = unit_get_status_message_format(u, t); |
| |
| DISABLE_WARNING_FORMAT_NONLITERAL; |
| unit_status_printf(u, "", format); |
| REENABLE_WARNING; |
| } |
| |
| static void unit_status_log_starting_stopping_reloading(Unit *u, JobType t) { |
| const char *format, *mid; |
| char buf[LINE_MAX]; |
| |
| assert(u); |
| |
| if (!IN_SET(t, JOB_START, JOB_STOP, JOB_RELOAD)) |
| return; |
| |
| if (log_on_console()) |
| return; |
| |
| /* We log status messages for all units and all operations. */ |
| |
| format = unit_get_status_message_format(u, t); |
| |
| DISABLE_WARNING_FORMAT_NONLITERAL; |
| xsprintf(buf, format, unit_description(u)); |
| REENABLE_WARNING; |
| |
| mid = t == JOB_START ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTING_STR : |
| t == JOB_STOP ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPING_STR : |
| "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADING_STR; |
| |
| /* Note that we deliberately use LOG_MESSAGE() instead of |
| * LOG_UNIT_MESSAGE() here, since this is supposed to mimic |
| * closely what is written to screen using the status output, |
| * which is supposed the highest level, friendliest output |
| * possible, which means we should avoid the low-level unit |
| * name. */ |
| log_struct(LOG_INFO, |
| LOG_MESSAGE("%s", buf), |
| LOG_UNIT_ID(u), |
| LOG_UNIT_INVOCATION_ID(u), |
| mid, |
| NULL); |
| } |
| |
| void unit_status_emit_starting_stopping_reloading(Unit *u, JobType t) { |
| assert(u); |
| assert(t >= 0); |
| assert(t < _JOB_TYPE_MAX); |
| |
| unit_status_log_starting_stopping_reloading(u, t); |
| unit_status_print_starting_stopping(u, t); |
| } |
| |
| int unit_start_limit_test(Unit *u) { |
| assert(u); |
| |
| if (ratelimit_test(&u->start_limit)) { |
| u->start_limit_hit = false; |
| return 0; |
| } |
| |
| log_unit_warning(u, "Start request repeated too quickly."); |
| u->start_limit_hit = true; |
| |
| return emergency_action(u->manager, u->start_limit_action, u->reboot_arg, "unit failed"); |
| } |
| |
| bool unit_shall_confirm_spawn(Unit *u) { |
| assert(u); |
| |
| if (manager_is_confirm_spawn_disabled(u->manager)) |
| return false; |
| |
| /* For some reasons units remaining in the same process group |
| * as PID 1 fail to acquire the console even if it's not used |
| * by any process. So skip the confirmation question for them. */ |
| return !unit_get_exec_context(u)->same_pgrp; |
| } |
| |
| static bool unit_verify_deps(Unit *u) { |
| Unit *other; |
| Iterator j; |
| void *v; |
| |
| assert(u); |
| |
| /* Checks whether all BindsTo= dependencies of this unit are fulfilled — if they are also combined with |
| * After=. We do not check Requires= or Requisite= here as they only should have an effect on the job |
| * processing, but do not have any effect afterwards. We don't check BindsTo= dependencies that are not used in |
| * conjunction with After= as for them any such check would make things entirely racy. */ |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], j) { |
| |
| if (!hashmap_contains(u->dependencies[UNIT_AFTER], other)) |
| continue; |
| |
| if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) { |
| log_unit_notice(u, "Bound to unit %s, but unit isn't active.", other->id); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Errors: |
| * -EBADR: This unit type does not support starting. |
| * -EALREADY: Unit is already started. |
| * -EAGAIN: An operation is already in progress. Retry later. |
| * -ECANCELED: Too many requests for now. |
| * -EPROTO: Assert failed |
| * -EINVAL: Unit not loaded |
| * -EOPNOTSUPP: Unit type not supported |
| * -ENOLINK: The necessary dependencies are not fulfilled. |
| */ |
| int unit_start(Unit *u) { |
| UnitActiveState state; |
| Unit *following; |
| |
| assert(u); |
| |
| /* If this is already started, then this will succeed. Note |
| * that this will even succeed if this unit is not startable |
| * by the user. This is relied on to detect when we need to |
| * wait for units and when waiting is finished. */ |
| state = unit_active_state(u); |
| if (UNIT_IS_ACTIVE_OR_RELOADING(state)) |
| return -EALREADY; |
| |
| /* Units that aren't loaded cannot be started */ |
| if (u->load_state != UNIT_LOADED) |
| return -EINVAL; |
| |
| /* If the conditions failed, don't do anything at all. If we |
| * already are activating this call might still be useful to |
| * speed up activation in case there is some hold-off time, |
| * but we don't want to recheck the condition in that case. */ |
| if (state != UNIT_ACTIVATING && |
| !unit_condition_test(u)) { |
| log_unit_debug(u, "Starting requested but condition failed. Not starting unit."); |
| return -EALREADY; |
| } |
| |
| /* If the asserts failed, fail the entire job */ |
| if (state != UNIT_ACTIVATING && |
| !unit_assert_test(u)) { |
| log_unit_notice(u, "Starting requested but asserts failed."); |
| return -EPROTO; |
| } |
| |
| /* Units of types that aren't supported cannot be |
| * started. Note that we do this test only after the condition |
| * checks, so that we rather return condition check errors |
| * (which are usually not considered a true failure) than "not |
| * supported" errors (which are considered a failure). |
| */ |
| if (!unit_supported(u)) |
| return -EOPNOTSUPP; |
| |
| /* Let's make sure that the deps really are in order before we start this. Normally the job engine should have |
| * taken care of this already, but let's check this here again. After all, our dependencies might not be in |
| * effect anymore, due to a reload or due to a failed condition. */ |
| if (!unit_verify_deps(u)) |
| return -ENOLINK; |
| |
| /* Forward to the main object, if we aren't it. */ |
| following = unit_following(u); |
| if (following) { |
| log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id); |
| return unit_start(following); |
| } |
| |
| /* If it is stopped, but we cannot start it, then fail */ |
| if (!UNIT_VTABLE(u)->start) |
| return -EBADR; |
| |
| /* We don't suppress calls to ->start() here when we are |
| * already starting, to allow this request to be used as a |
| * "hurry up" call, for example when the unit is in some "auto |
| * restart" state where it waits for a holdoff timer to elapse |
| * before it will start again. */ |
| |
| unit_add_to_dbus_queue(u); |
| |
| return UNIT_VTABLE(u)->start(u); |
| } |
| |
| bool unit_can_start(Unit *u) { |
| assert(u); |
| |
| if (u->load_state != UNIT_LOADED) |
| return false; |
| |
| if (!unit_supported(u)) |
| return false; |
| |
| return !!UNIT_VTABLE(u)->start; |
| } |
| |
| bool unit_can_isolate(Unit *u) { |
| assert(u); |
| |
| return unit_can_start(u) && |
| u->allow_isolate; |
| } |
| |
| /* Errors: |
| * -EBADR: This unit type does not support stopping. |
| * -EALREADY: Unit is already stopped. |
| * -EAGAIN: An operation is already in progress. Retry later. |
| */ |
| int unit_stop(Unit *u) { |
| UnitActiveState state; |
| Unit *following; |
| |
| assert(u); |
| |
| state = unit_active_state(u); |
| if (UNIT_IS_INACTIVE_OR_FAILED(state)) |
| return -EALREADY; |
| |
| following = unit_following(u); |
| if (following) { |
| log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id); |
| return unit_stop(following); |
| } |
| |
| if (!UNIT_VTABLE(u)->stop) |
| return -EBADR; |
| |
| unit_add_to_dbus_queue(u); |
| |
| return UNIT_VTABLE(u)->stop(u); |
| } |
| |
| bool unit_can_stop(Unit *u) { |
| assert(u); |
| |
| if (!unit_supported(u)) |
| return false; |
| |
| if (u->perpetual) |
| return false; |
| |
| return !!UNIT_VTABLE(u)->stop; |
| } |
| |
| /* Errors: |
| * -EBADR: This unit type does not support reloading. |
| * -ENOEXEC: Unit is not started. |
| * -EAGAIN: An operation is already in progress. Retry later. |
| */ |
| int unit_reload(Unit *u) { |
| UnitActiveState state; |
| Unit *following; |
| |
| assert(u); |
| |
| if (u->load_state != UNIT_LOADED) |
| return -EINVAL; |
| |
| if (!unit_can_reload(u)) |
| return -EBADR; |
| |
| state = unit_active_state(u); |
| if (state == UNIT_RELOADING) |
| return -EALREADY; |
| |
| if (state != UNIT_ACTIVE) { |
| log_unit_warning(u, "Unit cannot be reloaded because it is inactive."); |
| return -ENOEXEC; |
| } |
| |
| following = unit_following(u); |
| if (following) { |
| log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id); |
| return unit_reload(following); |
| } |
| |
| unit_add_to_dbus_queue(u); |
| |
| if (!UNIT_VTABLE(u)->reload) { |
| /* Unit doesn't have a reload function, but we need to propagate the reload anyway */ |
| unit_notify(u, unit_active_state(u), unit_active_state(u), true); |
| return 0; |
| } |
| |
| return UNIT_VTABLE(u)->reload(u); |
| } |
| |
| bool unit_can_reload(Unit *u) { |
| assert(u); |
| |
| if (UNIT_VTABLE(u)->can_reload) |
| return UNIT_VTABLE(u)->can_reload(u); |
| |
| if (!hashmap_isempty(u->dependencies[UNIT_PROPAGATES_RELOAD_TO])) |
| return true; |
| |
| return UNIT_VTABLE(u)->reload; |
| } |
| |
| static void unit_check_unneeded(Unit *u) { |
| |
| _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; |
| |
| static const UnitDependency needed_dependencies[] = { |
| UNIT_REQUIRED_BY, |
| UNIT_REQUISITE_OF, |
| UNIT_WANTED_BY, |
| UNIT_BOUND_BY, |
| }; |
| |
| unsigned j; |
| int r; |
| |
| assert(u); |
| |
| /* If this service shall be shut down when unneeded then do |
| * so. */ |
| |
| if (!u->stop_when_unneeded) |
| return; |
| |
| if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) |
| return; |
| |
| for (j = 0; j < ELEMENTSOF(needed_dependencies); j++) { |
| Unit *other; |
| Iterator i; |
| void *v; |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[needed_dependencies[j]], i) |
| if (unit_active_or_pending(other) || unit_will_restart(other)) |
| return; |
| } |
| |
| /* If stopping a unit fails continuously we might enter a stop |
| * loop here, hence stop acting on the service being |
| * unnecessary after a while. */ |
| if (!ratelimit_test(&u->auto_stop_ratelimit)) { |
| log_unit_warning(u, "Unit not needed anymore, but not stopping since we tried this too often recently."); |
| return; |
| } |
| |
| log_unit_info(u, "Unit not needed anymore. Stopping."); |
| |
| /* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */ |
| r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, &error, NULL); |
| if (r < 0) |
| log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r)); |
| } |
| |
| static void unit_check_binds_to(Unit *u) { |
| _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; |
| bool stop = false; |
| Unit *other; |
| Iterator i; |
| void *v; |
| int r; |
| |
| assert(u); |
| |
| if (u->job) |
| return; |
| |
| if (unit_active_state(u) != UNIT_ACTIVE) |
| return; |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i) { |
| if (other->job) |
| continue; |
| |
| if (!other->coldplugged) |
| /* We might yet create a job for the other unit… */ |
| continue; |
| |
| if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other))) |
| continue; |
| |
| stop = true; |
| break; |
| } |
| |
| if (!stop) |
| return; |
| |
| /* If stopping a unit fails continuously we might enter a stop |
| * loop here, hence stop acting on the service being |
| * unnecessary after a while. */ |
| if (!ratelimit_test(&u->auto_stop_ratelimit)) { |
| log_unit_warning(u, "Unit is bound to inactive unit %s, but not stopping since we tried this too often recently.", other->id); |
| return; |
| } |
| |
| assert(other); |
| log_unit_info(u, "Unit is bound to inactive unit %s. Stopping, too.", other->id); |
| |
| /* A unit we need to run is gone. Sniff. Let's stop this. */ |
| r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, &error, NULL); |
| if (r < 0) |
| log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r)); |
| } |
| |
| static void retroactively_start_dependencies(Unit *u) { |
| Iterator i; |
| Unit *other; |
| void *v; |
| |
| assert(u); |
| assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))); |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_REQUIRES], i) |
| if (!hashmap_get(u->dependencies[UNIT_AFTER], other) && |
| !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) |
| manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL); |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i) |
| if (!hashmap_get(u->dependencies[UNIT_AFTER], other) && |
| !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) |
| manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL); |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_WANTS], i) |
| if (!hashmap_get(u->dependencies[UNIT_AFTER], other) && |
| !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) |
