blob: fd0023b0a84ef7f57c7bb5d81a8040422627b91c [file] [log] [blame] [raw]
/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
/***
This file is part of systemd.
Copyright 2012 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#define __STDC_FORMAT_MACROS
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <alloca.h>
#include <getopt.h>
#include "path-util.h"
#include "util.h"
#include "hashmap.h"
#include "cgroup-util.h"
#include "build.h"
#include "fileio.h"
typedef struct Group {
char *path;
bool n_tasks_valid:1;
bool cpu_valid:1;
bool memory_valid:1;
bool io_valid:1;
unsigned n_tasks;
unsigned cpu_iteration;
uint64_t cpu_usage;
struct timespec cpu_timestamp;
double cpu_fraction;
uint64_t memory;
unsigned io_iteration;
uint64_t io_input, io_output;
struct timespec io_timestamp;
uint64_t io_input_bps, io_output_bps;
} Group;
static unsigned arg_depth = 3;
static unsigned arg_iterations = 0;
static bool arg_batch = false;
static usec_t arg_delay = 1*USEC_PER_SEC;
static enum {
ORDER_PATH,
ORDER_TASKS,
ORDER_CPU,
ORDER_MEMORY,
ORDER_IO
} arg_order = ORDER_CPU;
static enum {
CPU_PERCENT,
CPU_TIME,
} arg_cpu_type = CPU_PERCENT;
static void group_free(Group *g) {
assert(g);
free(g->path);
free(g);
}
static void group_hashmap_clear(Hashmap *h) {
Group *g;
while ((g = hashmap_steal_first(h)))
group_free(g);
}
static void group_hashmap_free(Hashmap *h) {
group_hashmap_clear(h);
hashmap_free(h);
}
static int process(const char *controller, const char *path, Hashmap *a, Hashmap *b, unsigned iteration) {
Group *g;
int r;
FILE *f = NULL;
pid_t pid;
unsigned n;
assert(controller);
assert(path);
assert(a);
g = hashmap_get(a, path);
if (!g) {
g = hashmap_get(b, path);
if (!g) {
g = new0(Group, 1);
if (!g)
return -ENOMEM;
g->path = strdup(path);
if (!g->path) {
group_free(g);
return -ENOMEM;
}
r = hashmap_put(a, g->path, g);
if (r < 0) {
group_free(g);
return r;
}
} else {
assert_se(hashmap_move_one(a, b, path) == 0);
g->cpu_valid = g->memory_valid = g->io_valid = g->n_tasks_valid = false;
}
}
/* Regardless which controller, let's find the maximum number
* of processes in any of it */
r = cg_enumerate_processes(controller, path, &f);
if (r < 0)
return r;
n = 0;
while (cg_read_pid(f, &pid) > 0)
n++;
fclose(f);
if (n > 0) {
if (g->n_tasks_valid)
g->n_tasks = MAX(g->n_tasks, n);
else
g->n_tasks = n;
g->n_tasks_valid = true;
}
if (streq(controller, "cpuacct")) {
uint64_t new_usage;
char *p, *v;
struct timespec ts;
r = cg_get_path(controller, path, "cpuacct.usage", &p);
if (r < 0)
return r;
r = read_one_line_file(p, &v);
free(p);
if (r < 0)
return r;
r = safe_atou64(v, &new_usage);
free(v);
if (r < 0)
return r;
assert_se(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
if (g->cpu_iteration == iteration - 1) {
uint64_t x, y;
x = ((uint64_t) ts.tv_sec * 1000000000ULL + (uint64_t) ts.tv_nsec) -
((uint64_t) g->cpu_timestamp.tv_sec * 1000000000ULL + (uint64_t) g->cpu_timestamp.tv_nsec);
y = new_usage - g->cpu_usage;
if (y > 0) {
