blob: 10c13e348af7dcfdfe65b082b29f8ae07fceebb9 [file] [log] [blame] [raw]
/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
/***
This file is part of systemd.
Copyright (C) 2014 David Herrmann <dh.herrmann@gmail.com>
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <fcntl.h>
#include <inttypes.h>
#include <libudev.h>
#include <stdbool.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>
/* Yuck! DRM headers need system headers included first.. but we have to
* include it before util/missing.h to avoid redefining ioctl bits */
#include <drm.h>
#include <drm_fourcc.h>
#include <drm_mode.h>
#include "sd-bus.h"
#include "sd-event.h"
#include "hashmap.h"
#include "macro.h"
#include "util.h"
#include "bus-util.h"
#include "grdev.h"
#include "grdev-internal.h"
#define GRDRM_MAX_TRIES (16)
typedef struct grdrm_object grdrm_object;
typedef struct grdrm_plane grdrm_plane;
typedef struct grdrm_connector grdrm_connector;
typedef struct grdrm_encoder grdrm_encoder;
typedef struct grdrm_crtc grdrm_crtc;
typedef struct grdrm_fb grdrm_fb;
typedef struct grdrm_pipe grdrm_pipe;
typedef struct grdrm_card grdrm_card;
typedef struct unmanaged_card unmanaged_card;
typedef struct managed_card managed_card;
/*
* Objects
*/
enum {
GRDRM_TYPE_CRTC,
GRDRM_TYPE_ENCODER,
GRDRM_TYPE_CONNECTOR,
GRDRM_TYPE_PLANE,
GRDRM_TYPE_CNT
};
struct grdrm_object {
grdrm_card *card;
uint32_t id;
uint32_t index;
unsigned int type;
void (*free_fn) (grdrm_object *object);
bool present : 1;
bool assigned : 1;
};
struct grdrm_plane {
grdrm_object object;
struct {
uint32_t used_crtc;
uint32_t used_fb;
uint32_t gamma_size;
uint32_t n_crtcs;
uint32_t max_crtcs;
uint32_t *crtcs;
uint32_t n_formats;
uint32_t max_formats;
uint32_t *formats;
} kern;
};
struct grdrm_connector {
grdrm_object object;
struct {
uint32_t type;
uint32_t type_id;
uint32_t used_encoder;
uint32_t connection;
uint32_t mm_width;
uint32_t mm_height;
uint32_t subpixel;
uint32_t n_encoders;
uint32_t max_encoders;
uint32_t *encoders;
uint32_t n_modes;
uint32_t max_modes;
struct drm_mode_modeinfo *modes;
uint32_t n_props;
uint32_t max_props;
uint32_t *prop_ids;
uint64_t *prop_values;
} kern;
};
struct grdrm_encoder {
grdrm_object object;
struct {
uint32_t type;
uint32_t used_crtc;
uint32_t n_crtcs;
uint32_t max_crtcs;
uint32_t *crtcs;
uint32_t n_clones;
uint32_t max_clones;
uint32_t *clones;
} kern;
};
struct grdrm_crtc {
grdrm_object object;
struct {
uint32_t used_fb;
uint32_t fb_offset_x;
uint32_t fb_offset_y;
uint32_t gamma_size;
uint32_t n_used_connectors;
uint32_t max_used_connectors;
uint32_t *used_connectors;
bool mode_set;
struct drm_mode_modeinfo mode;
} kern;
struct {
bool set;
uint32_t fb;
uint32_t fb_x;
uint32_t fb_y;
uint32_t gamma;
uint32_t n_connectors;
uint32_t *connectors;
bool mode_set;
struct drm_mode_modeinfo mode;
} old;
struct {
struct drm_mode_modeinfo mode;
uint32_t n_connectors;
uint32_t max_connectors;
uint32_t *connectors;
} set;
grdrm_pipe *pipe;
bool applied : 1;
};
#define GRDRM_OBJECT_INIT(_card, _id, _index, _type, _free_fn) ((grdrm_object){ \
.card = (_card), \
.id = (_id), \
.index = (_index), \
.type = (_type), \
.free_fn = (_free_fn), \
})
grdrm_object *grdrm_find_object(grdrm_card *card, uint32_t id);
int grdrm_object_add(grdrm_object *object);
grdrm_object *grdrm_object_free(grdrm_object *object);
DEFINE_TRIVIAL_CLEANUP_FUNC(grdrm_object*, grdrm_object_free);
int grdrm_plane_new(grdrm_plane **out, grdrm_card *card, uint32_t id, uint32_t index);
int grdrm_connector_new(grdrm_connector **out, grdrm_card *card, uint32_t id, uint32_t index);
int grdrm_encoder_new(grdrm_encoder **out, grdrm_card *card, uint32_t id, uint32_t index);
int grdrm_crtc_new(grdrm_crtc **out, grdrm_card *card, uint32_t id, uint32_t index);
#define plane_from_object(_obj) container_of((_obj), grdrm_plane, object)
#define connector_from_object(_obj) container_of((_obj), grdrm_connector, object)
#define encoder_from_object(_obj) container_of((_obj), grdrm_encoder, object)
#define crtc_from_object(_obj) container_of((_obj), grdrm_crtc, object)
/*
* Framebuffers
*/
struct grdrm_fb {
grdev_fb base;
grdrm_card *card;
uint32_t id;
uint32_t handles[4];
uint32_t offsets[4];
uint32_t sizes[4];
uint32_t flipid;
};
static int grdrm_fb_new(grdrm_fb **out, grdrm_card *card, const struct drm_mode_modeinfo *mode);
grdrm_fb *grdrm_fb_free(grdrm_fb *fb);
DEFINE_TRIVIAL_CLEANUP_FUNC(grdrm_fb*, grdrm_fb_free);
#define fb_from_base(_fb) container_of((_fb), grdrm_fb, base)
/*
* Pipes
*/
struct grdrm_pipe {
grdev_pipe base;
grdrm_crtc *crtc;
uint32_t counter;
};
#define grdrm_pipe_from_base(_e) container_of((_e), grdrm_pipe, base)
#define GRDRM_PIPE_NAME_MAX (GRDRM_CARD_NAME_MAX + 1 + DECIMAL_STR_MAX(uint32_t))
static const grdev_pipe_vtable grdrm_pipe_vtable;
static int grdrm_pipe_new(grdrm_pipe **out, grdrm_crtc *crtc, struct drm_mode_modeinfo *mode, size_t n_fbs);
/*
* Cards
*/
struct grdrm_card {
grdev_card base;
int fd;
sd_event_source *fd_src;
uint32_t n_crtcs;
uint32_t n_encoders;
uint32_t n_connectors;
uint32_t n_planes;
uint32_t max_ids;
Hashmap *object_map;
bool async_hotplug : 1;
bool hotplug : 1;
bool running : 1;
bool ready : 1;
bool cap_dumb : 1;
bool cap_monotonic : 1;
};
struct unmanaged_card {
grdrm_card card;
char *devnode;
};
struct managed_card {
grdrm_card card;
dev_t devnum;
sd_bus_slot *slot_pause_device;
sd_bus_slot *slot_resume_device;
sd_bus_slot *slot_take_device;
bool requested : 1; /* TakeDevice() was sent */
bool acquired : 1; /* TakeDevice() was successful */
bool master : 1; /* we are DRM-Master */
};
#define grdrm_card_from_base(_e) container_of((_e), grdrm_card, base)
#define unmanaged_card_from_base(_e) \
container_of(grdrm_card_from_base(_e), unmanaged_card, card)
#define managed_card_from_base(_e) \
container_of(grdrm_card_from_base(_e), managed_card, card)
#define GRDRM_CARD_INIT(_vtable, _session) ((grdrm_card){ \
.base = GRDEV_CARD_INIT((_vtable), (_session)), \
.fd = -1, \
.max_ids = 32, \
})
#define GRDRM_CARD_NAME_MAX (6 + DECIMAL_STR_MAX(unsigned) * 2)
static const grdev_card_vtable unmanaged_card_vtable;
static const grdev_card_vtable managed_card_vtable;
static int grdrm_card_open(grdrm_card *card, int dev_fd);
static void grdrm_card_close(grdrm_card *card);
static bool grdrm_card_async(grdrm_card *card, int r);
/*
* The page-flip event of the kernel provides 64bit of arbitrary user-data. As
* drivers tend to drop events on intermediate deep mode-sets or because we
* might receive events during session activation, we try to avoid allocaing
* dynamic data on those events. Instead, we safe the CRTC id plus a 32bit
* counter in there. This way, we only get 32bit counters, not 64bit, but that
* should be more than enough. On the bright side, we no longer care whether we
* lose events. No memory leaks will occur.
* Modern DRM drivers might be fixed to no longer leak events, but we want to
* be safe. And associating dynamically allocated data with those events is
* kinda ugly, anyway.