| manager_add_job(u->manager, JOB_START, other, JOB_FAIL, NULL, NULL); |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTS], i) |
| if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) |
| manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL); |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTED_BY], i) |
| if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) |
| manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL); |
| } |
| |
| static void retroactively_stop_dependencies(Unit *u) { |
| Unit *other; |
| Iterator i; |
| void *v; |
| |
| assert(u); |
| assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))); |
| |
| /* Pull down units which are bound to us recursively if enabled */ |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BOUND_BY], i) |
| if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) |
| manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL); |
| } |
| |
| static void check_unneeded_dependencies(Unit *u) { |
| Unit *other; |
| Iterator i; |
| void *v; |
| |
| assert(u); |
| assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))); |
| |
| /* Garbage collect services that might not be needed anymore, if enabled */ |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_REQUIRES], i) |
| if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) |
| unit_check_unneeded(other); |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_WANTS], i) |
| if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) |
| unit_check_unneeded(other); |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_REQUISITE], i) |
| if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) |
| unit_check_unneeded(other); |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i) |
| if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) |
| unit_check_unneeded(other); |
| } |
| |
| void unit_start_on_failure(Unit *u) { |
| Unit *other; |
| Iterator i; |
| void *v; |
| |
| assert(u); |
| |
| if (hashmap_size(u->dependencies[UNIT_ON_FAILURE]) <= 0) |
| return; |
| |
| log_unit_info(u, "Triggering OnFailure= dependencies."); |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_ON_FAILURE], i) { |
| int r; |
| |
| r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, NULL, NULL); |
| if (r < 0) |
| log_unit_error_errno(u, r, "Failed to enqueue OnFailure= job: %m"); |
| } |
| } |
| |
| void unit_trigger_notify(Unit *u) { |
| Unit *other; |
| Iterator i; |
| void *v; |
| |
| assert(u); |
| |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_TRIGGERED_BY], i) |
| if (UNIT_VTABLE(other)->trigger_notify) |
| UNIT_VTABLE(other)->trigger_notify(other, u); |
| } |
| |
| static int unit_log_resources(Unit *u) { |
| |
| struct iovec iovec[1 + _CGROUP_IP_ACCOUNTING_METRIC_MAX + 4]; |
| size_t n_message_parts = 0, n_iovec = 0; |
| char* message_parts[3 + 1], *t; |
| nsec_t nsec = NSEC_INFINITY; |
| CGroupIPAccountingMetric m; |
| size_t i; |
| int r; |
| const char* const ip_fields[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = { |
| [CGROUP_IP_INGRESS_BYTES] = "IP_METRIC_INGRESS_BYTES", |
| [CGROUP_IP_INGRESS_PACKETS] = "IP_METRIC_INGRESS_PACKETS", |
| [CGROUP_IP_EGRESS_BYTES] = "IP_METRIC_EGRESS_BYTES", |
| [CGROUP_IP_EGRESS_PACKETS] = "IP_METRIC_EGRESS_PACKETS", |
| }; |
| |
| assert(u); |
| |
| /* Invoked whenever a unit enters failed or dead state. Logs information about consumed resources if resource |
| * accounting was enabled for a unit. It does this in two ways: a friendly human readable string with reduced |
| * information and the complete data in structured fields. */ |
| |
| (void) unit_get_cpu_usage(u, &nsec); |
| if (nsec != NSEC_INFINITY) { |
| char buf[FORMAT_TIMESPAN_MAX] = ""; |
| |
| /* Format the CPU time for inclusion in the structured log message */ |
| if (asprintf(&t, "CPU_USAGE_NSEC=%" PRIu64, nsec) < 0) { |
| r = log_oom(); |
| goto finish; |
| } |
| iovec[n_iovec++] = IOVEC_MAKE_STRING(t); |
| |
| /* Format the CPU time for inclusion in the human language message string */ |
| format_timespan(buf, sizeof(buf), nsec / NSEC_PER_USEC, USEC_PER_MSEC); |
| t = strjoin(n_message_parts > 0 ? "consumed " : "Consumed ", buf, " CPU time"); |
| if (!t) { |
| r = log_oom(); |
| goto finish; |
| } |
| |
| message_parts[n_message_parts++] = t; |
| } |
| |
| for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) { |
| char buf[FORMAT_BYTES_MAX] = ""; |
| uint64_t value = UINT64_MAX; |
| |
| assert(ip_fields[m]); |
| |
| (void) unit_get_ip_accounting(u, m, &value); |
| if (value == UINT64_MAX) |
| continue; |
| |
| /* Format IP accounting data for inclusion in the structured log message */ |
| if (asprintf(&t, "%s=%" PRIu64, ip_fields[m], value) < 0) { |
| r = log_oom(); |
| goto finish; |
| } |
| iovec[n_iovec++] = IOVEC_MAKE_STRING(t); |
| |
| /* Format the IP accounting data for inclusion in the human language message string, but only for the |
| * bytes counters (and not for the packets counters) */ |
| if (m == CGROUP_IP_INGRESS_BYTES) |
| t = strjoin(n_message_parts > 0 ? "received " : "Received ", |
| format_bytes(buf, sizeof(buf), value), |
| " IP traffic"); |
| else if (m == CGROUP_IP_EGRESS_BYTES) |
| t = strjoin(n_message_parts > 0 ? "sent " : "Sent ", |
| format_bytes(buf, sizeof(buf), value), |
| " IP traffic"); |
| else |
| continue; |
| if (!t) { |
| r = log_oom(); |
| goto finish; |
| } |
| |
| message_parts[n_message_parts++] = t; |
| } |
| |
| /* Is there any accounting data available at all? */ |
| if (n_iovec == 0) { |
| r = 0; |
| goto finish; |
| } |
| |
| if (n_message_parts == 0) |
| t = strjoina("MESSAGE=", u->id, ": Completed"); |
| else { |
| _cleanup_free_ char *joined; |
| |
| message_parts[n_message_parts] = NULL; |
| |
| joined = strv_join(message_parts, ", "); |
| if (!joined) { |
| r = log_oom(); |
| goto finish; |
| } |
| |
| t = strjoina("MESSAGE=", u->id, ": ", joined); |
| } |
| |
| /* The following four fields we allocate on the stack or are static strings, we hence don't want to free them, |
| * and hence don't increase n_iovec for them */ |
| iovec[n_iovec] = IOVEC_MAKE_STRING(t); |
| iovec[n_iovec + 1] = IOVEC_MAKE_STRING("MESSAGE_ID=" SD_MESSAGE_UNIT_RESOURCES_STR); |
| |
| t = strjoina(u->manager->unit_log_field, u->id); |
| iovec[n_iovec + 2] = IOVEC_MAKE_STRING(t); |
| |
| t = strjoina(u->manager->invocation_log_field, u->invocation_id_string); |
| iovec[n_iovec + 3] = IOVEC_MAKE_STRING(t); |
| |
| log_struct_iovec(LOG_INFO, iovec, n_iovec + 4); |
| r = 0; |
| |
| finish: |
| for (i = 0; i < n_message_parts; i++) |
| free(message_parts[i]); |
| |
| for (i = 0; i < n_iovec; i++) |
| free(iovec[i].iov_base); |
| |
| return r; |
| |
| } |
| |
| static void unit_update_on_console(Unit *u) { |
| bool b; |
| |
| assert(u); |
| |
| b = unit_needs_console(u); |
| if (u->on_console == b) |
| return; |
| |
| u->on_console = b; |
| if (b) |
| manager_ref_console(u->manager); |
| else |
| manager_unref_console(u->manager); |
| |
| } |
| |
| void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, bool reload_success) { |
| Manager *m; |
| bool unexpected; |
| |
| assert(u); |
| assert(os < _UNIT_ACTIVE_STATE_MAX); |
| assert(ns < _UNIT_ACTIVE_STATE_MAX); |
| |
| /* Note that this is called for all low-level state changes, |
| * even if they might map to the same high-level |
| * UnitActiveState! That means that ns == os is an expected |
| * behavior here. For example: if a mount point is remounted |
| * this function will be called too! */ |
| |
| m = u->manager; |
| |
| /* Update timestamps for state changes */ |
| if (!MANAGER_IS_RELOADING(m)) { |
| dual_timestamp_get(&u->state_change_timestamp); |
| |
| if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns)) |
| u->inactive_exit_timestamp = u->state_change_timestamp; |
| else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns)) |
| u->inactive_enter_timestamp = u->state_change_timestamp; |
| |
| if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns)) |
| u->active_enter_timestamp = u->state_change_timestamp; |
| else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns)) |
| u->active_exit_timestamp = u->state_change_timestamp; |
| } |
| |
| /* Keep track of failed units */ |
| (void) manager_update_failed_units(u->manager, u, ns == UNIT_FAILED); |
| |
| /* Make sure the cgroup and state files are always removed when we become inactive */ |
| if (UNIT_IS_INACTIVE_OR_FAILED(ns)) { |
| unit_prune_cgroup(u); |
| unit_unlink_state_files(u); |
| } |
| |
| unit_update_on_console(u); |
| |
| if (u->job) { |
| unexpected = false; |
| |
| if (u->job->state == JOB_WAITING) |
| |
| /* So we reached a different state for this |
| * job. Let's see if we can run it now if it |
| * failed previously due to EAGAIN. */ |
| job_add_to_run_queue(u->job); |
| |
| /* Let's check whether this state change constitutes a |
| * finished job, or maybe contradicts a running job and |
| * hence needs to invalidate jobs. */ |
| |
| switch (u->job->type) { |
| |
| case JOB_START: |
| case JOB_VERIFY_ACTIVE: |
| |
| if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) |
| job_finish_and_invalidate(u->job, JOB_DONE, true, false); |
| else if (u->job->state == JOB_RUNNING && ns != UNIT_ACTIVATING) { |
| unexpected = true; |
| |
| if (UNIT_IS_INACTIVE_OR_FAILED(ns)) |
| job_finish_and_invalidate(u->job, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false); |
| } |
| |
| break; |
| |
| case JOB_RELOAD: |
| case JOB_RELOAD_OR_START: |
| case JOB_TRY_RELOAD: |
| |
| if (u->job->state == JOB_RUNNING) { |
| if (ns == UNIT_ACTIVE) |
| job_finish_and_invalidate(u->job, reload_success ? JOB_DONE : JOB_FAILED, true, false); |
| else if (!IN_SET(ns, UNIT_ACTIVATING, UNIT_RELOADING)) { |
| unexpected = true; |
| |
| if (UNIT_IS_INACTIVE_OR_FAILED(ns)) |
| job_finish_and_invalidate(u->job, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false); |
| } |
| } |
| |
| break; |
| |
| case JOB_STOP: |
| case JOB_RESTART: |
| case JOB_TRY_RESTART: |
| |
| if (UNIT_IS_INACTIVE_OR_FAILED(ns)) |
| job_finish_and_invalidate(u->job, JOB_DONE, true, false); |
| else if (u->job->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) { |
| unexpected = true; |
| job_finish_and_invalidate(u->job, JOB_FAILED, true, false); |
| } |
| |
| break; |
| |
| default: |
| assert_not_reached("Job type unknown"); |
| } |
| |
| } else |
| unexpected = true; |
| |
| if (!MANAGER_IS_RELOADING(m)) { |
| |
| /* If this state change happened without being |
| * requested by a job, then let's retroactively start |
| * or stop dependencies. We skip that step when |
| * deserializing, since we don't want to create any |
| * additional jobs just because something is already |
| * activated. */ |
| |
| if (unexpected) { |
| if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns)) |
| retroactively_start_dependencies(u); |
| else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns)) |
| retroactively_stop_dependencies(u); |
| } |
| |
| /* stop unneeded units regardless if going down was expected or not */ |
| if (UNIT_IS_INACTIVE_OR_DEACTIVATING(ns)) |
| check_unneeded_dependencies(u); |
| |
| if (ns != os && ns == UNIT_FAILED) { |
| log_unit_debug(u, "Unit entered failed state."); |
| unit_start_on_failure(u); |
| } |
| } |
| |
| /* Some names are special */ |
| if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) { |
| |
| if (unit_has_name(u, SPECIAL_DBUS_SERVICE)) |
| /* The bus might have just become available, |
| * hence try to connect to it, if we aren't |
| * yet connected. */ |
| bus_init(m, true); |
| |
| if (u->type == UNIT_SERVICE && |
| !UNIT_IS_ACTIVE_OR_RELOADING(os) && |
| !MANAGER_IS_RELOADING(m)) { |
| /* Write audit record if we have just finished starting up */ |
| manager_send_unit_audit(m, u, AUDIT_SERVICE_START, true); |
| u->in_audit = true; |
| } |
| |
| if (!UNIT_IS_ACTIVE_OR_RELOADING(os)) |
| manager_send_unit_plymouth(m, u); |
| |
| } else { |
| /* We don't care about D-Bus going down here, since we'll get an asynchronous notification for it |
| * anyway. */ |
| |
| if (UNIT_IS_INACTIVE_OR_FAILED(ns) && |
| !UNIT_IS_INACTIVE_OR_FAILED(os) |
| && !MANAGER_IS_RELOADING(m)) { |
| |
| /* This unit just stopped/failed. */ |
| if (u->type == UNIT_SERVICE) { |
| |
| /* Hmm, if there was no start record written |
| * write it now, so that we always have a nice |
| * pair */ |
| if (!u->in_audit) { |
| manager_send_unit_audit(m, u, AUDIT_SERVICE_START, ns == UNIT_INACTIVE); |
| |
| if (ns == UNIT_INACTIVE) |
| manager_send_unit_audit(m, u, AUDIT_SERVICE_STOP, true); |
| } else |
| /* Write audit record if we have just finished shutting down */ |