g->cpu_fraction = (double) y / (double) x;
g->cpu_valid = true;
}
}
g->cpu_usage = new_usage;
g->cpu_timestamp = ts;
g->cpu_iteration = iteration;
} else if (streq(controller, "memory")) {
char *p, *v;
r = cg_get_path(controller, path, "memory.usage_in_bytes", &p);
if (r < 0)
return r;
r = read_one_line_file(p, &v);
free(p);
if (r < 0)
return r;
r = safe_atou64(v, &g->memory);
free(v);
if (r < 0)
return r;
if (g->memory > 0)
g->memory_valid = true;
} else if (streq(controller, "blkio")) {
char *p;
uint64_t wr = 0, rd = 0;
struct timespec ts;
r = cg_get_path(controller, path, "blkio.io_service_bytes", &p);
if (r < 0)
return r;
f = fopen(p, "re");
free(p);
if (!f)
return -errno;
for (;;) {
char line[LINE_MAX], *l;
uint64_t k, *q;
if (!fgets(line, sizeof(line), f))
break;
l = strstrip(line);
l += strcspn(l, WHITESPACE);
l += strspn(l, WHITESPACE);
if (first_word(l, "Read")) {
l += 4;
q = &rd;
} else if (first_word(l, "Write")) {
l += 5;
q = &wr;
} else
continue;
l += strspn(l, WHITESPACE);
r = safe_atou64(l, &k);
if (r < 0)
continue;
*q += k;
}
fclose(f);
assert_se(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
if (g->io_iteration == iteration - 1) {
uint64_t x, yr, yw;
x = ((uint64_t) ts.tv_sec * 1000000000ULL + (uint64_t) ts.tv_nsec) -
((uint64_t) g->io_timestamp.tv_sec * 1000000000ULL + (uint64_t) g->io_timestamp.tv_nsec);
yr = rd - g->io_input;
yw = wr - g->io_output;
if (yr > 0 || yw > 0) {
g->io_input_bps = (yr * 1000000000ULL) / x;
g->io_output_bps = (yw * 1000000000ULL) / x;
g->io_valid = true;
}
}
g->io_input = rd;
g->io_output = wr;
g->io_timestamp = ts;
g->io_iteration = iteration;
}
return 0;
}
static int refresh_one(
const char *controller,
const char *path,
Hashmap *a,
Hashmap *b,
unsigned iteration,
unsigned depth) {
DIR *d = NULL;
int r;
assert(controller);
assert(path);
assert(a);
if (depth > arg_depth)
return 0;
r = process(controller, path, a, b, iteration);
if (r < 0)
return r;
r = cg_enumerate_subgroups(controller, path, &d);
if (r < 0) {
if (r == -ENOENT)
return 0;
return r;
}
for (;;) {
char *fn, *p;
r = cg_read_subgroup(d, &fn);
if (r <= 0)
goto finish;
p = strjoin(path, "/", fn, NULL);
free(fn);
if (!p) {
r = -ENOMEM;
goto finish;
}
path_kill_slashes(p);
r = refresh_one(controller, p, a, b, iteration, depth + 1);
free(p);
if (r < 0)
goto finish;
}
finish:
if (d)
closedir(d);
return r;
}
static int refresh(Hashmap *a, Hashmap *b, unsigned iteration) {
int r;
assert(a);
r = refresh_one("name=systemd", "/", a, b, iteration, 0);
if (r < 0)
if (r != -ENOENT)
return r;
r = refresh_one("cpuacct", "/", a, b, iteration, 0);
if (r < 0)
if (r != -ENOENT)
return r;
r = refresh_one("memory", "/", a, b, iteration, 0);
if (r < 0)
if (r != -ENOENT)
return r;
r = refresh_one("blkio", "/", a, b, iteration, 0);
if (r < 0)
if (r != -ENOENT)
return r;
return 0;
}
static int group_compare(const void*a, const void *b) {
const Group *x = *(Group**)a, *y = *(Group**)b;
if (path_startswith(y->path, x->path))
return -1;
if (path_startswith(x->path, y->path))