*/
static uint64_t grdrm_encode_vblank_data(uint32_t id, uint32_t counter) {
return id | ((uint64_t)counter << 32);
}
static void grdrm_decode_vblank_data(uint64_t data, uint32_t *out_id, uint32_t *out_counter) {
if (out_id)
*out_id = data & 0xffffffffU;
if (out_counter)
*out_counter = (data >> 32) & 0xffffffffU;
}
static bool grdrm_modes_compatible(const struct drm_mode_modeinfo *a, const struct drm_mode_modeinfo *b) {
assert(a);
assert(b);
/* Test whether both modes are compatible according to our internal
* assumptions on modes. This comparison is highly dependent on how
* we treat modes in grdrm. If we export mode details, we need to
* make this comparison much stricter. */
if (a->hdisplay != b->hdisplay)
return false;
if (a->vdisplay != b->vdisplay)
return false;
if (a->vrefresh != b->vrefresh)
return false;
return true;
}
/*
* Objects
*/
grdrm_object *grdrm_find_object(grdrm_card *card, uint32_t id) {
assert_return(card, NULL);
return id > 0 ? hashmap_get(card->object_map, UINT32_TO_PTR(id)) : NULL;
}
int grdrm_object_add(grdrm_object *object) {
int r;
assert(object);
assert(object->card);
assert(object->id > 0);
assert(IN_SET(object->type, GRDRM_TYPE_CRTC, GRDRM_TYPE_ENCODER, GRDRM_TYPE_CONNECTOR, GRDRM_TYPE_PLANE));
assert(object->free_fn);
if (object->index >= 32)
log_debug("grdrm: %s: object index exceeds 32bit masks: type=%u, index=%" PRIu32,
object->card->base.name, object->type, object->index);
r = hashmap_put(object->card->object_map, UINT32_TO_PTR(object->id), object);
if (r < 0)
return r;
return 0;
}
grdrm_object *grdrm_object_free(grdrm_object *object) {
if (!object)
return NULL;
assert(object->card);
assert(object->id > 0);
assert(IN_SET(object->type, GRDRM_TYPE_CRTC, GRDRM_TYPE_ENCODER, GRDRM_TYPE_CONNECTOR, GRDRM_TYPE_PLANE));
assert(object->free_fn);
hashmap_remove_value(object->card->object_map, UINT32_TO_PTR(object->id), object);
object->free_fn(object);
return NULL;
}
/*
* Planes
*/
static void plane_free(grdrm_object *object) {
grdrm_plane *plane = plane_from_object(object);
free(plane->kern.formats);
free(plane->kern.crtcs);
free(plane);
}
int grdrm_plane_new(grdrm_plane **out, grdrm_card *card, uint32_t id, uint32_t index) {
_cleanup_(grdrm_object_freep) grdrm_object *object = NULL;
grdrm_plane *plane;
int r;
assert(card);
plane = new0(grdrm_plane, 1);
if (!plane)
return -ENOMEM;
object = &plane->object;
*object = GRDRM_OBJECT_INIT(card, id, index, GRDRM_TYPE_PLANE, plane_free);
plane->kern.max_crtcs = 32;
plane->kern.crtcs = new0(uint32_t, plane->kern.max_crtcs);
if (!plane->kern.crtcs)
return -ENOMEM;
plane->kern.max_formats = 32;
plane->kern.formats = new0(uint32_t, plane->kern.max_formats);
if (!plane->kern.formats)
return -ENOMEM;
r = grdrm_object_add(object);
if (r < 0)
return r;
if (out)
*out = plane;
object = NULL;
return 0;
}
static int grdrm_plane_resync(grdrm_plane *plane) {
grdrm_card *card = plane->object.card;
size_t tries;
int r;
assert(plane);
for (tries = 0; tries < GRDRM_MAX_TRIES; ++tries) {
struct drm_mode_get_plane res;
grdrm_object *object;
bool resized = false;
Iterator iter;
zero(res);
res.plane_id = plane->object.id;
res.format_type_ptr = PTR_TO_UINT64(plane->kern.formats);
res.count_format_types = plane->kern.max_formats;
r = ioctl(card->fd, DRM_IOCTL_MODE_GETPLANE, &res);
if (r < 0) {
r = -errno;
if (r == -ENOENT) {
card->async_hotplug = true;
r = 0;
log_debug("grdrm: %s: plane %u removed during resync",
card->base.name, plane->object.id);
} else {
log_debug_errno(errno, "grdrm: %s: cannot retrieve plane %u: %m",
card->base.name, plane->object.id);
}
return r;
}
plane->kern.n_crtcs = 0;
memzero(plane->kern.crtcs, sizeof(uint32_t) * plane->kern.max_crtcs);
HASHMAP_FOREACH(object, card->object_map, iter) {
if (object->type != GRDRM_TYPE_CRTC || object->index >= 32)
continue;
if (!(res.possible_crtcs & (1 << object->index)))
continue;
if (plane->kern.n_crtcs >= 32) {
log_debug("grdrm: %s: possible_crtcs of plane %" PRIu32 " exceeds 32bit mask",
card->base.name, plane->object.id);
continue;
}
plane->kern.crtcs[plane->kern.n_crtcs++] = object->id;
}
if (res.count_format_types > plane->kern.max_formats) {
uint32_t max, *t;
max = ALIGN_POWER2(res.count_format_types);
if (!max || max > UINT16_MAX) {
log_debug("grdrm: %s: excessive plane resource limit: %" PRIu32, card->base.name, max);
return -ERANGE;
}
t = realloc(plane->kern.formats, sizeof(*t) * max);
if (!t)
return -ENOMEM;
plane->kern.formats = t;
plane->kern.max_formats = max;
resized = true;
}
if (resized)
continue;
plane->kern.n_formats = res.count_format_types;
plane->kern.used_crtc = res.crtc_id;
plane->kern.used_fb = res.fb_id;
plane->kern.gamma_size = res.gamma_size;
break;
}
if (tries >= GRDRM_MAX_TRIES) {
log_debug("grdrm: %s: plane %u not settled for retrieval", card->base.name, plane->object.id);
return -EFAULT;
}
return 0;
}
/*
* Connectors
*/
static void connector_free(grdrm_object *object) {
grdrm_connector *connector = connector_from_object(object);
free(connector->kern.prop_values);
free(connector->kern.prop_ids);
free(connector->kern.modes);
free(connector->kern.encoders);
free(connector);
}
int grdrm_connector_new(grdrm_connector **out, grdrm_card *card, uint32_t id, uint32_t index) {
_cleanup_(grdrm_object_freep) grdrm_object *object = NULL;
grdrm_connector *connector;
int r;
assert(card);
connector = new0(grdrm_connector, 1);
if (!connector)
return -ENOMEM;
object = &connector->object;
*object = GRDRM_OBJECT_INIT(card, id, index, GRDRM_TYPE_CONNECTOR, connector_free);
connector->kern.max_encoders = 32;
connector->kern.encoders = new0(uint32_t, connector->kern.max_encoders);
if (!connector->kern.encoders)
return -ENOMEM;
connector->kern.max_modes = 32;
connector->kern.modes = new0(struct drm_mode_modeinfo, connector->kern.max_modes);
if (!connector->kern.modes)
return -ENOMEM;
connector->kern.max_props = 32;
connector->kern.prop_ids = new0(uint32_t, connector->kern.max_props);
connector->kern.prop_values = new0(uint64_t, connector->kern.max_props);
if (!connector->kern.prop_ids || !connector->kern.prop_values)
return -ENOMEM;
r = grdrm_object_add(object);
if (r < 0)
return r;
if (out)
*out = connector;
object = NULL;
return 0;
}
static int grdrm_connector_resync(grdrm_connector *connector) {
grdrm_card *card = connector->object.card;
size_t tries;
int r;
assert(connector);
for (tries = 0; tries < GRDRM_MAX_TRIES; ++tries) {
struct drm_mode_get_connector res;
bool resized = false;
uint32_t max;
zero(res);
res.connector_id = connector->object.id;
res.encoders_ptr = PTR_TO_UINT64(connector->kern.encoders);
res.props_ptr = PTR_TO_UINT64(connector->kern.prop_ids);
res.prop_values_ptr = PTR_TO_UINT64(connector->kern.prop_values);
res.count_encoders = connector->kern.max_encoders;
res.count_props = connector->kern.max_props;
/* The kernel reads modes from the EDID information only if we
* pass count_modes==0. This is a legacy hack for libdrm (which
* called every ioctl twice). Now we have to adopt.. *sigh*.
* If we never received an hotplug event, there's no reason to
* sync modes. EDID reads are heavy, so skip that if not
* required. */
if (card->hotplug) {
if (tries > 0) {
res.modes_ptr = PTR_TO_UINT64(connector->kern.modes);
res.count_modes = connector->kern.max_modes;
} else {
resized = true;
}
}
r = ioctl(card->fd, DRM_IOCTL_MODE_GETCONNECTOR, &res);
if (r < 0) {
r = -errno;
if (r == -ENOENT) {
card->async_hotplug = true;
r = 0;
log_debug("grdrm: %s: connector %u removed during resync",
card->base.name, connector->object.id);
} else {
log_debug_errno(errno, "grdrm: %s: cannot retrieve connector %u: %m",
card->base.name, connector->object.id);
}
return r;
}
if (res.count_encoders > connector->kern.max_encoders) {
uint32_t *t;
max = ALIGN_POWER2(res.count_encoders);
if (!max || max > UINT16_MAX) {
log_debug("grdrm: %s: excessive connector resource limit: %" PRIu32, card->base.name, max);
return -ERANGE;
}
t = realloc(connector->kern.encoders, sizeof(*t) * max);
if (!t)
return -ENOMEM;
connector->kern.encoders = t;
connector->kern.max_encoders = max;
resized = true;
}
if (res.count_modes > connector->kern.max_modes) {
struct drm_mode_modeinfo *t;
max = ALIGN_POWER2(res.count_modes);
if (!max || max > UINT16_MAX) {
log_debug("grdrm: %s: excessive connector resource limit: %" PRIu32, card->base.name, max);
return -ERANGE;
}
t = realloc(connector->kern.modes, sizeof(*t) * max);
if (!t)
return -ENOMEM;
connector->kern.modes = t;
connector->kern.max_modes = max;
resized = true;
}
if (res.count_props > connector->kern.max_props) {
uint32_t *tids;
uint64_t *tvals;
max = ALIGN_POWER2(res.count_props);
if (!max || max > UINT16_MAX) {
log_debug("grdrm: %s: excessive connector resource limit: %" PRIu32, card->base.name, max);
return -ERANGE;
}
tids = realloc(connector->kern.prop_ids, sizeof(*tids) * max);
if (!tids)
return -ENOMEM;
connector->kern.prop_ids = tids;
tvals = realloc(connector->kern.prop_values, sizeof(*tvals) * max);
if (!tvals)
return -ENOMEM;
connector->kern.prop_values = tvals;
connector->kern.max_props = max;
resized = true;
}
if (resized)
continue;
connector->kern.n_encoders = res.count_encoders;
connector->kern.n_props = res.count_props;
connector->kern.type = res.connector_type;
connector->kern.type_id = res.connector_type_id;
connector->kern.used_encoder = res.encoder_id;
connector->kern.connection = res.connection;
connector->kern.mm_width = res.mm_width;
connector->kern.mm_height = res.mm_height;
connector->kern.subpixel = res.subpixel;
if (res.modes_ptr == PTR_TO_UINT64(connector->kern.modes))
connector->kern.n_modes = res.count_modes;
break;
}
if (tries >= GRDRM_MAX_TRIES) {
log_debug("grdrm: %s: connector %u not settled for retrieval", card->base.name, connector->object.id);
return -EFAULT;
}
return 0;
}
/*
* Encoders
*/
static void encoder_free(grdrm_object *object) {
grdrm_encoder *encoder = encoder_from_object(object);
free(encoder->kern.clones);
free(encoder->kern.crtcs);
free(encoder);
}
int grdrm_encoder_new(grdrm_encoder **out, grdrm_card *card, uint32_t id, uint32_t index) {
_cleanup_(grdrm_object_freep) grdrm_object *object = NULL;
grdrm_encoder *encoder;
int r;
assert(card);
encoder = new0(grdrm_encoder, 1);
