blob: cd896895c9ba2adf650d60b0d8b91150351be3e1 [file] [log] [blame] [raw]
/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
/***
This file is part of systemd.
Copyright (C) 2009-2013 Intel Coproration
Authors:
Auke Kok <auke-jan.h.kok@intel.com>
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <limits.h>
#include <unistd.h>
#include <sys/utsname.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "util.h"
#include "macro.h"
#include "store.h"
#include "svg.h"
#include "bootchart.h"
#define time_to_graph(t) ((t) * arg_scale_x)
#define ps_to_graph(n) ((n) * arg_scale_y)
#define kb_to_graph(m) ((m) * arg_scale_y * 0.0001)
#define to_color(n) (192.0 - ((n) * 192.0))
#define max(x, y) (((x) > (y)) ? (x) : (y))
#define min(x, y) (((x) < (y)) ? (x) : (y))
static char str[8092];
#define svg(a...) do { snprintf(str, 8092, ## a); fputs(str, of); fflush(of); } while (0)
static const char * const colorwheel[12] = {
"rgb(255,32,32)", // red
"rgb(32,192,192)", // cyan
"rgb(255,128,32)", // orange
"rgb(128,32,192)", // blue-violet
"rgb(255,255,32)", // yellow
"rgb(192,32,128)", // red-violet
"rgb(32,255,32)", // green
"rgb(255,64,32)", // red-orange
"rgb(32,32,255)", // blue
"rgb(255,192,32)", // yellow-orange
"rgb(192,32,192)", // violet
"rgb(32,192,32)" // yellow-green
};
static double idletime = -1.0;
static int pfiltered = 0;
static int pcount = 0;
static int kcount = 0;
static float psize = 0;
static float ksize = 0;
static float esize = 0;
static void svg_header(void) {
float w;
float h;
/* min width is about 1600px due to the label */
w = 150.0 + 10.0 + time_to_graph(sampletime[samples-1] - graph_start);
w = ((w < 1600.0) ? 1600.0 : w);
/* height is variable based on pss, psize, ksize */
h = 400.0 + (arg_scale_y * 30.0) /* base graphs and title */
+ (arg_pss ? (100.0 * arg_scale_y) + (arg_scale_y * 7.0) : 0.0) /* pss estimate */
+ psize + ksize + esize;
svg("<?xml version=\"1.0\" standalone=\"no\"?>\n");
svg("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" ");
svg("\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n");
//svg("<g transform=\"translate(10,%d)\">\n", 1000 + 150 + (pcount * 20));
svg("<svg width=\"%.0fpx\" height=\"%.0fpx\" version=\"1.1\" ",
w, h);
svg("xmlns=\"http://www.w3.org/2000/svg\">\n\n");
/* write some basic info as a comment, including some help */
svg("<!-- This file is a bootchart SVG file. It is best rendered in a browser -->\n");
svg("<!-- such as Chrome, Chromium, or Firefox. Other applications that -->\n");
svg("<!-- render these files properly but more slowly are ImageMagick, gimp, -->\n");
svg("<!-- inkscape, etc. To display the files on your system, just point -->\n");
svg("<!-- your browser to file:///run/log/ and click. This bootchart was -->\n\n");
svg("<!-- generated by bootchart version %s, running with options: -->\n", VERSION);
svg("<!-- hz=\"%f\" n=\"%d\" -->\n", arg_hz, arg_samples_len);
svg("<!-- x=\"%f\" y=\"%f\" -->\n", arg_scale_x, arg_scale_y);
svg("<!-- rel=\"%d\" f=\"%d\" -->\n", arg_relative, arg_filter);
svg("<!-- p=\"%d\" e=\"%d\" -->\n", arg_pss, arg_entropy);
svg("<!-- o=\"%s\" i=\"%s\" -->\n\n", arg_output_path, arg_init_path);
/* style sheet */
svg("<defs>\n <style type=\"text/css\">\n <![CDATA[\n");
svg(" rect { stroke-width: 1; }\n");
svg(" rect.cpu { fill: rgb(64,64,240); stroke-width: 0; fill-opacity: 0.7; }\n");
