blob: 662885840f9b21f2d85870c9e448a262d3882b87 [file] [log] [blame] [raw]
/***
This file is part of systemd.
Copyright (C) 2014 Axis Communications AB. All rights reserved.
Copyright (C) 2015 Tom Gundersen
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <arpa/inet.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sd-ipv4acd.h"
#include "alloc-util.h"
#include "arp-util.h"
#include "ether-addr-util.h"
#include "fd-util.h"
#include "in-addr-util.h"
#include "list.h"
#include "random-util.h"
#include "siphash24.h"
#include "string-util.h"
#include "util.h"
/* Constants from the RFC */
#define PROBE_WAIT_USEC (1U * USEC_PER_SEC)
#define PROBE_NUM 3U
#define PROBE_MIN_USEC (1U * USEC_PER_SEC)
#define PROBE_MAX_USEC (2U * USEC_PER_SEC)
#define ANNOUNCE_WAIT_USEC (2U * USEC_PER_SEC)
#define ANNOUNCE_NUM 2U
#define ANNOUNCE_INTERVAL_USEC (2U * USEC_PER_SEC)
#define MAX_CONFLICTS 10U
#define RATE_LIMIT_INTERVAL_USEC (60U * USEC_PER_SEC)
#define DEFEND_INTERVAL_USEC (10U * USEC_PER_SEC)
typedef enum IPv4ACDState {
IPV4ACD_STATE_INIT,
IPV4ACD_STATE_STARTED,
IPV4ACD_STATE_WAITING_PROBE,
IPV4ACD_STATE_PROBING,
IPV4ACD_STATE_WAITING_ANNOUNCE,
IPV4ACD_STATE_ANNOUNCING,
IPV4ACD_STATE_RUNNING,
_IPV4ACD_STATE_MAX,
_IPV4ACD_STATE_INVALID = -1
} IPv4ACDState;
struct sd_ipv4acd {
unsigned n_ref;
IPv4ACDState state;
int ifindex;
int fd;
unsigned n_iteration;
unsigned n_conflict;
sd_event_source *receive_message_event_source;
sd_event_source *timer_event_source;
usec_t defend_window;
be32_t address;
/* External */
struct ether_addr mac_addr;
sd_event *event;
int event_priority;
sd_ipv4acd_callback_t callback;
void* userdata;
};
#define log_ipv4acd_errno(acd, error, fmt, ...) log_internal(LOG_DEBUG, error, __FILE__, __LINE__, __func__, "IPV4ACD: " fmt, ##__VA_ARGS__)
#define log_ipv4acd(acd, fmt, ...) log_ipv4acd_errno(acd, 0, fmt, ##__VA_ARGS__)
static void ipv4acd_set_state(sd_ipv4acd *acd, IPv4ACDState st, bool reset_counter) {
assert(acd);
assert(st < _IPV4ACD_STATE_MAX);
if (st == acd->state && !reset_counter)
acd->n_iteration++;
else {
acd->state = st;
acd->n_iteration = 0;
}
}
static void ipv4acd_reset(sd_ipv4acd *acd) {
assert(acd);
acd->timer_event_source = sd_event_source_unref(acd->timer_event_source);
acd->receive_message_event_source = sd_event_source_unref(acd->receive_message_event_source);
acd->fd = safe_close(acd->fd);
ipv4acd_set_state(acd, IPV4ACD_STATE_INIT, true);
}
sd_ipv4acd *sd_ipv4acd_ref(sd_ipv4acd *acd) {
if (!acd)
return NULL;
assert_se(acd->n_ref >= 1);
acd->n_ref++;
return acd;
}
sd_ipv4acd *sd_ipv4acd_unref(sd_ipv4acd *acd) {
if (!acd)
return NULL;
assert_se(acd->n_ref >= 1);
acd->n_ref--;
if (acd->n_ref > 0)
return NULL;
ipv4acd_reset(acd);
sd_ipv4acd_detach_event(acd);