if (!encoder)
return -ENOMEM;
object = &encoder->object;
*object = GRDRM_OBJECT_INIT(card, id, index, GRDRM_TYPE_ENCODER, encoder_free);
encoder->kern.max_crtcs = 32;
encoder->kern.crtcs = new0(uint32_t, encoder->kern.max_crtcs);
if (!encoder->kern.crtcs)
return -ENOMEM;
encoder->kern.max_clones = 32;
encoder->kern.clones = new0(uint32_t, encoder->kern.max_clones);
if (!encoder->kern.clones)
return -ENOMEM;
r = grdrm_object_add(object);
if (r < 0)
return r;
if (out)
*out = encoder;
object = NULL;
return 0;
}
static int grdrm_encoder_resync(grdrm_encoder *encoder) {
grdrm_card *card = encoder->object.card;
struct drm_mode_get_encoder res;
grdrm_object *object;
Iterator iter;
int r;
assert(encoder);
zero(res);
res.encoder_id = encoder->object.id;
r = ioctl(card->fd, DRM_IOCTL_MODE_GETENCODER, &res);
if (r < 0) {
r = -errno;
if (r == -ENOENT) {
card->async_hotplug = true;
r = 0;
log_debug("grdrm: %s: encoder %u removed during resync",
card->base.name, encoder->object.id);
} else {
log_debug_errno(errno, "grdrm: %s: cannot retrieve encoder %u: %m",
card->base.name, encoder->object.id);
}
return r;
}
encoder->kern.type = res.encoder_type;
encoder->kern.used_crtc = res.crtc_id;
encoder->kern.n_crtcs = 0;
memzero(encoder->kern.crtcs, sizeof(uint32_t) * encoder->kern.max_crtcs);
HASHMAP_FOREACH(object, card->object_map, iter) {
if (object->type != GRDRM_TYPE_CRTC || object->index >= 32)
continue;
if (!(res.possible_crtcs & (1 << object->index)))
continue;
if (encoder->kern.n_crtcs >= 32) {
log_debug("grdrm: %s: possible_crtcs exceeds 32bit mask", card->base.name);
continue;
}
encoder->kern.crtcs[encoder->kern.n_crtcs++] = object->id;
}
encoder->kern.n_clones = 0;
memzero(encoder->kern.clones, sizeof(uint32_t) * encoder->kern.max_clones);
HASHMAP_FOREACH(object, card->object_map, iter) {
if (object->type != GRDRM_TYPE_ENCODER || object->index >= 32)
continue;
if (!(res.possible_clones & (1 << object->index)))
continue;
if (encoder->kern.n_clones >= 32) {
log_debug("grdrm: %s: possible_encoders exceeds 32bit mask", card->base.name);
continue;
}
encoder->kern.clones[encoder->kern.n_clones++] = object->id;
}
return 0;
}
/*
* Crtcs
*/
static void crtc_free(grdrm_object *object) {
grdrm_crtc *crtc = crtc_from_object(object);
if (crtc->pipe)
grdev_pipe_free(&crtc->pipe->base);
free(crtc->set.connectors);
free(crtc->old.connectors);
free(crtc->kern.used_connectors);
free(crtc);
}
int grdrm_crtc_new(grdrm_crtc **out, grdrm_card *card, uint32_t id, uint32_t index) {
_cleanup_(grdrm_object_freep) grdrm_object *object = NULL;
grdrm_crtc *crtc;
int r;
assert(card);
crtc = new0(grdrm_crtc, 1);
if (!crtc)
return -ENOMEM;
object = &crtc->object;
*object = GRDRM_OBJECT_INIT(card, id, index, GRDRM_TYPE_CRTC, crtc_free);
crtc->kern.max_used_connectors = 32;
crtc->kern.used_connectors = new0(uint32_t, crtc->kern.max_used_connectors);
if (!crtc->kern.used_connectors)
return -ENOMEM;
crtc->old.connectors = new0(uint32_t, crtc->kern.max_used_connectors);
if (!crtc->old.connectors)
return -ENOMEM;
r = grdrm_object_add(object);
if (r < 0)
return r;
if (out)
*out = crtc;
object = NULL;
return 0;
}
static int grdrm_crtc_resync(grdrm_crtc *crtc) {
grdrm_card *card = crtc->object.card;
struct drm_mode_crtc res = { .crtc_id = crtc->object.id };
int r;
assert(crtc);
/* make sure we can cache any combination later */
if (card->n_connectors > crtc->kern.max_used_connectors) {
uint32_t max, *t;
max = ALIGN_POWER2(card->n_connectors);
if (!max)
return -ENOMEM;
t = realloc_multiply(crtc->kern.used_connectors, sizeof(*t), max);
if (!t)
return -ENOMEM;
crtc->kern.used_connectors = t;
crtc->kern.max_used_connectors = max;
if (!crtc->old.set) {
crtc->old.connectors = calloc(sizeof(*t), max);
if (!crtc->old.connectors)
return -ENOMEM;
}
}
/* GETCRTC doesn't return connectors. We have to read all
* encoder-state and deduce the setup ourselves.. */
crtc->kern.n_used_connectors = 0;
r = ioctl(card->fd, DRM_IOCTL_MODE_GETCRTC, &res);
if (r < 0) {
r = -errno;
if (r == -ENOENT) {
card->async_hotplug = true;
r = 0;
log_debug("grdrm: %s: crtc %u removed during resync",
card->base.name, crtc->object.id);
} else {
log_debug_errno(errno, "grdrm: %s: cannot retrieve crtc %u: %m",
card->base.name, crtc->object.id);
}
return r;
}
crtc->kern.used_fb = res.fb_id;
crtc->kern.fb_offset_x = res.x;
crtc->kern.fb_offset_y = res.y;
crtc->kern.gamma_size = res.gamma_size;
crtc->kern.mode_set = res.mode_valid;
crtc->kern.mode = res.mode;
return 0;
}
static void grdrm_crtc_assign(grdrm_crtc *crtc, grdrm_connector *connector) {
uint32_t n_connectors;
int r;
assert(crtc);
assert(!crtc->object.assigned);
assert(!connector || !connector->object.assigned);
/* always mark both as assigned; even if assignments cannot be set */
crtc->object.assigned = true;
if (connector)
connector->object.assigned = true;
/* we will support hw clone mode in the future */
n_connectors = connector ? 1 : 0;
/* bail out if configuration is preserved */
if (crtc->set.n_connectors == n_connectors &&
(n_connectors == 0 || crtc->set.connectors[0] == connector->object.id))
return;
crtc->applied = false;
crtc->set.n_connectors = 0;
if (n_connectors > crtc->set.max_connectors) {
uint32_t max, *t;
max = ALIGN_POWER2(n_connectors);
if (!max) {
r = -ENOMEM;
goto error;
}
t = realloc(crtc->set.connectors, sizeof(*t) * max);
if (!t) {
r = -ENOMEM;
goto error;
}
crtc->set.connectors = t;
crtc->set.max_connectors = max;
}
if (connector) {
struct drm_mode_modeinfo *m, *pref = NULL;
uint32_t i;
for (i = 0; i < connector->kern.n_modes; ++i) {
m = &connector->kern.modes[i];
/* ignore 3D modes by default */
if (m->flags & DRM_MODE_FLAG_3D_MASK)
continue;
if (!pref) {
pref = m;
continue;
}
/* use PREFERRED over non-PREFERRED */
if ((pref->type & DRM_MODE_TYPE_PREFERRED) &&
!(m->type & DRM_MODE_TYPE_PREFERRED))
continue;
/* use DRIVER over non-PREFERRED|DRIVER */
if ((pref->type & DRM_MODE_TYPE_DRIVER) &&
!(m->type & (DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED)))
continue;
/* always prefer higher resolution */
if (pref->hdisplay > m->hdisplay ||
(pref->hdisplay == m->hdisplay && pref->vdisplay > m->vdisplay))
continue;
pref = m;
}
if (pref) {
crtc->set.mode = *pref;
crtc->set.n_connectors = 1;
crtc->set.connectors[0] = connector->object.id;
log_debug("grdrm: %s: assigned connector %" PRIu32 " to crtc %" PRIu32 " with mode %s",
crtc->object.card->base.name, connector->object.id, crtc->object.id, pref->name);
} else {
log_debug("grdrm: %s: connector %" PRIu32 " to be assigned but has no valid mode",
crtc->object.card->base.name, connector->object.id);
}
}
return;
error:
log_debug("grdrm: %s: cannot assign crtc %" PRIu32 ": %s",
crtc->object.card->base.name, crtc->object.id, strerror(-r));
}
static void grdrm_crtc_expose(grdrm_crtc *crtc) {
grdrm_pipe *pipe;
grdrm_fb *fb;
size_t i;
int r;
assert(crtc);
assert(crtc->object.assigned);
if (crtc->set.n_connectors < 1) {
if (crtc->pipe)
grdev_pipe_free(&crtc->pipe->base);
crtc->pipe = NULL;
return;
}
pipe = crtc->pipe;
if (pipe) {
if (pipe->base.width != crtc->set.mode.hdisplay ||
pipe->base.height != crtc->set.mode.vdisplay ||
pipe->base.vrefresh != crtc->set.mode.vrefresh) {
grdev_pipe_free(&pipe->base);
crtc->pipe = NULL;
pipe = NULL;
}
}
if (crtc->pipe) {
pipe->base.front = NULL;
pipe->base.back = NULL;
for (i = 0; i < pipe->base.max_fbs; ++i) {
fb = fb_from_base(pipe->base.fbs[i]);
if (fb->id == crtc->kern.used_fb)
pipe->base.front = &fb->base;
else if (!fb->flipid)
pipe->base.back = &fb->base;
}
} else {
r = grdrm_pipe_new(&pipe, crtc, &crtc->set.mode, 2);
if (r < 0) {
log_debug("grdrm: %s: cannot create pipe for crtc %" PRIu32 ": %s",
crtc->object.card->base.name, crtc->object.id, strerror(-r));
return;
}
for (i = 0; i < pipe->base.max_fbs; ++i) {
r = grdrm_fb_new(&fb, crtc->object.card, &crtc->set.mode);
if (r < 0) {
log_debug("grdrm: %s: cannot allocate framebuffer for crtc %" PRIu32 ": %s",
crtc->object.card->base.name, crtc->object.id, strerror(-r));
grdev_pipe_free(&pipe->base);
return;
}
pipe->base.fbs[i] = &fb->base;
}
pipe->base.front = NULL;
pipe->base.back = pipe->base.fbs[0];
crtc->pipe = pipe;
}
grdev_pipe_ready(&crtc->pipe->base, true);
}
static void grdrm_crtc_commit_deep(grdrm_crtc *crtc, grdev_fb *basefb) {
struct drm_mode_crtc set_crtc = { .crtc_id = crtc->object.id };
grdrm_card *card = crtc->object.card;
grdrm_pipe *pipe = crtc->pipe;
grdrm_fb *fb;
int r;
assert(crtc);
assert(basefb);
assert(pipe);
fb = fb_from_base(basefb);
set_crtc.set_connectors_ptr = PTR_TO_UINT64(crtc->set.connectors);
set_crtc.count_connectors = crtc->set.n_connectors;
set_crtc.fb_id = fb->id;
set_crtc.x = 0;
set_crtc.y = 0;
set_crtc.mode_valid = 1;
set_crtc.mode = crtc->set.mode;
r = ioctl(card->fd, DRM_IOCTL_MODE_SETCRTC, &set_crtc);
if (r < 0) {
r = -errno;
log_debug_errno(errno, "grdrm: %s: cannot set crtc %" PRIu32 ": %m",
card->base.name, crtc->object.id);
grdrm_card_async(card, r);
return;
}
if (!crtc->applied) {
log_debug("grdrm: %s: crtc %" PRIu32 " applied via deep modeset",
card->base.name, crtc->object.id);
crtc->applied = true;
}
pipe->base.back = NULL;
pipe->base.front = &fb->base;
fb->flipid = 0;
++pipe->counter;
pipe->base.flipping = false;
pipe->base.flip = false;
/* We cannot schedule dummy page-flips on pipes, hence, the
* application would have to schedule their own frame-timers.
* To avoid duplicating that everywhere, we schedule our own
* timer and raise a fake FRAME event when it fires. */
grdev_pipe_schedule(&pipe->base, 1);
}
static int grdrm_crtc_commit_flip(grdrm_crtc *crtc, grdev_fb *basefb) {
struct drm_mode_crtc_page_flip page_flip = { .crtc_id = crtc->object.id };
grdrm_card *card = crtc->object.card;
grdrm_pipe *pipe = crtc->pipe;
grdrm_fb *fb;
uint32_t cnt;
int r;
assert(crtc);
assert(basefb);
assert(pipe);
if (!crtc->applied) {
if (!grdrm_modes_compatible(&crtc->kern.mode, &crtc->set.mode))
return 0;
/* TODO: Theoretically, we should be able to page-flip to our
* framebuffer here. We didn't perform any deep modeset, but the
* DRM driver is really supposed to reject our page-flip in case
* the FB is not compatible. We then properly fall back to a
* deep modeset.
