| /*** |
| This file is part of systemd. |
| |
| Copyright 2013 Lennart Poettering |
| |
| systemd is free software; you can redistribute it and/or modify it |
| under the terms of the GNU Lesser General Public License as published by |
| the Free Software Foundation; either version 2.1 of the License, or |
| (at your option) any later version. |
| |
| systemd is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public License |
| along with systemd; If not, see <http://www.gnu.org/licenses/>. |
| ***/ |
| |
| #include "random-util.h" |
| #include "string-util.h" |
| #include "strv.h" |
| #include "time-util.h" |
| |
| static void test_parse_sec(void) { |
| usec_t u; |
| |
| assert_se(parse_sec("5s", &u) >= 0); |
| assert_se(u == 5 * USEC_PER_SEC); |
| assert_se(parse_sec("5s500ms", &u) >= 0); |
| assert_se(u == 5 * USEC_PER_SEC + 500 * USEC_PER_MSEC); |
| assert_se(parse_sec(" 5s 500ms ", &u) >= 0); |
| assert_se(u == 5 * USEC_PER_SEC + 500 * USEC_PER_MSEC); |
| assert_se(parse_sec(" 5.5s ", &u) >= 0); |
| assert_se(u == 5 * USEC_PER_SEC + 500 * USEC_PER_MSEC); |
| assert_se(parse_sec(" 5.5s 0.5ms ", &u) >= 0); |
| assert_se(u == 5 * USEC_PER_SEC + 500 * USEC_PER_MSEC + 500); |
| assert_se(parse_sec(" .22s ", &u) >= 0); |
| assert_se(u == 220 * USEC_PER_MSEC); |
| assert_se(parse_sec(" .50y ", &u) >= 0); |
| assert_se(u == USEC_PER_YEAR / 2); |
| assert_se(parse_sec("2.5", &u) >= 0); |
| assert_se(u == 2500 * USEC_PER_MSEC); |
| assert_se(parse_sec(".7", &u) >= 0); |
| assert_se(u == 700 * USEC_PER_MSEC); |
| assert_se(parse_sec("23us", &u) >= 0); |
| assert_se(u == 23); |
| assert_se(parse_sec("23µs", &u) >= 0); |
| assert_se(u == 23); |
| assert_se(parse_sec("infinity", &u) >= 0); |
| assert_se(u == USEC_INFINITY); |
| assert_se(parse_sec(" infinity ", &u) >= 0); |
| assert_se(u == USEC_INFINITY); |
| |
| assert_se(parse_sec(" xyz ", &u) < 0); |
| assert_se(parse_sec("", &u) < 0); |
| assert_se(parse_sec(" . ", &u) < 0); |
| assert_se(parse_sec(" 5. ", &u) < 0); |
| assert_se(parse_sec(".s ", &u) < 0); |
| assert_se(parse_sec(" infinity .7", &u) < 0); |
| assert_se(parse_sec(".3 infinity", &u) < 0); |
| } |
| |
| static void test_parse_sec_fix_0(void) { |
| usec_t u; |
| |
| assert_se(parse_sec_fix_0("5s", &u) >= 0); |
| assert_se(u == 5 * USEC_PER_SEC); |
| assert_se(parse_sec_fix_0("0s", &u) >= 0); |
| assert_se(u == 0 * USEC_PER_SEC); |
| assert_se(parse_sec_fix_0("0", &u) >= 0); |
| assert_se(u == USEC_INFINITY); |
| assert_se(parse_sec_fix_0(" 0", &u) >= 0); |
| assert_se(u == USEC_INFINITY); |
| } |
| |
| static void test_parse_time(void) { |
| usec_t u; |
| |
| assert_se(parse_time("5", &u, 1) >= 0); |
| assert_se(u == 5); |
| |
| assert_se(parse_time("5", &u, USEC_PER_MSEC) >= 0); |
| assert_se(u == 5 * USEC_PER_MSEC); |
| |
| assert_se(parse_time("5", &u, USEC_PER_SEC) >= 0); |
| assert_se(u == 5 * USEC_PER_SEC); |
| |
| assert_se(parse_time("5s", &u, 1) >= 0); |
| assert_se(u == 5 * USEC_PER_SEC); |
| |
| assert_se(parse_time("5s", &u, USEC_PER_SEC) >= 0); |
| assert_se(u == 5 * USEC_PER_SEC); |