| manager_send_unit_audit(m, u, AUDIT_SERVICE_STOP, ns == UNIT_INACTIVE); |
| |
| u->in_audit = false; |
| } |
| |
| /* Write a log message about consumed resources */ |
| unit_log_resources(u); |
| } |
| } |
| |
| manager_recheck_journal(m); |
| unit_trigger_notify(u); |
| |
| if (!MANAGER_IS_RELOADING(u->manager)) { |
| /* Maybe we finished startup and are now ready for |
| * being stopped because unneeded? */ |
| unit_check_unneeded(u); |
| |
| /* Maybe we finished startup, but something we needed |
| * has vanished? Let's die then. (This happens when |
| * something BindsTo= to a Type=oneshot unit, as these |
| * units go directly from starting to inactive, |
| * without ever entering started.) */ |
| unit_check_binds_to(u); |
| |
| if (os != UNIT_FAILED && ns == UNIT_FAILED) |
| (void) emergency_action(u->manager, u->failure_action, u->reboot_arg, "unit failed"); |
| else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && ns == UNIT_INACTIVE) |
| (void) emergency_action(u->manager, u->success_action, u->reboot_arg, "unit succeeded"); |
| } |
| |
| unit_add_to_dbus_queue(u); |
| unit_add_to_gc_queue(u); |
| } |
| |
| int unit_watch_pid(Unit *u, pid_t pid) { |
| int r; |
| |
| assert(u); |
| assert(pid_is_valid(pid)); |
| |
| /* Watch a specific PID */ |
| |
| r = set_ensure_allocated(&u->pids, NULL); |
| if (r < 0) |
| return r; |
| |
| r = hashmap_ensure_allocated(&u->manager->watch_pids, NULL); |
| if (r < 0) |
| return r; |
| |
| /* First try, let's add the unit keyed by "pid". */ |
| r = hashmap_put(u->manager->watch_pids, PID_TO_PTR(pid), u); |
| if (r == -EEXIST) { |
| Unit **array; |
| bool found = false; |
| size_t n = 0; |
| |
| /* OK, the "pid" key is already assigned to a different unit. Let's see if the "-pid" key (which points |
| * to an array of Units rather than just a Unit), lists us already. */ |
| |
| array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid)); |
| if (array) |
| for (; array[n]; n++) |
| if (array[n] == u) |
| found = true; |
| |
| if (found) /* Found it already? if so, do nothing */ |
| r = 0; |
| else { |
| Unit **new_array; |
| |
| /* Allocate a new array */ |
| new_array = new(Unit*, n + 2); |
| if (!new_array) |
| return -ENOMEM; |
| |
| memcpy_safe(new_array, array, sizeof(Unit*) * n); |
| new_array[n] = u; |
| new_array[n+1] = NULL; |
| |
| /* Add or replace the old array */ |
| r = hashmap_replace(u->manager->watch_pids, PID_TO_PTR(-pid), new_array); |
| if (r < 0) { |
| free(new_array); |
| return r; |
| } |
| |
| free(array); |
| } |
| } else if (r < 0) |
| return r; |
| |
| r = set_put(u->pids, PID_TO_PTR(pid)); |
| if (r < 0) |
| return r; |
| |
| return 0; |
| } |
| |
| void unit_unwatch_pid(Unit *u, pid_t pid) { |
| Unit **array; |
| |
| assert(u); |
| assert(pid_is_valid(pid)); |
| |
| /* First let's drop the unit in case it's keyed as "pid". */ |
| (void) hashmap_remove_value(u->manager->watch_pids, PID_TO_PTR(pid), u); |
| |
| /* Then, let's also drop the unit, in case it's in the array keyed by -pid */ |
| array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid)); |
| if (array) { |
| size_t n, m = 0; |
| |
| /* Let's iterate through the array, dropping our own entry */ |
| for (n = 0; array[n]; n++) |
| if (array[n] != u) |
| array[m++] = array[n]; |
| array[m] = NULL; |
| |
| if (m == 0) { |
| /* The array is now empty, remove the entire entry */ |
| assert(hashmap_remove(u->manager->watch_pids, PID_TO_PTR(-pid)) == array); |
| free(array); |
| } |
| } |
| |
| (void) set_remove(u->pids, PID_TO_PTR(pid)); |
| } |
| |
| void unit_unwatch_all_pids(Unit *u) { |
| assert(u); |
| |
| while (!set_isempty(u->pids)) |
| unit_unwatch_pid(u, PTR_TO_PID(set_first(u->pids))); |
| |
| u->pids = set_free(u->pids); |
| } |
| |
| void unit_tidy_watch_pids(Unit *u, pid_t except1, pid_t except2) { |
| Iterator i; |
| void *e; |
| |
| assert(u); |
| |
| /* Cleans dead PIDs from our list */ |
| |
| SET_FOREACH(e, u->pids, i) { |
| pid_t pid = PTR_TO_PID(e); |
| |
| if (pid == except1 || pid == except2) |
| continue; |
| |
| if (!pid_is_unwaited(pid)) |
| unit_unwatch_pid(u, pid); |
| } |
| } |
| |
| bool unit_job_is_applicable(Unit *u, JobType j) { |
| assert(u); |
| assert(j >= 0 && j < _JOB_TYPE_MAX); |
| |
| switch (j) { |
| |
| case JOB_VERIFY_ACTIVE: |
| case JOB_START: |
| case JOB_NOP: |
| /* Note that we don't check unit_can_start() here. That's because .device units and suchlike are not |
| * startable by us but may appear due to external events, and it thus makes sense to permit enqueing |
| * jobs for it. */ |
| return true; |
| |
| case JOB_STOP: |
| /* Similar as above. However, perpetual units can never be stopped (neither explicitly nor due to |
| * external events), hence it makes no sense to permit enqueing such a request either. */ |
| return !u->perpetual; |
| |
| case JOB_RESTART: |
| case JOB_TRY_RESTART: |
| return unit_can_stop(u) && unit_can_start(u); |
| |
| case JOB_RELOAD: |
| case JOB_TRY_RELOAD: |
| return unit_can_reload(u); |
| |
| case JOB_RELOAD_OR_START: |
| return unit_can_reload(u) && unit_can_start(u); |
| |
| default: |
| assert_not_reached("Invalid job type"); |
| } |
| } |
| |
| static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency) { |
| assert(u); |
| |
| /* Only warn about some unit types */ |
| if (!IN_SET(dependency, UNIT_CONFLICTS, UNIT_CONFLICTED_BY, UNIT_BEFORE, UNIT_AFTER, UNIT_ON_FAILURE, UNIT_TRIGGERS, UNIT_TRIGGERED_BY)) |
| return; |
| |
| if (streq_ptr(u->id, other)) |
| log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id); |
| else |
| log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other), u->id); |
| } |
| |
| static int unit_add_dependency_hashmap( |
| Hashmap **h, |
| Unit *other, |
| UnitDependencyMask origin_mask, |
| UnitDependencyMask destination_mask) { |
| |
| UnitDependencyInfo info; |
| int r; |
| |
| assert(h); |
| assert(other); |
| assert(origin_mask < _UNIT_DEPENDENCY_MASK_FULL); |
| assert(destination_mask < _UNIT_DEPENDENCY_MASK_FULL); |
| assert(origin_mask > 0 || destination_mask > 0); |
| |
| r = hashmap_ensure_allocated(h, NULL); |
| if (r < 0) |
| return r; |
| |
| assert_cc(sizeof(void*) == sizeof(info)); |
| |
| info.data = hashmap_get(*h, other); |
| if (info.data) { |
| /* Entry already exists. Add in our mask. */ |
| |
| if ((info.origin_mask & origin_mask) == info.origin_mask && |
| (info.destination_mask & destination_mask) == info.destination_mask) |
| return 0; /* NOP */ |
| |
| info.origin_mask |= origin_mask; |
| info.destination_mask |= destination_mask; |
| |
| r = hashmap_update(*h, other, info.data); |
| } else { |
| info = (UnitDependencyInfo) { |
| .origin_mask = origin_mask, |
| .destination_mask = destination_mask, |
| }; |
| |
| r = hashmap_put(*h, other, info.data); |
| } |
| if (r < 0) |
| return r; |
| |
| return 1; |
| } |
| |
| int unit_add_dependency( |
| Unit *u, |
| UnitDependency d, |
| Unit *other, |
| bool add_reference, |
| UnitDependencyMask mask) { |
| |
| static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = { |
| [UNIT_REQUIRES] = UNIT_REQUIRED_BY, |
| [UNIT_WANTS] = UNIT_WANTED_BY, |
| [UNIT_REQUISITE] = UNIT_REQUISITE_OF, |
| [UNIT_BINDS_TO] = UNIT_BOUND_BY, |
| [UNIT_PART_OF] = UNIT_CONSISTS_OF, |
| [UNIT_REQUIRED_BY] = UNIT_REQUIRES, |
| [UNIT_REQUISITE_OF] = UNIT_REQUISITE, |
| [UNIT_WANTED_BY] = UNIT_WANTS, |
| [UNIT_BOUND_BY] = UNIT_BINDS_TO, |
| [UNIT_CONSISTS_OF] = UNIT_PART_OF, |
| [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY, |
| [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS, |
| [UNIT_BEFORE] = UNIT_AFTER, |
| [UNIT_AFTER] = UNIT_BEFORE, |
| [UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID, |
| [UNIT_REFERENCES] = UNIT_REFERENCED_BY, |
| [UNIT_REFERENCED_BY] = UNIT_REFERENCES, |
| [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY, |
| [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS, |
| [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM, |
| [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO, |
| [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF, |
| }; |
| Unit *original_u = u, *original_other = other; |
| int r; |
| |
| assert(u); |
| assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX); |
| assert(other); |
| |
| u = unit_follow_merge(u); |
| other = unit_follow_merge(other); |
| |
| /* We won't allow dependencies on ourselves. We will not |
| * consider them an error however. */ |
| if (u == other) { |
| maybe_warn_about_dependency(original_u, original_other->id, d); |
| return 0; |
| } |
| |
| if ((d == UNIT_BEFORE && other->type == UNIT_DEVICE) || |
| (d == UNIT_AFTER && u->type == UNIT_DEVICE)) { |
| log_unit_warning(u, "Dependency Before=%s ignored (.device units cannot be delayed)", other->id); |
| return 0; |
| } |
| |
| r = unit_add_dependency_hashmap(u->dependencies + d, other, mask, 0); |
| if (r < 0) |
| return r; |
| |
| if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) { |
| r = unit_add_dependency_hashmap(other->dependencies + inverse_table[d], u, 0, mask); |
| if (r < 0) |
| return r; |
| } |
| |
| if (add_reference) { |
| r = unit_add_dependency_hashmap(u->dependencies + UNIT_REFERENCES, other, mask, 0); |
| if (r < 0) |
| return r; |
| |
| r = unit_add_dependency_hashmap(other->dependencies + UNIT_REFERENCED_BY, u, 0, mask); |
| if (r < 0) |
| return r; |
| } |
| |
| unit_add_to_dbus_queue(u); |
| return 0; |
| } |
| |
| int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask) { |
| int r; |
| |
| assert(u); |
| |
| r = unit_add_dependency(u, d, other, add_reference, mask); |
| if (r < 0) |
| return r; |
| |
| return unit_add_dependency(u, e, other, add_reference, mask); |
| } |
| |
| static int resolve_template(Unit *u, const char *name, const char*path, char **buf, const char **ret) { |
| int r; |
| |
| assert(u); |
| assert(name || path); |
| assert(buf); |
| assert(ret); |
| |
| if (!name) |
| name = basename(path); |
| |
| if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) { |
| *buf = NULL; |
| *ret = name; |
| return 0; |
| } |
| |
| if (u->instance) |
| r = unit_name_replace_instance(name, u->instance, buf); |
| else { |
| _cleanup_free_ char *i = NULL; |
| |
| r = unit_name_to_prefix(u->id, &i); |
| if (r < 0) |
| return r; |
| |
| r = unit_name_replace_instance(name, i, buf); |
| } |
| if (r < 0) |
| return r; |
| |
| *ret = *buf; |
| return 0; |
| } |
| |
| int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, const char *path, bool add_reference, UnitDependencyMask mask) { |
| _cleanup_free_ char *buf = NULL; |
| Unit *other; |
| int r; |
| |
| assert(u); |
| assert(name || path); |
| |
| r = resolve_template(u, name, path, &buf, &name); |
| if (r < 0) |
| return r; |
| |
| r = manager_load_unit(u->manager, name, path, NULL, &other); |
| if (r < 0) |
| return r; |
| |
| return unit_add_dependency(u, d, other, add_reference, mask); |
| } |
| |
| int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, const char *path, bool add_reference, UnitDependencyMask mask) { |
| _cleanup_free_ char *buf = NULL; |
| Unit *other; |
| int r; |
| |
| assert(u); |
| assert(name || path); |
| |
| r = resolve_template(u, name, path, &buf, &name); |
| if (r < 0) |
| return r; |
| |
| r = manager_load_unit(u->manager, name, path, NULL, &other); |
| if (r < 0) |
| return r; |
| |
| return unit_add_two_dependencies(u, d, e, other, add_reference, mask); |
| } |
| |
| int set_unit_path(const char *p) { |
| /* This is mostly for debug purposes */ |
| if (setenv("SYSTEMD_UNIT_PATH", p, 1) < 0) |
| return -errno; |
| |
| return 0; |
| } |
| |
| char *unit_dbus_path(Unit *u) { |
| assert(u); |
| |
| if (!u->id) |
| return NULL; |
| |
| return unit_dbus_path_from_name(u->id); |
| } |
| |
| char *unit_dbus_path_invocation_id(Unit *u) { |
| assert(u); |
| |
| if (sd_id128_is_null(u->invocation_id)) |
| return NULL; |
| |
| return unit_dbus_path_from_name(u->invocation_id_string); |
| } |
| |
| int unit_set_slice(Unit *u, Unit *slice) { |
| assert(u); |
| assert(slice); |
| |
| /* Sets the unit slice if it has not been set before. Is extra |
| * careful, to only allow this for units that actually have a |
| * cgroup context. Also, we don't allow to set this for slices |
| * (since the parent slice is derived from the name). Make |
| * sure the unit we set is actually a slice. */ |
| |
| if (!UNIT_HAS_CGROUP_CONTEXT(u)) |
| return -EOPNOTSUPP; |
| |
| if (u->type == UNIT_SLICE) |
| return -EINVAL; |
| |
| if (unit_active_state(u) != UNIT_INACTIVE) |
| return -EBUSY; |
| |
| if (slice->type != UNIT_SLICE) |
| return -EINVAL; |
| |