* As it turns out, drivers don't to this. Therefore, we need to
* perform a full modeset on enter now. We might avoid this in
* the future with fixed drivers.. */
return 0;
}
fb = fb_from_base(basefb);
cnt = ++pipe->counter ? : ++pipe->counter;
page_flip.fb_id = fb->id;
page_flip.flags = DRM_MODE_PAGE_FLIP_EVENT;
page_flip.user_data = grdrm_encode_vblank_data(crtc->object.id, cnt);
r = ioctl(card->fd, DRM_IOCTL_MODE_PAGE_FLIP, &page_flip);
if (r < 0) {
r = -errno;
/* Avoid excessive logging on EINVAL; it is currently not
* possible to see whether cards support page-flipping, so
* avoid logging on each frame. */
if (r != -EINVAL)
log_debug_errno(errno, "grdrm: %s: cannot schedule page-flip on crtc %" PRIu32 ": %m",
card->base.name, crtc->object.id);
if (grdrm_card_async(card, r))
return r;
return 0;
}
if (!crtc->applied) {
log_debug("grdrm: %s: crtc %" PRIu32 " applied via page flip",
card->base.name, crtc->object.id);
crtc->applied = true;
}
pipe->base.flipping = true;
pipe->base.flip = false;
pipe->counter = cnt;
fb->flipid = cnt;
pipe->base.back = NULL;
/* Raise fake FRAME event if it takes longer than 2
* frames to receive the pageflip event. We assume the
* queue ran over or some other error happened. */
grdev_pipe_schedule(&pipe->base, 2);
return 1;
}
static void grdrm_crtc_commit(grdrm_crtc *crtc) {
struct drm_mode_crtc set_crtc = { .crtc_id = crtc->object.id };
grdrm_card *card = crtc->object.card;
grdrm_pipe *pipe;
grdev_fb *fb;
int r;
assert(crtc);
assert(crtc->object.assigned);
pipe = crtc->pipe;
if (!pipe) {
/* If a crtc is not assigned any connector, we want any
* previous setup to be cleared, so make sure the CRTC is
* disabled. Otherwise, there might be content on the CRTC
* while we run, which is not what we want.
* If you want to avoid modesets on specific CRTCs, you should
* still keep their assignment, but never enable the resulting
* pipe. This way, we wouldn't touch it at all. */
if (!crtc->applied) {
crtc->applied = true;
r = ioctl(card->fd, DRM_IOCTL_MODE_SETCRTC, &set_crtc);
if (r < 0) {
r = -errno;
log_debug_errno(errno, "grdrm: %s: cannot shutdown crtc %" PRIu32 ": %m",
card->base.name, crtc->object.id);
grdrm_card_async(card, r);
return;
}
log_debug("grdrm: %s: crtc %" PRIu32 " applied via shutdown",
card->base.name, crtc->object.id);
}
return;
}
/* we always fully ignore disabled pipes */
if (!pipe->base.enabled)
return;
assert(crtc->set.n_connectors > 0);
if (pipe->base.flip)
fb = pipe->base.back;
else if (!crtc->applied)
fb = pipe->base.front;
else
return;
if (!fb)
return;
r = grdrm_crtc_commit_flip(crtc, fb);
if (r == 0) {
/* in case we couldn't page-flip, perform deep modeset */
grdrm_crtc_commit_deep(crtc, fb);
}
}
static void grdrm_crtc_restore(grdrm_crtc *crtc) {
struct drm_mode_crtc set_crtc = { .crtc_id = crtc->object.id };
grdrm_card *card = crtc->object.card;
int r;
if (!crtc->old.set)
return;
set_crtc.set_connectors_ptr = PTR_TO_UINT64(crtc->old.connectors);
set_crtc.count_connectors = crtc->old.n_connectors;
set_crtc.fb_id = crtc->old.fb;
set_crtc.x = crtc->old.fb_x;
set_crtc.y = crtc->old.fb_y;
set_crtc.gamma_size = crtc->old.gamma;
set_crtc.mode_valid = crtc->old.mode_set;
set_crtc.mode = crtc->old.mode;
r = ioctl(card->fd, DRM_IOCTL_MODE_SETCRTC, &set_crtc);
if (r < 0) {
r = -errno;
log_debug_errno(errno, "grdrm: %s: cannot restore crtc %" PRIu32 ": %m",
card->base.name, crtc->object.id);
grdrm_card_async(card, r);
return;
}
if (crtc->pipe) {
++crtc->pipe->counter;
crtc->pipe->base.front = NULL;
crtc->pipe->base.flipping = false;
}
log_debug("grdrm: %s: crtc %" PRIu32 " restored", card->base.name, crtc->object.id);
}
static void grdrm_crtc_flip_complete(grdrm_crtc *crtc, uint32_t counter, struct drm_event_vblank *event) {
bool flipped = false;
grdrm_pipe *pipe;
size_t i;
assert(crtc);
assert(event);
pipe = crtc->pipe;
if (!pipe)
return;
/* We got a page-flip event. To be safe, we reset all FBs on the same
* pipe that have smaller flipids than the flip we got as we know they
* are executed in order. We need to do this to guarantee
* queue-overflows or other missed events don't cause starvation.
* Furthermore, if we find the exact FB this event is for, *and* this
* is the most recent event, we mark it as front FB and raise a
* frame event. */
for (i = 0; i < pipe->base.max_fbs; ++i) {
grdrm_fb *fb;
if (!pipe->base.fbs[i])
continue;
fb = fb_from_base(pipe->base.fbs[i]);
if (counter != 0 && counter == pipe->counter && fb->flipid == counter) {
pipe->base.front = &fb->base;
fb->flipid = 0;
flipped = true;
} else if (counter - fb->flipid < UINT16_MAX) {
fb->flipid = 0;
}
}
if (flipped) {
crtc->pipe->base.flipping = false;
grdev_pipe_frame(&pipe->base);
}
}
/*
* Framebuffers
*/
static int grdrm_fb_new(grdrm_fb **out, grdrm_card *card, const struct drm_mode_modeinfo *mode) {
_cleanup_(grdrm_fb_freep) grdrm_fb *fb = NULL;
struct drm_mode_create_dumb create_dumb = { };
struct drm_mode_map_dumb map_dumb = { };
struct drm_mode_fb_cmd2 add_fb = { };
unsigned int i;
int r;
assert_return(out, -EINVAL);
assert_return(card, -EINVAL);
fb = new0(grdrm_fb, 1);
if (!fb)
return -ENOMEM;
/* TODO: we should choose a compatible format of the previous CRTC
* setting to allow page-flip to it. Only choose fallback if the
* previous setting was crap (non xrgb32'ish). */
fb->card = card;
fb->base.format = DRM_FORMAT_XRGB8888;
fb->base.width = mode->hdisplay;
fb->base.height = mode->vdisplay;
for (i = 0; i < ELEMENTSOF(fb->base.maps); ++i)
fb->base.maps[i] = MAP_FAILED;
create_dumb.width = fb->base.width;
create_dumb.height = fb->base.height;
create_dumb.bpp = 32;
r = ioctl(card->fd, DRM_IOCTL_MODE_CREATE_DUMB, &create_dumb);
if (r < 0) {
r = negative_errno();
log_debug_errno(errno, "grdrm: %s: cannot create dumb buffer %" PRIu32 "x%" PRIu32": %m",
card->base.name, fb->base.width, fb->base.height);
return r;
}
fb->handles[0] = create_dumb.handle;
fb->base.strides[0] = create_dumb.pitch;
fb->sizes[0] = create_dumb.size;
map_dumb.handle = fb->handles[0];
r = ioctl(card->fd, DRM_IOCTL_MODE_MAP_DUMB, &map_dumb);
if (r < 0) {
r = negative_errno();
log_debug_errno(errno, "grdrm: %s: cannot map dumb buffer %" PRIu32 "x%" PRIu32": %m",
card->base.name, fb->base.width, fb->base.height);
return r;
}
fb->base.maps[0] = mmap(0, fb->sizes[0], PROT_WRITE, MAP_SHARED, card->fd, map_dumb.offset);
if (fb->base.maps[0] == MAP_FAILED) {
r = negative_errno();
log_debug_errno(errno, "grdrm: %s: cannot memory-map dumb buffer %" PRIu32 "x%" PRIu32": %m",
card->base.name, fb->base.width, fb->base.height);
return r;
}
memzero(fb->base.maps[0], fb->sizes[0]);
add_fb.width = fb->base.width;
add_fb.height = fb->base.height;
add_fb.pixel_format = fb->base.format;
add_fb.flags = 0;
memcpy(add_fb.handles, fb->handles, sizeof(fb->handles));
memcpy(add_fb.pitches, fb->base.strides, sizeof(fb->base.strides));
memcpy(add_fb.offsets, fb->offsets, sizeof(fb->offsets));
r = ioctl(card->fd, DRM_IOCTL_MODE_ADDFB2, &add_fb);
if (r < 0) {
r = negative_errno();
log_debug_errno(errno, "grdrm: %s: cannot add framebuffer %" PRIu32 "x%" PRIu32": %m",
card->base.name, fb->base.width, fb->base.height);
return r;
}
fb->id = add_fb.fb_id;
*out = fb;
fb = NULL;
return 0;
}
grdrm_fb *grdrm_fb_free(grdrm_fb *fb) {
unsigned int i;
int r;
if (!fb)
return NULL;
assert(fb->card);
if (fb->base.free_fn)
fb->base.free_fn(fb->base.data.ptr);
if (fb->id > 0 && fb->card->fd >= 0) {
r = ioctl(fb->card->fd, DRM_IOCTL_MODE_RMFB, fb->id);
if (r < 0)
log_debug_errno(errno, "grdrm: %s: cannot delete framebuffer %" PRIu32 ": %m",
fb->card->base.name, fb->id);
}
for (i = 0; i < ELEMENTSOF(fb->handles); ++i) {
struct drm_mode_destroy_dumb destroy_dumb = { };
if (fb->base.maps[i] != MAP_FAILED)
munmap(fb->base.maps[i], fb->sizes[i]);
if (fb->handles[i] > 0 && fb->card->fd >= 0) {
destroy_dumb.handle = fb->handles[i];
r = ioctl(fb->card->fd, DRM_IOCTL_MODE_DESTROY_DUMB, &destroy_dumb);
if (r < 0)
log_debug_errno(errno, "grdrm: %s: cannot destroy dumb-buffer %" PRIu32 ": %m",
fb->card->base.name, fb->handles[i]);
}
}
free(fb);
return NULL;
}
/*
* Pipes
*/
static void grdrm_pipe_name(char *out, grdrm_crtc *crtc) {
/* @out must be at least of size GRDRM_PIPE_NAME_MAX */
sprintf(out, "%s/%" PRIu32, crtc->object.card->base.name, crtc->object.id);
}
static int grdrm_pipe_new(grdrm_pipe **out, grdrm_crtc *crtc, struct drm_mode_modeinfo *mode, size_t n_fbs) {
_cleanup_(grdev_pipe_freep) grdev_pipe *basepipe = NULL;
grdrm_card *card = crtc->object.card;
char name[GRDRM_PIPE_NAME_MAX];
grdrm_pipe *pipe;
int r;
assert_return(crtc, -EINVAL);
assert_return(grdev_is_drm_card(&card->base), -EINVAL);
pipe = new0(grdrm_pipe, 1);
if (!pipe)
return -ENOMEM;
basepipe = &pipe->base;
pipe->base = GRDEV_PIPE_INIT(&grdrm_pipe_vtable, &card->base);
pipe->crtc = crtc;
pipe->base.width = mode->hdisplay;
pipe->base.height = mode->vdisplay;
pipe->base.vrefresh = mode->vrefresh ? : 25;
grdrm_pipe_name(name, crtc);
r = grdev_pipe_add(&pipe->base, name, n_fbs);
if (r < 0)
return r;
if (out)
*out = pipe;
basepipe = NULL;
return 0;
}
static void grdrm_pipe_free(grdev_pipe *basepipe) {
grdrm_pipe *pipe = grdrm_pipe_from_base(basepipe);
size_t i;
assert(pipe->crtc);
for (i = 0; i < pipe->base.max_fbs; ++i)
if (pipe->base.fbs[i])
grdrm_fb_free(fb_from_base(pipe->base.fbs[i]));
free(pipe);
}
static grdev_fb *grdrm_pipe_target(grdev_pipe *basepipe) {
grdrm_fb *fb;
size_t i;
if (!basepipe->back) {
for (i = 0; i < basepipe->max_fbs; ++i) {
if (!basepipe->fbs[i])
continue;
fb = fb_from_base(basepipe->fbs[i]);
if (&fb->base == basepipe->front)
continue;
if (basepipe->flipping && fb->flipid)
continue;
basepipe->back = &fb->base;
break;
}
}
return basepipe->back;
}
static void grdrm_pipe_enable(grdev_pipe *basepipe) {
grdrm_pipe *pipe = grdrm_pipe_from_base(basepipe);
pipe->crtc->applied = false;
}
static void grdrm_pipe_disable(grdev_pipe *basepipe) {
grdrm_pipe *pipe = grdrm_pipe_from_base(basepipe);
pipe->crtc->applied = false;
}
static const grdev_pipe_vtable grdrm_pipe_vtable = {
.free = grdrm_pipe_free,
.target = grdrm_pipe_target,
.enable = grdrm_pipe_enable,
.disable = grdrm_pipe_disable,
};
/*
* Cards
*/
