blob: e4d12977cd94ee4b1189098e4a6aacfdc608be7f [file] [log] [blame] [raw]
/***
This file is part of systemd.
Copyright (C) 2017 Intel Corporation. All rights reserved.
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <netinet/icmp6.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <linux/in6.h>
#include "sd-radv.h"
#include "macro.h"
#include "alloc-util.h"
#include "dns-domain.h"
#include "fd-util.h"
#include "icmp6-util.h"
#include "in-addr-util.h"
#include "radv-internal.h"
#include "socket-util.h"
#include "string-util.h"
#include "strv.h"
#include "util.h"
#include "random-util.h"
_public_ int sd_radv_new(sd_radv **ret) {
_cleanup_(sd_radv_unrefp) sd_radv *ra = NULL;
assert_return(ret, -EINVAL);
ra = new0(sd_radv, 1);
if (!ra)
return -ENOMEM;
ra->n_ref = 1;
ra->fd = -1;
LIST_HEAD_INIT(ra->prefixes);
*ret = ra;
ra = NULL;
return 0;
}
_public_ int sd_radv_attach_event(sd_radv *ra, sd_event *event, int64_t priority) {
int r;
assert_return(ra, -EINVAL);
assert_return(!ra->event, -EBUSY);
if (event)
ra->event = sd_event_ref(event);
else {
r = sd_event_default(&ra->event);
if (r < 0)
return 0;
}
ra->event_priority = priority;
return 0;
}
_public_ int sd_radv_detach_event(sd_radv *ra) {
assert_return(ra, -EINVAL);
ra->event = sd_event_unref(ra->event);
return 0;
}
_public_ sd_event *sd_radv_get_event(sd_radv *ra) {
assert_return(ra, NULL);
return ra->event;
}
static void radv_reset(sd_radv *ra) {
ra->timeout_event_source =
sd_event_source_unref(ra->timeout_event_source);
ra->recv_event_source =
sd_event_source_unref(ra->recv_event_source);
ra->ra_sent = 0;
}
_public_ sd_radv *sd_radv_ref(sd_radv *ra) {
if (!ra)
return NULL;
assert(ra->n_ref > 0);
ra->n_ref++;
return ra;
}
_public_ sd_radv *sd_radv_unref(sd_radv *ra) {
if (!ra)
return NULL;
assert(ra->n_ref > 0);
ra->n_ref--;
if (ra->n_ref > 0)
return NULL;
while (ra->prefixes) {
sd_radv_prefix *p = ra->prefixes;
LIST_REMOVE(prefix, ra->prefixes, p);
sd_radv_prefix_unref(p);
}
free(ra->rdnss);
free(ra->dnssl);
radv_reset(ra);
sd_radv_detach_event(ra);
return mfree(ra);
}
static int radv_send(sd_radv *ra, const struct in6_addr *dst,
const uint32_t router_lifetime) {
static const struct ether_addr mac_zero = {};
sd_radv_prefix *p;
struct sockaddr_in6 dst_addr = {
.sin6_family = AF_INET6,
.sin6_addr = IN6ADDR_ALL_NODES_MULTICAST_INIT,
};
struct nd_router_advert adv = {};
struct {
struct nd_opt_hdr opthdr;
struct ether_addr slladdr;
} _packed_ opt_mac = {
.opthdr = {
.nd_opt_type = ND_OPT_SOURCE_LINKADDR,
.nd_opt_len = (sizeof(struct nd_opt_hdr) +
sizeof(struct ether_addr) - 1) /8 + 1,
},
};
struct nd_opt_mtu opt_mtu = {
.nd_opt_mtu_type = ND_OPT_MTU,
.nd_opt_mtu_len = 1,
};
/* Reserve iov space for RA header, linkaddr, MTU, N prefixes, RDNSS
and DNSSL */
struct iovec iov[5 + ra->n_prefixes];
struct msghdr msg = {
.msg_name = &dst_addr,
.msg_namelen = sizeof(dst_addr),
.msg_iov = iov,
};
if (dst && !in_addr_is_null(AF_INET6, (union in_addr_union*) dst))
dst_addr.sin6_addr = *dst;
adv.nd_ra_type = ND_ROUTER_ADVERT;
adv.nd_ra_curhoplimit = ra->hop_limit;