svg(" rect.wait { fill: rgb(240,240,0); stroke-width: 0; fill-opacity: 0.7; }\n");
svg(" rect.bi { fill: rgb(240,128,128); stroke-width: 0; fill-opacity: 0.7; }\n");
svg(" rect.bo { fill: rgb(192,64,64); stroke-width: 0; fill-opacity: 0.7; }\n");
svg(" rect.ps { fill: rgb(192,192,192); stroke: rgb(128,128,128); fill-opacity: 0.7; }\n");
svg(" rect.krnl { fill: rgb(240,240,0); stroke: rgb(128,128,128); fill-opacity: 0.7; }\n");
svg(" rect.box { fill: rgb(240,240,240); stroke: rgb(192,192,192); }\n");
svg(" rect.clrw { stroke-width: 0; fill-opacity: 0.7;}\n");
svg(" line { stroke: rgb(64,64,64); stroke-width: 1; }\n");
svg("// line.sec1 { }\n");
svg(" line.sec5 { stroke-width: 2; }\n");
svg(" line.sec01 { stroke: rgb(224,224,224); stroke-width: 1; }\n");
svg(" line.dot { stroke-dasharray: 2 4; }\n");
svg(" line.idle { stroke: rgb(64,64,64); stroke-dasharray: 10 6; stroke-opacity: 0.7; }\n");
svg(" .run { font-size: 8; font-style: italic; }\n");
svg(" text { font-family: Verdana, Helvetica; font-size: 10; }\n");
svg(" text.sec { font-size: 8; }\n");
svg(" text.t1 { font-size: 24; }\n");
svg(" text.t2 { font-size: 12; }\n");
svg(" text.idle { font-size: 18; }\n");
svg(" ]]>\n </style>\n</defs>\n\n");
}
static void svg_title(const char *build) {
char cmdline[256] = "";
char filename[PATH_MAX];
char buf[256];
char rootbdev[16] = "Unknown";
char model[256] = "Unknown";
char date[256] = "Unknown";
char cpu[256] = "Unknown";
char *c;
FILE *f;
time_t t;
int fd;
struct utsname uts;
/* grab /proc/cmdline */
fd = openat(procfd, "cmdline", O_RDONLY);
f = fdopen(fd, "r");
if (f) {
if (!fgets(cmdline, 255, f))
sprintf(cmdline, "Unknown");
fclose(f);
}
/* extract root fs so we can find disk model name in sysfs */
/* FIXME: this works only in the simple case */
c = strstr(cmdline, "root=/dev/");
if (c) {
strncpy(rootbdev, &c[10], 3);
rootbdev[3] = '\0';
sprintf(filename, "block/%s/device/model", rootbdev);
fd = openat(sysfd, filename, O_RDONLY);
f = fdopen(fd, "r");
if (f) {
if (!fgets(model, 255, f))
fprintf(stderr, "Error reading disk model for %s\n", rootbdev);
fclose(f);
}
}
/* various utsname parameters */
if (uname(&uts))
fprintf(stderr, "Error getting uname info\n");
/* date */
t = time(NULL);
strftime(date, sizeof(date), "%a, %d %b %Y %H:%M:%S %z", localtime(&t));
/* CPU type */
fd = openat(procfd, "cpuinfo", O_RDONLY);
f = fdopen(fd, "r");
if (f) {
while (fgets(buf, 255, f)) {
if (strstr(buf, "model name")) {
strncpy(cpu, &buf[13], 255);
break;
}
}
fclose(f);
}
svg("<text class=\"t1\" x=\"0\" y=\"30\">Bootchart for %s - %s</text>\n",
uts.nodename, date);
svg("<text class=\"t2\" x=\"20\" y=\"50\">System: %s %s %s %s</text>\n",
uts.sysname, uts.release, uts.version, uts.machine);
svg("<text class=\"t2\" x=\"20\" y=\"65\">CPU: %s</text>\n",
cpu);
svg("<text class=\"t2\" x=\"20\" y=\"80\">Disk: %s</text>\n",
model);
svg("<text class=\"t2\" x=\"20\" y=\"95\">Boot options: %s</text>\n",
cmdline);
svg("<text class=\"t2\" x=\"20\" y=\"110\">Build: %s</text>\n",
build);
svg("<text class=\"t2\" x=\"20\" y=\"125\">Log start time: %.03fs</text>\n", log_start);
svg("<text class=\"t2\" x=\"20\" y=\"140\">Idle time: ");
if (idletime >= 0.0)
svg("%.03fs", idletime);
else
svg("Not detected");
svg("</text>\n");
svg("<text class=\"sec\" x=\"20\" y=\"155\">Graph data: %.03f samples/sec, recorded %i total, dropped %i samples, %i processes, %i filtered</text>\n",