static void grdrm_name(char *out, dev_t devnum) {
/* @out must be at least of size GRDRM_CARD_NAME_MAX */
sprintf(out, "drm/%u:%u", major(devnum), minor(devnum));
}
static void grdrm_card_print(grdrm_card *card) {
grdrm_object *object;
grdrm_crtc *crtc;
grdrm_encoder *encoder;
grdrm_connector *connector;
grdrm_plane *plane;
Iterator iter;
uint32_t i;
char *p, *buf;
log_debug("grdrm: %s: state dump", card->base.name);
log_debug(" crtcs:");
HASHMAP_FOREACH(object, card->object_map, iter) {
if (object->type != GRDRM_TYPE_CRTC)
continue;
crtc = crtc_from_object(object);
log_debug(" (id: %u index: %d)", object->id, object->index);
if (crtc->kern.mode_set)
log_debug(" mode: %dx%d", crtc->kern.mode.hdisplay, crtc->kern.mode.vdisplay);
else
log_debug(" mode: <none>");
}
log_debug(" encoders:");
HASHMAP_FOREACH(object, card->object_map, iter) {
if (object->type != GRDRM_TYPE_ENCODER)
continue;
encoder = encoder_from_object(object);
log_debug(" (id: %u index: %d)", object->id, object->index);
if (encoder->kern.used_crtc)
log_debug(" crtc: %u", encoder->kern.used_crtc);
else
log_debug(" crtc: <none>");
buf = malloc((DECIMAL_STR_MAX(uint32_t) + 1) * encoder->kern.n_crtcs + 1);
if (buf) {
buf[0] = 0;
p = buf;
for (i = 0; i < encoder->kern.n_crtcs; ++i)
p += sprintf(p, " %" PRIu32, encoder->kern.crtcs[i]);
log_debug(" possible crtcs:%s", buf);
free(buf);
}
buf = malloc((DECIMAL_STR_MAX(uint32_t) + 1) * encoder->kern.n_clones + 1);
if (buf) {
buf[0] = 0;
p = buf;
for (i = 0; i < encoder->kern.n_clones; ++i)
p += sprintf(p, " %" PRIu32, encoder->kern.clones[i]);
log_debug(" possible clones:%s", buf);
free(buf);
}
}
log_debug(" connectors:");
HASHMAP_FOREACH(object, card->object_map, iter) {
if (object->type != GRDRM_TYPE_CONNECTOR)
continue;
connector = connector_from_object(object);
log_debug(" (id: %u index: %d)", object->id, object->index);
log_debug(" type: %" PRIu32 "-%" PRIu32 " connection: %" PRIu32 " subpixel: %" PRIu32 " extents: %" PRIu32 "x%" PRIu32,
connector->kern.type, connector->kern.type_id, connector->kern.connection, connector->kern.subpixel,
connector->kern.mm_width, connector->kern.mm_height);
if (connector->kern.used_encoder)
log_debug(" encoder: %" PRIu32, connector->kern.used_encoder);
else
log_debug(" encoder: <none>");
buf = malloc((DECIMAL_STR_MAX(uint32_t) + 1) * connector->kern.n_encoders + 1);
if (buf) {
buf[0] = 0;
p = buf;
for (i = 0; i < connector->kern.n_encoders; ++i)
p += sprintf(p, " %" PRIu32, connector->kern.encoders[i]);
log_debug(" possible encoders:%s", buf);
free(buf);
}
for (i = 0; i < connector->kern.n_modes; ++i) {
struct drm_mode_modeinfo *mode = &connector->kern.modes[i];
log_debug(" mode: %" PRIu32 "x%" PRIu32, mode->hdisplay, mode->vdisplay);
}
}
log_debug(" planes:");
HASHMAP_FOREACH(object, card->object_map, iter) {
if (object->type != GRDRM_TYPE_PLANE)
continue;
plane = plane_from_object(object);
log_debug(" (id: %u index: %d)", object->id, object->index);
log_debug(" gamma-size: %" PRIu32, plane->kern.gamma_size);
if (plane->kern.used_crtc)
log_debug(" crtc: %" PRIu32, plane->kern.used_crtc);
else
log_debug(" crtc: <none>");
buf = malloc((DECIMAL_STR_MAX(uint32_t) + 1) * plane->kern.n_crtcs + 1);
if (buf) {
buf[0] = 0;
p = buf;
for (i = 0; i < plane->kern.n_crtcs; ++i)
p += sprintf(p, " %" PRIu32, plane->kern.crtcs[i]);
log_debug(" possible crtcs:%s", buf);
free(buf);
}
buf = malloc((DECIMAL_STR_MAX(unsigned int) + 3) * plane->kern.n_formats + 1);
if (buf) {
buf[0] = 0;
p = buf;
for (i = 0; i < plane->kern.n_formats; ++i)
p += sprintf(p, " 0x%x", (unsigned int)plane->kern.formats[i]);
log_debug(" possible formats:%s", buf);
free(buf);
}
}
}
static int grdrm_card_resync(grdrm_card *card) {
_cleanup_free_ uint32_t *crtc_ids = NULL, *encoder_ids = NULL, *connector_ids = NULL, *plane_ids = NULL;
uint32_t allocated = 0;
grdrm_object *object;
Iterator iter;
size_t tries;
int r;
assert(card);
card->async_hotplug = false;
allocated = 0;
/* mark existing objects for possible removal */
HASHMAP_FOREACH(object, card->object_map, iter)
object->present = false;
for (tries = 0; tries < GRDRM_MAX_TRIES; ++tries) {
struct drm_mode_get_plane_res pres;
struct drm_mode_card_res res;
uint32_t i, max;
if (allocated < card->max_ids) {
free(crtc_ids);
free(encoder_ids);
free(connector_ids);
free(plane_ids);
crtc_ids = new0(uint32_t, card->max_ids);
encoder_ids = new0(uint32_t, card->max_ids);
connector_ids = new0(uint32_t, card->max_ids);
plane_ids = new0(uint32_t, card->max_ids);
if (!crtc_ids || !encoder_ids || !connector_ids || !plane_ids)
return -ENOMEM;
allocated = card->max_ids;
}
zero(res);
res.crtc_id_ptr = PTR_TO_UINT64(crtc_ids);
res.connector_id_ptr = PTR_TO_UINT64(connector_ids);
res.encoder_id_ptr = PTR_TO_UINT64(encoder_ids);
res.count_crtcs = allocated;
res.count_encoders = allocated;
res.count_connectors = allocated;
r = ioctl(card->fd, DRM_IOCTL_MODE_GETRESOURCES, &res);
if (r < 0) {
r = -errno;
log_debug_errno(errno, "grdrm: %s: cannot retrieve drm resources: %m",
card->base.name);
return r;
}
zero(pres);
pres.plane_id_ptr = PTR_TO_UINT64(plane_ids);
pres.count_planes = allocated;
r = ioctl(card->fd, DRM_IOCTL_MODE_GETPLANERESOURCES, &pres);
if (r < 0) {
r = -errno;
log_debug_errno(errno, "grdrm: %s: cannot retrieve drm plane-resources: %m",
card->base.name);
return r;
}
max = MAX(MAX(res.count_crtcs, res.count_encoders),
MAX(res.count_connectors, pres.count_planes));
if (max > allocated) {
uint32_t n;
n = ALIGN_POWER2(max);
if (!n || n > UINT16_MAX) {
log_debug("grdrm: %s: excessive DRM resource limit: %" PRIu32,
card->base.name, max);
return -ERANGE;
}
/* retry with resized buffers */
card->max_ids = n;
continue;
}
/* mark available objects as present */
for (i = 0; i < res.count_crtcs; ++i) {
object = grdrm_find_object(card, crtc_ids[i]);
if (object && object->type == GRDRM_TYPE_CRTC) {
object->present = true;
object->index = i;
crtc_ids[i] = 0;
}
}
for (i = 0; i < res.count_encoders; ++i) {
object = grdrm_find_object(card, encoder_ids[i]);
if (object && object->type == GRDRM_TYPE_ENCODER) {
object->present = true;
object->index = i;
encoder_ids[i] = 0;
}
}
for (i = 0; i < res.count_connectors; ++i) {
object = grdrm_find_object(card, connector_ids[i]);
if (object && object->type == GRDRM_TYPE_CONNECTOR) {
object->present = true;
object->index = i;
connector_ids[i] = 0;
}
}
for (i = 0; i < pres.count_planes; ++i) {
object = grdrm_find_object(card, plane_ids[i]);
if (object && object->type == GRDRM_TYPE_PLANE) {
object->present = true;
object->index = i;
plane_ids[i] = 0;
}
}
/* drop removed objects */
HASHMAP_FOREACH(object, card->object_map, iter)
if (!object->present)
grdrm_object_free(object);
/* add new objects */
card->n_crtcs = res.count_crtcs;
for (i = 0; i < res.count_crtcs; ++i) {
if (crtc_ids[i] < 1)
continue;
r = grdrm_crtc_new(NULL, card, crtc_ids[i], i);
if (r < 0)
return r;
}
card->n_encoders = res.count_encoders;
for (i = 0; i < res.count_encoders; ++i) {
if (encoder_ids[i] < 1)
continue;
r = grdrm_encoder_new(NULL, card, encoder_ids[i], i);
if (r < 0)
return r;
}
card->n_connectors = res.count_connectors;
for (i = 0; i < res.count_connectors; ++i) {
if (connector_ids[i] < 1)
continue;
r = grdrm_connector_new(NULL, card, connector_ids[i], i);
if (r < 0)
return r;
}
card->n_planes = pres.count_planes;
for (i = 0; i < pres.count_planes; ++i) {
if (plane_ids[i] < 1)
continue;
r = grdrm_plane_new(NULL, card, plane_ids[i], i);
if (r < 0)
return r;
}
/* re-sync objects after object_map is synced */
HASHMAP_FOREACH(object, card->object_map, iter) {
switch (object->type) {
case GRDRM_TYPE_CRTC:
r = grdrm_crtc_resync(crtc_from_object(object));
break;
case GRDRM_TYPE_ENCODER:
r = grdrm_encoder_resync(encoder_from_object(object));
break;
case GRDRM_TYPE_CONNECTOR:
r = grdrm_connector_resync(connector_from_object(object));
break;
case GRDRM_TYPE_PLANE:
r = grdrm_plane_resync(plane_from_object(object));
break;
default:
assert_not_reached("grdrm: invalid object type");
r = 0;
}
if (r < 0)
return r;
if (card->async_hotplug)
break;
}
/* if modeset objects change during sync, start over */
if (card->async_hotplug) {
card->async_hotplug = false;
continue;
}
/* cache crtc/connector relationship */
HASHMAP_FOREACH(object, card->object_map, iter) {
grdrm_connector *connector;
grdrm_encoder *encoder;
grdrm_crtc *crtc;
if (object->type != GRDRM_TYPE_CONNECTOR)
continue;
connector = connector_from_object(object);
if (connector->kern.connection != 1 || connector->kern.used_encoder < 1)
continue;
object = grdrm_find_object(card, connector->kern.used_encoder);
if (!object || object->type != GRDRM_TYPE_ENCODER)
continue;
encoder = encoder_from_object(object);
if (encoder->kern.used_crtc < 1)
continue;
object = grdrm_find_object(card, encoder->kern.used_crtc);
if (!object || object->type != GRDRM_TYPE_CRTC)
continue;
crtc = crtc_from_object(object);
assert(crtc->kern.n_used_connectors < crtc->kern.max_used_connectors);
crtc->kern.used_connectors[crtc->kern.n_used_connectors++] = connector->object.id;
}
/* cache old crtc settings for later restore */
HASHMAP_FOREACH(object, card->object_map, iter) {
grdrm_crtc *crtc;
if (object->type != GRDRM_TYPE_CRTC)
continue;
crtc = crtc_from_object(object);
/* Save data if it is the first time we refresh the CRTC. This data can
* be used optionally to restore any previous configuration. For
* instance, it allows us to restore VT configurations after we close
* our session again. */
if (!crtc->old.set) {
crtc->old.fb = crtc->kern.used_fb;
crtc->old.fb_x = crtc->kern.fb_offset_x;
crtc->old.fb_y = crtc->kern.fb_offset_y;
crtc->old.gamma = crtc->kern.gamma_size;
crtc->old.n_connectors = crtc->kern.n_used_connectors;
if (crtc->old.n_connectors)
memcpy(crtc->old.connectors, crtc->kern.used_connectors, sizeof(uint32_t) * crtc->old.n_connectors);
crtc->old.mode_set = crtc->kern.mode_set;
crtc->old.mode = crtc->kern.mode;
crtc->old.set = true;
}
}
/* everything synced */
break;
}
if (tries >= GRDRM_MAX_TRIES) {
/*
* Ugh! We were unable to sync the DRM card state due to heavy
* hotplugging. This should never happen, so print a debug
* message and bail out. The next uevent will trigger
* this again.