| if (unit_has_name(u, SPECIAL_INIT_SCOPE) && |
| !unit_has_name(slice, SPECIAL_ROOT_SLICE)) |
| return -EPERM; |
| |
| if (UNIT_DEREF(u->slice) == slice) |
| return 0; |
| |
| /* Disallow slice changes if @u is already bound to cgroups */ |
| if (UNIT_ISSET(u->slice) && u->cgroup_realized) |
| return -EBUSY; |
| |
| unit_ref_set(&u->slice, u, slice); |
| return 1; |
| } |
| |
| int unit_set_default_slice(Unit *u) { |
| _cleanup_free_ char *b = NULL; |
| const char *slice_name; |
| Unit *slice; |
| int r; |
| |
| assert(u); |
| |
| if (UNIT_ISSET(u->slice)) |
| return 0; |
| |
| if (u->instance) { |
| _cleanup_free_ char *prefix = NULL, *escaped = NULL; |
| |
| /* Implicitly place all instantiated units in their |
| * own per-template slice */ |
| |
| r = unit_name_to_prefix(u->id, &prefix); |
| if (r < 0) |
| return r; |
| |
| /* The prefix is already escaped, but it might include |
| * "-" which has a special meaning for slice units, |
| * hence escape it here extra. */ |
| escaped = unit_name_escape(prefix); |
| if (!escaped) |
| return -ENOMEM; |
| |
| if (MANAGER_IS_SYSTEM(u->manager)) |
| b = strjoin("system-", escaped, ".slice"); |
| else |
| b = strappend(escaped, ".slice"); |
| if (!b) |
| return -ENOMEM; |
| |
| slice_name = b; |
| } else |
| slice_name = |
| MANAGER_IS_SYSTEM(u->manager) && !unit_has_name(u, SPECIAL_INIT_SCOPE) |
| ? SPECIAL_SYSTEM_SLICE |
| : SPECIAL_ROOT_SLICE; |
| |
| r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice); |
| if (r < 0) |
| return r; |
| |
| return unit_set_slice(u, slice); |
| } |
| |
| const char *unit_slice_name(Unit *u) { |
| assert(u); |
| |
| if (!UNIT_ISSET(u->slice)) |
| return NULL; |
| |
| return UNIT_DEREF(u->slice)->id; |
| } |
| |
| int unit_load_related_unit(Unit *u, const char *type, Unit **_found) { |
| _cleanup_free_ char *t = NULL; |
| int r; |
| |
| assert(u); |
| assert(type); |
| assert(_found); |
| |
| r = unit_name_change_suffix(u->id, type, &t); |
| if (r < 0) |
| return r; |
| if (unit_has_name(u, t)) |
| return -EINVAL; |
| |
| r = manager_load_unit(u->manager, t, NULL, NULL, _found); |
| assert(r < 0 || *_found != u); |
| return r; |
| } |
| |
| static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) { |
| const char *name, *old_owner, *new_owner; |
| Unit *u = userdata; |
| int r; |
| |
| assert(message); |
| assert(u); |
| |
| r = sd_bus_message_read(message, "sss", &name, &old_owner, &new_owner); |
| if (r < 0) { |
| bus_log_parse_error(r); |
| return 0; |
| } |
| |
| old_owner = empty_to_null(old_owner); |
| new_owner = empty_to_null(new_owner); |
| |
| if (UNIT_VTABLE(u)->bus_name_owner_change) |
| UNIT_VTABLE(u)->bus_name_owner_change(u, name, old_owner, new_owner); |
| |
| return 0; |
| } |
| |
| int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) { |
| const char *match; |
| |
| assert(u); |
| assert(bus); |
| assert(name); |
| |
| if (u->match_bus_slot) |
| return -EBUSY; |
| |
| match = strjoina("type='signal'," |
| "sender='org.freedesktop.DBus'," |
| "path='/org/freedesktop/DBus'," |
| "interface='org.freedesktop.DBus'," |
| "member='NameOwnerChanged'," |
| "arg0='", name, "'"); |
| |
| return sd_bus_add_match_async(bus, &u->match_bus_slot, match, signal_name_owner_changed, NULL, u); |
| } |
| |
| int unit_watch_bus_name(Unit *u, const char *name) { |
| int r; |
| |
| assert(u); |
| assert(name); |
| |
| /* Watch a specific name on the bus. We only support one unit |
| * watching each name for now. */ |
| |
| if (u->manager->api_bus) { |
| /* If the bus is already available, install the match directly. |
| * Otherwise, just put the name in the list. bus_setup_api() will take care later. */ |
| r = unit_install_bus_match(u, u->manager->api_bus, name); |
| if (r < 0) |
| return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name); |
| } |
| |
| r = hashmap_put(u->manager->watch_bus, name, u); |
| if (r < 0) { |
| u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot); |
| return log_warning_errno(r, "Failed to put bus name to hashmap: %m"); |
| } |
| |
| return 0; |
| } |
| |
| void unit_unwatch_bus_name(Unit *u, const char *name) { |
| assert(u); |
| assert(name); |
| |
| (void) hashmap_remove_value(u->manager->watch_bus, name, u); |
| u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot); |
| } |
| |
| bool unit_can_serialize(Unit *u) { |
| assert(u); |
| |
| return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item; |
| } |
| |
| static int unit_serialize_cgroup_mask(FILE *f, const char *key, CGroupMask mask) { |
| _cleanup_free_ char *s = NULL; |
| int r = 0; |
| |
| assert(f); |
| assert(key); |
| |
| if (mask != 0) { |
| r = cg_mask_to_string(mask, &s); |
| if (r >= 0) { |
| fputs(key, f); |
| fputc('=', f); |
| fputs(s, f); |
| fputc('\n', f); |
| } |
| } |
| return r; |
| } |
| |
| static const char *ip_accounting_metric_field[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = { |
| [CGROUP_IP_INGRESS_BYTES] = "ip-accounting-ingress-bytes", |
| [CGROUP_IP_INGRESS_PACKETS] = "ip-accounting-ingress-packets", |
| [CGROUP_IP_EGRESS_BYTES] = "ip-accounting-egress-bytes", |
| [CGROUP_IP_EGRESS_PACKETS] = "ip-accounting-egress-packets", |
| }; |
| |
| int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) { |
| CGroupIPAccountingMetric m; |
| int r; |
| |
| assert(u); |
| assert(f); |
| assert(fds); |
| |
| if (unit_can_serialize(u)) { |
| ExecRuntime *rt; |
| |
| r = UNIT_VTABLE(u)->serialize(u, f, fds); |
| if (r < 0) |
| return r; |
| |
| rt = unit_get_exec_runtime(u); |
| if (rt) { |
| r = exec_runtime_serialize(u, rt, f, fds); |
| if (r < 0) |
| return r; |
| } |
| } |
| |
| dual_timestamp_serialize(f, "state-change-timestamp", &u->state_change_timestamp); |
| |
| dual_timestamp_serialize(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp); |
| dual_timestamp_serialize(f, "active-enter-timestamp", &u->active_enter_timestamp); |
| dual_timestamp_serialize(f, "active-exit-timestamp", &u->active_exit_timestamp); |
| dual_timestamp_serialize(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp); |
| |
| dual_timestamp_serialize(f, "condition-timestamp", &u->condition_timestamp); |
| dual_timestamp_serialize(f, "assert-timestamp", &u->assert_timestamp); |
| |
| if (dual_timestamp_is_set(&u->condition_timestamp)) |
| unit_serialize_item(u, f, "condition-result", yes_no(u->condition_result)); |
| |
| if (dual_timestamp_is_set(&u->assert_timestamp)) |
| unit_serialize_item(u, f, "assert-result", yes_no(u->assert_result)); |
| |
| unit_serialize_item(u, f, "transient", yes_no(u->transient)); |
| |
| unit_serialize_item(u, f, "exported-invocation-id", yes_no(u->exported_invocation_id)); |
| unit_serialize_item(u, f, "exported-log-level-max", yes_no(u->exported_log_level_max)); |
| unit_serialize_item(u, f, "exported-log-extra-fields", yes_no(u->exported_log_extra_fields)); |
| |
| unit_serialize_item_format(u, f, "cpu-usage-base", "%" PRIu64, u->cpu_usage_base); |
| if (u->cpu_usage_last != NSEC_INFINITY) |
| unit_serialize_item_format(u, f, "cpu-usage-last", "%" PRIu64, u->cpu_usage_last); |
| |
| if (u->cgroup_path) |
| unit_serialize_item(u, f, "cgroup", u->cgroup_path); |
| unit_serialize_item(u, f, "cgroup-realized", yes_no(u->cgroup_realized)); |
| (void) unit_serialize_cgroup_mask(f, "cgroup-realized-mask", u->cgroup_realized_mask); |
| (void) unit_serialize_cgroup_mask(f, "cgroup-enabled-mask", u->cgroup_enabled_mask); |
| unit_serialize_item_format(u, f, "cgroup-bpf-realized", "%i", u->cgroup_bpf_state); |
| |
| if (uid_is_valid(u->ref_uid)) |
| unit_serialize_item_format(u, f, "ref-uid", UID_FMT, u->ref_uid); |
| if (gid_is_valid(u->ref_gid)) |
| unit_serialize_item_format(u, f, "ref-gid", GID_FMT, u->ref_gid); |
| |
| if (!sd_id128_is_null(u->invocation_id)) |
| unit_serialize_item_format(u, f, "invocation-id", SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)); |
| |
| bus_track_serialize(u->bus_track, f, "ref"); |
| |
| for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) { |
| uint64_t v; |
| |
| r = unit_get_ip_accounting(u, m, &v); |
| if (r >= 0) |
| unit_serialize_item_format(u, f, ip_accounting_metric_field[m], "%" PRIu64, v); |
| } |
| |
| if (serialize_jobs) { |
| if (u->job) { |
| fprintf(f, "job\n"); |
| job_serialize(u->job, f); |
| } |
| |
| if (u->nop_job) { |
| fprintf(f, "job\n"); |
| job_serialize(u->nop_job, f); |
| } |
| } |
| |
| /* End marker */ |
| fputc('\n', f); |
| return 0; |
| } |
| |
| int unit_serialize_item(Unit *u, FILE *f, const char *key, const char *value) { |
| assert(u); |
| assert(f); |
| assert(key); |
| |
| if (!value) |
| return 0; |
| |
| fputs(key, f); |
| fputc('=', f); |
| fputs(value, f); |
| fputc('\n', f); |
| |
| return 1; |
| } |
| |
| int unit_serialize_item_escaped(Unit *u, FILE *f, const char *key, const char *value) { |
| _cleanup_free_ char *c = NULL; |
| |
| assert(u); |
| assert(f); |
| assert(key); |
| |
| if (!value) |
| return 0; |
| |
| c = cescape(value); |
| if (!c) |
| return -ENOMEM; |
| |
| fputs(key, f); |
| fputc('=', f); |
| fputs(c, f); |
| fputc('\n', f); |
| |
| return 1; |
| } |
| |
| int unit_serialize_item_fd(Unit *u, FILE *f, FDSet *fds, const char *key, int fd) { |
| int copy; |
| |
| assert(u); |
| assert(f); |
| assert(key); |
| |
| if (fd < 0) |
| return 0; |
| |
| copy = fdset_put_dup(fds, fd); |
| if (copy < 0) |
| return copy; |
| |
| fprintf(f, "%s=%i\n", key, copy); |
| return 1; |
| } |
| |
| void unit_serialize_item_format(Unit *u, FILE *f, const char *key, const char *format, ...) { |
| va_list ap; |
| |
| assert(u); |
| assert(f); |
| assert(key); |
| assert(format); |
| |
| fputs(key, f); |
| fputc('=', f); |
| |
| va_start(ap, format); |
| vfprintf(f, format, ap); |
| va_end(ap); |
| |
| fputc('\n', f); |
| } |
| |
| int unit_deserialize(Unit *u, FILE *f, FDSet *fds) { |
| ExecRuntime **rt = NULL; |
| size_t offset; |
| int r; |
| |
| assert(u); |
| assert(f); |
| assert(fds); |
| |
| offset = UNIT_VTABLE(u)->exec_runtime_offset; |
| if (offset > 0) |
| rt = (ExecRuntime**) ((uint8_t*) u + offset); |
| |
| for (;;) { |
| char line[LINE_MAX], *l, *v; |
| CGroupIPAccountingMetric m; |
| size_t k; |
| |
| if (!fgets(line, sizeof(line), f)) { |
| if (feof(f)) |
| return 0; |
| return -errno; |
| } |
| |
| char_array_0(line); |
| l = strstrip(line); |
| |
| /* End marker */ |
| if (isempty(l)) |
| break; |
| |
| k = strcspn(l, "="); |
| |
| if (l[k] == '=') { |
| l[k] = 0; |
| v = l+k+1; |
| } else |
| v = l+k; |
| |
| if (streq(l, "job")) { |
| if (v[0] == '\0') { |
| /* new-style serialized job */ |
| Job *j; |
| |
| j = job_new_raw(u); |
| if (!j) |
| return log_oom(); |
| |
| r = job_deserialize(j, f); |
| if (r < 0) { |
| job_free(j); |
| return r; |
| } |
| |
| r = hashmap_put(u->manager->jobs, UINT32_TO_PTR(j->id), j); |
| if (r < 0) { |
| job_free(j); |
| return r; |
| } |
| |
| r = job_install_deserialized(j); |
| if (r < 0) { |
| hashmap_remove(u->manager->jobs, UINT32_TO_PTR(j->id)); |
| job_free(j); |
| return r; |
| } |
| } else /* legacy for pre-44 */ |
| log_unit_warning(u, "Update from too old systemd versions are unsupported, cannot deserialize job: %s", v); |
| continue; |
| } else if (streq(l, "state-change-timestamp")) { |
| dual_timestamp_deserialize(v, &u->state_change_timestamp); |
| continue; |
| } else if (streq(l, "inactive-exit-timestamp")) { |
| dual_timestamp_deserialize(v, &u->inactive_exit_timestamp); |
| continue; |
| } else if (streq(l, "active-enter-timestamp")) { |
| dual_timestamp_deserialize(v, &u->active_enter_timestamp); |
| continue; |
| } else if (streq(l, "active-exit-timestamp")) { |
| dual_timestamp_deserialize(v, &u->active_exit_timestamp); |
| continue; |
| } else if (streq(l, "inactive-enter-timestamp")) { |
| dual_timestamp_deserialize(v, &u->inactive_enter_timestamp); |
| continue; |
| } else if (streq(l, "condition-timestamp")) { |
| dual_timestamp_deserialize(v, &u->condition_timestamp); |
| continue; |
| } else if (streq(l, "assert-timestamp")) { |
| dual_timestamp_deserialize(v, &u->assert_timestamp); |
| continue; |
| } else if (streq(l, "condition-result")) { |
| |
| r = parse_boolean(v); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse condition result value %s, ignoring.", v); |
| else |
| u->condition_result = r; |
| |
| continue; |
| |
| } else if (streq(l, "assert-result")) { |
| |
| r = parse_boolean(v); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse assert result value %s, ignoring.", v); |
| else |
| u->assert_result = r; |
| |
| continue; |
| |
| } else if (streq(l, "transient")) { |
| |