arg_hz, arg_samples_len, overrun, pscount, pfiltered);
}
static void svg_graph_box(int height) {
double d = 0.0;
int i = 0;
/* outside box, fill */
svg("<rect class=\"box\" x=\"%.03f\" y=\"0\" width=\"%.03f\" height=\"%.03f\" />\n",
time_to_graph(0.0),
time_to_graph(sampletime[samples-1] - graph_start),
ps_to_graph(height));
for (d = graph_start; d <= sampletime[samples-1];
d += (arg_scale_x < 2.0 ? 60.0 : arg_scale_x < 10.0 ? 1.0 : 0.1)) {
/* lines for each second */
if (i % 50 == 0)
svg(" <line class=\"sec5\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n",
time_to_graph(d - graph_start),
time_to_graph(d - graph_start),
ps_to_graph(height));
else if (i % 10 == 0)
svg(" <line class=\"sec1\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n",
time_to_graph(d - graph_start),
time_to_graph(d - graph_start),
ps_to_graph(height));
else
svg(" <line class=\"sec01\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n",
time_to_graph(d - graph_start),
time_to_graph(d - graph_start),
ps_to_graph(height));
/* time label */
if (i % 10 == 0)
svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\" >%.01fs</text>\n",
time_to_graph(d - graph_start),
-5.0,
d - graph_start);
i++;
}
}
/* xml comments must not contain "--" */
static char* xml_comment_encode(const char* name) {
char *enc_name, *p;
enc_name = strdup(name);
if (!enc_name)
return NULL;
for (p = enc_name; *p; p++)
if (p[0] == '-' && p[1] == '-')
p[1] = '_';
return enc_name;
}
static void svg_pss_graph(void) {
struct ps_struct *ps;
int i;
svg("\n\n<!-- Pss memory size graph -->\n");
svg("\n <text class=\"t2\" x=\"5\" y=\"-15\">Memory allocation - Pss</text>\n");
/* vsize 1000 == 1000mb */
svg_graph_box(100);
/* draw some hlines for usable memory sizes */
for (i = 100000; i < 1000000; i += 100000) {
svg(" <line class=\"sec01\" x1=\"%.03f\" y1=\"%.0f\" x2=\"%.03f\" y2=\"%.0f\"/>\n",
time_to_graph(.0),
kb_to_graph(i),
time_to_graph(sampletime[samples-1] - graph_start),
kb_to_graph(i));
svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.0f\">%dM</text>\n",
time_to_graph(sampletime[samples-1] - graph_start) + 5,
kb_to_graph(i), (1000000 - i) / 1000);
}
svg("\n");
/* now plot the graph itself */
for (i = 1; i < samples ; i++) {
int bottom;
int top;
bottom = 0;
top = 0;
/* put all the small pss blocks into the bottom */
ps = ps_first;
while (ps->next_ps) {
ps = ps->next_ps;
if (!ps)
continue;
if (ps->sample[i].pss <= (100 * arg_scale_y))
top += ps->sample[i].pss;
};
svg(" <rect class=\"clrw\" style=\"fill: %s\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
"rgb(64,64,64)",
time_to_graph(sampletime[i - 1] - graph_start),
kb_to_graph(1000000.0 - top),
time_to_graph(sampletime[i] - sampletime[i - 1]),
kb_to_graph(top - bottom));
bottom = top;
/* now plot the ones that are of significant size */
ps = ps_first;
while (ps->next_ps) {
ps = ps->next_ps;
if (!ps)
continue;
/* don't draw anything smaller than 2mb */
if (ps->sample[i].pss > (100 * arg_scale_y)) {
top = bottom + ps->sample[i].pss;
svg(" <rect class=\"clrw\" style=\"fill: %s\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
colorwheel[ps->pid % 12],
time_to_graph(sampletime[i - 1] - graph_start),
kb_to_graph(1000000.0 - top),
time_to_graph(sampletime[i] - sampletime[i - 1]),
kb_to_graph(top - bottom));
bottom = top;
}
}
}
/* overlay all the text labels */
for (i = 1; i < samples ; i++) {