*/
log_debug("grdrm: %s: hotplug-storm when syncing card", card->base.name);
return -EFAULT;
}
return 0;
}
static bool card_configure_crtc(grdrm_crtc *crtc, grdrm_connector *connector) {
grdrm_card *card = crtc->object.card;
grdrm_encoder *encoder;
grdrm_object *object;
uint32_t i, j;
if (crtc->object.assigned || connector->object.assigned)
return false;
if (connector->kern.connection != 1)
return false;
for (i = 0; i < connector->kern.n_encoders; ++i) {
object = grdrm_find_object(card, connector->kern.encoders[i]);
if (!object || object->type != GRDRM_TYPE_ENCODER)
continue;
encoder = encoder_from_object(object);
for (j = 0; j < encoder->kern.n_crtcs; ++j) {
if (encoder->kern.crtcs[j] == crtc->object.id) {
grdrm_crtc_assign(crtc, connector);
return true;
}
}
}
return false;
}
static void grdrm_card_configure(grdrm_card *card) {
/*
* Modeset Configuration
* This is where we update our modeset configuration and assign
* connectors to CRTCs. This means, each connector that we want to
* enable needs a CRTC, disabled (or unavailable) connectors are left
* alone in the dark. Once all CRTCs are assigned, the remaining CRTCs
* are disabled.
* Sounds trivial, but there're several caveats:
*
* * Multiple connectors can be driven by the same CRTC. This is
* known as 'hardware clone mode'. Advantage over software clone
* mode is that only a single CRTC is needed to drive multiple
* displays. However, few hardware supports this and it's a huge
* headache to configure on dynamic demands. Therefore, we only
* support it if configured statically beforehand.
*
* * CRTCs are not created equal. Some might be much more powerful
* than others, including more advanced plane support. So far, our
* CRTC selection is random. You need to supply static
* configuration if you want special setups. So far, there is no
* proper way to do advanced CRTC selection on dynamic demands. It
* is not really clear which demands require what CRTC, so, like
* everyone else, we do random CRTC selection unless explicitly
* states otherwise.
*
* * Each Connector has a list of possible encoders that can drive
* it, and each encoder has a list of possible CRTCs. If this graph
* is a tree, assignment is trivial. However, if not, we cannot
* reliably decide on configurations beforehand. The encoder is
* always selected by the kernel, so we have to actually set a mode
* to know which encoder is used. There is no way to ask the kernel
* whether a given configuration is possible. This will change with
* atomic-modesetting, but until then, we keep our configurations
* simple and assume they work all just fine. If one fails
* unexpectedly, we print a warning and disable it.
*
* Configuring a card consists of several steps:
*
* 1) First of all, we apply any user-configuration. If a user wants
* a fixed configuration, we apply it and preserve it.
* So far, we don't support user configuration files, so this step
* is skipped.
*
* 2) Secondly, we need to apply any quirks from hwdb. Some hardware
* might only support limited configurations or require special
* CRTC/Connector mappings. We read this from hwdb and apply it, if
* present.
* So far, we don't support this as there is no known quirk, so
* this step is skipped.
*
* 3) As deep modesets are expensive, we try to avoid them if
* possible. Therefore, we read the current configuration from the
* kernel and try to preserve it, if compatible with our demands.
* If not, we break it and reassign it in a following step.
*
* 4) The main step involves configuring all remaining objects. By
* default, all available connectors are enabled, except for those
* disabled by user-configuration. We lookup a suitable CRTC for
* each connector and assign them. As there might be more
* connectors than CRTCs, we apply some ordering so users can
* select which connectors are more important right now.
* So far, we only apply the default ordering, more might be added
* in the future.
*/
grdrm_object *object;
grdrm_crtc *crtc;
Iterator i, j;
/* clear assignments */
HASHMAP_FOREACH(object, card->object_map, i)
object->assigned = false;
/* preserve existing configurations */
HASHMAP_FOREACH(object, card->object_map, i) {
if (object->type != GRDRM_TYPE_CRTC || object->assigned)
continue;
crtc = crtc_from_object(object);
if (crtc->applied) {
/* If our mode is set, preserve it. If no connector is
* set, modeset either failed or the pipe is unused. In
* both cases, leave it alone. It might be tried again
* below in case there're remaining connectors.
* Otherwise, try restoring the assignments. If they
* are no longer valid, leave the pipe untouched. */
if (crtc->set.n_connectors < 1)
continue;
assert(crtc->set.n_connectors == 1);
object = grdrm_find_object(card, crtc->set.connectors[0]);
if (!object || object->type != GRDRM_TYPE_CONNECTOR)
continue;
card_configure_crtc(crtc, connector_from_object(object));
} else if (crtc->kern.mode_set && crtc->kern.n_used_connectors != 1) {
/* If our mode is not set on the pipe, we know the kern
* information is valid. Try keeping it. If it's not
* possible, leave the pipe untouched for later
* assignements. */
object = grdrm_find_object(card, crtc->kern.used_connectors[0]);
if (!object || object->type != GRDRM_TYPE_CONNECTOR)
continue;
card_configure_crtc(crtc, connector_from_object(object));
}
}
/* assign remaining objects */
HASHMAP_FOREACH(object, card->object_map, i) {
if (object->type != GRDRM_TYPE_CRTC || object->assigned)
continue;
crtc = crtc_from_object(object);
HASHMAP_FOREACH(object, card->object_map, j) {
if (object->type != GRDRM_TYPE_CONNECTOR)
continue;
if (card_configure_crtc(crtc, connector_from_object(object)))
break;
}
if (!crtc->object.assigned)
grdrm_crtc_assign(crtc, NULL);
}
/* expose configuration */
HASHMAP_FOREACH(object, card->object_map, i) {
if (object->type != GRDRM_TYPE_CRTC)
continue;
grdrm_crtc_expose(crtc_from_object(object));
}
}
static void grdrm_card_hotplug(grdrm_card *card) {
int r;
assert(card);
if (!card->running)
return;
log_debug("grdrm: %s/%s: reconfigure card", card->base.session->name, card->base.name);
card->ready = false;
r = grdrm_card_resync(card);
if (r < 0) {
log_debug_errno(r, "grdrm: %s/%s: cannot re-sync card: %m",
card->base.session->name, card->base.name);
return;
}
grdev_session_pin(card->base.session);
/* debug statement to print card information */
if (0)
grdrm_card_print(card);
grdrm_card_configure(card);
card->ready = true;
card->hotplug = false;
grdev_session_unpin(card->base.session);
}
static int grdrm_card_io_fn(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
grdrm_card *card = userdata;
struct drm_event_vblank *vblank;
struct drm_event *event;
uint32_t id, counter;
grdrm_object *object;
char buf[4096];
size_t len;
ssize_t l;
if (revents & (EPOLLHUP | EPOLLERR)) {
/* Immediately close device on HUP; no need to flush pending
* data.. there're no events we care about here. */
log_debug("grdrm: %s/%s: HUP", card->base.session->name, card->base.name);
grdrm_card_close(card);
return 0;
}
if (revents & (EPOLLIN)) {
l = read(card->fd, buf, sizeof(buf));
if (l < 0) {
if (errno == EAGAIN || errno == EINTR)
return 0;
log_debug_errno(errno, "grdrm: %s/%s: read error: %m",
card->base.session->name, card->base.name);
grdrm_card_close(card);
return 0;
}
for (len = l; len > 0; len -= event->length) {
event = (void*)buf;
if (len < sizeof(*event) || len < event->length) {
log_debug("grdrm: %s/%s: truncated event",
card->base.session->name, card->base.name);
break;
}
switch (event->type) {
case DRM_EVENT_FLIP_COMPLETE:
vblank = (void*)event;
if (event->length < sizeof(*vblank)) {
log_debug("grdrm: %s/%s: truncated vblank event",
card->base.session->name, card->base.name);
break;
}
grdrm_decode_vblank_data(vblank->user_data, &id, &counter);
object = grdrm_find_object(card, id);
if (!object || object->type != GRDRM_TYPE_CRTC)
break;
grdrm_crtc_flip_complete(crtc_from_object(object), counter, vblank);
break;
}
}
}
return 0;
}
static int grdrm_card_add(grdrm_card *card, const char *name) {
assert(card);
assert(card->fd < 0);
card->object_map = hashmap_new(&trivial_hash_ops);
if (!card->object_map)
return -ENOMEM;
return grdev_card_add(&card->base, name);
}
static void grdrm_card_destroy(grdrm_card *card) {
assert(card);
assert(!card->running);
assert(card->fd < 0);
assert(hashmap_size(card->object_map) == 0);
hashmap_free(card->object_map);
}
static void grdrm_card_commit(grdev_card *basecard) {
grdrm_card *card = grdrm_card_from_base(basecard);
grdrm_object *object;
Iterator iter;
HASHMAP_FOREACH(object, card->object_map, iter) {
if (!card->ready)
break;
if (object->type != GRDRM_TYPE_CRTC)
continue;
grdrm_crtc_commit(crtc_from_object(object));
}
}
static void grdrm_card_restore(grdev_card *basecard) {
grdrm_card *card = grdrm_card_from_base(basecard);
grdrm_object *object;
Iterator iter;
HASHMAP_FOREACH(object, card->object_map, iter) {
if (!card->ready)
break;
if (object->type != GRDRM_TYPE_CRTC)
continue;
grdrm_crtc_restore(crtc_from_object(object));
}
}
static void grdrm_card_enable(grdrm_card *card) {
assert(card);
if (card->fd < 0 || card->running)
return;
/* ignore cards without DUMB_BUFFER capability */
if (!card->cap_dumb)
return;
assert(card->fd_src);
log_debug("grdrm: %s/%s: enable", card->base.session->name, card->base.name);
card->running = true;
sd_event_source_set_enabled(card->fd_src, SD_EVENT_ON);
grdrm_card_hotplug(card);
}
static void grdrm_card_disable(grdrm_card *card) {
grdrm_object *object;
Iterator iter;
assert(card);
if (card->fd < 0 || !card->running)
return;
assert(card->fd_src);