| |
| assert_se(parse_time("5s", &u, USEC_PER_MSEC) >= 0); |
| assert_se(u == 5 * USEC_PER_SEC); |
| } |
| |
| static void test_parse_nsec(void) { |
| nsec_t u; |
| |
| assert_se(parse_nsec("5s", &u) >= 0); |
| assert_se(u == 5 * NSEC_PER_SEC); |
| assert_se(parse_nsec("5s500ms", &u) >= 0); |
| assert_se(u == 5 * NSEC_PER_SEC + 500 * NSEC_PER_MSEC); |
| assert_se(parse_nsec(" 5s 500ms ", &u) >= 0); |
| assert_se(u == 5 * NSEC_PER_SEC + 500 * NSEC_PER_MSEC); |
| assert_se(parse_nsec(" 5.5s ", &u) >= 0); |
| assert_se(u == 5 * NSEC_PER_SEC + 500 * NSEC_PER_MSEC); |
| assert_se(parse_nsec(" 5.5s 0.5ms ", &u) >= 0); |
| assert_se(u == 5 * NSEC_PER_SEC + 500 * NSEC_PER_MSEC + 500 * NSEC_PER_USEC); |
| assert_se(parse_nsec(" .22s ", &u) >= 0); |
| assert_se(u == 220 * NSEC_PER_MSEC); |
| assert_se(parse_nsec(" .50y ", &u) >= 0); |
| assert_se(u == NSEC_PER_YEAR / 2); |
| assert_se(parse_nsec("2.5", &u) >= 0); |
| assert_se(u == 2); |
| assert_se(parse_nsec(".7", &u) >= 0); |
| assert_se(u == 0); |
| assert_se(parse_nsec("infinity", &u) >= 0); |
| assert_se(u == NSEC_INFINITY); |
| assert_se(parse_nsec(" infinity ", &u) >= 0); |
| assert_se(u == NSEC_INFINITY); |
| |
| assert_se(parse_nsec(" xyz ", &u) < 0); |
| assert_se(parse_nsec("", &u) < 0); |
| assert_se(parse_nsec(" . ", &u) < 0); |
| assert_se(parse_nsec(" 5. ", &u) < 0); |
| assert_se(parse_nsec(".s ", &u) < 0); |
| assert_se(parse_nsec(" infinity .7", &u) < 0); |
| assert_se(parse_nsec(".3 infinity", &u) < 0); |
| } |
| |
| static void test_format_timespan_one(usec_t x, usec_t accuracy) { |
| char *r; |
| char l[FORMAT_TIMESPAN_MAX]; |
| usec_t y; |
| |
| log_info(USEC_FMT" (at accuracy "USEC_FMT")", x, accuracy); |
| |
| r = format_timespan(l, sizeof(l), x, accuracy); |
| assert_se(r); |
| |
| log_info(" = <%s>", l); |
| |
| assert_se(parse_sec(l, &y) >= 0); |
| |
| log_info(" = "USEC_FMT, y); |
| |
| if (accuracy <= 0) |
| accuracy = 1; |
| |
| assert_se(x / accuracy == y / accuracy); |
| } |
| |
| static void test_format_timespan(usec_t accuracy) { |
| test_format_timespan_one(0, accuracy); |
| test_format_timespan_one(1, accuracy); |
| test_format_timespan_one(1*USEC_PER_SEC, accuracy); |
| test_format_timespan_one(999*USEC_PER_MSEC, accuracy); |
| test_format_timespan_one(1234567, accuracy); |
| test_format_timespan_one(12, accuracy); |
| test_format_timespan_one(123, accuracy); |
| test_format_timespan_one(1234, accuracy); |
| test_format_timespan_one(12345, accuracy); |
| test_format_timespan_one(123456, accuracy); |
| test_format_timespan_one(1234567, accuracy); |
| test_format_timespan_one(12345678, accuracy); |
| test_format_timespan_one(1200000, accuracy); |
| test_format_timespan_one(1230000, accuracy); |
| test_format_timespan_one(1230000, accuracy); |
| test_format_timespan_one(1234000, accuracy); |
| test_format_timespan_one(1234500, accuracy); |
| test_format_timespan_one(1234560, accuracy); |
| test_format_timespan_one(1234567, accuracy); |
| test_format_timespan_one(986087, accuracy); |
| test_format_timespan_one(500 * USEC_PER_MSEC, accuracy); |