int bottom;
int top;
bottom = 0;
top = 0;
/* put all the small pss blocks into the bottom */
ps = ps_first;
while (ps->next_ps) {
ps = ps->next_ps;
if (!ps)
continue;
if (ps->sample[i].pss <= (100 * arg_scale_y))
top += ps->sample[i].pss;
};
bottom = top;
/* now plot the ones that are of significant size */
ps = ps_first;
while (ps->next_ps) {
ps = ps->next_ps;
if (!ps)
continue;
/* don't draw anything smaller than 2mb */
if (ps->sample[i].pss > (100 * arg_scale_y)) {
top = bottom + ps->sample[i].pss;
/* draw a label with the process / PID */
if ((i == 1) || (ps->sample[i - 1].pss <= (100 * arg_scale_y)))
svg(" <text x=\"%.03f\" y=\"%.03f\"><![CDATA[%s]]> [%i]</text>\n",
time_to_graph(sampletime[i] - graph_start),
kb_to_graph(1000000.0 - bottom - ((top - bottom) / 2)),
ps->name,
ps->pid);
bottom = top;
}
}
}
/* debug output - full data dump */
svg("\n\n<!-- PSS map - csv format -->\n");
ps = ps_first;
while (ps->next_ps) {
char _cleanup_free_ *enc_name = NULL;
ps = ps->next_ps;
if (!ps)
continue;
enc_name = xml_comment_encode(ps->name);
if(!enc_name)
continue;
svg("<!-- %s [%d] pss=", enc_name, ps->pid);
for (i = 0; i < samples ; i++) {
svg("%d," , ps->sample[i].pss);
}
svg(" -->\n");
}
}
static void svg_io_bi_bar(void) {
double max = 0.0;
double range;
int max_here = 0;
int i;
svg("<!-- IO utilization graph - In -->\n");
svg("<text class=\"t2\" x=\"5\" y=\"-15\">IO utilization - read</text>\n");
/*
* calculate rounding range
*
* We need to round IO data since IO block data is not updated on
* each poll. Applying a smoothing function loses some burst data,
* so keep the smoothing range short.
*/
range = 0.25 / (1.0 / arg_hz);
if (range < 2.0)
range = 2.0; /* no smoothing */
/* surrounding box */
svg_graph_box(5);
/* find the max IO first */
for (i = 1; i < samples; i++) {
int start;
int stop;
double tot;
start = max(i - ((range / 2) - 1), 0);
stop = min(i + (range / 2), samples - 1);
tot = (double)(blockstat[stop].bi - blockstat[start].bi)
/ (stop - start);
if (tot > max) {
max = tot;
max_here = i;
}
tot = (double)(blockstat[stop].bo - blockstat[start].bo)
/ (stop - start);
if (tot > max)
max = tot;
}
/* plot bi */
for (i = 1; i < samples; i++) {
int start;
int stop;
double tot;
double pbi;
start = max(i - ((range / 2) - 1), 0);
stop = min(i + (range / 2), samples);
tot = (double)(blockstat[stop].bi - blockstat[start].bi)
/ (stop - start);
pbi = tot / max;
if (pbi > 0.001)
svg("<rect class=\"bi\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
time_to_graph(sampletime[i - 1] - graph_start),
(arg_scale_y * 5) - (pbi * (arg_scale_y * 5)),
time_to_graph(sampletime[i] - sampletime[i - 1]),
pbi * (arg_scale_y * 5));
/* labels around highest value */
if (i == max_here) {
svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\">%0.2fmb/sec</text>\n",
time_to_graph(sampletime[i] - graph_start) + 5,
((arg_scale_y * 5) - (pbi * (arg_scale_y * 5))) + 15,
max / 1024.0 / (interval / 1000000000.0));
}
}
}
static void svg_io_bo_bar(void) {
double max = 0.0;
double range;
int max_here = 0;
int i;
svg("<!-- IO utilization graph - out -->\n");
svg("<text class=\"t2\" x=\"5\" y=\"-15\">IO utilization - write</text>\n");
/*
* calculate rounding range
*
* We need to round IO data since IO block data is not updated on
* each poll. Applying a smoothing function loses some burst data,
* so keep the smoothing range short.