log_debug("grdrm: %s/%s: disable", card->base.session->name, card->base.name);
card->running = false;
card->ready = false;
sd_event_source_set_enabled(card->fd_src, SD_EVENT_OFF);
/* stop all pipes */
HASHMAP_FOREACH(object, card->object_map, iter) {
grdrm_crtc *crtc;
if (object->type != GRDRM_TYPE_CRTC)
continue;
crtc = crtc_from_object(object);
crtc->applied = false;
if (crtc->pipe)
grdev_pipe_ready(&crtc->pipe->base, false);
}
}
static int grdrm_card_open(grdrm_card *card, int dev_fd) {
_cleanup_(grdev_session_unpinp) grdev_session *pin = NULL;
_cleanup_close_ int fd = dev_fd;
struct drm_get_cap cap;
int r, flags;
assert(card);
assert(dev_fd >= 0);
assert(card->fd != dev_fd);
pin = grdev_session_pin(card->base.session);
grdrm_card_close(card);
log_debug("grdrm: %s/%s: open", card->base.session->name, card->base.name);
r = fd_nonblock(fd, true);
if (r < 0)
return r;
r = fd_cloexec(fd, true);
if (r < 0)
return r;
flags = fcntl(fd, F_GETFL, 0);
if (flags < 0)
return -errno;
if ((flags & O_ACCMODE) != O_RDWR)
return -EACCES;
r = sd_event_add_io(card->base.session->context->event,
&card->fd_src,
fd,
EPOLLHUP | EPOLLERR | EPOLLIN,
grdrm_card_io_fn,
card);
if (r < 0)
return r;
sd_event_source_set_enabled(card->fd_src, SD_EVENT_OFF);
card->hotplug = true;
card->fd = fd;
fd = -1;
/* cache DUMB_BUFFER capability */
cap.capability = DRM_CAP_DUMB_BUFFER;
cap.value = 0;
r = ioctl(card->fd, DRM_IOCTL_GET_CAP, &cap);
card->cap_dumb = r >= 0 && cap.value;
if (r < 0)
log_debug_errno(r, "grdrm: %s/%s: cannot retrieve DUMB_BUFFER capability: %m",
card->base.session->name, card->base.name);
else if (!card->cap_dumb)
log_debug("grdrm: %s/%s: DUMB_BUFFER capability not supported",
card->base.session->name, card->base.name);
/* cache TIMESTAMP_MONOTONIC capability */
cap.capability = DRM_CAP_TIMESTAMP_MONOTONIC;
cap.value = 0;
r = ioctl(card->fd, DRM_IOCTL_GET_CAP, &cap);
card->cap_monotonic = r >= 0 && cap.value;
if (r < 0)
log_debug_errno(r, "grdrm: %s/%s: cannot retrieve TIMESTAMP_MONOTONIC capability: %m",
card->base.session->name, card->base.name);
else if (!card->cap_monotonic)
log_debug("grdrm: %s/%s: TIMESTAMP_MONOTONIC is disabled globally, fix this NOW!",
card->base.session->name, card->base.name);
return 0;
}
static void grdrm_card_close(grdrm_card *card) {
grdrm_object *object;
if (card->fd < 0)
return;
log_debug("grdrm: %s/%s: close", card->base.session->name, card->base.name);
grdrm_card_disable(card);
card->fd_src = sd_event_source_unref(card->fd_src);
card->fd = safe_close(card->fd);
grdev_session_pin(card->base.session);
while ((object = hashmap_first(card->object_map)))
grdrm_object_free(object);
grdev_session_unpin(card->base.session);
}
static bool grdrm_card_async(grdrm_card *card, int r) {
switch (r) {
case -EACCES:
/* If we get EACCES on runtime DRM calls, we lost DRM-Master
* (or we did something terribly wrong). Immediately disable
* the card, so we stop all pipes and wait to be activated
* again. */
grdrm_card_disable(card);
break;
case -ENOENT:
/* DRM objects can be hotplugged at any time. If an object is
* removed that we use, we remember that state so a following
* call can test for this.
* Note that we also get a uevent as followup, this will resync
* the whole device. */
card->async_hotplug = true;
break;
}
return !card->ready;
}
/*
* Unmanaged Cards
* The unmanaged DRM card opens the device node for a given DRM device
* directly (/dev/dri/cardX) and thus needs sufficient privileges. It opens
* the device only if we really require it and releases it as soon as we're
* disabled or closed.
* The unmanaged element can be used in all situations where you have direct
* access to DRM device nodes. Unlike managed DRM elements, it can be used
* outside of user sessions and in emergency situations where logind is not
* available.
*/
static void unmanaged_card_enable(grdev_card *basecard) {
unmanaged_card *cu = unmanaged_card_from_base(basecard);
int r, fd;
if (cu->card.fd < 0) {
/* try open on activation if it failed during allocation */
fd = open(cu->devnode, O_RDWR | O_CLOEXEC | O_NOCTTY | O_NONBLOCK);
if (fd < 0) {
/* not fatal; simply ignore the device */
log_debug_errno(errno, "grdrm: %s/%s: cannot open node %s: %m",
basecard->session->name, basecard->name, cu->devnode);
return;
}
/* we might already be DRM-Master by open(); that's fine */
r = grdrm_card_open(&cu->card, fd);
if (r < 0) {
log_debug_errno(r, "grdrm: %s/%s: cannot open: %m",
basecard->session->name, basecard->name);
return;
}
}
r = ioctl(cu->card.fd, DRM_IOCTL_SET_MASTER, 0);
if (r < 0) {
log_debug_errno(errno, "grdrm: %s/%s: cannot acquire DRM-Master: %m",
basecard->session->name, basecard->name);
return;
}
grdrm_card_enable(&cu->card);
}
static void unmanaged_card_disable(grdev_card *basecard) {
unmanaged_card *cu = unmanaged_card_from_base(basecard);
grdrm_card_disable(&cu->card);
}
static int unmanaged_card_new(grdev_card **out, grdev_session *session, struct udev_device *ud) {
_cleanup_(grdev_card_freep) grdev_card *basecard = NULL;
char name[GRDRM_CARD_NAME_MAX];
unmanaged_card *cu;
const char *devnode;
dev_t devnum;
int r, fd;
assert_return(session, -EINVAL);
assert_return(ud, -EINVAL);
devnode = udev_device_get_devnode(ud);
devnum = udev_device_get_devnum(ud);
if (!devnode || devnum == 0)
return -ENODEV;
grdrm_name(name, devnum);
cu = new0(unmanaged_card, 1);
if (!cu)
return -ENOMEM;
basecard = &cu->card.base;
cu->card = GRDRM_CARD_INIT(&unmanaged_card_vtable, session);
cu->devnode = strdup(devnode);
if (!cu->devnode)
return -ENOMEM;
r = grdrm_card_add(&cu->card, name);
if (r < 0)
return r;
/* try to open but ignore errors */
fd = open(cu->devnode, O_RDWR | O_CLOEXEC | O_NOCTTY | O_NONBLOCK);
if (fd < 0) {
/* not fatal; allow uaccess based control on activation */
log_debug_errno(errno, "grdrm: %s/%s: cannot open node %s: %m",
basecard->session->name, basecard->name, cu->devnode);
} else {
/* We might get DRM-Master implicitly on open(); drop it immediately
* so we acquire it only once we're actually enabled. We don't
* really care whether this call fails or not, but let's log any
* weird errors, anyway. */
r = ioctl(fd, DRM_IOCTL_DROP_MASTER, 0);
if (r < 0 && errno != EACCES && errno != EINVAL)
log_debug_errno(errno, "grdrm: %s/%s: cannot drop DRM-Master: %m",
basecard->session->name, basecard->name);
r = grdrm_card_open(&cu->card, fd);
if (r < 0)
log_debug_errno(r, "grdrm: %s/%s: cannot open: %m",
basecard->session->name, basecard->name);
}
if (out)
*out = basecard;
basecard = NULL;
return 0;
}
static void unmanaged_card_free(grdev_card *basecard) {
unmanaged_card *cu = unmanaged_card_from_base(basecard);
assert(!basecard->enabled);
grdrm_card_close(&cu->card);
grdrm_card_destroy(&cu->card);
free(cu->devnode);
free(cu);
}
static const grdev_card_vtable unmanaged_card_vtable = {
.free = unmanaged_card_free,
.enable = unmanaged_card_enable,
.disable = unmanaged_card_disable,
.commit = grdrm_card_commit,
.restore = grdrm_card_restore,
};
/*
* Managed Cards
* The managed DRM card uses systemd-logind to acquire DRM devices. This
* means, we do not open the device node /dev/dri/cardX directly. Instead,
* logind passes us a file-descriptor whenever our session is activated. Thus,
* we don't need access to the device node directly.
* Furthermore, whenever the session is put asleep, logind revokes the
* file-descriptor so we loose access to the device.
* Managed DRM cards should be preferred over unmanaged DRM cards whenever
* you run inside a user session with exclusive device access.
*/
static void managed_card_enable(grdev_card *card) {
managed_card *cm = managed_card_from_base(card);
/* If the device is manually re-enabled, we try to resume our card
* management. Note that we have no control over DRM-Master and the fd,
* so we have to take over the state from the last logind event. */
if (cm->master)
grdrm_card_enable(&cm->card);
}
static void managed_card_disable(grdev_card *card) {
managed_card *cm = managed_card_from_base(card);
/* If the device is manually disabled, we keep the FD but put our card
* management asleep. This way, we can wake up at any time, but don't
* touch the device while asleep. */
grdrm_card_disable(&cm->card);
}
static int managed_card_pause_device_fn(sd_bus_message *signal,
void *userdata,
sd_bus_error *ret_error) {
managed_card *cm = userdata;
grdev_session *session = cm->card.base.session;
uint32_t major, minor;
const char *mode;
int r;
/*
* We get PauseDevice() signals from logind whenever a device we
* requested was, or is about to be, paused. Arguments are major/minor
* number of the device and the mode of the operation.
* In case the event is not about our device, we ignore it. Otherwise,
* we treat it as asynchronous DRM-DROP-MASTER. Note that we might have
* already handled an EACCES error from a modeset ioctl, in which case
* we already disabled the device.
*
* @mode can be one of the following:
* "pause": The device is about to be paused. We must react
* immediately and respond with PauseDeviceComplete(). Once
* we replied, logind will pause the device. Note that
* logind might apply any kind of timeout and force pause
* the device if we don't respond in a timely manner. In
* this case, we will receive a second PauseDevice event
* with @mode set to "force" (or similar).
* "force": The device was disabled forecfully by logind. DRM-Master
* was already dropped. This is just an asynchronous
* notification so we can put the device asleep (in case
* we didn't already notice the dropped DRM-Master).
* "gone": This is like "force" but is sent if the device was
* paused due to a device-removal event.
