| /*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ |
| |
| /*** |
| This file is part of systemd. |
| |
| Copyright 2010 Lennart Poettering |
| |
| systemd is free software; you can redistribute it and/or modify it |
| under the terms of the GNU Lesser General Public License as published by |
| the Free Software Foundation; either version 2.1 of the License, or |
| (at your option) any later version. |
| |
| systemd is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public License |
| along with systemd; If not, see <http://www.gnu.org/licenses/>. |
| ***/ |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <errno.h> |
| |
| #include "util.h" |
| #include "hashmap.h" |
| #include "macro.h" |
| #include "siphash24.h" |
| #include "mempool.h" |
| |
| #define INITIAL_N_BUCKETS 31 |
| |
| struct hashmap_entry { |
| const void *key; |
| void *value; |
| struct hashmap_entry *bucket_next, *bucket_previous; |
| struct hashmap_entry *iterate_next, *iterate_previous; |
| }; |
| |
| struct Hashmap { |
| const struct hash_ops *hash_ops; |
| |
| struct hashmap_entry *iterate_list_head, *iterate_list_tail; |
| |
| struct hashmap_entry ** buckets; |
| unsigned n_buckets, n_entries; |
| |
| uint8_t hash_key[HASH_KEY_SIZE]; |
| bool from_pool:1; |
| }; |
| |
| struct hashmap_tile { |
| Hashmap h; |
| struct hashmap_entry *initial_buckets[INITIAL_N_BUCKETS]; |
| }; |
| |
| static DEFINE_MEMPOOL(hashmap_pool, struct hashmap_tile, 8); |
| static DEFINE_MEMPOOL(hashmap_entry_pool, struct hashmap_entry, 64); |
| |
| #ifdef VALGRIND |
| |
| __attribute__((destructor)) static void cleanup_pools(void) { |
| /* Be nice to valgrind */ |
| |
| mempool_drop(&hashmap_entry_pool); |
| mempool_drop(&hashmap_pool); |
| } |
| |
| #endif |
| |
| unsigned long string_hash_func(const void *p, const uint8_t hash_key[HASH_KEY_SIZE]) { |
| uint64_t u; |
| siphash24((uint8_t*) &u, p, strlen(p), hash_key); |
| return (unsigned long) u; |
| } |
| |
| int string_compare_func(const void *a, const void *b) { |
| return strcmp(a, b); |
| } |
| |
| const struct hash_ops string_hash_ops = { |
| .hash = string_hash_func, |
| .compare = string_compare_func |
| }; |
| |
| unsigned long trivial_hash_func(const void *p, const uint8_t hash_key[HASH_KEY_SIZE]) { |
| uint64_t u; |
| siphash24((uint8_t*) &u, &p, sizeof(p), hash_key); |
| return (unsigned long) u; |
| } |
| |
| int trivial_compare_func(const void *a, const void *b) { |
| return a < b ? -1 : (a > b ? 1 : 0); |
| } |
| |
| const struct hash_ops trivial_hash_ops = { |
| .hash = trivial_hash_func, |
| .compare = trivial_compare_func |
| }; |
| |
| unsigned long uint64_hash_func(const void *p, const uint8_t hash_key[HASH_KEY_SIZE]) { |
| uint64_t u; |
| siphash24((uint8_t*) &u, p, sizeof(uint64_t), hash_key); |
| return (unsigned long) u; |
| } |
| |
| int uint64_compare_func(const void *_a, const void *_b) { |
| uint64_t a, b; |
| a = *(const uint64_t*) _a; |
| b = *(const uint64_t*) _b; |
| return a < b ? -1 : (a > b ? 1 : 0); |
| } |
| |
| const struct hash_ops uint64_hash_ops = { |
| .hash = uint64_hash_func, |
| .compare = uint64_compare_func |
| }; |
| |
| #if SIZEOF_DEV_T != 8 |
| unsigned long devt_hash_func(const void *p, const uint8_t hash_key[HASH_KEY_SIZE]) { |
| uint64_t u; |
| siphash24((uint8_t*) &u, p, sizeof(dev_t), hash_key); |