return 1;
if (arg_order == ORDER_CPU) {
if (arg_cpu_type == CPU_PERCENT) {
if (x->cpu_valid && y->cpu_valid) {
if (x->cpu_fraction > y->cpu_fraction)
return -1;
else if (x->cpu_fraction < y->cpu_fraction)
return 1;
} else if (x->cpu_valid)
return -1;
else if (y->cpu_valid)
return 1;
} else {
if (x->cpu_usage > y->cpu_usage)
return -1;
else if (x->cpu_usage < y->cpu_usage)
return 1;
}
}
if (arg_order == ORDER_TASKS) {
if (x->n_tasks_valid && y->n_tasks_valid) {
if (x->n_tasks > y->n_tasks)
return -1;
else if (x->n_tasks < y->n_tasks)
return 1;
} else if (x->n_tasks_valid)
return -1;
else if (y->n_tasks_valid)
return 1;
}
if (arg_order == ORDER_MEMORY) {
if (x->memory_valid && y->memory_valid) {
if (x->memory > y->memory)
return -1;
else if (x->memory < y->memory)
return 1;
} else if (x->memory_valid)
return -1;
else if (y->memory_valid)
return 1;
}
if (arg_order == ORDER_IO) {
if (x->io_valid && y->io_valid) {
if (x->io_input_bps + x->io_output_bps > y->io_input_bps + y->io_output_bps)
return -1;
else if (x->io_input_bps + x->io_output_bps < y->io_input_bps + y->io_output_bps)
return 1;
} else if (x->io_valid)
return -1;
else if (y->io_valid)
return 1;
}
return strcmp(x->path, y->path);
}
#define ON ANSI_HIGHLIGHT_ON
#define OFF ANSI_HIGHLIGHT_OFF
static int display(Hashmap *a) {
Iterator i;
Group *g;
Group **array;
signed path_columns;
unsigned rows, n = 0, j, maxtcpu = 0, maxtpath = 0;
char buffer[MAX3(21, FORMAT_BYTES_MAX, FORMAT_TIMESPAN_MAX)];
assert(a);
/* Set cursor to top left corner and clear screen */
if (on_tty())
fputs("\033[H"
"\033[2J", stdout);
array = alloca(sizeof(Group*) * hashmap_size(a));
HASHMAP_FOREACH(g, a, i)
if (g->n_tasks_valid || g->cpu_valid || g->memory_valid || g->io_valid)
array[n++] = g;
qsort_safe(array, n, sizeof(Group*), group_compare);
/* Find the longest names in one run */
for (j = 0; j < n; j++) {
unsigned cputlen, pathtlen;
format_timespan(buffer, sizeof(buffer), (nsec_t) (array[j]->cpu_usage / NSEC_PER_USEC), 0);
cputlen = strlen(buffer);
maxtcpu = MAX(maxtcpu, cputlen);
pathtlen = strlen(array[j]->path);
maxtpath = MAX(maxtpath, pathtlen);
}
if (arg_cpu_type == CPU_PERCENT)
snprintf(buffer, sizeof(buffer), "%6s", "%CPU");
else
snprintf(buffer, sizeof(buffer), "%*s", maxtcpu, "CPU Time");
rows = lines();
if (rows <= 10)
rows = 10;
if (on_tty()) {
path_columns = columns() - 36 - strlen(buffer);
if (path_columns < 10)
path_columns = 10;
printf("%s%-*s%s %s%7s%s %s%s%s %s%8s%s %s%8s%s %s%8s%s\n\n",
arg_order == ORDER_PATH ? ON : "", path_columns, "Path",
arg_order == ORDER_PATH ? OFF : "",
arg_order == ORDER_TASKS ? ON : "", "Tasks",
arg_order == ORDER_TASKS ? OFF : "",
arg_order == ORDER_CPU ? ON : "", buffer,
arg_order == ORDER_CPU ? OFF : "",
arg_order == ORDER_MEMORY ? ON : "", "Memory",
arg_order == ORDER_MEMORY ? OFF : "",
arg_order == ORDER_IO ? ON : "", "Input/s",
arg_order == ORDER_IO ? OFF : "",
arg_order == ORDER_IO ? ON : "", "Output/s",
arg_order == ORDER_IO ? OFF : "");