| r = parse_boolean(v); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse transient bool %s, ignoring.", v); |
| else |
| u->transient = r; |
| |
| continue; |
| |
| } else if (streq(l, "exported-invocation-id")) { |
| |
| r = parse_boolean(v); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse exported invocation ID bool %s, ignoring.", v); |
| else |
| u->exported_invocation_id = r; |
| |
| continue; |
| |
| } else if (streq(l, "exported-log-level-max")) { |
| |
| r = parse_boolean(v); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse exported log level max bool %s, ignoring.", v); |
| else |
| u->exported_log_level_max = r; |
| |
| continue; |
| |
| } else if (streq(l, "exported-log-extra-fields")) { |
| |
| r = parse_boolean(v); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse exported log extra fields bool %s, ignoring.", v); |
| else |
| u->exported_log_extra_fields = r; |
| |
| continue; |
| |
| } else if (STR_IN_SET(l, "cpu-usage-base", "cpuacct-usage-base")) { |
| |
| r = safe_atou64(v, &u->cpu_usage_base); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse CPU usage base %s, ignoring.", v); |
| |
| continue; |
| |
| } else if (streq(l, "cpu-usage-last")) { |
| |
| r = safe_atou64(v, &u->cpu_usage_last); |
| if (r < 0) |
| log_unit_debug(u, "Failed to read CPU usage last %s, ignoring.", v); |
| |
| continue; |
| |
| } else if (streq(l, "cgroup")) { |
| |
| r = unit_set_cgroup_path(u, v); |
| if (r < 0) |
| log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", v); |
| |
| (void) unit_watch_cgroup(u); |
| |
| continue; |
| } else if (streq(l, "cgroup-realized")) { |
| int b; |
| |
| b = parse_boolean(v); |
| if (b < 0) |
| log_unit_debug(u, "Failed to parse cgroup-realized bool %s, ignoring.", v); |
| else |
| u->cgroup_realized = b; |
| |
| continue; |
| |
| } else if (streq(l, "cgroup-realized-mask")) { |
| |
| r = cg_mask_from_string(v, &u->cgroup_realized_mask); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse cgroup-realized-mask %s, ignoring.", v); |
| continue; |
| |
| } else if (streq(l, "cgroup-enabled-mask")) { |
| |
| r = cg_mask_from_string(v, &u->cgroup_enabled_mask); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse cgroup-enabled-mask %s, ignoring.", v); |
| continue; |
| |
| } else if (streq(l, "cgroup-bpf-realized")) { |
| int i; |
| |
| r = safe_atoi(v, &i); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse cgroup BPF state %s, ignoring.", v); |
| else |
| u->cgroup_bpf_state = |
| i < 0 ? UNIT_CGROUP_BPF_INVALIDATED : |
| i > 0 ? UNIT_CGROUP_BPF_ON : |
| UNIT_CGROUP_BPF_OFF; |
| |
| continue; |
| |
| } else if (streq(l, "ref-uid")) { |
| uid_t uid; |
| |
| r = parse_uid(v, &uid); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse referenced UID %s, ignoring.", v); |
| else |
| unit_ref_uid_gid(u, uid, GID_INVALID); |
| |
| continue; |
| |
| } else if (streq(l, "ref-gid")) { |
| gid_t gid; |
| |
| r = parse_gid(v, &gid); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse referenced GID %s, ignoring.", v); |
| else |
| unit_ref_uid_gid(u, UID_INVALID, gid); |
| |
| } else if (streq(l, "ref")) { |
| |
| r = strv_extend(&u->deserialized_refs, v); |
| if (r < 0) |
| log_oom(); |
| |
| continue; |
| } else if (streq(l, "invocation-id")) { |
| sd_id128_t id; |
| |
| r = sd_id128_from_string(v, &id); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse invocation id %s, ignoring.", v); |
| else { |
| r = unit_set_invocation_id(u, id); |
| if (r < 0) |
| log_unit_warning_errno(u, r, "Failed to set invocation ID for unit: %m"); |
| } |
| |
| continue; |
| } |
| |
| /* Check if this is an IP accounting metric serialization field */ |
| for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) |
| if (streq(l, ip_accounting_metric_field[m])) |
| break; |
| if (m < _CGROUP_IP_ACCOUNTING_METRIC_MAX) { |
| uint64_t c; |
| |
| r = safe_atou64(v, &c); |
| if (r < 0) |
| log_unit_debug(u, "Failed to parse IP accounting value %s, ignoring.", v); |
| else |
| u->ip_accounting_extra[m] = c; |
| continue; |
| } |
| |
| if (unit_can_serialize(u)) { |
| if (rt) { |
| r = exec_runtime_deserialize_item(u, rt, l, v, fds); |
| if (r < 0) { |
| log_unit_warning(u, "Failed to deserialize runtime parameter '%s', ignoring.", l); |
| continue; |
| } |
| |
| /* Returns positive if key was handled by the call */ |
| if (r > 0) |
| continue; |
| } |
| |
| r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds); |
| if (r < 0) |
| log_unit_warning(u, "Failed to deserialize unit parameter '%s', ignoring.", l); |
| } |
| } |
| |
| /* Versions before 228 did not carry a state change timestamp. In this case, take the current time. This is |
| * useful, so that timeouts based on this timestamp don't trigger too early, and is in-line with the logic from |
| * before 228 where the base for timeouts was not persistent across reboots. */ |
| |
| if (!dual_timestamp_is_set(&u->state_change_timestamp)) |
| dual_timestamp_get(&u->state_change_timestamp); |
| |
| /* Let's make sure that everything that is deserialized also gets any potential new cgroup settings applied |
| * after we are done. For that we invalidate anything already realized, so that we can realize it again. */ |
| unit_invalidate_cgroup(u, _CGROUP_MASK_ALL); |
| unit_invalidate_cgroup_bpf(u); |
| |
| return 0; |
| } |
| |
| void unit_deserialize_skip(FILE *f) { |
| assert(f); |
| |
| /* Skip serialized data for this unit. We don't know what it is. */ |
| |
| for (;;) { |
| char line[LINE_MAX], *l; |
| |
| if (!fgets(line, sizeof line, f)) |
| return; |
| |
| char_array_0(line); |
| l = strstrip(line); |
| |
| /* End marker */ |
| if (isempty(l)) |
| return; |
| } |
| } |
| |
| |
| int unit_add_node_dependency(Unit *u, const char *what, bool wants, UnitDependency dep, UnitDependencyMask mask) { |
| Unit *device; |
| _cleanup_free_ char *e = NULL; |
| int r; |
| |
| assert(u); |
| |
| /* Adds in links to the device node that this unit is based on */ |
| if (isempty(what)) |
| return 0; |
| |
| if (!is_device_path(what)) |
| return 0; |
| |
| /* When device units aren't supported (such as in a |
| * container), don't create dependencies on them. */ |
| if (!unit_type_supported(UNIT_DEVICE)) |
| return 0; |
| |
| r = unit_name_from_path(what, ".device", &e); |
| if (r < 0) |
| return r; |
| |
| r = manager_load_unit(u->manager, e, NULL, NULL, &device); |
| if (r < 0) |
| return r; |
| |
| if (dep == UNIT_REQUIRES && device_shall_be_bound_by(device, u)) |
| dep = UNIT_BINDS_TO; |
| |
| r = unit_add_two_dependencies(u, UNIT_AFTER, |
| MANAGER_IS_SYSTEM(u->manager) ? dep : UNIT_WANTS, |
| device, true, mask); |
| if (r < 0) |
| return r; |
| |
| if (wants) { |
| r = unit_add_dependency(device, UNIT_WANTS, u, false, mask); |
| if (r < 0) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| int unit_coldplug(Unit *u) { |
| int r = 0, q; |
| char **i; |
| |
| assert(u); |
| |
| /* Make sure we don't enter a loop, when coldplugging |
| * recursively. */ |
| if (u->coldplugged) |
| return 0; |
| |
| u->coldplugged = true; |
| |
| STRV_FOREACH(i, u->deserialized_refs) { |
| q = bus_unit_track_add_name(u, *i); |
| if (q < 0 && r >= 0) |
| r = q; |
| } |
| u->deserialized_refs = strv_free(u->deserialized_refs); |
| |
| if (UNIT_VTABLE(u)->coldplug) { |
| q = UNIT_VTABLE(u)->coldplug(u); |
| if (q < 0 && r >= 0) |
| r = q; |
| } |
| |
| if (u->job) { |
| q = job_coldplug(u->job); |
| if (q < 0 && r >= 0) |
| r = q; |
| } |
| |
| return r; |
| } |
| |
| static bool fragment_mtime_newer(const char *path, usec_t mtime, bool path_masked) { |
| struct stat st; |
| |
| if (!path) |
| return false; |
| |
| /* If the source is some virtual kernel file system, then we assume we watch it anyway, and hence pretend we |
| * are never out-of-date. */ |
| if (PATH_STARTSWITH_SET(path, "/proc", "/sys")) |
| return false; |
| |
| if (stat(path, &st) < 0) |
| /* What, cannot access this anymore? */ |
| return true; |
| |
| if (path_masked) |
| /* For masked files check if they are still so */ |
| return !null_or_empty(&st); |
| else |
| /* For non-empty files check the mtime */ |
| return timespec_load(&st.st_mtim) > mtime; |
| |
| return false; |
| } |
| |
| bool unit_need_daemon_reload(Unit *u) { |
| _cleanup_strv_free_ char **t = NULL; |
| char **path; |
| |
| assert(u); |
| |
| /* For unit files, we allow masking… */ |
| if (fragment_mtime_newer(u->fragment_path, u->fragment_mtime, |
| u->load_state == UNIT_MASKED)) |
| return true; |
| |
| /* Source paths should not be masked… */ |
| if (fragment_mtime_newer(u->source_path, u->source_mtime, false)) |
| return true; |
| |
| if (u->load_state == UNIT_LOADED) |
| (void) unit_find_dropin_paths(u, &t); |
| if (!strv_equal(u->dropin_paths, t)) |
| return true; |
| |
| /* … any drop-ins that are masked are simply omitted from the list. */ |
| STRV_FOREACH(path, u->dropin_paths) |
| if (fragment_mtime_newer(*path, u->dropin_mtime, false)) |
| return true; |
| |
| return false; |
| } |
| |
| void unit_reset_failed(Unit *u) { |
| assert(u); |
| |
| if (UNIT_VTABLE(u)->reset_failed) |
| UNIT_VTABLE(u)->reset_failed(u); |
| |
| RATELIMIT_RESET(u->start_limit); |
| u->start_limit_hit = false; |
| } |
| |
| Unit *unit_following(Unit *u) { |
| assert(u); |
| |
| if (UNIT_VTABLE(u)->following) |
| return UNIT_VTABLE(u)->following(u); |
| |
| return NULL; |
| } |
| |
| bool unit_stop_pending(Unit *u) { |
| assert(u); |
| |
| /* This call does check the current state of the unit. It's |
| * hence useful to be called from state change calls of the |
| * unit itself, where the state isn't updated yet. This is |
| * different from unit_inactive_or_pending() which checks both |
| * the current state and for a queued job. */ |
| |
| return u->job && u->job->type == JOB_STOP; |
| } |
| |
| bool unit_inactive_or_pending(Unit *u) { |
| assert(u); |
| |
| /* Returns true if the unit is inactive or going down */ |
| |
| if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))) |
| return true; |
| |
| if (unit_stop_pending(u)) |
| return true; |
| |
| return false; |
| } |
| |
| bool unit_active_or_pending(Unit *u) { |
| assert(u); |
| |
| /* Returns true if the unit is active or going up */ |
| |
| if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) |
| return true; |
| |
| if (u->job && |
| IN_SET(u->job->type, JOB_START, JOB_RELOAD_OR_START, JOB_RESTART)) |
| return true; |
| |
| return false; |
| } |
| |
| bool unit_will_restart(Unit *u) { |
| assert(u); |
| |
| if (!UNIT_VTABLE(u)->will_restart) |
| return false; |
| |
| return UNIT_VTABLE(u)->will_restart(u); |
| } |
| |
| int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) { |
| assert(u); |
| assert(w >= 0 && w < _KILL_WHO_MAX); |
| assert(SIGNAL_VALID(signo)); |
| |
| if (!UNIT_VTABLE(u)->kill) |
| return -EOPNOTSUPP; |
| |
| return UNIT_VTABLE(u)->kill(u, w, signo, error); |
| } |
| |
| static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) { |
| Set *pid_set; |
| int r; |
| |
| pid_set = set_new(NULL); |
| if (!pid_set) |
| return NULL; |
| |
| /* Exclude the main/control pids from being killed via the cgroup */ |
| if (main_pid > 0) { |
| r = set_put(pid_set, PID_TO_PTR(main_pid)); |
| if (r < 0) |
| goto fail; |
| } |
| |
| if (control_pid > 0) { |
| r = set_put(pid_set, PID_TO_PTR(control_pid)); |
| if (r < 0) |
| goto fail; |
| } |
| |
| return pid_set; |
| |
| fail: |
| set_free(pid_set); |
| return NULL; |
| } |
| |
| int unit_kill_common( |
| Unit *u, |
| KillWho who, |
| int signo, |
| pid_t main_pid, |
| pid_t control_pid, |
| sd_bus_error *error) { |
| |
| int r = 0; |
| bool killed = false; |
| |
| if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) { |
| if (main_pid < 0) |
| return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type)); |
| else if (main_pid == 0) |
| return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill"); |
| } |
| |
| if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) { |
| if (control_pid < 0) |
| return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type)); |
| else if (control_pid == 0) |
| return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill"); |
| } |
| |
| if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL)) |
| if (control_pid > 0) { |
| if (kill(control_pid, signo) < 0) |
| r = -errno; |
| else |
| killed = true; |
| } |
| |
| if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL)) |
| if (main_pid > 0) { |
| if (kill(main_pid, signo) < 0) |
| r = -errno; |
| else |
| killed = true; |
| } |
| |
| if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path) { |
| _cleanup_set_free_ Set *pid_set = NULL; |
| int q; |