| return (unsigned long) u; |
| } |
| |
| int devt_compare_func(const void *_a, const void *_b) { |
| dev_t a, b; |
| a = *(const dev_t*) _a; |
| b = *(const dev_t*) _b; |
| return a < b ? -1 : (a > b ? 1 : 0); |
| } |
| |
| const struct hash_ops devt_hash_ops = { |
| .hash = devt_hash_func, |
| .compare = devt_compare_func |
| }; |
| #endif |
| |
| static unsigned bucket_hash(Hashmap *h, const void *p) { |
| return (unsigned) (h->hash_ops->hash(p, h->hash_key) % h->n_buckets); |
| } |
| |
| static void get_hash_key(uint8_t hash_key[HASH_KEY_SIZE], bool reuse_is_ok) { |
| static uint8_t current[HASH_KEY_SIZE]; |
| static bool current_initialized = false; |
| |
| /* Returns a hash function key to use. In order to keep things |
| * fast we will not generate a new key each time we allocate a |
| * new hash table. Instead, we'll just reuse the most recently |
| * generated one, except if we never generated one or when we |
| * are rehashing an entire hash table because we reached a |
| * fill level */ |
| |
| if (!current_initialized || !reuse_is_ok) { |
| random_bytes(current, sizeof(current)); |
| current_initialized = true; |
| } |
| |
| memcpy(hash_key, current, sizeof(current)); |
| } |
| |
| Hashmap *hashmap_new(const struct hash_ops *hash_ops) { |
| bool b; |
| struct hashmap_tile *ht; |
| Hashmap *h; |
| |
| b = is_main_thread(); |
| |
| if (b) { |
| ht = mempool_alloc_tile(&hashmap_pool); |
| if (!ht) |
| return NULL; |
| |
| memzero(ht, sizeof(struct hashmap_tile)); |
| } else { |
| ht = malloc0(sizeof(struct hashmap_tile)); |
| |
| if (!ht) |
| return NULL; |
| } |
| |
| h = &ht->h; |
| h->hash_ops = hash_ops ? hash_ops : &trivial_hash_ops; |
| |
| h->n_buckets = INITIAL_N_BUCKETS; |
| h->n_entries = 0; |
| h->iterate_list_head = h->iterate_list_tail = NULL; |
| |
| h->buckets = ht->initial_buckets; |
| |
| h->from_pool = b; |
| |
| get_hash_key(h->hash_key, true); |
| |
| return h; |
| } |
| |
| int hashmap_ensure_allocated(Hashmap **h, const struct hash_ops *hash_ops) { |
| Hashmap *q; |
| |
| assert(h); |
| |
| if (*h) |
| return 0; |
| |
| q = hashmap_new(hash_ops); |
| if (!q) |
| return -ENOMEM; |
| |
| *h = q; |
| return 0; |
| } |
| |
| static void link_entry(Hashmap *h, struct hashmap_entry *e, unsigned hash) { |
| assert(h); |
| assert(e); |
| |
| /* Insert into hash table */ |
| e->bucket_next = h->buckets[hash]; |
| e->bucket_previous = NULL; |
| if (h->buckets[hash]) |
| h->buckets[hash]->bucket_previous = e; |
| h->buckets[hash] = e; |
| |
| /* Insert into iteration list */ |
| e->iterate_previous = h->iterate_list_tail; |
| e->iterate_next = NULL; |
| if (h->iterate_list_tail) { |
| assert(h->iterate_list_head); |
| h->iterate_list_tail->iterate_next = e; |
| } else { |
| assert(!h->iterate_list_head); |
| h->iterate_list_head = e; |
| } |
| h->iterate_list_tail = e; |
| |
| h->n_entries++; |
| assert(h->n_entries >= 1); |
| } |
| |
| static void unlink_entry(Hashmap *h, struct hashmap_entry *e, unsigned hash) { |
| assert(h); |
| assert(e); |
| |
| /* Remove from iteration list */ |
| if (e->iterate_next) |
| e->iterate_next->iterate_previous = e->iterate_previous; |
| else |
| h->iterate_list_tail = e->iterate_previous; |
| |
| if (e->iterate_previous) |
| e->iterate_previous->iterate_next = e->iterate_next; |