adv.nd_ra_flags_reserved = ra->flags;
adv.nd_ra_router_lifetime = htobe16(router_lifetime);
iov[msg.msg_iovlen].iov_base = &adv;
iov[msg.msg_iovlen].iov_len = sizeof(adv);
msg.msg_iovlen++;
/* MAC address is optional, either because the link does not use L2
addresses or load sharing is desired. See RFC 4861, Section 4.2 */
if (memcmp(&mac_zero, &ra->mac_addr, sizeof(mac_zero))) {
opt_mac.slladdr = ra->mac_addr;
iov[msg.msg_iovlen].iov_base = &opt_mac;
iov[msg.msg_iovlen].iov_len = sizeof(opt_mac);
msg.msg_iovlen++;
}
if (ra->mtu) {
opt_mtu.nd_opt_mtu_mtu = htobe32(ra->mtu);
iov[msg.msg_iovlen].iov_base = &opt_mtu;
iov[msg.msg_iovlen].iov_len = sizeof(opt_mtu);
msg.msg_iovlen++;
}
LIST_FOREACH(prefix, p, ra->prefixes) {
iov[msg.msg_iovlen].iov_base = &p->opt;
iov[msg.msg_iovlen].iov_len = sizeof(p->opt);
msg.msg_iovlen++;
}
if (ra->rdnss) {
iov[msg.msg_iovlen].iov_base = ra->rdnss;
iov[msg.msg_iovlen].iov_len = ra->rdnss->length * 8;
msg.msg_iovlen++;
}
if (ra->dnssl) {
iov[msg.msg_iovlen].iov_base = ra->dnssl;
iov[msg.msg_iovlen].iov_len = ra->dnssl->length * 8;
msg.msg_iovlen++;
}
if (sendmsg(ra->fd, &msg, 0) < 0)
return -errno;
return 0;
}
static int radv_recv(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
sd_radv *ra = userdata;
_cleanup_free_ char *addr = NULL;
struct in6_addr src;
triple_timestamp timestamp;
int r;
ssize_t buflen;
_cleanup_free_ char *buf = NULL;
assert(s);
assert(ra);
assert(ra->event);
buflen = next_datagram_size_fd(fd);
if ((unsigned) buflen < sizeof(struct nd_router_solicit))
return log_radv("Too short packet received");
buf = new0(char, buflen);
if (!buf)
return 0;
r = icmp6_receive(fd, buf, buflen, &src, &timestamp);
if (r < 0) {
switch (r) {
case -EADDRNOTAVAIL:
(void) in_addr_to_string(AF_INET6, (union in_addr_union*) &src, &addr);
log_radv("Received RS from non-link-local address %s. Ignoring", addr);
break;
case -EMULTIHOP:
log_radv("Received RS with invalid hop limit. Ignoring.");
break;
case -EPFNOSUPPORT:
log_radv("Received invalid source address from ICMPv6 socket. Ignoring.");
break;
default:
log_radv_warning_errno(r, "Error receiving from ICMPv6 socket: %m");
break;
}
return 0;
}
(void) in_addr_to_string(AF_INET6, (union in_addr_union*) &src, &addr);
r = radv_send(ra, &src, ra->lifetime);
if (r < 0)
log_radv_warning_errno(r, "Unable to send solicited Router Advertisment to %s: %m", addr);
else
log_radv("Sent solicited Router Advertisement to %s", addr);
return 0;
}
static usec_t radv_compute_timeout(usec_t min, usec_t max) {
assert_return(min <= max, SD_RADV_DEFAULT_MIN_TIMEOUT_USEC);
return min + (random_u32() % (max - min));
}
static int radv_timeout(sd_event_source *s, uint64_t usec, void *userdata) {
int r;
sd_radv *ra = userdata;
usec_t min_timeout = SD_RADV_DEFAULT_MIN_TIMEOUT_USEC;
usec_t max_timeout = SD_RADV_DEFAULT_MAX_TIMEOUT_USEC;
usec_t time_now, timeout;
char time_string[FORMAT_TIMESPAN_MAX];
assert(s);
assert(ra);
assert(ra->event);
ra->timeout_event_source = sd_event_source_unref(ra->timeout_event_source);
r = sd_event_now(ra->event, clock_boottime_or_monotonic(), &time_now);