| |
| /* Exclude the main/control pids from being killed via the cgroup */ |
| pid_set = unit_pid_set(main_pid, control_pid); |
| if (!pid_set) |
| return -ENOMEM; |
| |
| q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, 0, pid_set, NULL, NULL); |
| if (q < 0 && !IN_SET(q, -EAGAIN, -ESRCH, -ENOENT)) |
| r = q; |
| else |
| killed = true; |
| } |
| |
| if (r == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL)) |
| return -ESRCH; |
| |
| return r; |
| } |
| |
| int unit_following_set(Unit *u, Set **s) { |
| assert(u); |
| assert(s); |
| |
| if (UNIT_VTABLE(u)->following_set) |
| return UNIT_VTABLE(u)->following_set(u, s); |
| |
| *s = NULL; |
| return 0; |
| } |
| |
| UnitFileState unit_get_unit_file_state(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| if (u->unit_file_state < 0 && u->fragment_path) { |
| r = unit_file_get_state( |
| u->manager->unit_file_scope, |
| NULL, |
| u->id, |
| &u->unit_file_state); |
| if (r < 0) |
| u->unit_file_state = UNIT_FILE_BAD; |
| } |
| |
| return u->unit_file_state; |
| } |
| |
| int unit_get_unit_file_preset(Unit *u) { |
| assert(u); |
| |
| if (u->unit_file_preset < 0 && u->fragment_path) |
| u->unit_file_preset = unit_file_query_preset( |
| u->manager->unit_file_scope, |
| NULL, |
| basename(u->fragment_path)); |
| |
| return u->unit_file_preset; |
| } |
| |
| Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target) { |
| assert(ref); |
| assert(source); |
| assert(target); |
| |
| if (ref->target) |
| unit_ref_unset(ref); |
| |
| ref->source = source; |
| ref->target = target; |
| LIST_PREPEND(refs_by_target, target->refs_by_target, ref); |
| return target; |
| } |
| |
| void unit_ref_unset(UnitRef *ref) { |
| assert(ref); |
| |
| if (!ref->target) |
| return; |
| |
| /* We are about to drop a reference to the unit, make sure the garbage collection has a look at it as it might |
| * be unreferenced now. */ |
| unit_add_to_gc_queue(ref->target); |
| |
| LIST_REMOVE(refs_by_target, ref->target->refs_by_target, ref); |
| ref->source = ref->target = NULL; |
| } |
| |
| static int user_from_unit_name(Unit *u, char **ret) { |
| |
| static const uint8_t hash_key[] = { |
| 0x58, 0x1a, 0xaf, 0xe6, 0x28, 0x58, 0x4e, 0x96, |
| 0xb4, 0x4e, 0xf5, 0x3b, 0x8c, 0x92, 0x07, 0xec |
| }; |
| |
| _cleanup_free_ char *n = NULL; |
| int r; |
| |
| r = unit_name_to_prefix(u->id, &n); |
| if (r < 0) |
| return r; |
| |
| if (valid_user_group_name(n)) { |
| *ret = n; |
| n = NULL; |
| return 0; |
| } |
| |
| /* If we can't use the unit name as a user name, then let's hash it and use that */ |
| if (asprintf(ret, "_du%016" PRIx64, siphash24(n, strlen(n), hash_key)) < 0) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| int unit_patch_contexts(Unit *u) { |
| CGroupContext *cc; |
| ExecContext *ec; |
| unsigned i; |
| int r; |
| |
| assert(u); |
| |
| /* Patch in the manager defaults into the exec and cgroup |
| * contexts, _after_ the rest of the settings have been |
| * initialized */ |
| |
| ec = unit_get_exec_context(u); |
| if (ec) { |
| /* This only copies in the ones that need memory */ |
| for (i = 0; i < _RLIMIT_MAX; i++) |
| if (u->manager->rlimit[i] && !ec->rlimit[i]) { |
| ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1); |
| if (!ec->rlimit[i]) |
| return -ENOMEM; |
| } |
| |
| if (MANAGER_IS_USER(u->manager) && |
| !ec->working_directory) { |
| |
| r = get_home_dir(&ec->working_directory); |
| if (r < 0) |
| return r; |
| |
| /* Allow user services to run, even if the |
| * home directory is missing */ |
| ec->working_directory_missing_ok = true; |
| } |
| |
| if (ec->private_devices) |
| ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_MKNOD) | (UINT64_C(1) << CAP_SYS_RAWIO)); |
| |
| if (ec->protect_kernel_modules) |
| ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYS_MODULE); |
| |
| if (ec->dynamic_user) { |
| if (!ec->user) { |
| r = user_from_unit_name(u, &ec->user); |
| if (r < 0) |
| return r; |
| } |
| |
| if (!ec->group) { |
| ec->group = strdup(ec->user); |
| if (!ec->group) |
| return -ENOMEM; |
| } |
| |
| /* If the dynamic user option is on, let's make sure that the unit can't leave its UID/GID |
| * around in the file system or on IPC objects. Hence enforce a strict sandbox. */ |
| |
| ec->private_tmp = true; |
| ec->remove_ipc = true; |
| ec->protect_system = PROTECT_SYSTEM_STRICT; |
| if (ec->protect_home == PROTECT_HOME_NO) |
| ec->protect_home = PROTECT_HOME_READ_ONLY; |
| } |
| } |
| |
| cc = unit_get_cgroup_context(u); |
| if (cc) { |
| |
| if (ec && |
| ec->private_devices && |
| cc->device_policy == CGROUP_AUTO) |
| cc->device_policy = CGROUP_CLOSED; |
| } |
| |
| return 0; |
| } |
| |
| ExecContext *unit_get_exec_context(Unit *u) { |
| size_t offset; |
| assert(u); |
| |
| if (u->type < 0) |
| return NULL; |
| |
| offset = UNIT_VTABLE(u)->exec_context_offset; |
| if (offset <= 0) |
| return NULL; |
| |
| return (ExecContext*) ((uint8_t*) u + offset); |
| } |
| |
| KillContext *unit_get_kill_context(Unit *u) { |
| size_t offset; |
| assert(u); |
| |
| if (u->type < 0) |
| return NULL; |
| |
| offset = UNIT_VTABLE(u)->kill_context_offset; |
| if (offset <= 0) |
| return NULL; |
| |
| return (KillContext*) ((uint8_t*) u + offset); |
| } |
| |
| CGroupContext *unit_get_cgroup_context(Unit *u) { |
| size_t offset; |
| |
| if (u->type < 0) |
| return NULL; |
| |
| offset = UNIT_VTABLE(u)->cgroup_context_offset; |
| if (offset <= 0) |
| return NULL; |
| |
| return (CGroupContext*) ((uint8_t*) u + offset); |
| } |
| |
| ExecRuntime *unit_get_exec_runtime(Unit *u) { |
| size_t offset; |
| |
| if (u->type < 0) |
| return NULL; |
| |
| offset = UNIT_VTABLE(u)->exec_runtime_offset; |
| if (offset <= 0) |
| return NULL; |
| |
| return *(ExecRuntime**) ((uint8_t*) u + offset); |
| } |
| |
| static const char* unit_drop_in_dir(Unit *u, UnitWriteFlags flags) { |
| assert(u); |
| |
| if (UNIT_WRITE_FLAGS_NOOP(flags)) |
| return NULL; |
| |
| if (u->transient) /* Redirect drop-ins for transient units always into the transient directory. */ |
| return u->manager->lookup_paths.transient; |
| |
| if (flags & UNIT_PERSISTENT) |
| return u->manager->lookup_paths.persistent_control; |
| |
| if (flags & UNIT_RUNTIME) |
| return u->manager->lookup_paths.runtime_control; |
| |
| return NULL; |
| } |
| |
| char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf) { |
| char *ret = NULL; |
| |
| if (!s) |
| return NULL; |
| |
| /* Escapes the input string as requested. Returns the escaped string. If 'buf' is specified then the allocated |
| * return buffer pointer is also written to *buf, except if no escaping was necessary, in which case *buf is |
| * set to NULL, and the input pointer is returned as-is. This means the return value always contains a properly |
| * escaped version, but *buf when passed only contains a pointer if an allocation was necessary. If *buf is |
| * not specified, then the return value always needs to be freed. Callers can use this to optimize memory |
| * allocations. */ |
| |
| if (flags & UNIT_ESCAPE_SPECIFIERS) { |
| ret = specifier_escape(s); |
| if (!ret) |
| return NULL; |
| |
| s = ret; |
| } |
| |
| if (flags & UNIT_ESCAPE_C) { |
| char *a; |
| |
| a = cescape(s); |
| free(ret); |
| if (!a) |
| return NULL; |
| |
| ret = a; |
| } |
| |
| if (buf) { |
| *buf = ret; |
| return ret ?: (char*) s; |
| } |
| |
| return ret ?: strdup(s); |
| } |
| |
| char* unit_concat_strv(char **l, UnitWriteFlags flags) { |
| _cleanup_free_ char *result = NULL; |
| size_t n = 0, allocated = 0; |
| char **i, *ret; |
| |
| /* Takes a list of strings, escapes them, and concatenates them. This may be used to format command lines in a |
| * way suitable for ExecStart= stanzas */ |
| |
| STRV_FOREACH(i, l) { |
| _cleanup_free_ char *buf = NULL; |
| const char *p; |
| size_t a; |
| char *q; |
| |
| p = unit_escape_setting(*i, flags, &buf); |
| if (!p) |
| return NULL; |
| |
| a = (n > 0) + 1 + strlen(p) + 1; /* separating space + " + entry + " */ |
| if (!GREEDY_REALLOC(result, allocated, n + a + 1)) |
| return NULL; |
| |
| q = result + n; |
| if (n > 0) |
| *(q++) = ' '; |
| |
| *(q++) = '"'; |
| q = stpcpy(q, p); |
| *(q++) = '"'; |
| |
| n += a; |
| } |
| |
| if (!GREEDY_REALLOC(result, allocated, n + 1)) |
| return NULL; |
| |
| result[n] = 0; |
| |
| ret = result; |
| result = NULL; |
| |
| return ret; |
| } |
| |
| int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data) { |
| _cleanup_free_ char *p = NULL, *q = NULL, *escaped = NULL; |
| const char *dir, *wrapped; |
| int r; |
| |
| assert(u); |
| assert(name); |
| assert(data); |
| |
| if (UNIT_WRITE_FLAGS_NOOP(flags)) |
| return 0; |
| |
| data = unit_escape_setting(data, flags, &escaped); |
| if (!data) |
| return -ENOMEM; |
| |
| /* Prefix the section header. If we are writing this out as transient file, then let's suppress this if the |
| * previous section header is the same */ |
| |
| if (flags & UNIT_PRIVATE) { |
| if (!UNIT_VTABLE(u)->private_section) |
| return -EINVAL; |
| |
| if (!u->transient_file || u->last_section_private < 0) |
| data = strjoina("[", UNIT_VTABLE(u)->private_section, "]\n", data); |
| else if (u->last_section_private == 0) |
| data = strjoina("\n[", UNIT_VTABLE(u)->private_section, "]\n", data); |
| } else { |
| if (!u->transient_file || u->last_section_private < 0) |
| data = strjoina("[Unit]\n", data); |
| else if (u->last_section_private > 0) |
| data = strjoina("\n[Unit]\n", data); |
| } |
| |
| if (u->transient_file) { |
| /* When this is a transient unit file in creation, then let's not create a new drop-in but instead |
| * write to the transient unit file. */ |
| fputs(data, u->transient_file); |
| |
| if (!endswith(data, "\n")) |
| fputc('\n', u->transient_file); |
| |
| /* Remember which section we wrote this entry to */ |
| u->last_section_private = !!(flags & UNIT_PRIVATE); |
| return 0; |
| } |
| |
| dir = unit_drop_in_dir(u, flags); |
| if (!dir) |
| return -EINVAL; |
| |
| wrapped = strjoina("# This is a drop-in unit file extension, created via \"systemctl set-property\"\n" |
| "# or an equivalent operation. Do not edit.\n", |
| data, |
| "\n"); |
| |
| r = drop_in_file(dir, u->id, 50, name, &p, &q); |
| if (r < 0) |
| return r; |
| |
| (void) mkdir_p_label(p, 0755); |
| r = write_string_file_atomic_label(q, wrapped); |
| if (r < 0) |
| return r; |
| |
| r = strv_push(&u->dropin_paths, q); |
| if (r < 0) |
| return r; |
| q = NULL; |
| |
| strv_uniq(u->dropin_paths); |
| |
| u->dropin_mtime = now(CLOCK_REALTIME); |
| |
| return 0; |
| } |
| |
| int unit_write_settingf(Unit *u, UnitWriteFlags flags, const char *name, const char *format, ...) { |
| _cleanup_free_ char *p = NULL; |
| va_list ap; |
| int r; |
| |
| assert(u); |
| assert(name); |
| assert(format); |
| |
| if (UNIT_WRITE_FLAGS_NOOP(flags)) |
| return 0; |
| |
| va_start(ap, format); |
| r = vasprintf(&p, format, ap); |
| va_end(ap); |
| |
| if (r < 0) |
| return -ENOMEM; |
| |
| return unit_write_setting(u, flags, name, p); |
| } |
| |
| int unit_make_transient(Unit *u) { |
| _cleanup_free_ char *path = NULL; |
| FILE *f; |
| |
| assert(u); |
| |
| if (!UNIT_VTABLE(u)->can_transient) |
| return -EOPNOTSUPP; |
| |
| (void) mkdir_p_label(u->manager->lookup_paths.transient, 0755); |
| |
| path = strjoin(u->manager->lookup_paths.transient, "/", u->id); |
| if (!path) |
| return -ENOMEM; |
| |
| /* Let's open the file we'll write the transient settings into. This file is kept open as long as we are |
| * creating the transient, and is closed in unit_load(), as soon as we start loading the file. */ |
| |
| RUN_WITH_UMASK(0022) { |
| f = fopen(path, "we"); |
| if (!f) |
| return -errno; |
| } |
| |
| safe_fclose(u->transient_file); |
| u->transient_file = f; |
| |
| free_and_replace(u->fragment_path, path); |
| |
| u->source_path = mfree(u->source_path); |
| u->dropin_paths = strv_free(u->dropin_paths); |
| u->fragment_mtime = u->source_mtime = u->dropin_mtime = 0; |
| |
| u->load_state = UNIT_STUB; |
| u->load_error = 0; |
| u->transient = true; |
| |
| unit_add_to_dbus_queue(u); |
| unit_add_to_gc_queue(u); |
| |
| fputs("# This is a transient unit file, created programmatically via the systemd API. Do not edit.\n", |
| u->transient_file); |
| |
| return 0; |
| } |
| |
| static void log_kill(pid_t pid, int sig, void *userdata) { |
| _cleanup_free_ char *comm = NULL; |
| |
| (void) get_process_comm(pid, &comm); |
| |
| /* Don't log about processes marked with brackets, under the assumption that these are temporary processes |
| only, like for example systemd's own PAM stub process. */ |