| else |
| h->iterate_list_head = e->iterate_next; |
| |
| /* Remove from hash table bucket list */ |
| if (e->bucket_next) |
| e->bucket_next->bucket_previous = e->bucket_previous; |
| |
| if (e->bucket_previous) |
| e->bucket_previous->bucket_next = e->bucket_next; |
| else |
| h->buckets[hash] = e->bucket_next; |
| |
| assert(h->n_entries >= 1); |
| h->n_entries--; |
| } |
| |
| static void remove_entry(Hashmap *h, struct hashmap_entry *e) { |
| unsigned hash; |
| |
| assert(h); |
| assert(e); |
| |
| hash = bucket_hash(h, e->key); |
| unlink_entry(h, e, hash); |
| |
| if (h->from_pool) |
| mempool_free_tile(&hashmap_entry_pool, e); |
| else |
| free(e); |
| } |
| |
| void hashmap_free(Hashmap*h) { |
| |
| /* Free the hashmap, but nothing in it */ |
| |
| if (!h) |
| return; |
| |
| hashmap_clear(h); |
| |
| if (h->buckets != (struct hashmap_entry**) ((uint8_t*) h + ALIGN(sizeof(Hashmap)))) |
| free(h->buckets); |
| |
| if (h->from_pool) |
| mempool_free_tile(&hashmap_pool, container_of(h, struct hashmap_tile, h)); |
| else |
| free(h); |
| } |
| |
| void hashmap_free_free(Hashmap *h) { |
| |
| /* Free the hashmap and all data objects in it, but not the |
| * keys */ |
| |
| if (!h) |
| return; |
| |
| hashmap_clear_free(h); |
| hashmap_free(h); |
| } |
| |
| void hashmap_free_free_free(Hashmap *h) { |
| |
| /* Free the hashmap and all data and key objects in it */ |
| |
| if (!h) |
| return; |
| |
| hashmap_clear_free_free(h); |
| hashmap_free(h); |
| } |
| |
| void hashmap_clear(Hashmap *h) { |
| if (!h) |
| return; |
| |
| while (h->iterate_list_head) |
| remove_entry(h, h->iterate_list_head); |
| } |
| |
| void hashmap_clear_free(Hashmap *h) { |
| void *p; |
| |
| if (!h) |
| return; |
| |
| while ((p = hashmap_steal_first(h))) |
| free(p); |
| } |
| |
| void hashmap_clear_free_free(Hashmap *h) { |
| if (!h) |
| return; |
| |
| while (h->iterate_list_head) { |
| void *a, *b; |
| |
| a = h->iterate_list_head->value; |
| b = (void*) h->iterate_list_head->key; |
| remove_entry(h, h->iterate_list_head); |
| free(a); |
| free(b); |
| } |
| } |
| |
| static struct hashmap_entry *hash_scan(Hashmap *h, unsigned hash, const void *key) { |
| struct hashmap_entry *e; |
| assert(h); |
| assert(hash < h->n_buckets); |
| |
| for (e = h->buckets[hash]; e; e = e->bucket_next) |
| if (h->hash_ops->compare(e->key, key) == 0) |
| return e; |
| |
| return NULL; |
| } |
| |
| static int resize_buckets(Hashmap *h, unsigned entries_add) { |
| struct hashmap_entry **n, *i; |
| unsigned m, new_n_entries, new_n_buckets; |
| uint8_t nkey[HASH_KEY_SIZE]; |
| |
| assert(h); |
| |
| new_n_entries = h->n_entries + entries_add; |
| |
| /* overflow? */ |
| if (_unlikely_(new_n_entries < entries_add || new_n_entries > UINT_MAX / 4)) |
| return -ENOMEM; |
| |
| new_n_buckets = new_n_entries * 4 / 3; |
| |
| if (_likely_(new_n_buckets <= h->n_buckets)) |
| return 0; |
| |
| /* Increase by four at least */ |
| m = MAX((h->n_entries+1)*4-1, new_n_buckets); |
| |
| /* If we hit OOM we simply risk packed hashmaps... */ |
| n = new0(struct hashmap_entry*, m); |
| if (!n) |
| return -ENOMEM; |
| |
| /* Let's use a different randomized hash key for the |
| * extension, so that people cannot guess what we are using |
| * here forever */ |
| get_hash_key(nkey, false); |
| |