if (r < 0)
goto fail;
r = radv_send(ra, NULL, ra->lifetime);
if (r < 0)
log_radv_warning_errno(r, "Unable to send Router Advertisement: %m");
/* RFC 4861, Section 6.2.4, sending initial Router Advertisements */
if (ra->ra_sent < SD_RADV_MAX_INITIAL_RTR_ADVERTISEMENTS) {
max_timeout = SD_RADV_MAX_INITIAL_RTR_ADVERT_INTERVAL_USEC;
min_timeout = SD_RADV_MAX_INITIAL_RTR_ADVERT_INTERVAL_USEC / 3;
}
timeout = radv_compute_timeout(min_timeout, max_timeout);
log_radv("Next Router Advertisement in %s",
format_timespan(time_string, FORMAT_TIMESPAN_MAX,
timeout, USEC_PER_SEC));
r = sd_event_add_time(ra->event, &ra->timeout_event_source,
clock_boottime_or_monotonic(),
time_now + timeout, MSEC_PER_SEC,
radv_timeout, ra);
if (r < 0)
goto fail;
r = sd_event_source_set_priority(ra->timeout_event_source,
ra->event_priority);
if (r < 0)
goto fail;
r = sd_event_source_set_description(ra->timeout_event_source,
"radv-timeout");
if (r < 0)
goto fail;
ra->ra_sent++;
fail:
if (r < 0)
sd_radv_stop(ra);
return 0;
}
_public_ int sd_radv_stop(sd_radv *ra) {
int r;
assert_return(ra, -EINVAL);
log_radv("Stopping IPv6 Router Advertisement daemon");
/* RFC 4861, Section 6.2.5, send at least one Router Advertisement
with zero lifetime */
r = radv_send(ra, NULL, 0);
if (r < 0)
log_radv_warning_errno(r, "Unable to send last Router Advertisement with router lifetime set to zero: %m");
radv_reset(ra);
ra->fd = safe_close(ra->fd);
ra->state = SD_RADV_STATE_IDLE;
return 0;
}
_public_ int sd_radv_start(sd_radv *ra) {
int r = 0;
assert_return(ra, -EINVAL);
assert_return(ra->event, -EINVAL);
assert_return(ra->ifindex > 0, -EINVAL);
if (ra->state != SD_RADV_STATE_IDLE)
return 0;
r = sd_event_add_time(ra->event, &ra->timeout_event_source,
clock_boottime_or_monotonic(), 0, 0,
radv_timeout, ra);
if (r < 0)
goto fail;
r = sd_event_source_set_priority(ra->timeout_event_source,
ra->event_priority);
if (r < 0)
goto fail;
(void) sd_event_source_set_description(ra->timeout_event_source,
"radv-timeout");
r = icmp6_bind_router_advertisement(ra->ifindex);
if (r < 0)
goto fail;
ra->fd = r;
r = sd_event_add_io(ra->event, &ra->recv_event_source, ra->fd, EPOLLIN, radv_recv, ra);
if (r < 0)
goto fail;
r = sd_event_source_set_priority(ra->recv_event_source, ra->event_priority);
if (r < 0)
goto fail;
(void) sd_event_source_set_description(ra->recv_event_source, "radv-receive-message");
ra->state = SD_RADV_STATE_ADVERTISING;
log_radv("Started IPv6 Router Advertisement daemon");
return 0;
fail:
radv_reset(ra);
return r;
}
_public_ int sd_radv_set_ifindex(sd_radv *ra, int ifindex) {
assert_return(ra, -EINVAL);
assert_return(ifindex >= -1, -EINVAL);
if (ra->state != SD_RADV_STATE_IDLE)
return -EBUSY;
ra->ifindex = ifindex;
return 0;
}
_public_ int sd_radv_set_mac(sd_radv *ra, const struct ether_addr *mac_addr) {
assert_return(ra, -EINVAL);
if (ra->state != SD_RADV_STATE_IDLE)
return -EBUSY;
if (mac_addr)
ra->mac_addr = *mac_addr;
else
zero(ra->mac_addr);
return 0;
}
_public_ int sd_radv_set_mtu(sd_radv *ra, uint32_t mtu) {
assert_return(ra, -EINVAL);