| if (comm && comm[0] == '(') |
| return; |
| |
| log_unit_notice(userdata, |
| "Killing process " PID_FMT " (%s) with signal SIG%s.", |
| pid, |
| strna(comm), |
| signal_to_string(sig)); |
| } |
| |
| static int operation_to_signal(KillContext *c, KillOperation k) { |
| assert(c); |
| |
| switch (k) { |
| |
| case KILL_TERMINATE: |
| case KILL_TERMINATE_AND_LOG: |
| return c->kill_signal; |
| |
| case KILL_KILL: |
| return SIGKILL; |
| |
| case KILL_ABORT: |
| return SIGABRT; |
| |
| default: |
| assert_not_reached("KillOperation unknown"); |
| } |
| } |
| |
| int unit_kill_context( |
| Unit *u, |
| KillContext *c, |
| KillOperation k, |
| pid_t main_pid, |
| pid_t control_pid, |
| bool main_pid_alien) { |
| |
| bool wait_for_exit = false, send_sighup; |
| cg_kill_log_func_t log_func = NULL; |
| int sig, r; |
| |
| assert(u); |
| assert(c); |
| |
| /* Kill the processes belonging to this unit, in preparation for shutting the unit down. |
| * Returns > 0 if we killed something worth waiting for, 0 otherwise. */ |
| |
| if (c->kill_mode == KILL_NONE) |
| return 0; |
| |
| sig = operation_to_signal(c, k); |
| |
| send_sighup = |
| c->send_sighup && |
| IN_SET(k, KILL_TERMINATE, KILL_TERMINATE_AND_LOG) && |
| sig != SIGHUP; |
| |
| if (k != KILL_TERMINATE || IN_SET(sig, SIGKILL, SIGABRT)) |
| log_func = log_kill; |
| |
| if (main_pid > 0) { |
| if (log_func) |
| log_func(main_pid, sig, u); |
| |
| r = kill_and_sigcont(main_pid, sig); |
| if (r < 0 && r != -ESRCH) { |
| _cleanup_free_ char *comm = NULL; |
| (void) get_process_comm(main_pid, &comm); |
| |
| log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid, strna(comm)); |
| } else { |
| if (!main_pid_alien) |
| wait_for_exit = true; |
| |
| if (r != -ESRCH && send_sighup) |
| (void) kill(main_pid, SIGHUP); |
| } |
| } |
| |
| if (control_pid > 0) { |
| if (log_func) |
| log_func(control_pid, sig, u); |
| |
| r = kill_and_sigcont(control_pid, sig); |
| if (r < 0 && r != -ESRCH) { |
| _cleanup_free_ char *comm = NULL; |
| (void) get_process_comm(control_pid, &comm); |
| |
| log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid, strna(comm)); |
| } else { |
| wait_for_exit = true; |
| |
| if (r != -ESRCH && send_sighup) |
| (void) kill(control_pid, SIGHUP); |
| } |
| } |
| |
| if (u->cgroup_path && |
| (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) { |
| _cleanup_set_free_ Set *pid_set = NULL; |
| |
| /* Exclude the main/control pids from being killed via the cgroup */ |
| pid_set = unit_pid_set(main_pid, control_pid); |
| if (!pid_set) |
| return -ENOMEM; |
| |
| r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, |
| sig, |
| CGROUP_SIGCONT|CGROUP_IGNORE_SELF, |
| pid_set, |
| log_func, u); |
| if (r < 0) { |
| if (!IN_SET(r, -EAGAIN, -ESRCH, -ENOENT)) |
| log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", u->cgroup_path); |
| |
| } else if (r > 0) { |
| |
| /* FIXME: For now, on the legacy hierarchy, we |
| * will not wait for the cgroup members to die |
| * if we are running in a container or if this |
| * is a delegation unit, simply because cgroup |
| * notification is unreliable in these |
| * cases. It doesn't work at all in |
| * containers, and outside of containers it |
| * can be confused easily by left-over |
| * directories in the cgroup — which however |
| * should not exist in non-delegated units. On |
| * the unified hierarchy that's different, |
| * there we get proper events. Hence rely on |
| * them. */ |
| |
| if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0 || |
| (detect_container() == 0 && !UNIT_CGROUP_BOOL(u, delegate))) |
| wait_for_exit = true; |
| |
| if (send_sighup) { |
| set_free(pid_set); |
| |
| pid_set = unit_pid_set(main_pid, control_pid); |
| if (!pid_set) |
| return -ENOMEM; |
| |
| cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, |
| SIGHUP, |
| CGROUP_IGNORE_SELF, |
| pid_set, |
| NULL, NULL); |
| } |
| } |
| } |
| |
| return wait_for_exit; |
| } |
| |
| int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask) { |
| char prefix[strlen(path) + 1], *p; |
| UnitDependencyInfo di; |
| int r; |
| |
| assert(u); |
| assert(path); |
| |
| /* Registers a unit for requiring a certain path and all its prefixes. We keep a hashtable of these paths in |
| * the unit (from the path to the UnitDependencyInfo structure indicating how to the dependency came to |
| * be). However, we build a prefix table for all possible prefixes so that new appearing mount units can easily |
| * determine which units to make themselves a dependency of. */ |
| |
| if (!path_is_absolute(path)) |
| return -EINVAL; |
| |
| r = hashmap_ensure_allocated(&u->requires_mounts_for, &string_hash_ops); |
| if (r < 0) |
| return r; |
| |
| p = strdup(path); |
| if (!p) |
| return -ENOMEM; |
| |
| path_kill_slashes(p); |
| |
| if (!path_is_normalized(p)) { |
| free(p); |
| return -EPERM; |
| } |
| |
| if (hashmap_contains(u->requires_mounts_for, p)) { |
| free(p); |
| return 0; |
| } |
| |
| di = (UnitDependencyInfo) { |
| .origin_mask = mask |
| }; |
| |
| r = hashmap_put(u->requires_mounts_for, p, di.data); |
| if (r < 0) { |
| free(p); |
| return r; |
| } |
| |
| PATH_FOREACH_PREFIX_MORE(prefix, p) { |
| Set *x; |
| |
| x = hashmap_get(u->manager->units_requiring_mounts_for, prefix); |
| if (!x) { |
| char *q; |
| |
| r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &string_hash_ops); |
| if (r < 0) |
| return r; |
| |
| q = strdup(prefix); |
| if (!q) |
| return -ENOMEM; |
| |
| x = set_new(NULL); |
| if (!x) { |
| free(q); |
| return -ENOMEM; |
| } |
| |
| r = hashmap_put(u->manager->units_requiring_mounts_for, q, x); |
| if (r < 0) { |
| free(q); |
| set_free(x); |
| return r; |
| } |
| } |
| |
| r = set_put(x, u); |
| if (r < 0) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| int unit_setup_exec_runtime(Unit *u) { |
| ExecRuntime **rt; |
| size_t offset; |
| Unit *other; |
| Iterator i; |
| void *v; |
| |
| offset = UNIT_VTABLE(u)->exec_runtime_offset; |
| assert(offset > 0); |
| |
| /* Check if there already is an ExecRuntime for this unit? */ |
| rt = (ExecRuntime**) ((uint8_t*) u + offset); |
| if (*rt) |
| return 0; |
| |
| /* Try to get it from somebody else */ |
| HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_JOINS_NAMESPACE_OF], i) { |
| |
| *rt = unit_get_exec_runtime(other); |
| if (*rt) { |
| exec_runtime_ref(*rt); |
| return 0; |
| } |
| } |
| |
| return exec_runtime_make(rt, unit_get_exec_context(u), u->id); |
| } |
| |
| int unit_setup_dynamic_creds(Unit *u) { |
| ExecContext *ec; |
| DynamicCreds *dcreds; |
| size_t offset; |
| |
| assert(u); |
| |
| offset = UNIT_VTABLE(u)->dynamic_creds_offset; |
| assert(offset > 0); |
| dcreds = (DynamicCreds*) ((uint8_t*) u + offset); |
| |
| ec = unit_get_exec_context(u); |
| assert(ec); |
| |
| if (!ec->dynamic_user) |
| return 0; |
| |
| return dynamic_creds_acquire(dcreds, u->manager, ec->user, ec->group); |
| } |
| |
| bool unit_type_supported(UnitType t) { |
| if (_unlikely_(t < 0)) |
| return false; |
| if (_unlikely_(t >= _UNIT_TYPE_MAX)) |
| return false; |
| |
| if (!unit_vtable[t]->supported) |
| return true; |
| |
| return unit_vtable[t]->supported(); |
| } |
| |
| void unit_warn_if_dir_nonempty(Unit *u, const char* where) { |
| int r; |
| |
| assert(u); |
| assert(where); |
| |
| r = dir_is_empty(where); |
| if (r > 0 || r == -ENOTDIR) |
| return; |
| if (r < 0) { |
| log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where); |
| return; |
| } |
| |
| log_struct(LOG_NOTICE, |
| "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR, |
| LOG_UNIT_ID(u), |
| LOG_UNIT_INVOCATION_ID(u), |
| LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where), |
| "WHERE=%s", where, |
| NULL); |
| } |
| |
| int unit_fail_if_noncanonical(Unit *u, const char* where) { |
| _cleanup_free_ char *canonical_where; |
| int r; |
| |
| assert(u); |
| assert(where); |
| |
| r = chase_symlinks(where, NULL, CHASE_NONEXISTENT, &canonical_where); |
| if (r < 0) { |
| log_unit_debug_errno(u, r, "Failed to check %s for symlinks, ignoring: %m", where); |
| return 0; |
| } |
| |
| /* We will happily ignore a trailing slash (or any redundant slashes) */ |
| if (path_equal(where, canonical_where)) |
| return 0; |
| |
| /* No need to mention "." or "..", they would already have been rejected by unit_name_from_path() */ |
| log_struct(LOG_ERR, |
| "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR, |
| LOG_UNIT_ID(u), |
| LOG_UNIT_INVOCATION_ID(u), |
| LOG_UNIT_MESSAGE(u, "Mount path %s is not canonical (contains a symlink).", where), |
| "WHERE=%s", where, |
| NULL); |
| |
| return -ELOOP; |
| } |
| |
| bool unit_is_pristine(Unit *u) { |
| assert(u); |
| |
| /* Check if the unit already exists or is already around, |
| * in a number of different ways. Note that to cater for unit |
| * types such as slice, we are generally fine with units that |
| * are marked UNIT_LOADED even though nothing was |
| * actually loaded, as those unit types don't require a file |
| * on disk to validly load. */ |
| |
| return !(!IN_SET(u->load_state, UNIT_NOT_FOUND, UNIT_LOADED) || |
| u->fragment_path || |
| u->source_path || |
| !strv_isempty(u->dropin_paths) || |
| u->job || |
| u->merged_into); |
| } |
| |
| pid_t unit_control_pid(Unit *u) { |
| assert(u); |
| |
| if (UNIT_VTABLE(u)->control_pid) |
| return UNIT_VTABLE(u)->control_pid(u); |
| |
| return 0; |
| } |
| |
| pid_t unit_main_pid(Unit *u) { |
| assert(u); |
| |
| if (UNIT_VTABLE(u)->main_pid) |
| return UNIT_VTABLE(u)->main_pid(u); |
| |
| return 0; |
| } |
| |
| static void unit_unref_uid_internal( |
| Unit *u, |
| uid_t *ref_uid, |
| bool destroy_now, |
| void (*_manager_unref_uid)(Manager *m, uid_t uid, bool destroy_now)) { |
| |
| assert(u); |
| assert(ref_uid); |
| assert(_manager_unref_uid); |
| |
| /* Generic implementation of both unit_unref_uid() and unit_unref_gid(), under the assumption that uid_t and |
| * gid_t are actually the same time, with the same validity rules. |
| * |
| * Drops a reference to UID/GID from a unit. */ |
| |
| assert_cc(sizeof(uid_t) == sizeof(gid_t)); |
| assert_cc(UID_INVALID == (uid_t) GID_INVALID); |
| |
| if (!uid_is_valid(*ref_uid)) |
| return; |
| |
| _manager_unref_uid(u->manager, *ref_uid, destroy_now); |
| *ref_uid = UID_INVALID; |
| } |
| |
| void unit_unref_uid(Unit *u, bool destroy_now) { |
| unit_unref_uid_internal(u, &u->ref_uid, destroy_now, manager_unref_uid); |
| } |
| |
| void unit_unref_gid(Unit *u, bool destroy_now) { |
| unit_unref_uid_internal(u, (uid_t*) &u->ref_gid, destroy_now, manager_unref_gid); |
| } |
| |
| static int unit_ref_uid_internal( |
| Unit *u, |
| uid_t *ref_uid, |
| uid_t uid, |
| bool clean_ipc, |
| int (*_manager_ref_uid)(Manager *m, uid_t uid, bool clean_ipc)) { |
| |
| int r; |
| |
| assert(u); |
| assert(ref_uid); |
| assert(uid_is_valid(uid)); |
| assert(_manager_ref_uid); |
| |
| /* Generic implementation of both unit_ref_uid() and unit_ref_guid(), under the assumption that uid_t and gid_t |
| * are actually the same type, and have the same validity rules. |
| * |
| * Adds a reference on a specific UID/GID to this unit. Each unit referencing the same UID/GID maintains a |
| * reference so that we can destroy the UID/GID's IPC resources as soon as this is requested and the counter |
| * drops to zero. */ |
| |
| assert_cc(sizeof(uid_t) == sizeof(gid_t)); |
| assert_cc(UID_INVALID == (uid_t) GID_INVALID); |
| |
| if (*ref_uid == uid) |
| return 0; |
| |
| if (uid_is_valid(*ref_uid)) /* Already set? */ |
| return -EBUSY; |
| |
| r = _manager_ref_uid(u->manager, uid, clean_ipc); |
| if (r < 0) |
| return r; |
| |
| *ref_uid = uid; |
| return 1; |
| } |
| |
| int unit_ref_uid(Unit *u, uid_t uid, bool clean_ipc) { |
| return unit_ref_uid_internal(u, &u->ref_uid, uid, clean_ipc, manager_ref_uid); |
| } |
| |
| int unit_ref_gid(Unit *u, gid_t gid, bool clean_ipc) { |
| return unit_ref_uid_internal(u, (uid_t*) &u->ref_gid, (uid_t) gid, clean_ipc, manager_ref_gid); |
| } |
| |
| static int unit_ref_uid_gid_internal(Unit *u, uid_t uid, gid_t gid, bool clean_ipc) { |
| int r = 0, q = 0; |
| |
| assert(u); |
| |
| /* Reference both a UID and a GID in one go. Either references both, or neither. */ |
| |
| if (uid_is_valid(uid)) { |
| r = unit_ref_uid(u, uid, clean_ipc); |
| if (r < 0) |
| return r; |
| } |
| |
| if (gid_is_valid(gid)) { |
| q = unit_ref_gid(u, gid, clean_ipc); |
| if (q < 0) { |
| if (r > 0) |
| unit_unref_uid(u, false); |
| |
| return q; |
| } |
| } |
| |
| return r > 0 || q > 0; |
| } |
| |
| int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid) { |