*/
range = 0.25 / (1.0 / arg_hz);
if (range < 2.0)
range = 2.0; /* no smoothing */
/* surrounding box */
svg_graph_box(5);
/* find the max IO first */
for (i = 1; i < samples; i++) {
int start;
int stop;
double tot;
start = max(i - ((range / 2) - 1), 0);
stop = min(i + (range / 2), samples - 1);
tot = (double)(blockstat[stop].bi - blockstat[start].bi)
/ (stop - start);
if (tot > max)
max = tot;
tot = (double)(blockstat[stop].bo - blockstat[start].bo)
/ (stop - start);
if (tot > max) {
max = tot;
max_here = i;
}
}
/* plot bo */
for (i = 1; i < samples; i++) {
int start;
int stop;
double tot;
double pbo;
start = max(i - ((range / 2) - 1), 0);
stop = min(i + (range / 2), samples);
tot = (double)(blockstat[stop].bo - blockstat[start].bo)
/ (stop - start);
pbo = tot / max;
if (pbo > 0.001)
svg("<rect class=\"bo\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
time_to_graph(sampletime[i - 1] - graph_start),
(arg_scale_y * 5) - (pbo * (arg_scale_y * 5)),
time_to_graph(sampletime[i] - sampletime[i - 1]),
pbo * (arg_scale_y * 5));
/* labels around highest bo value */
if (i == max_here) {
svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\">%0.2fmb/sec</text>\n",
time_to_graph(sampletime[i] - graph_start) + 5,
((arg_scale_y * 5) - (pbo * (arg_scale_y * 5))),
max / 1024.0 / (interval / 1000000000.0));
}
}
}
static void svg_cpu_bar(void) {
int i;
svg("<!-- CPU utilization graph -->\n");
svg("<text class=\"t2\" x=\"5\" y=\"-15\">CPU utilization</text>\n");
/* surrounding box */
svg_graph_box(5);
/* bars for each sample, proportional to the CPU util. */
for (i = 1; i < samples; i++) {
int c;
double trt;
double ptrt;
ptrt = trt = 0.0;
for (c = 0; c < cpus; c++)
trt += cpustat[c].sample[i].runtime - cpustat[c].sample[i - 1].runtime;
trt = trt / 1000000000.0;
trt = trt / (double)cpus;
if (trt > 0.0)
ptrt = trt / (sampletime[i] - sampletime[i - 1]);
if (ptrt > 1.0)
ptrt = 1.0;
if (ptrt > 0.001) {
svg("<rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
time_to_graph(sampletime[i - 1] - graph_start),
(arg_scale_y * 5) - (ptrt * (arg_scale_y * 5)),
time_to_graph(sampletime[i] - sampletime[i - 1]),
ptrt * (arg_scale_y * 5));
}
}
}
static void svg_wait_bar(void) {
int i;
svg("<!-- Wait time aggregation box -->\n");
svg("<text class=\"t2\" x=\"5\" y=\"-15\">CPU wait</text>\n");
/* surrounding box */
svg_graph_box(5);
/* bars for each sample, proportional to the CPU util. */
for (i = 1; i < samples; i++) {
int c;
double twt;
double ptwt;
ptwt = twt = 0.0;
for (c = 0; c < cpus; c++)
twt += cpustat[c].sample[i].waittime - cpustat[c].sample[i - 1].waittime;
twt = twt / 1000000000.0;
twt = twt / (double)cpus;
if (twt > 0.0)
ptwt = twt / (sampletime[i] - sampletime[i - 1]);
if (ptwt > 1.0)
ptwt = 1.0;
if (ptwt > 0.001) {
svg("<rect class=\"wait\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
time_to_graph(sampletime[i - 1] - graph_start),
((arg_scale_y * 5) - (ptwt * (arg_scale_y * 5))),
time_to_graph(sampletime[i] - sampletime[i - 1]),
ptwt * (arg_scale_y * 5));
}
}
}
static void svg_entropy_bar(void) {
int i;
svg("<!-- entropy pool graph -->\n");
svg("<text class=\"t2\" x=\"5\" y=\"-15\">Entropy pool size</text>\n");
/* surrounding box */
svg_graph_box(5);
/* bars for each sample, scale 0-4096 */
for (i = 1; i < samples; i++) {
/* svg("<!-- entropy %.03f %i -->\n", sampletime[i], entropy_avail[i]); */
svg("<rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
time_to_graph(sampletime[i - 1] - graph_start),