| for (i = h->iterate_list_head; i; i = i->iterate_next) { |
| unsigned long old_bucket, new_bucket; |
| |
| old_bucket = h->hash_ops->hash(i->key, h->hash_key) % h->n_buckets; |
| |
| /* First, drop from old bucket table */ |
| if (i->bucket_next) |
| i->bucket_next->bucket_previous = i->bucket_previous; |
| |
| if (i->bucket_previous) |
| i->bucket_previous->bucket_next = i->bucket_next; |
| else |
| h->buckets[old_bucket] = i->bucket_next; |
| |
| /* Then, add to new backet table */ |
| new_bucket = h->hash_ops->hash(i->key, nkey) % m; |
| |
| i->bucket_next = n[new_bucket]; |
| i->bucket_previous = NULL; |
| if (n[new_bucket]) |
| n[new_bucket]->bucket_previous = i; |
| n[new_bucket] = i; |
| } |
| |
| if (h->buckets != (struct hashmap_entry**) ((uint8_t*) h + ALIGN(sizeof(Hashmap)))) |
| free(h->buckets); |
| |
| h->buckets = n; |
| h->n_buckets = m; |
| |
| memcpy(h->hash_key, nkey, HASH_KEY_SIZE); |
| |
| return 1; |
| } |
| |
| static int __hashmap_put(Hashmap *h, const void *key, void *value, unsigned hash) { |
| /* For when we know no such entry exists yet */ |
| |
| struct hashmap_entry *e; |
| |
| if (resize_buckets(h, 1) > 0) |
| hash = bucket_hash(h, key); |
| |
| if (h->from_pool) |
| e = mempool_alloc_tile(&hashmap_entry_pool); |
| else |
| e = new(struct hashmap_entry, 1); |
| |
| if (!e) |
| return -ENOMEM; |
| |
| e->key = key; |
| e->value = value; |
| |
| link_entry(h, e, hash); |
| |
| return 1; |
| } |
| |
| int hashmap_put(Hashmap *h, const void *key, void *value) { |
| struct hashmap_entry *e; |
| unsigned hash; |
| |
| assert(h); |
| |
| hash = bucket_hash(h, key); |
| e = hash_scan(h, hash, key); |
| if (e) { |
| if (e->value == value) |
| return 0; |
| return -EEXIST; |
| } |
| |
| return __hashmap_put(h, key, value, hash); |
| } |
| |
| int hashmap_replace(Hashmap *h, const void *key, void *value) { |
| struct hashmap_entry *e; |
| unsigned hash; |
| |
| assert(h); |
| |
| hash = bucket_hash(h, key); |
| e = hash_scan(h, hash, key); |
| if (e) { |
| e->key = key; |
| e->value = value; |
| return 0; |
| } |
| |
| return __hashmap_put(h, key, value, hash); |
| } |
| |
| int hashmap_update(Hashmap *h, const void *key, void *value) { |
| struct hashmap_entry *e; |
| unsigned hash; |
| |
| assert(h); |
| |
| hash = bucket_hash(h, key); |
| e = hash_scan(h, hash, key); |
| if (!e) |
| return -ENOENT; |
| |
| e->value = value; |
| return 0; |
| } |
| |
| void* hashmap_get(Hashmap *h, const void *key) { |
| unsigned hash; |
| struct hashmap_entry *e; |
| |
| if (!h) |
| return NULL; |
| |
| hash = bucket_hash(h, key); |
| e = hash_scan(h, hash, key); |
| if (!e) |
| return NULL; |
| |
| return e->value; |
| } |
| |
| void* hashmap_get2(Hashmap *h, const void *key, void **key2) { |
| unsigned hash; |
| struct hashmap_entry *e; |
| |
| if (!h) |
| return NULL; |
| |
| hash = bucket_hash(h, key); |
| e = hash_scan(h, hash, key); |
| if (!e) |
| return NULL; |
| |
| if (key2) |
| *key2 = (void*) e->key; |
| |
| return e->value; |
| } |
| |
| bool hashmap_contains(Hashmap *h, const void *key) { |
| unsigned hash; |
| |
| if (!h) |
| return false; |
| |
| hash = bucket_hash(h, key); |
| return !!hash_scan(h, hash, key); |
| } |
| |
| void* hashmap_remove(Hashmap *h, const void *key) { |
| struct hashmap_entry *e; |
| unsigned hash; |
| void *data; |
| |