| test_format_timespan_one(9*USEC_PER_YEAR/5 - 23, accuracy); |
| test_format_timespan_one(USEC_INFINITY, accuracy); |
| } |
| |
| static void test_timezone_is_valid(void) { |
| assert_se(timezone_is_valid("Europe/Berlin")); |
| assert_se(timezone_is_valid("Australia/Sydney")); |
| assert_se(!timezone_is_valid("Europe/Do not exist")); |
| } |
| |
| static void test_get_timezones(void) { |
| _cleanup_strv_free_ char **zones = NULL; |
| int r; |
| char **zone; |
| |
| r = get_timezones(&zones); |
| assert_se(r == 0); |
| |
| STRV_FOREACH(zone, zones) |
| assert_se(timezone_is_valid(*zone)); |
| } |
| |
| static void test_usec_add(void) { |
| assert_se(usec_add(0, 0) == 0); |
| assert_se(usec_add(1, 4) == 5); |
| assert_se(usec_add(USEC_INFINITY, 5) == USEC_INFINITY); |
| assert_se(usec_add(5, USEC_INFINITY) == USEC_INFINITY); |
| assert_se(usec_add(USEC_INFINITY-5, 2) == USEC_INFINITY-3); |
| assert_se(usec_add(USEC_INFINITY-2, 2) == USEC_INFINITY); |
| assert_se(usec_add(USEC_INFINITY-1, 2) == USEC_INFINITY); |
| assert_se(usec_add(USEC_INFINITY, 2) == USEC_INFINITY); |
| } |
| |
| static void test_usec_sub_unsigned(void) { |
| assert_se(usec_sub_unsigned(0, 0) == 0); |
| assert_se(usec_sub_unsigned(0, 2) == 0); |
| assert_se(usec_sub_unsigned(0, USEC_INFINITY) == 0); |
| assert_se(usec_sub_unsigned(1, 0) == 1); |
| assert_se(usec_sub_unsigned(1, 1) == 0); |
| assert_se(usec_sub_unsigned(1, 2) == 0); |
| assert_se(usec_sub_unsigned(1, 3) == 0); |
| assert_se(usec_sub_unsigned(1, USEC_INFINITY) == 0); |
| assert_se(usec_sub_unsigned(USEC_INFINITY-1, 0) == USEC_INFINITY-1); |
| assert_se(usec_sub_unsigned(USEC_INFINITY-1, 1) == USEC_INFINITY-2); |
| assert_se(usec_sub_unsigned(USEC_INFINITY-1, 2) == USEC_INFINITY-3); |
| assert_se(usec_sub_unsigned(USEC_INFINITY-1, USEC_INFINITY-2) == 1); |
| assert_se(usec_sub_unsigned(USEC_INFINITY-1, USEC_INFINITY-1) == 0); |
| assert_se(usec_sub_unsigned(USEC_INFINITY-1, USEC_INFINITY) == 0); |
| assert_se(usec_sub_unsigned(USEC_INFINITY, 0) == USEC_INFINITY); |
| assert_se(usec_sub_unsigned(USEC_INFINITY, 1) == USEC_INFINITY); |
| assert_se(usec_sub_unsigned(USEC_INFINITY, 2) == USEC_INFINITY); |
| assert_se(usec_sub_unsigned(USEC_INFINITY, USEC_INFINITY) == USEC_INFINITY); |
| } |
| |
| static void test_usec_sub_signed(void) { |
| assert_se(usec_sub_signed(0, 0) == 0); |
| assert_se(usec_sub_signed(4, 1) == 3); |
| assert_se(usec_sub_signed(4, 4) == 0); |
| assert_se(usec_sub_signed(4, 5) == 0); |
| assert_se(usec_sub_signed(USEC_INFINITY-3, -3) == USEC_INFINITY); |
| assert_se(usec_sub_signed(USEC_INFINITY-3, -3) == USEC_INFINITY); |
| assert_se(usec_sub_signed(USEC_INFINITY-3, -4) == USEC_INFINITY); |
| assert_se(usec_sub_signed(USEC_INFINITY-3, -5) == USEC_INFINITY); |
| assert_se(usec_sub_signed(USEC_INFINITY, 5) == USEC_INFINITY); |
| } |
| |
| static void test_format_timestamp(void) { |
| unsigned i; |
| |
| for (i = 0; i < 100; i++) { |
| char buf[MAX(FORMAT_TIMESTAMP_MAX, FORMAT_TIMESPAN_MAX)]; |
| usec_t x, y; |
| |
| random_bytes(&x, sizeof(x)); |