free(acd);
return NULL;
}
int sd_ipv4acd_new(sd_ipv4acd **ret) {
_cleanup_(sd_ipv4acd_unrefp) sd_ipv4acd *acd = NULL;
assert_return(ret, -EINVAL);
acd = new0(sd_ipv4acd, 1);
if (!acd)
return -ENOMEM;
acd->n_ref = 1;
acd->state = IPV4ACD_STATE_INIT;
acd->ifindex = -1;
acd->fd = -1;
*ret = acd;
acd = NULL;
return 0;
}
static void ipv4acd_client_notify(sd_ipv4acd *acd, int event) {
assert(acd);
if (!acd->callback)
return;
acd->callback(acd, event, acd->userdata);
}
int sd_ipv4acd_stop(sd_ipv4acd *acd) {
assert_return(acd, -EINVAL);
ipv4acd_reset(acd);
log_ipv4acd(acd, "STOPPED");
ipv4acd_client_notify(acd, SD_IPV4ACD_EVENT_STOP);
return 0;
}
static int ipv4acd_on_timeout(sd_event_source *s, uint64_t usec, void *userdata);
static int ipv4acd_set_next_wakeup(sd_ipv4acd *acd, usec_t usec, usec_t random_usec) {
_cleanup_(sd_event_source_unrefp) sd_event_source *timer = NULL;
usec_t next_timeout, time_now;
int r;
assert(acd);
next_timeout = usec;
if (random_usec > 0)
next_timeout += (usec_t) random_u64() % random_usec;
assert_se(sd_event_now(acd->event, clock_boottime_or_monotonic(), &time_now) >= 0);
r = sd_event_add_time(acd->event, &timer, clock_boottime_or_monotonic(), time_now + next_timeout, 0, ipv4acd_on_timeout, acd);
if (r < 0)
return r;
r = sd_event_source_set_priority(timer, acd->event_priority);
if (r < 0)
return r;
(void) sd_event_source_set_description(timer, "ipv4acd-timer");
sd_event_source_unref(acd->timer_event_source);
acd->timer_event_source = timer;
timer = NULL;
return 0;
}
static bool ipv4acd_arp_conflict(sd_ipv4acd *acd, struct ether_arp *arp) {
assert(acd);
assert(arp);
/* see the BPF */
if (memcmp(arp->arp_spa, &acd->address, sizeof(acd->address)) == 0)
return true;
/* the TPA matched instead of the SPA, this is not a conflict */
return false;
}
static int ipv4acd_on_timeout(sd_event_source *s, uint64_t usec, void *userdata) {
sd_ipv4acd *acd = userdata;
int r = 0;
assert(acd);
switch (acd->state) {
case IPV4ACD_STATE_STARTED:
ipv4acd_set_state(acd, IPV4ACD_STATE_WAITING_PROBE, true);
if (acd->n_conflict >= MAX_CONFLICTS) {
char ts[FORMAT_TIMESPAN_MAX];
log_ipv4acd(acd, "Max conflicts reached, delaying by %s", format_timespan(ts, sizeof(ts), RATE_LIMIT_INTERVAL_USEC, 0));
r = ipv4acd_set_next_wakeup(acd, RATE_LIMIT_INTERVAL_USEC, PROBE_WAIT_USEC);
if (r < 0)
goto fail;
acd->n_conflict = 0;
} else {
r = ipv4acd_set_next_wakeup(acd, 0, PROBE_WAIT_USEC);
if (r < 0)
goto fail;
}
break;
case IPV4ACD_STATE_WAITING_PROBE:
case IPV4ACD_STATE_PROBING:
/* Send a probe */
r = arp_send_probe(acd->fd, acd->ifindex, acd->address, &acd->mac_addr);
if (r < 0) {
log_ipv4acd_errno(acd, r, "Failed to send ARP probe: %m");
goto fail;
} else {
_cleanup_free_ char *address = NULL;