} else
path_columns = maxtpath;
for (j = 0; j < n; j++) {
char *p;
if (on_tty() && j + 5 > rows)
break;
g = array[j];
p = ellipsize(g->path, path_columns, 33);
printf("%-*s", path_columns, p ? p : g->path);
free(p);
if (g->n_tasks_valid)
printf(" %7u", g->n_tasks);
else
fputs(" -", stdout);
if (arg_cpu_type == CPU_PERCENT) {
if (g->cpu_valid)
printf(" %6.1f", g->cpu_fraction*100);
else
fputs(" -", stdout);
} else
printf(" %*s", maxtcpu, format_timespan(buffer, sizeof(buffer), (nsec_t) (g->cpu_usage / NSEC_PER_USEC), 0));
if (g->memory_valid)
printf(" %8s", format_bytes(buffer, sizeof(buffer), g->memory));
else
fputs(" -", stdout);
if (g->io_valid) {
printf(" %8s",
format_bytes(buffer, sizeof(buffer), g->io_input_bps));
printf(" %8s",
format_bytes(buffer, sizeof(buffer), g->io_output_bps));
} else
fputs(" - -", stdout);
putchar('\n');
}
return 0;
}
static int help(void) {
printf("%s [OPTIONS...]\n\n"
"Show top control groups by their resource usage.\n\n"
" -h --help Show this help\n"
" --version Print version and exit\n"
" -p Order by path\n"
" -t Order by number of tasks\n"
" -c Order by CPU load\n"
" -m Order by memory load\n"
" -i Order by IO load\n"
" --cpu[=TYPE] Show CPU usage as time or percentage (default)\n"
" -d --delay=DELAY Delay between updates\n"
" -n --iterations=N Run for N iterations before exiting\n"
" -b --batch Run in batch mode, accepting no input\n"
" --depth=DEPTH Maximum traversal depth (default: %u)\n",
program_invocation_short_name, arg_depth);
return 0;
}
static int parse_argv(int argc, char *argv[]) {
enum {
ARG_VERSION = 0x100,
ARG_DEPTH,
ARG_CPU_TYPE
};
static const struct option options[] = {
{ "help", no_argument, NULL, 'h' },
{ "version", no_argument, NULL, ARG_VERSION },
{ "delay", required_argument, NULL, 'd' },
{ "iterations", required_argument, NULL, 'n' },
{ "batch", no_argument, NULL, 'b' },
{ "depth", required_argument, NULL, ARG_DEPTH },
{ "cpu", optional_argument, NULL, ARG_CPU_TYPE},
{}
};
int c;
int r;
assert(argc >= 1);
assert(argv);
while ((c = getopt_long(argc, argv, "hptcmin:bd:", options, NULL)) >= 0) {
switch (c) {
case 'h':
return help();
case ARG_VERSION:
puts(PACKAGE_STRING);
puts(SYSTEMD_FEATURES);
return 0;
case ARG_CPU_TYPE:
if (optarg) {
if (strcmp(optarg, "time") == 0)
arg_cpu_type = CPU_TIME;
else if (strcmp(optarg, "percentage") == 0)
arg_cpu_type = CPU_PERCENT;
else
return -EINVAL;
}
break;
case ARG_DEPTH:
r = safe_atou(optarg, &arg_depth);
if (r < 0) {
log_error("Failed to parse depth parameter.");
return -EINVAL;
}
break;
case 'd':
r = parse_sec(optarg, &arg_delay);
if (r < 0 || arg_delay <= 0) {
log_error("Failed to parse delay parameter.");
return -EINVAL;
}
break;
case 'n':
r = safe_atou(optarg, &arg_iterations);
if (r < 0) {
log_error("Failed to parse iterations parameter.");
return -EINVAL;
}
break;
case 'b':
arg_batch = true;
break;
case 'p':
arg_order = ORDER_PATH;
break;
case 't':
arg_order = ORDER_TASKS;
break;
case 'c':
arg_order = ORDER_CPU;
break;
case 'm':