| x = x % (2147483600 * USEC_PER_SEC) + 1; |
| |
| assert_se(format_timestamp(buf, sizeof(buf), x)); |
| log_info("%s", buf); |
| assert_se(parse_timestamp(buf, &y) >= 0); |
| assert_se(x / USEC_PER_SEC == y / USEC_PER_SEC); |
| |
| assert_se(format_timestamp_utc(buf, sizeof(buf), x)); |
| log_info("%s", buf); |
| assert_se(parse_timestamp(buf, &y) >= 0); |
| assert_se(x / USEC_PER_SEC == y / USEC_PER_SEC); |
| |
| assert_se(format_timestamp_us(buf, sizeof(buf), x)); |
| log_info("%s", buf); |
| assert_se(parse_timestamp(buf, &y) >= 0); |
| assert_se(x == y); |
| |
| assert_se(format_timestamp_us_utc(buf, sizeof(buf), x)); |
| log_info("%s", buf); |
| assert_se(parse_timestamp(buf, &y) >= 0); |
| assert_se(x == y); |
| |
| assert_se(format_timestamp_relative(buf, sizeof(buf), x)); |
| log_info("%s", buf); |
| assert_se(parse_timestamp(buf, &y) >= 0); |
| |
| /* The two calls above will run with a slightly different local time. Make sure we are in the same |
| * range however, but give enough leeway that this is unlikely to explode. And of course, |
| * format_timestamp_relative() scales the accuracy with the distance from the current time up to one |
| * month, cover for that too. */ |
| assert_se(y > x ? y - x : x - y <= USEC_PER_MONTH + USEC_PER_DAY); |
| } |
| } |
| |
| static void test_format_timestamp_utc_one(usec_t t, const char *result) { |
| char buf[FORMAT_TIMESTAMP_MAX]; |
| |
| assert_se(!format_timestamp_utc(buf, sizeof(buf), t) == !result); |
| |
| if (result) |
| assert_se(streq(result, buf)); |
| } |
| |
| static void test_format_timestamp_utc(void) { |
| test_format_timestamp_utc_one(0, NULL); |
| test_format_timestamp_utc_one(1, "Thu 1970-01-01 00:00:00 UTC"); |
| test_format_timestamp_utc_one(USEC_PER_SEC, "Thu 1970-01-01 00:00:01 UTC"); |
| |
| #if SIZEOF_TIME_T == 8 |
| test_format_timestamp_utc_one(USEC_TIMESTAMP_FORMATTABLE_MAX, "Thu 9999-12-30 23:59:59 UTC"); |
| #elif SIZEOF_TIME_T == 4 |
| test_format_timestamp_utc_one(USEC_TIMESTAMP_FORMATTABLE_MAX, "Tue 2038-01-19 03:14:07 UTC"); |
| #endif |
| |
| test_format_timestamp_utc_one(USEC_TIMESTAMP_FORMATTABLE_MAX+1, NULL); |
| test_format_timestamp_utc_one(USEC_INFINITY, NULL); |
| } |
| |
| static void test_dual_timestamp_deserialize(void) { |
| int r; |
| dual_timestamp t; |
| |
| r = dual_timestamp_deserialize("1234 5678", &t); |
| assert_se(r == 0); |
| assert_se(t.realtime == 1234); |
| assert_se(t.monotonic == 5678); |
| |
| r = dual_timestamp_deserialize("1234x 5678", &t); |
| assert_se(r == -EINVAL); |
| |
| r = dual_timestamp_deserialize("1234 5678y", &t); |
| assert_se(r == -EINVAL); |
| |
| r = dual_timestamp_deserialize("-1234 5678", &t); |
| assert_se(r == -EINVAL); |
| |
| r = dual_timestamp_deserialize("1234 -5678", &t); |
| assert_se(r == -EINVAL); |
| |
| /* Check that output wasn't modified. */ |
| assert_se(t.realtime == 1234); |
| assert_se(t.monotonic == 5678); |
| |
| r = dual_timestamp_deserialize("+123 567", &t); |
| assert_se(r == 0); |
| assert_se(t.realtime == 123); |
| assert_se(t.monotonic == 567); |
| |