assert_return(mtu >= 1280, -EINVAL);
if (ra->state != SD_RADV_STATE_IDLE)
return -EBUSY;
ra->mtu = mtu;
return 0;
}
_public_ int sd_radv_set_hop_limit(sd_radv *ra, uint8_t hop_limit) {
assert_return(ra, -EINVAL);
if (ra->state != SD_RADV_STATE_IDLE)
return -EBUSY;
ra->hop_limit = hop_limit;
return 0;
}
_public_ int sd_radv_set_router_lifetime(sd_radv *ra, uint32_t router_lifetime) {
assert_return(ra, -EINVAL);
if (ra->state != SD_RADV_STATE_IDLE)
return -EBUSY;
/* RFC 4191, Section 2.2, "...If the Router Lifetime is zero, the
preference value MUST be set to (00) by the sender..." */
if (router_lifetime == 0 &&
(ra->flags & (0x3 << 3)) != (SD_NDISC_PREFERENCE_MEDIUM << 3))
return -ETIME;
ra->lifetime = router_lifetime;
return 0;
}
_public_ int sd_radv_set_managed_information(sd_radv *ra, int managed) {
assert_return(ra, -EINVAL);
if (ra->state != SD_RADV_STATE_IDLE)
return -EBUSY;
SET_FLAG(ra->flags, ND_RA_FLAG_MANAGED, managed);
return 0;
}
_public_ int sd_radv_set_other_information(sd_radv *ra, int other) {
assert_return(ra, -EINVAL);
if (ra->state != SD_RADV_STATE_IDLE)
return -EBUSY;
SET_FLAG(ra->flags, ND_RA_FLAG_OTHER, other);
return 0;
}
_public_ int sd_radv_set_preference(sd_radv *ra, unsigned preference) {
int r = 0;
assert_return(ra, -EINVAL);
assert_return(IN_SET(preference,
SD_NDISC_PREFERENCE_LOW,
SD_NDISC_PREFERENCE_MEDIUM,
SD_NDISC_PREFERENCE_HIGH), -EINVAL);
ra->flags = (ra->flags & ~(0x3 << 3)) | (preference << 3);
return r;
}
_public_ int sd_radv_add_prefix(sd_radv *ra, sd_radv_prefix *p) {
sd_radv_prefix *cur;
_cleanup_free_ char *addr_p = NULL;
assert_return(ra, -EINVAL);
if (!p)
return -EINVAL;
LIST_FOREACH(prefix, cur, ra->prefixes) {
int r;
r = in_addr_prefix_intersect(AF_INET6,
(union in_addr_union*) &cur->opt.in6_addr,
cur->opt.prefixlen,
(union in_addr_union*) &p->opt.in6_addr,
p->opt.prefixlen);
if (r > 0) {
_cleanup_free_ char *addr_cur = NULL;
(void) in_addr_to_string(AF_INET6,
(union in_addr_union*) &cur->opt.in6_addr,
&addr_cur);
(void) in_addr_to_string(AF_INET6,
(union in_addr_union*) &p->opt.in6_addr,
&addr_p);
log_radv("IPv6 prefix %s/%u already configured, ignoring %s/%u",
addr_cur, cur->opt.prefixlen,
addr_p, p->opt.prefixlen);
return -EEXIST;
}
}
p = sd_radv_prefix_ref(p);
LIST_APPEND(prefix, ra->prefixes, p);
ra->n_prefixes++;
(void) in_addr_to_string(AF_INET6, (union in_addr_union*) &p->opt.in6_addr, &addr_p);
log_radv("Added prefix %s/%d", addr_p, p->opt.prefixlen);
return 0;
}
_public_ int sd_radv_set_rdnss(sd_radv *ra, uint32_t lifetime,
const struct in6_addr *dns, size_t n_dns) {
_cleanup_free_ struct sd_radv_opt_dns *opt_rdnss = NULL;
size_t len;
assert_return(ra, -EINVAL);
assert_return(n_dns < 128, -EINVAL);
if (!dns || n_dns == 0) {
ra->rdnss = mfree(ra->rdnss);
ra->n_rdnss = 0;
return 0;
}
len = sizeof(struct sd_radv_opt_dns) + sizeof(struct in6_addr) * n_dns;
opt_rdnss = malloc0(len);
if (!opt_rdnss)
return -ENOMEM;
opt_rdnss->type = SD_RADV_OPT_RDNSS;
opt_rdnss->length = len / 8;
opt_rdnss->lifetime = htobe32(lifetime);
memcpy(opt_rdnss + 1, dns, n_dns * sizeof(struct in6_addr));