*
* We always handle PauseDevice signals as "force" as we properly
* support asynchronously dropping DRM-Master, anyway. But in case
* logind sent mode "pause", we also call PauseDeviceComplete() to
* immediately acknowledge the request.
*/
r = sd_bus_message_read(signal, "uus", &major, &minor, &mode);
if (r < 0) {
log_debug("grdrm: %s/%s: erroneous PauseDevice signal",
session->name, cm->card.base.name);
return 0;
}
/* not our device? */
if (makedev(major, minor) != cm->devnum)
return 0;
cm->master = false;
grdrm_card_disable(&cm->card);
if (streq(mode, "pause")) {
_cleanup_bus_message_unref_ sd_bus_message *m = NULL;
/*
* Sending PauseDeviceComplete() is racy if logind triggers the
* timeout. That is, if we take too long and logind pauses the
* device by sending a forced PauseDevice, our
* PauseDeviceComplete call will be stray. That's fine, though.
* logind ignores such stray calls. Only if logind also sent a
* further PauseDevice() signal, it might match our call
* incorrectly to the newer PauseDevice(). That's fine, too, as
* we handle that event asynchronously, anyway. Therefore,
* whatever happens, we're fine. Yay!
*/
r = sd_bus_message_new_method_call(session->context->sysbus,
&m,
"org.freedesktop.login1",
session->path,
"org.freedesktop.login1.Session",
"PauseDeviceComplete");
if (r >= 0) {
r = sd_bus_message_append(m, "uu", major, minor);
if (r >= 0)
r = sd_bus_send(session->context->sysbus, m, NULL);
}
if (r < 0)
log_debug_errno(r, "grdrm: %s/%s: cannot send PauseDeviceComplete: %m",
session->name, cm->card.base.name);
}
return 0;
}
static int managed_card_resume_device_fn(sd_bus_message *signal,
void *userdata,
sd_bus_error *ret_error) {
managed_card *cm = userdata;
grdev_session *session = cm->card.base.session;
uint32_t major, minor;
int r, fd;
/*
* We get ResumeDevice signals whenever logind resumed a previously
* paused device. The arguments contain the major/minor number of the
* related device and a new file-descriptor for the freshly opened
* device-node.
* If the signal is not about our device, we simply ignore it.
* Otherwise, we immediately resume the device. Note that we drop the
* new file-descriptor as we already have one from TakeDevice(). logind
* preserves the file-context across pause/resume for DRM but only
* drops/acquires DRM-Master accordingly. This way, our context (like
* DRM-FBs and BOs) is preserved.
*/
r = sd_bus_message_read(signal, "uuh", &major, &minor, &fd);
if (r < 0) {
log_debug("grdrm: %s/%s: erroneous ResumeDevice signal",
session->name, cm->card.base.name);
return 0;
}
/* not our device? */
if (makedev(major, minor) != cm->devnum)
return 0;
if (cm->card.fd < 0) {
/* This shouldn't happen. We should already own an FD from
* TakeDevice(). However, let's be safe and use this FD in case
* we really don't have one. There is no harm in doing this
* and our code works fine this way. */
fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
if (fd < 0) {
log_debug_errno(errno, "grdrm: %s/%s: cannot duplicate fd: %m",
session->name, cm->card.base.name);
return 0;
}
r = grdrm_card_open(&cm->card, fd);
if (r < 0) {
log_debug_errno(r, "grdrm: %s/%s: cannot open: %m",
session->name, cm->card.base.name);
return 0;
}
}
cm->master = true;
if (cm->card.base.enabled)
grdrm_card_enable(&cm->card);
return 0;
}
static int managed_card_setup_bus(managed_card *cm) {
grdev_session *session = cm->card.base.session;
_cleanup_free_ char *match = NULL;
int r;
match = strjoin("type='signal',"
"sender='org.freedesktop.login1',"
"interface='org.freedesktop.login1.Session',"
"member='PauseDevice',"
"path='", session->path, "'",
NULL);
if (!match)
return -ENOMEM;
r = sd_bus_add_match(session->context->sysbus,
&cm->slot_pause_device,
match,
managed_card_pause_device_fn,
cm);
if (r < 0)
return r;
free(match);
match = strjoin("type='signal',"
"sender='org.freedesktop.login1',"
"interface='org.freedesktop.login1.Session',"
"member='ResumeDevice',"
"path='", session->path, "'",
NULL);
if (!match)
return -ENOMEM;
r = sd_bus_add_match(session->context->sysbus,
&cm->slot_resume_device,
match,
managed_card_resume_device_fn,
cm);
if (r < 0)
return r;
return 0;
}
static int managed_card_take_device_fn(sd_bus_message *reply,
void *userdata,
sd_bus_error *ret_error) {
managed_card *cm = userdata;
grdev_session *session = cm->card.base.session;
int r, paused, fd;
cm->slot_take_device = sd_bus_slot_unref(cm->slot_take_device);
if (sd_bus_message_is_method_error(reply, NULL)) {
const sd_bus_error *error = sd_bus_message_get_error(reply);
log_debug("grdrm: %s/%s: TakeDevice failed: %s: %s",
session->name, cm->card.base.name, error->name, error->message);
return 0;
}
cm->acquired = true;
r = sd_bus_message_read(reply, "hb", &fd, &paused);
if (r < 0) {
log_debug("grdrm: %s/%s: erroneous TakeDevice reply",
session->name, cm->card.base.name);
return 0;
}
fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
if (fd < 0) {
log_debug_errno(errno, "grdrm: %s/%s: cannot duplicate fd: %m",
session->name, cm->card.base.name);
return 0;
}
r = grdrm_card_open(&cm->card, fd);
if (r < 0) {
log_debug_errno(r, "grdrm: %s/%s: cannot open: %m",
session->name, cm->card.base.name);
return 0;
}
if (!paused && cm->card.base.enabled)
grdrm_card_enable(&cm->card);
return 0;
}
static void managed_card_take_device(managed_card *cm) {
_cleanup_bus_message_unref_ sd_bus_message *m = NULL;
grdev_session *session = cm->card.base.session;
int r;
r = sd_bus_message_new_method_call(session->context->sysbus,
&m,
"org.freedesktop.login1",
session->path,
"org.freedesktop.login1.Session",
"TakeDevice");
if (r < 0)
goto error;
r = sd_bus_message_append(m, "uu", major(cm->devnum), minor(cm->devnum));
if (r < 0)
goto error;
r = sd_bus_call_async(session->context->sysbus,
&cm->slot_take_device,
m,
managed_card_take_device_fn,
cm,
0);
if (r < 0)
goto error;
cm->requested = true;
return;
error:
log_debug_errno(r, "grdrm: %s/%s: cannot send TakeDevice request: %m",
session->name, cm->card.base.name);
}
static void managed_card_release_device(managed_card *cm) {
_cleanup_bus_message_unref_ sd_bus_message *m = NULL;
grdev_session *session = cm->card.base.session;
int r;
/*
* If TakeDevice() is pending or was successful, make sure to
* release the device again. We don't care for return-values,
* so send it without waiting or callbacks.
* If a failed TakeDevice() is pending, but someone else took
* the device on the same bus-connection, we might incorrectly
* release their device. This is an unlikely race, though.
* Furthermore, you really shouldn't have two users of the
* controller-API on the same session, on the same devices, *AND* on
* the same bus-connection. So we don't care for that race..
*/
grdrm_card_close(&cm->card);
cm->requested = false;
if (!cm->acquired && !cm->slot_take_device)
return;
cm->slot_take_device = sd_bus_slot_unref(cm->slot_take_device);
cm->acquired = false;
r = sd_bus_message_new_method_call(session->context->sysbus,
&m,
"org.freedesktop.login1",
session->path,
"org.freedesktop.login1.Session",
"ReleaseDevice");
if (r >= 0) {
r = sd_bus_message_append(m, "uu", major(cm->devnum), minor(cm->devnum));
if (r >= 0)
r = sd_bus_send(session->context->sysbus, m, NULL);
}
if (r < 0 && r != -ENOTCONN)
log_debug_errno(r, "grdrm: %s/%s: cannot send ReleaseDevice: %m",
session->name, cm->card.base.name);
}
static int managed_card_new(grdev_card **out, grdev_session *session, struct udev_device *ud) {
_cleanup_(grdev_card_freep) grdev_card *basecard = NULL;
char name[GRDRM_CARD_NAME_MAX];
managed_card *cm;
dev_t devnum;
int r;
assert_return(session, -EINVAL);
assert_return(session->managed, -EINVAL);
assert_return(session->context->sysbus, -EINVAL);
assert_return(ud, -EINVAL);
devnum = udev_device_get_devnum(ud);
if (devnum == 0)
return -ENODEV;
grdrm_name(name, devnum);
cm = new0(managed_card, 1);
if (!cm)
return -ENOMEM;
basecard = &cm->card.base;
cm->card = GRDRM_CARD_INIT(&managed_card_vtable, session);
cm->devnum = devnum;
r = managed_card_setup_bus(cm);
if (r < 0)
return r;
r = grdrm_card_add(&cm->card, name);
if (r < 0)
return r;
managed_card_take_device(cm);
if (out)
*out = basecard;
basecard = NULL;
return 0;
}
static void managed_card_free(grdev_card *basecard) {
managed_card *cm = managed_card_from_base(basecard);
assert(!basecard->enabled);
managed_card_release_device(cm);
cm->slot_resume_device = sd_bus_slot_unref(cm->slot_resume_device);
cm->slot_pause_device = sd_bus_slot_unref(cm->slot_pause_device);
grdrm_card_destroy(&cm->card);
free(cm);
}
static const grdev_card_vtable managed_card_vtable = {
.free = managed_card_free,
.enable = managed_card_enable,
.disable = managed_card_disable,
.commit = grdrm_card_commit,
.restore = grdrm_card_restore,
};
/*
* Generic Constructor
* Instead of relying on the caller to choose between managed and unmanaged
* DRM devices, the grdev_drm_new() constructor does that for you (by
* looking at session->managed).
*/
bool grdev_is_drm_card(grdev_card *basecard) {
return basecard && (basecard->vtable == &unmanaged_card_vtable ||
basecard->vtable == &managed_card_vtable);
}
grdev_card *grdev_find_drm_card(grdev_session *session, dev_t devnum) {
char name[GRDRM_CARD_NAME_MAX];
assert_return(session, NULL);
assert_return(devnum != 0, NULL);
grdrm_name(name, devnum);
return grdev_find_card(session, name);
}
int grdev_drm_card_new(grdev_card **out, grdev_session *session, struct udev_device *ud) {
assert_return(session, -EINVAL);
assert_return(ud, -EINVAL);
return session->managed ? managed_card_new(out, session, ud) : unmanaged_card_new(out, session, ud);
}
void grdev_drm_card_hotplug(grdev_card *basecard, struct udev_device *ud) {
const char *p, *action;
grdrm_card *card;
dev_t devnum;
assert(basecard);
assert(grdev_is_drm_card(basecard));
assert(ud);
card = grdrm_card_from_base(basecard);
action = udev_device_get_action(ud);
if (!action || streq(action, "add") || streq(action, "remove")) {
/* If we get add/remove events on DRM nodes without devnum, we
* got hotplugged DRM objects so refresh the device. */
devnum = udev_device_get_devnum(ud);
if (devnum == 0) {
card->hotplug = true;
grdrm_card_hotplug(card);
}
} else if (streq_ptr(action, "change")) {
/* A change event with HOTPLUG=1 is sent whenever a connector
* changed state. Refresh the device to update our state. */
p = udev_device_get_property_value(ud, "HOTPLUG");
if (streq_ptr(p, "1")) {
card->hotplug = true;
grdrm_card_hotplug(card);
}
}
}