| /* Check that we get "infinity" on overflow. */ |
| r = dual_timestamp_deserialize("18446744073709551617 0", &t); |
| assert_se(r == 0); |
| assert_se(t.realtime == USEC_INFINITY); |
| assert_se(t.monotonic == 0); |
| } |
| |
| static void assert_similar(usec_t a, usec_t b) { |
| usec_t d; |
| |
| if (a > b) |
| d = a - b; |
| else |
| d = b - a; |
| |
| assert(d < 10*USEC_PER_SEC); |
| } |
| |
| static void test_usec_shift_clock(void) { |
| usec_t rt, mn, bt; |
| |
| rt = now(CLOCK_REALTIME); |
| mn = now(CLOCK_MONOTONIC); |
| bt = now(clock_boottime_or_monotonic()); |
| |
| assert_se(usec_shift_clock(USEC_INFINITY, CLOCK_REALTIME, CLOCK_MONOTONIC) == USEC_INFINITY); |
| |
| assert_similar(usec_shift_clock(rt + USEC_PER_HOUR, CLOCK_REALTIME, CLOCK_MONOTONIC), mn + USEC_PER_HOUR); |
| assert_similar(usec_shift_clock(rt + 2*USEC_PER_HOUR, CLOCK_REALTIME, clock_boottime_or_monotonic()), bt + 2*USEC_PER_HOUR); |
| assert_se(usec_shift_clock(rt + 3*USEC_PER_HOUR, CLOCK_REALTIME, CLOCK_REALTIME_ALARM) == rt + 3*USEC_PER_HOUR); |
| |
| assert_similar(usec_shift_clock(mn + 4*USEC_PER_HOUR, CLOCK_MONOTONIC, CLOCK_REALTIME_ALARM), rt + 4*USEC_PER_HOUR); |
| assert_similar(usec_shift_clock(mn + 5*USEC_PER_HOUR, CLOCK_MONOTONIC, clock_boottime_or_monotonic()), bt + 5*USEC_PER_HOUR); |
| assert_se(usec_shift_clock(mn + 6*USEC_PER_HOUR, CLOCK_MONOTONIC, CLOCK_MONOTONIC) == mn + 6*USEC_PER_HOUR); |
| |
| assert_similar(usec_shift_clock(bt + 7*USEC_PER_HOUR, clock_boottime_or_monotonic(), CLOCK_MONOTONIC), mn + 7*USEC_PER_HOUR); |
| assert_similar(usec_shift_clock(bt + 8*USEC_PER_HOUR, clock_boottime_or_monotonic(), CLOCK_REALTIME_ALARM), rt + 8*USEC_PER_HOUR); |
| assert_se(usec_shift_clock(bt + 9*USEC_PER_HOUR, clock_boottime_or_monotonic(), clock_boottime_or_monotonic()) == bt + 9*USEC_PER_HOUR); |
| |
| if (mn > USEC_PER_MINUTE) { |
| assert_similar(usec_shift_clock(rt - 30 * USEC_PER_SEC, CLOCK_REALTIME_ALARM, CLOCK_MONOTONIC), mn - 30 * USEC_PER_SEC); |
| assert_similar(usec_shift_clock(rt - 50 * USEC_PER_SEC, CLOCK_REALTIME, clock_boottime_or_monotonic()), bt - 50 * USEC_PER_SEC); |
| } |
| } |
| |
| int main(int argc, char *argv[]) { |
| uintmax_t x; |
| |
| log_info("realtime=" USEC_FMT "\n" |
| "monotonic=" USEC_FMT "\n" |
| "boottime=" USEC_FMT "\n", |
| now(CLOCK_REALTIME), |
| now(CLOCK_MONOTONIC), |
| now(clock_boottime_or_monotonic())); |
| |
| test_parse_sec(); |
| test_parse_sec_fix_0(); |
| test_parse_time(); |
| test_parse_nsec(); |
| test_format_timespan(1); |
| test_format_timespan(USEC_PER_MSEC); |
| test_format_timespan(USEC_PER_SEC); |
| test_timezone_is_valid(); |
| test_get_timezones(); |
| test_usec_add(); |
| test_usec_sub_signed(); |
| test_usec_sub_unsigned(); |
| test_format_timestamp(); |
| test_format_timestamp_utc(); |
| test_dual_timestamp_deserialize(); |
| test_usec_shift_clock(); |
| |
| /* Ensure time_t is signed */ |
| assert_cc((time_t) -1 < (time_t) 1); |
| |
| /* Ensure TIME_T_MAX works correctly */ |
| x = (uintmax_t) TIME_T_MAX; |
| x++; |
| assert((time_t) x < 0); |
| |
| return 0; |
| } |