| if (!h) |
| return NULL; |
| |
| hash = bucket_hash(h, key); |
| e = hash_scan(h, hash, key); |
| if (!e) |
| return NULL; |
| |
| data = e->value; |
| remove_entry(h, e); |
| |
| return data; |
| } |
| |
| void* hashmap_remove2(Hashmap *h, const void *key, void **rkey) { |
| struct hashmap_entry *e; |
| unsigned hash; |
| void *data; |
| |
| if (!h) { |
| if (rkey) |
| *rkey = NULL; |
| return NULL; |
| } |
| |
| hash = bucket_hash(h, key); |
| e = hash_scan(h, hash, key); |
| if (!e) { |
| if (rkey) |
| *rkey = NULL; |
| return NULL; |
| } |
| |
| data = e->value; |
| if (rkey) |
| *rkey = (void*) e->key; |
| |
| remove_entry(h, e); |
| |
| return data; |
| } |
| |
| int hashmap_remove_and_put(Hashmap *h, const void *old_key, const void *new_key, void *value) { |
| struct hashmap_entry *e; |
| unsigned old_hash, new_hash; |
| |
| if (!h) |
| return -ENOENT; |
| |
| old_hash = bucket_hash(h, old_key); |
| e = hash_scan(h, old_hash, old_key); |
| if (!e) |
| return -ENOENT; |
| |
| new_hash = bucket_hash(h, new_key); |
| if (hash_scan(h, new_hash, new_key)) |
| return -EEXIST; |
| |
| unlink_entry(h, e, old_hash); |
| |
| e->key = new_key; |
| e->value = value; |
| |
| link_entry(h, e, new_hash); |
| |
| return 0; |
| } |
| |
| int hashmap_remove_and_replace(Hashmap *h, const void *old_key, const void *new_key, void *value) { |
| struct hashmap_entry *e, *k; |
| unsigned old_hash, new_hash; |
| |
| if (!h) |
| return -ENOENT; |
| |
| old_hash = bucket_hash(h, old_key); |
| e = hash_scan(h, old_hash, old_key); |
| if (!e) |
| return -ENOENT; |
| |
| new_hash = bucket_hash(h, new_key); |
| k = hash_scan(h, new_hash, new_key); |
| if (k) |
| if (e != k) |
| remove_entry(h, k); |
| |
| unlink_entry(h, e, old_hash); |
| |
| e->key = new_key; |
| e->value = value; |
| |
| link_entry(h, e, new_hash); |
| |
| return 0; |
| } |
| |
| void* hashmap_remove_value(Hashmap *h, const void *key, void *value) { |
| struct hashmap_entry *e; |
| unsigned hash; |
| |
| if (!h) |
| return NULL; |
| |
| hash = bucket_hash(h, key); |
| |
| e = hash_scan(h, hash, key); |
| if (!e) |
| return NULL; |
| |
| if (e->value != value) |
| return NULL; |
| |
| remove_entry(h, e); |
| |
| return value; |
| } |
| |
| void *hashmap_iterate(Hashmap *h, Iterator *i, const void **key) { |
| struct hashmap_entry *e; |
| |
| assert(i); |
| |
| if (!h) |
| goto at_end; |
| |
| if (*i == ITERATOR_LAST) |
| goto at_end; |
| |
| if (*i == ITERATOR_FIRST && !h->iterate_list_head) |
| goto at_end; |
| |
| e = *i == ITERATOR_FIRST ? h->iterate_list_head : (struct hashmap_entry*) *i; |
| |
| if (e->iterate_next) |
| *i = (Iterator) e->iterate_next; |
| else |
| *i = ITERATOR_LAST; |
| |
| if (key) |
| *key = e->key; |
| |
| return e->value; |
| |
| at_end: |
| *i = ITERATOR_LAST; |
| |
| if (key) |
| *key = NULL; |
| |
| return NULL; |
| } |
| |
| void* hashmap_first(Hashmap *h) { |
| |
| if (!h) |
| return NULL; |
| |
| if (!h->iterate_list_head) |
| return NULL; |
| |
| return h->iterate_list_head->value; |
| } |
| |
| void* hashmap_first_key(Hashmap *h) { |
| |
| if (!h) |
| return NULL; |
| |
| if (!h->iterate_list_head) |
| return NULL; |
| |
| return (void*) h->iterate_list_head->key; |
| } |
| |
| void* hashmap_steal_first(Hashmap *h) { |
| void *data; |
| |
| if (!h) |
| return NULL; |