((arg_scale_y * 5) - ((entropy_avail[i] / 4096.) * (arg_scale_y * 5))),
time_to_graph(sampletime[i] - sampletime[i - 1]),
(entropy_avail[i] / 4096.) * (arg_scale_y * 5));
}
}
static struct ps_struct *get_next_ps(struct ps_struct *ps) {
/*
* walk the list of processes and return the next one to be
* painted
*/
if (ps == ps_first)
return ps->next_ps;
/* go deep */
if (ps->children)
return ps->children;
/* find siblings */
if (ps->next)
return ps->next;
/* go back for parent siblings */
while (1) {
if (ps->parent)
if (ps->parent->next)
return ps->parent->next;
ps = ps->parent;
if (!ps)
return ps;
}
return NULL;
}
static int ps_filter(struct ps_struct *ps) {
if (!arg_filter)
return 0;
/* can't draw data when there is only 1 sample (need start + stop) */
if (ps->first == ps->last)
return -1;
/* don't filter kthreadd */
if (ps->pid == 2)
return 0;
/* drop stuff that doesn't use any real CPU time */
if (ps->total <= 0.001)
return -1;
return 0;
}
static void svg_do_initcall(int count_only) {
FILE _cleanup_pclose_ *f = NULL;
double t;
char func[256];
int ret;
int usecs;
/* can't plot initcall when disabled or in relative mode */
if (!initcall || arg_relative) {
kcount = 0;
return;
}
if (!count_only) {
svg("<!-- initcall -->\n");
svg("<text class=\"t2\" x=\"5\" y=\"-15\">Kernel init threads</text>\n");
/* surrounding box */
svg_graph_box(kcount);
}
kcount = 0;
/*
* Initcall graphing - parses dmesg buffer and displays kernel threads
* This somewhat uses the same methods and scaling to show processes
* but looks a lot simpler. It's overlaid entirely onto the PS graph
* when appropriate.
*/
f = popen("dmesg", "r");
if (!f)
return;
while (!feof(f)) {
int c;
int z = 0;
char l[256];
if (fgets(l, sizeof(l) - 1, f) == NULL)
continue;
c = sscanf(l, "[%lf] initcall %s %*s %d %*s %d %*s",
&t, func, &ret, &usecs);
if (c != 4) {
/* also parse initcalls done by module loading */
c = sscanf(l, "[%lf] initcall %s %*s %*s %d %*s %d %*s",
&t, func, &ret, &usecs);
if (c != 4)
continue;
}
/* chop the +0xXX/0xXX stuff */
while(func[z] != '+')
z++;
func[z] = 0;
if (count_only) {
/* filter out irrelevant stuff */
if (usecs >= 1000)
kcount++;
continue;
}
svg("<!-- thread=\"%s\" time=\"%.3f\" elapsed=\"%d\" result=\"%d\" -->\n",
func, t, usecs, ret);
if (usecs < 1000)
continue;
/* rect */
svg(" <rect class=\"krnl\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
time_to_graph(t - (usecs / 1000000.0)),
ps_to_graph(kcount),
time_to_graph(usecs / 1000000.0),
ps_to_graph(1));
/* label */
svg(" <text x=\"%.03f\" y=\"%.03f\">%s <tspan class=\"run\">%.03fs</tspan></text>\n",
time_to_graph(t - (usecs / 1000000.0)) + 5,
ps_to_graph(kcount) + 15,
func,
usecs / 1000000.0);
kcount++;
}
}
static void svg_ps_bars(void) {
struct ps_struct *ps;
int i = 0;
int j = 0;
int w;
int pid;
svg("<!-- Process graph -->\n");
svg("<text class=\"t2\" x=\"5\" y=\"-15\">Processes</text>\n");
/* surrounding box */
svg_graph_box(pcount);
/* pass 2 - ps boxes */
ps = ps_first;
while ((ps = get_next_ps(ps))) {
char _cleanup_free_ *enc_name = NULL;
double starttime;
int t;
if (!ps)
continue;
enc_name = xml_comment_encode(ps->name);
if(!enc_name)
continue;
/* leave some trace of what we actually filtered etc. */
svg("<!-- %s [%i] ppid=%i runtime=%.03fs -->\n", enc_name, ps->pid,
ps->ppid, ps->total);
/* it would be nice if we could use exec_start from /proc/pid/sched,
* but it's unreliable and gives bogus numbers */
starttime = sampletime[ps->first];
if (!ps_filter(ps)) {
/* remember where _to_ our children need to draw a line */