union in_addr_union addr = { .in.s_addr = acd->address };
(void) in_addr_to_string(AF_INET, &addr, &address);
log_ipv4acd(acd, "Probing %s", strna(address));
}
if (acd->n_iteration < PROBE_NUM - 2) {
ipv4acd_set_state(acd, IPV4ACD_STATE_PROBING, false);
r = ipv4acd_set_next_wakeup(acd, PROBE_MIN_USEC, (PROBE_MAX_USEC-PROBE_MIN_USEC));
if (r < 0)
goto fail;
} else {
ipv4acd_set_state(acd, IPV4ACD_STATE_WAITING_ANNOUNCE, true);
r = ipv4acd_set_next_wakeup(acd, ANNOUNCE_WAIT_USEC, 0);
if (r < 0)
goto fail;
}
break;
case IPV4ACD_STATE_ANNOUNCING:
if (acd->n_iteration >= ANNOUNCE_NUM - 1) {
ipv4acd_set_state(acd, IPV4ACD_STATE_RUNNING, false);
break;
}
/* fall through */
case IPV4ACD_STATE_WAITING_ANNOUNCE:
/* Send announcement packet */
r = arp_send_announcement(acd->fd, acd->ifindex, acd->address, &acd->mac_addr);
if (r < 0) {
log_ipv4acd_errno(acd, r, "Failed to send ARP announcement: %m");
goto fail;
} else
log_ipv4acd(acd, "ANNOUNCE");
ipv4acd_set_state(acd, IPV4ACD_STATE_ANNOUNCING, false);
r = ipv4acd_set_next_wakeup(acd, ANNOUNCE_INTERVAL_USEC, 0);
if (r < 0)
goto fail;
if (acd->n_iteration == 0) {
acd->n_conflict = 0;
ipv4acd_client_notify(acd, SD_IPV4ACD_EVENT_BIND);
}
break;
default:
assert_not_reached("Invalid state.");
}
return 0;
fail:
sd_ipv4acd_stop(acd);
return 0;
}
static void ipv4acd_on_conflict(sd_ipv4acd *acd) {
_cleanup_free_ char *address = NULL;
union in_addr_union addr = { .in.s_addr = acd->address };
assert(acd);
acd->n_conflict++;
(void) in_addr_to_string(AF_INET, &addr, &address);
log_ipv4acd(acd, "Conflict on %s (%u)", strna(address), acd->n_conflict);
ipv4acd_reset(acd);
ipv4acd_client_notify(acd, SD_IPV4ACD_EVENT_CONFLICT);
}
static int ipv4acd_on_packet(
sd_event_source *s,
int fd,
uint32_t revents,
void *userdata) {
sd_ipv4acd *acd = userdata;
struct ether_arp packet;
ssize_t n;
int r;
assert(s);
assert(acd);
assert(fd >= 0);
n = recv(fd, &packet, sizeof(struct ether_arp), 0);
if (n < 0) {
if (errno == EAGAIN || errno == EINTR)
return 0;
log_ipv4acd_errno(acd, errno, "Failed to read ARP packet: %m");
goto fail;
}
if ((size_t) n != sizeof(struct ether_arp)) {
log_ipv4acd(acd, "Ignoring too short ARP packet.");
return 0;
}
switch (acd->state) {
case IPV4ACD_STATE_ANNOUNCING:
case IPV4ACD_STATE_RUNNING:
if (ipv4acd_arp_conflict(acd, &packet)) {
usec_t ts;
assert_se(sd_event_now(acd->event, clock_boottime_or_monotonic(), &ts) >= 0);
/* Defend address */
if (ts > acd->defend_window) {
acd->defend_window = ts + DEFEND_INTERVAL_USEC;
r = arp_send_announcement(acd->fd, acd->ifindex, acd->address, &acd->mac_addr);
if (r < 0) {
log_ipv4acd_errno(acd, r, "Failed to send ARP announcement: %m");
goto fail;
} else
log_ipv4acd(acd, "DEFEND");
} else