| |
| if (!h->iterate_list_head) |
| return NULL; |
| |
| data = h->iterate_list_head->value; |
| remove_entry(h, h->iterate_list_head); |
| |
| return data; |
| } |
| |
| void* hashmap_steal_first_key(Hashmap *h) { |
| void *key; |
| |
| if (!h) |
| return NULL; |
| |
| if (!h->iterate_list_head) |
| return NULL; |
| |
| key = (void*) h->iterate_list_head->key; |
| remove_entry(h, h->iterate_list_head); |
| |
| return key; |
| } |
| |
| unsigned hashmap_size(Hashmap *h) { |
| |
| if (!h) |
| return 0; |
| |
| return h->n_entries; |
| } |
| |
| unsigned hashmap_buckets(Hashmap *h) { |
| |
| if (!h) |
| return 0; |
| |
| return h->n_buckets; |
| } |
| |
| bool hashmap_isempty(Hashmap *h) { |
| |
| if (!h) |
| return true; |
| |
| return h->n_entries == 0; |
| } |
| |
| int hashmap_merge(Hashmap *h, Hashmap *other) { |
| struct hashmap_entry *e; |
| |
| assert(h); |
| |
| if (!other) |
| return 0; |
| |
| for (e = other->iterate_list_head; e; e = e->iterate_next) { |
| int r; |
| |
| r = hashmap_put(h, e->key, e->value); |
| if (r < 0 && r != -EEXIST) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| int hashmap_reserve(Hashmap *h, unsigned entries_add) { |
| int r; |
| |
| assert(h); |
| |
| r = resize_buckets(h, entries_add); |
| if (r < 0) |
| return r; |
| |
| return 0; |
| } |
| |
| int hashmap_move(Hashmap *h, Hashmap *other) { |
| struct hashmap_entry *e, *n; |
| |
| assert(h); |
| |
| /* The same as hashmap_merge(), but every new item from other |
| * is moved to h. */ |
| |
| if (!other) |
| return 0; |
| |
| for (e = other->iterate_list_head; e; e = n) { |
| unsigned h_hash, other_hash; |
| |
| n = e->iterate_next; |
| |
| h_hash = bucket_hash(h, e->key); |
| if (hash_scan(h, h_hash, e->key)) |
| continue; |
| |
| other_hash = bucket_hash(other, e->key); |
| unlink_entry(other, e, other_hash); |
| link_entry(h, e, h_hash); |
| } |
| |
| return 0; |
| } |
| |
| int hashmap_move_one(Hashmap *h, Hashmap *other, const void *key) { |
| unsigned h_hash, other_hash; |
| struct hashmap_entry *e; |
| |
| assert(h); |
| |
| h_hash = bucket_hash(h, key); |
| if (hash_scan(h, h_hash, key)) |
| return -EEXIST; |
| |
| if (!other) |
| return -ENOENT; |
| |
| other_hash = bucket_hash(other, key); |
| e = hash_scan(other, other_hash, key); |
| if (!e) |
| return -ENOENT; |
| |
| unlink_entry(other, e, other_hash); |
| link_entry(h, e, h_hash); |
| |
| return 0; |
| } |
| |
| Hashmap *hashmap_copy(Hashmap *h) { |
| Hashmap *copy; |
| |
| assert(h); |
| |
| copy = hashmap_new(h->hash_ops); |
| if (!copy) |
| return NULL; |
| |
| if (hashmap_merge(copy, h) < 0) { |
| hashmap_free(copy); |
| return NULL; |
| } |
| |
| return copy; |
| } |
| |
| char **hashmap_get_strv(Hashmap *h) { |
| char **sv; |
| Iterator it; |
| char *item; |
| int n; |
| |
| sv = new(char*, h->n_entries+1); |
| if (!sv) |
| return NULL; |
| |
| n = 0; |
| HASHMAP_FOREACH(item, h, it) |
| sv[n++] = item; |
| sv[n] = NULL; |
| |
| return sv; |
| } |
| |
| void *hashmap_next(Hashmap *h, const void *key) { |
| unsigned hash; |
| struct hashmap_entry *e; |
| |
| assert(key); |
| |
| if (!h) |
| return NULL; |
| |
| hash = bucket_hash(h, key); |
| e = hash_scan(h, hash, key); |
| if (!e) |
| return NULL; |
| |
| e = e->iterate_next; |
| if (!e) |
| return NULL; |
| |
| return e->value; |
| } |