ps->pos_x = time_to_graph(starttime - graph_start);
ps->pos_y = ps_to_graph(j+1); /* bottom left corner */
} else {
/* hook children to our parent coords instead */
ps->pos_x = ps->parent->pos_x;
ps->pos_y = ps->parent->pos_y;
/* if this is the last child, we might still need to draw a connecting line */
if ((!ps->next) && (ps->parent))
svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
ps->parent->pos_x,
ps_to_graph(j-1) + 10.0, /* whee, use the last value here */
ps->parent->pos_x,
ps->parent->pos_y);
continue;
}
svg(" <rect class=\"ps\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
time_to_graph(starttime - graph_start),
ps_to_graph(j),
time_to_graph(sampletime[ps->last] - starttime),
ps_to_graph(1));
/* paint cpu load over these */
for (t = ps->first + 1; t < ps->last; t++) {
double rt, prt;
double wt, wrt;
/* calculate over interval */
rt = ps->sample[t].runtime - ps->sample[t-1].runtime;
wt = ps->sample[t].waittime - ps->sample[t-1].waittime;
prt = (rt / 1000000000) / (sampletime[t] - sampletime[t-1]);
wrt = (wt / 1000000000) / (sampletime[t] - sampletime[t-1]);
/* this can happen if timekeeping isn't accurate enough */
if (prt > 1.0)
prt = 1.0;
if (wrt > 1.0)
wrt = 1.0;
if ((prt < 0.1) && (wrt < 0.1)) /* =~ 26 (color threshold) */
continue;
svg(" <rect class=\"wait\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
time_to_graph(sampletime[t - 1] - graph_start),
ps_to_graph(j),
time_to_graph(sampletime[t] - sampletime[t - 1]),
ps_to_graph(wrt));
/* draw cpu over wait - TODO figure out how/why run + wait > interval */
svg(" <rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n",
time_to_graph(sampletime[t - 1] - graph_start),
ps_to_graph(j + (1.0 - prt)),
time_to_graph(sampletime[t] - sampletime[t - 1]),
ps_to_graph(prt));
}
/* determine where to display the process name */
if (sampletime[ps->last] - sampletime[ps->first] < 1.5)
/* too small to fit label inside the box */
w = ps->last;
else
w = ps->first;
/* text label of process name */
svg(" <text x=\"%.03f\" y=\"%.03f\"><![CDATA[%s]]> [%i]<tspan class=\"run\">%.03fs</tspan></text>\n",
time_to_graph(sampletime[w] - graph_start) + 5.0,
ps_to_graph(j) + 14.0,
ps->name,
ps->pid,
(ps->sample[ps->last].runtime - ps->sample[ps->first].runtime) / 1000000000.0);
/* paint lines to the parent process */
if (ps->parent) {
/* horizontal part */
svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
time_to_graph(starttime - graph_start),
ps_to_graph(j) + 10.0,
ps->parent->pos_x,
ps_to_graph(j) + 10.0);
/* one vertical line connecting all the horizontal ones up */
if (!ps->next)
svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
ps->parent->pos_x,
ps_to_graph(j) + 10.0,
ps->parent->pos_x,
ps->parent->pos_y);
}
j++; /* count boxes */
svg("\n");
}
/* last pass - determine when idle */
pid = getpid();
/* make sure we start counting from the point where we actually have
* data: assume that bootchart's first sample is when data started
*/
ps = ps_first;
while (ps->next_ps) {
ps = ps->next_ps;
if (ps->pid == pid)
break;
}
for (i = ps->first; i < samples - (arg_hz / 2); i++) {
double crt;
double brt;
int c;
/* subtract bootchart cpu utilization from total */
crt = 0.0;
for (c = 0; c < cpus; c++)
crt += cpustat[c].sample[i + ((int)arg_hz / 2)].runtime - cpustat[c].sample[i].runtime;
brt = ps->sample[i + ((int)arg_hz / 2)].runtime - ps->sample[i].runtime;
/*
* our definition of "idle":
*
* if for (hz / 2) we've used less CPU than (interval / 2) ...