free(ra->rdnss);
ra->rdnss = opt_rdnss;
opt_rdnss = NULL;
ra->n_rdnss = n_dns;
return 0;
}
_public_ int sd_radv_set_dnssl(sd_radv *ra, uint32_t lifetime,
char **search_list) {
_cleanup_free_ struct sd_radv_opt_dns *opt_dnssl = NULL;
size_t len = 0;
char **s;
uint8_t *p;
assert_return(ra, -EINVAL);
if (!search_list || *search_list == NULL) {
ra->dnssl = mfree(ra->dnssl);
return 0;
}
STRV_FOREACH(s, search_list)
len += strlen(*s) + 2;
len = (sizeof(struct sd_radv_opt_dns) + len + 7) & ~0x7;
opt_dnssl = malloc0(len);
if (!opt_dnssl)
return -ENOMEM;
opt_dnssl->type = SD_RADV_OPT_DNSSL;
opt_dnssl->length = len / 8;
opt_dnssl->lifetime = htobe32(lifetime);
p = (uint8_t *)(opt_dnssl + 1);
len -= sizeof(struct sd_radv_opt_dns);
STRV_FOREACH(s, search_list) {
int r;
r = dns_name_to_wire_format(*s, p, len, false);
if (r < 0)
return r;
if (len < (size_t)r)
return -ENOBUFS;
p += r;
len -= r;
}
free(ra->dnssl);
ra->dnssl = opt_dnssl;
opt_dnssl = NULL;
return 0;
}
_public_ int sd_radv_prefix_new(sd_radv_prefix **ret) {
_cleanup_(sd_radv_prefix_unrefp) sd_radv_prefix *p = NULL;
assert_return(ret, -EINVAL);
p = new0(sd_radv_prefix, 1);
if (!p)
return -ENOMEM;
p->n_ref = 1;
p->opt.type = ND_OPT_PREFIX_INFORMATION;
p->opt.length = (sizeof(p->opt) - 1) /8 + 1;
p->opt.prefixlen = 64;
/* RFC 4861, Section 6.2.1 */
SET_FLAG(p->opt.flags, ND_OPT_PI_FLAG_ONLINK, true);
SET_FLAG(p->opt.flags, ND_OPT_PI_FLAG_AUTO, true);
p->opt.preferred_lifetime = htobe32(604800);
p->opt.valid_lifetime = htobe32(2592000);
LIST_INIT(prefix, p);
*ret = p;
p = NULL;
return 0;
}
_public_ sd_radv_prefix *sd_radv_prefix_ref(sd_radv_prefix *p) {
if (!p)
return NULL;
assert(p->n_ref > 0);
p->n_ref++;
return p;
}
_public_ sd_radv_prefix *sd_radv_prefix_unref(sd_radv_prefix *p) {
if (!p)
return NULL;
assert(p->n_ref > 0);
p->n_ref--;
if (p->n_ref > 0)
return NULL;
return mfree(p);
}
_public_ int sd_radv_prefix_set_prefix(sd_radv_prefix *p, struct in6_addr *in6_addr,
unsigned char prefixlen) {
assert_return(p, -EINVAL);
assert_return(in6_addr, -EINVAL);
if (prefixlen < 3 || prefixlen > 128)
return -EINVAL;
if (prefixlen > 64)
/* unusual but allowed, log it */
log_radv("Unusual prefix length %d greater than 64", prefixlen);
p->opt.in6_addr = *in6_addr;
p->opt.prefixlen = prefixlen;
return 0;
}
_public_ int sd_radv_prefix_set_onlink(sd_radv_prefix *p, int onlink) {
assert_return(p, -EINVAL);
SET_FLAG(p->opt.flags, ND_OPT_PI_FLAG_ONLINK, onlink);
return 0;
}
_public_ int sd_radv_prefix_set_address_autoconfiguration(sd_radv_prefix *p,
int address_autoconfiguration) {
assert_return(p, -EINVAL);
SET_FLAG(p->opt.flags, ND_OPT_PI_FLAG_AUTO, address_autoconfiguration);
return 0;
}
_public_ int sd_radv_prefix_set_valid_lifetime(sd_radv_prefix *p,
uint32_t valid_lifetime) {
assert_return(p, -EINVAL);
p->opt.valid_lifetime = htobe32(valid_lifetime);
return 0;
}
_public_ int sd_radv_prefix_set_preferred_lifetime(sd_radv_prefix *p,
uint32_t preferred_lifetime) {
assert_return(p, -EINVAL);
p->opt.preferred_lifetime = htobe32(preferred_lifetime);
return 0;
}