| ExecContext *c; |
| int r; |
| |
| assert(u); |
| |
| c = unit_get_exec_context(u); |
| |
| r = unit_ref_uid_gid_internal(u, uid, gid, c ? c->remove_ipc : false); |
| if (r < 0) |
| return log_unit_warning_errno(u, r, "Couldn't add UID/GID reference to unit, proceeding without: %m"); |
| |
| return r; |
| } |
| |
| void unit_unref_uid_gid(Unit *u, bool destroy_now) { |
| assert(u); |
| |
| unit_unref_uid(u, destroy_now); |
| unit_unref_gid(u, destroy_now); |
| } |
| |
| void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid) { |
| int r; |
| |
| assert(u); |
| |
| /* This is invoked whenever one of the forked off processes let's us know the UID/GID its user name/group names |
| * resolved to. We keep track of which UID/GID is currently assigned in order to be able to destroy its IPC |
| * objects when no service references the UID/GID anymore. */ |
| |
| r = unit_ref_uid_gid(u, uid, gid); |
| if (r > 0) |
| bus_unit_send_change_signal(u); |
| } |
| |
| int unit_set_invocation_id(Unit *u, sd_id128_t id) { |
| int r; |
| |
| assert(u); |
| |
| /* Set the invocation ID for this unit. If we cannot, this will not roll back, but reset the whole thing. */ |
| |
| if (sd_id128_equal(u->invocation_id, id)) |
| return 0; |
| |
| if (!sd_id128_is_null(u->invocation_id)) |
| (void) hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u); |
| |
| if (sd_id128_is_null(id)) { |
| r = 0; |
| goto reset; |
| } |
| |
| r = hashmap_ensure_allocated(&u->manager->units_by_invocation_id, &id128_hash_ops); |
| if (r < 0) |
| goto reset; |
| |
| u->invocation_id = id; |
| sd_id128_to_string(id, u->invocation_id_string); |
| |
| r = hashmap_put(u->manager->units_by_invocation_id, &u->invocation_id, u); |
| if (r < 0) |
| goto reset; |
| |
| return 0; |
| |
| reset: |
| u->invocation_id = SD_ID128_NULL; |
| u->invocation_id_string[0] = 0; |
| return r; |
| } |
| |
| int unit_acquire_invocation_id(Unit *u) { |
| sd_id128_t id; |
| int r; |
| |
| assert(u); |
| |
| r = sd_id128_randomize(&id); |
| if (r < 0) |
| return log_unit_error_errno(u, r, "Failed to generate invocation ID for unit: %m"); |
| |
| r = unit_set_invocation_id(u, id); |
| if (r < 0) |
| return log_unit_error_errno(u, r, "Failed to set invocation ID for unit: %m"); |
| |
| return 0; |
| } |
| |
| void unit_set_exec_params(Unit *u, ExecParameters *p) { |
| assert(u); |
| assert(p); |
| |
| p->cgroup_path = u->cgroup_path; |
| SET_FLAG(p->flags, EXEC_CGROUP_DELEGATE, UNIT_CGROUP_BOOL(u, delegate)); |
| } |
| |
| int unit_fork_helper_process(Unit *u, const char *name, pid_t *ret) { |
| int r; |
| |
| assert(u); |
| assert(ret); |
| |
| /* Forks off a helper process and makes sure it is a member of the unit's cgroup. Returns == 0 in the child, |
| * and > 0 in the parent. The pid parameter is always filled in with the child's PID. */ |
| |
| (void) unit_realize_cgroup(u); |
| |
| r = safe_fork(name, FORK_REOPEN_LOG, ret); |
| if (r != 0) |
| return r; |
| |
| (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE, -1); |
| (void) ignore_signals(SIGPIPE, -1); |
| |
| (void) prctl(PR_SET_PDEATHSIG, SIGTERM); |
| |
| if (u->cgroup_path) { |
| r = cg_attach_everywhere(u->manager->cgroup_supported, u->cgroup_path, 0, NULL, NULL); |
| if (r < 0) { |
| log_unit_error_errno(u, r, "Failed to join unit cgroup %s: %m", u->cgroup_path); |
| _exit(EXIT_CGROUP); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void unit_update_dependency_mask(Unit *u, UnitDependency d, Unit *other, UnitDependencyInfo di) { |
| assert(u); |
| assert(d >= 0); |
| assert(d < _UNIT_DEPENDENCY_MAX); |
| assert(other); |
| |
| if (di.origin_mask == 0 && di.destination_mask == 0) { |
| /* No bit set anymore, let's drop the whole entry */ |
| assert_se(hashmap_remove(u->dependencies[d], other)); |
| log_unit_debug(u, "%s lost dependency %s=%s", u->id, unit_dependency_to_string(d), other->id); |
| } else |
| /* Mask was reduced, let's update the entry */ |
| assert_se(hashmap_update(u->dependencies[d], other, di.data) == 0); |
| } |
| |
| void unit_remove_dependencies(Unit *u, UnitDependencyMask mask) { |
| UnitDependency d; |
| |
| assert(u); |
| |
| /* Removes all dependencies u has on other units marked for ownership by 'mask'. */ |
| |
| if (mask == 0) |
| return; |
| |
| for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) { |
| bool done; |
| |
| do { |
| UnitDependencyInfo di; |
| Unit *other; |
| Iterator i; |
| |
| done = true; |
| |
| HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d], i) { |
| UnitDependency q; |
| |
| if ((di.origin_mask & ~mask) == di.origin_mask) |
| continue; |
| di.origin_mask &= ~mask; |
| unit_update_dependency_mask(u, d, other, di); |
| |
| /* We updated the dependency from our unit to the other unit now. But most dependencies |
| * imply a reverse dependency. Hence, let's delete that one too. For that we go through |
| * all dependency types on the other unit and delete all those which point to us and |
| * have the right mask set. */ |
| |
| for (q = 0; q < _UNIT_DEPENDENCY_MAX; q++) { |
| UnitDependencyInfo dj; |
| |
| dj.data = hashmap_get(other->dependencies[q], u); |
| if ((dj.destination_mask & ~mask) == dj.destination_mask) |
| continue; |
| dj.destination_mask &= ~mask; |
| |
| unit_update_dependency_mask(other, q, u, dj); |
| } |
| |
| unit_add_to_gc_queue(other); |
| |
| done = false; |
| break; |
| } |
| |
| } while (!done); |
| } |
| } |
| |
| static int unit_export_invocation_id(Unit *u) { |
| const char *p; |
| int r; |
| |
| assert(u); |
| |
| if (u->exported_invocation_id) |
| return 0; |
| |
| if (sd_id128_is_null(u->invocation_id)) |
| return 0; |
| |
| p = strjoina("/run/systemd/units/invocation:", u->id); |
| r = symlink_atomic(u->invocation_id_string, p); |
| if (r < 0) |
| return log_unit_debug_errno(u, r, "Failed to create invocation ID symlink %s: %m", p); |
| |
| u->exported_invocation_id = true; |
| return 0; |
| } |
| |
| static int unit_export_log_level_max(Unit *u, const ExecContext *c) { |
| const char *p; |
| char buf[2]; |
| int r; |
| |
| assert(u); |
| assert(c); |
| |
| if (u->exported_log_level_max) |
| return 0; |
| |
| if (c->log_level_max < 0) |
| return 0; |
| |
| assert(c->log_level_max <= 7); |
| |
| buf[0] = '0' + c->log_level_max; |
| buf[1] = 0; |
| |
| p = strjoina("/run/systemd/units/log-level-max:", u->id); |
| r = symlink_atomic(buf, p); |
| if (r < 0) |
| return log_unit_debug_errno(u, r, "Failed to create maximum log level symlink %s: %m", p); |
| |
| u->exported_log_level_max = true; |
| return 0; |
| } |
| |
| static int unit_export_log_extra_fields(Unit *u, const ExecContext *c) { |
| _cleanup_close_ int fd = -1; |
| struct iovec *iovec; |
| const char *p; |
| char *pattern; |
| le64_t *sizes; |
| ssize_t n; |
| size_t i; |
| int r; |
| |
| if (u->exported_log_extra_fields) |
| return 0; |
| |
| if (c->n_log_extra_fields <= 0) |
| return 0; |
| |
| sizes = newa(le64_t, c->n_log_extra_fields); |
| iovec = newa(struct iovec, c->n_log_extra_fields * 2); |
| |
| for (i = 0; i < c->n_log_extra_fields; i++) { |
| sizes[i] = htole64(c->log_extra_fields[i].iov_len); |
| |
| iovec[i*2] = IOVEC_MAKE(sizes + i, sizeof(le64_t)); |
| iovec[i*2+1] = c->log_extra_fields[i]; |
| } |
| |
| p = strjoina("/run/systemd/units/log-extra-fields:", u->id); |
| pattern = strjoina(p, ".XXXXXX"); |
| |
| fd = mkostemp_safe(pattern); |
| if (fd < 0) |
| return log_unit_debug_errno(u, fd, "Failed to create extra fields file %s: %m", p); |
| |
| n = writev(fd, iovec, c->n_log_extra_fields*2); |
| if (n < 0) { |
| r = log_unit_debug_errno(u, errno, "Failed to write extra fields: %m"); |
| goto fail; |
| } |
| |
| (void) fchmod(fd, 0644); |
| |
| if (rename(pattern, p) < 0) { |
| r = log_unit_debug_errno(u, errno, "Failed to rename extra fields file: %m"); |
| goto fail; |
| } |
| |
| u->exported_log_extra_fields = true; |
| return 0; |
| |
| fail: |
| (void) unlink(pattern); |
| return r; |
| } |
| |
| void unit_export_state_files(Unit *u) { |
| const ExecContext *c; |
| |
| assert(u); |
| |
| if (!u->id) |
| return; |
| |
| if (!MANAGER_IS_SYSTEM(u->manager)) |
| return; |
| |
| /* Exports a couple of unit properties to /run/systemd/units/, so that journald can quickly query this data |
| * from there. Ideally, journald would use IPC to query this, like everybody else, but that's hard, as long as |
| * the IPC system itself and PID 1 also log to the journal. |
| * |
| * Note that these files really shouldn't be considered API for anyone else, as use a runtime file system as |
| * IPC replacement is not compatible with today's world of file system namespaces. However, this doesn't really |
| * apply to communication between the journal and systemd, as we assume that these two daemons live in the same |
| * namespace at least. |
| * |
| * Note that some of the "files" exported here are actually symlinks and not regular files. Symlinks work |
| * better for storing small bits of data, in particular as we can write them with two system calls, and read |
| * them with one. */ |
| |
| (void) unit_export_invocation_id(u); |
| |
| c = unit_get_exec_context(u); |
| if (c) { |
| (void) unit_export_log_level_max(u, c); |
| (void) unit_export_log_extra_fields(u, c); |
| } |
| } |
| |
| void unit_unlink_state_files(Unit *u) { |
| const char *p; |
| |
| assert(u); |
| |
| if (!u->id) |
| return; |
| |
| if (!MANAGER_IS_SYSTEM(u->manager)) |
| return; |
| |
| /* Undoes the effect of unit_export_state() */ |
| |
| if (u->exported_invocation_id) { |
| p = strjoina("/run/systemd/units/invocation:", u->id); |
| (void) unlink(p); |
| |
| u->exported_invocation_id = false; |
| } |
| |
| if (u->exported_log_level_max) { |
| p = strjoina("/run/systemd/units/log-level-max:", u->id); |
| (void) unlink(p); |
| |
| u->exported_log_level_max = false; |
| } |
| |
| if (u->exported_log_extra_fields) { |
| p = strjoina("/run/systemd/units/extra-fields:", u->id); |
| (void) unlink(p); |
| |
| u->exported_log_extra_fields = false; |
| } |
| } |
| |
| int unit_prepare_exec(Unit *u) { |
| int r; |
| |
| assert(u); |
| |
| /* Prepares everything so that we can fork of a process for this unit */ |
| |
| (void) unit_realize_cgroup(u); |
| |
| if (u->reset_accounting) { |
| (void) unit_reset_cpu_accounting(u); |
| (void) unit_reset_ip_accounting(u); |
| u->reset_accounting = false; |
| } |
| |
| unit_export_state_files(u); |
| |
| r = unit_setup_exec_runtime(u); |
| if (r < 0) |
| return r; |
| |
| r = unit_setup_dynamic_creds(u); |
| if (r < 0) |
| return r; |
| |
| return 0; |
| } |
| |
| static void log_leftover(pid_t pid, int sig, void *userdata) { |
| _cleanup_free_ char *comm = NULL; |
| |
| (void) get_process_comm(pid, &comm); |
| |
| if (comm && comm[0] == '(') /* Most likely our own helper process (PAM?), ignore */ |
| return; |
| |
| log_unit_warning(userdata, |
| "Found left-over process " PID_FMT " (%s) in control group while starting unit. Ignoring.\n" |
| "This usually indicates unclean termination of a previous run, or service implementation deficiencies.", |
| pid, strna(comm)); |
| } |
| |
| void unit_warn_leftover_processes(Unit *u) { |
| assert(u); |
| |
| (void) unit_pick_cgroup_path(u); |
| |
| if (!u->cgroup_path) |
| return; |
| |
| (void) cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, 0, 0, NULL, log_leftover, u); |
| } |
| |
| bool unit_needs_console(Unit *u) { |
| ExecContext *ec; |
| UnitActiveState state; |
| |
| assert(u); |
| |
| state = unit_active_state(u); |
| |
| if (UNIT_IS_INACTIVE_OR_FAILED(state)) |
| return false; |
| |
| if (UNIT_VTABLE(u)->needs_console) |
| return UNIT_VTABLE(u)->needs_console(u); |
| |
| /* If this unit type doesn't implement this call, let's use a generic fallback implementation: */ |
| ec = unit_get_exec_context(u); |
| if (!ec) |
| return false; |
| |
| return exec_context_may_touch_console(ec); |
| } |
| |
| const char *unit_label_path(Unit *u) { |
| const char *p; |
| |
| /* Returns the file system path to use for MAC access decisions, i.e. the file to read the SELinux label off |
| * when validating access checks. */ |
| |
| p = u->source_path ?: u->fragment_path; |
| if (!p) |
| return NULL; |
| |
| /* If a unit is masked, then don't read the SELinux label of /dev/null, as that really makes no sense */ |
| if (path_equal(p, "/dev/null")) |
| return NULL; |
| |
| return p; |
| } |
| |
| static const char* const collect_mode_table[_COLLECT_MODE_MAX] = { |
| [COLLECT_INACTIVE] = "inactive", |
| [COLLECT_INACTIVE_OR_FAILED] = "inactive-or-failed", |
| }; |
| |
| DEFINE_STRING_TABLE_LOOKUP(collect_mode, CollectMode); |