* defaults to 4.0%, which experimentally, is where atom idles
*/
if ((crt - brt) < (interval / 2.0)) {
idletime = sampletime[i] - graph_start;
svg("\n<!-- idle detected at %.03f seconds -->\n",
idletime);
svg("<line class=\"idle\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n",
time_to_graph(idletime),
-arg_scale_y,
time_to_graph(idletime),
ps_to_graph(pcount) + arg_scale_y);
svg("<text class=\"idle\" x=\"%.03f\" y=\"%.03f\">%.01fs</text>\n",
time_to_graph(idletime) + 5.0,
ps_to_graph(pcount) + arg_scale_y,
idletime);
break;
}
}
}
static void svg_top_ten_cpu(void) {
struct ps_struct *top[10];
struct ps_struct emptyps;
struct ps_struct *ps;
int n, m;
memset(&emptyps, 0, sizeof(struct ps_struct));
for (n=0; n < 10; n++)
top[n] = &emptyps;
/* walk all ps's and setup ptrs */
ps = ps_first;
while ((ps = get_next_ps(ps))) {
for (n = 0; n < 10; n++) {
if (ps->total <= top[n]->total)
continue;
/* cascade insert */
for (m = 9; m > n; m--)
top[m] = top[m-1];
top[n] = ps;
break;
}
}
svg("<text class=\"t2\" x=\"20\" y=\"0\">Top CPU consumers:</text>\n");
for (n = 0; n < 10; n++)
svg("<text class=\"t3\" x=\"20\" y=\"%d\">%3.03fs - <![CDATA[%s]]> [%d]</text>\n",
20 + (n * 13),
top[n]->total,
top[n]->name,
top[n]->pid);
}
static void svg_top_ten_pss(void) {
struct ps_struct *top[10];
struct ps_struct emptyps;
struct ps_struct *ps;
int n, m;
memset(&emptyps, 0, sizeof(struct ps_struct));
for (n=0; n < 10; n++)
top[n] = &emptyps;
/* walk all ps's and setup ptrs */
ps = ps_first;
while ((ps = get_next_ps(ps))) {
for (n = 0; n < 10; n++) {
if (ps->pss_max <= top[n]->pss_max)
continue;
/* cascade insert */
for (m = 9; m > n; m--)
top[m] = top[m-1];
top[n] = ps;
break;
}
}
svg("<text class=\"t2\" x=\"20\" y=\"0\">Top PSS consumers:</text>\n");
for (n = 0; n < 10; n++)
svg("<text class=\"t3\" x=\"20\" y=\"%d\">%dK - <![CDATA[%s]]> [%d]</text>\n",
20 + (n * 13),
top[n]->pss_max,
top[n]->name,
top[n]->pid);
}
void svg_do(const char *build) {
struct ps_struct *ps;
memset(&str, 0, sizeof(str));
ps = ps_first;
/* count initcall thread count first */
svg_do_initcall(1);
ksize = (kcount ? ps_to_graph(kcount) + (arg_scale_y * 2) : 0);
/* then count processes */
while ((ps = get_next_ps(ps))) {
if (!ps_filter(ps))
pcount++;
else
pfiltered++;
}
psize = ps_to_graph(pcount) + (arg_scale_y * 2);
esize = (arg_entropy ? arg_scale_y * 7 : 0);
/* after this, we can draw the header with proper sizing */
svg_header();
svg("<g transform=\"translate(10,400)\">\n");
svg_io_bi_bar();
svg("</g>\n\n");
svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (arg_scale_y * 7.0));
svg_io_bo_bar();
svg("</g>\n\n");
svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (arg_scale_y * 14.0));
svg_cpu_bar();
svg("</g>\n\n");
svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (arg_scale_y * 21.0));
svg_wait_bar();
svg("</g>\n\n");
if (kcount) {
svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (arg_scale_y * 28.0));
svg_do_initcall(0);
svg("</g>\n\n");
}
svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (arg_scale_y * 28.0) + ksize);
svg_ps_bars();
svg("</g>\n\n");
svg("<g transform=\"translate(10, 0)\">\n");
svg_title(build);
svg("</g>\n\n");
svg("<g transform=\"translate(10,200)\">\n");
svg_top_ten_cpu();
svg("</g>\n\n");
if (arg_entropy) {
svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (arg_scale_y * 28.0) + ksize + psize);
svg_entropy_bar();
svg("</g>\n\n");
}
if (arg_pss) {
svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (arg_scale_y * 28.0) + ksize + psize + esize);
svg_pss_graph();
svg("</g>\n\n");
svg("<g transform=\"translate(410,200)\">\n");
svg_top_ten_pss();
svg("</g>\n\n");
}
/* svg footer */
svg("\n</svg>\n");
}