ipv4acd_on_conflict(acd);
}
break;
case IPV4ACD_STATE_WAITING_PROBE:
case IPV4ACD_STATE_PROBING:
case IPV4ACD_STATE_WAITING_ANNOUNCE:
/* BPF ensures this packet indicates a conflict */
ipv4acd_on_conflict(acd);
break;
default:
assert_not_reached("Invalid state.");
}
return 0;
fail:
sd_ipv4acd_stop(acd);
return 0;
}
int sd_ipv4acd_set_ifindex(sd_ipv4acd *acd, int ifindex) {
assert_return(acd, -EINVAL);
assert_return(ifindex > 0, -EINVAL);
assert_return(acd->state == IPV4ACD_STATE_INIT, -EBUSY);
acd->ifindex = ifindex;
return 0;
}
int sd_ipv4acd_set_mac(sd_ipv4acd *acd, const struct ether_addr *addr) {
assert_return(acd, -EINVAL);
assert_return(addr, -EINVAL);
assert_return(acd->state == IPV4ACD_STATE_INIT, -EBUSY);
acd->mac_addr = *addr;
return 0;
}
int sd_ipv4acd_detach_event(sd_ipv4acd *acd) {
assert_return(acd, -EINVAL);
acd->event = sd_event_unref(acd->event);
return 0;
}
int sd_ipv4acd_attach_event(sd_ipv4acd *acd, sd_event *event, int64_t priority) {
int r;
assert_return(acd, -EINVAL);
assert_return(!acd->event, -EBUSY);
if (event)
acd->event = sd_event_ref(event);
else {
r = sd_event_default(&acd->event);
if (r < 0)
return r;
}
acd->event_priority = priority;
return 0;
}
int sd_ipv4acd_set_callback(sd_ipv4acd *acd, sd_ipv4acd_callback_t cb, void *userdata) {
assert_return(acd, -EINVAL);
acd->callback = cb;
acd->userdata = userdata;
return 0;
}
int sd_ipv4acd_set_address(sd_ipv4acd *acd, const struct in_addr *address) {
assert_return(acd, -EINVAL);
assert_return(address, -EINVAL);
assert_return(acd->state == IPV4ACD_STATE_INIT, -EBUSY);
acd->address = address->s_addr;
return 0;
}
int sd_ipv4acd_is_running(sd_ipv4acd *acd) {
assert_return(acd, false);
return acd->state != IPV4ACD_STATE_INIT;
}
int sd_ipv4acd_start(sd_ipv4acd *acd) {
int r;
assert_return(acd, -EINVAL);
assert_return(acd->event, -EINVAL);
assert_return(acd->ifindex > 0, -EINVAL);
assert_return(acd->address != 0, -EINVAL);
assert_return(!ether_addr_is_null(&acd->mac_addr), -EINVAL);
assert_return(acd->state == IPV4ACD_STATE_INIT, -EBUSY);
r = arp_network_bind_raw_socket(acd->ifindex, acd->address, &acd->mac_addr);
if (r < 0)
return r;
safe_close(acd->fd);
acd->fd = r;
acd->defend_window = 0;
acd->n_conflict = 0;
r = sd_event_add_io(acd->event, &acd->receive_message_event_source, acd->fd, EPOLLIN, ipv4acd_on_packet, acd);
if (r < 0)
goto fail;
r = sd_event_source_set_priority(acd->receive_message_event_source, acd->event_priority);
if (r < 0)
goto fail;
(void) sd_event_source_set_description(acd->receive_message_event_source, "ipv4acd-receive-message");
r = ipv4acd_set_next_wakeup(acd, 0, 0);
if (r < 0)
goto fail;
ipv4acd_set_state(acd, IPV4ACD_STATE_STARTED, true);
return 0;
fail:
ipv4acd_reset(acd);
return r;
}