arg_order = ORDER_MEMORY;
break;
case 'i':
arg_order = ORDER_IO;
break;
case '?':
return -EINVAL;
default:
assert_not_reached("Unhandled option");
}
}
if (optind < argc) {
log_error("Too many arguments.");
return -EINVAL;
}
return 1;
}
int main(int argc, char *argv[]) {
int r;
Hashmap *a = NULL, *b = NULL;
unsigned iteration = 0;
usec_t last_refresh = 0;
bool quit = false, immediate_refresh = false;
log_parse_environment();
log_open();
r = parse_argv(argc, argv);
if (r <= 0)
goto finish;
a = hashmap_new(string_hash_func, string_compare_func);
b = hashmap_new(string_hash_func, string_compare_func);
if (!a || !b) {
r = log_oom();
goto finish;
}
signal(SIGWINCH, columns_lines_cache_reset);
if (!on_tty())
arg_iterations = 1;
while (!quit) {
Hashmap *c;
usec_t t;
char key;
char h[FORMAT_TIMESPAN_MAX];
t = now(CLOCK_MONOTONIC);
if (t >= last_refresh + arg_delay || immediate_refresh) {
r = refresh(a, b, iteration++);
if (r < 0)
goto finish;
group_hashmap_clear(b);
c = a;
a = b;
b = c;
last_refresh = t;
immediate_refresh = false;
}
r = display(b);
if (r < 0)
goto finish;
if (arg_iterations && iteration >= arg_iterations)
break;
if (arg_batch) {
usleep(last_refresh + arg_delay - t);
} else {
r = read_one_char(stdin, &key,
last_refresh + arg_delay - t, NULL);
if (r == -ETIMEDOUT)
continue;
if (r < 0) {
log_error("Couldn't read key: %s", strerror(-r));
goto finish;
}
}
fputs("\r \r", stdout);
fflush(stdout);
if (arg_batch)
continue;
switch (key) {
case ' ':
immediate_refresh = true;
break;
case 'q':
quit = true;
break;
case 'p':
arg_order = ORDER_PATH;
break;
case 't':
arg_order = ORDER_TASKS;
break;
case 'c':
arg_order = ORDER_CPU;
break;
case 'm':
arg_order = ORDER_MEMORY;
break;
case 'i':
arg_order = ORDER_IO;
break;
case '%':
arg_cpu_type = arg_cpu_type == CPU_TIME ? CPU_PERCENT : CPU_TIME;
break;
case '+':
if (arg_delay < USEC_PER_SEC)
arg_delay += USEC_PER_MSEC*250;
else
arg_delay += USEC_PER_SEC;
fprintf(stdout, "\nIncreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0));
fflush(stdout);
sleep(1);
break;
case '-':
if (arg_delay <= USEC_PER_MSEC*500)
arg_delay = USEC_PER_MSEC*250;
else if (arg_delay < USEC_PER_MSEC*1250)
arg_delay -= USEC_PER_MSEC*250;
else
arg_delay -= USEC_PER_SEC;
fprintf(stdout, "\nDecreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0));
fflush(stdout);
sleep(1);
break;
case '?':
case 'h':
fprintf(stdout,
"\t<" ON "p" OFF "> By path; <" ON "t" OFF "> By tasks; <" ON "c" OFF "> By CPU; <" ON "m" OFF "> By memory; <" ON "i" OFF "> By I/O\n"
"\t<" ON "+" OFF "> Increase delay; <" ON "-" OFF "> Decrease delay; <" ON "%%" OFF "> Toggle time\n"
"\t<" ON "q" OFF "> Quit; <" ON "SPACE" OFF "> Refresh");
fflush(stdout);
sleep(3);
break;
default:
fprintf(stdout, "\nUnknown key '%c'. Ignoring.", key);
fflush(stdout);
sleep(1);
break;
}
}
r = 0;
finish:
group_hashmap_free(a);
group_hashmap_free(b);
if (r < 0) {
log_error("Exiting with failure: %s", strerror(-r));
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}