blob: fdfe4655942a5a8f38569dcbd758a5df47dc4612 [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include "openssl-util.h"
#include "alloc-util.h"
#include "hexdecoct.h"
#if HAVE_OPENSSL
int openssl_hash(const EVP_MD *alg,
const void *msg,
size_t msg_len,
uint8_t *ret_hash,
size_t *ret_hash_len) {
_cleanup_(EVP_MD_CTX_freep) EVP_MD_CTX *ctx = NULL;
unsigned len;
int r;
ctx = EVP_MD_CTX_new();
if (!ctx)
/* This function just calls OPENSSL_zalloc, so failure
* here is almost certainly a failed allocation. */
return -ENOMEM;
/* The documentation claims EVP_DigestInit behaves just like
* EVP_DigestInit_ex if passed NULL, except it also calls
* EVP_MD_CTX_reset, which deinitializes the context. */
r = EVP_DigestInit_ex(ctx, alg, NULL);
if (r == 0)
return -EIO;
r = EVP_DigestUpdate(ctx, msg, msg_len);
if (r == 0)
return -EIO;
r = EVP_DigestFinal_ex(ctx, ret_hash, &len);
if (r == 0)
return -EIO;
if (ret_hash_len)
*ret_hash_len = len;
return 0;
}
int rsa_encrypt_bytes(
EVP_PKEY *pkey,
const void *decrypted_key,
size_t decrypted_key_size,
void **ret_encrypt_key,
size_t *ret_encrypt_key_size) {
_cleanup_(EVP_PKEY_CTX_freep) EVP_PKEY_CTX *ctx = NULL;
_cleanup_free_ void *b = NULL;
size_t l;
ctx = EVP_PKEY_CTX_new(pkey, NULL);
if (!ctx)
return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Failed to allocate public key context");
if (EVP_PKEY_encrypt_init(ctx) <= 0)
return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Failed to initialize public key context");
if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING) <= 0)
return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Failed to configure PKCS#1 padding");
if (EVP_PKEY_encrypt(ctx, NULL, &l, decrypted_key, decrypted_key_size) <= 0)
return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Failed to determine encrypted key size");
b = malloc(l);
if (!b)
return -ENOMEM;
if (EVP_PKEY_encrypt(ctx, b, &l, decrypted_key, decrypted_key_size) <= 0)
return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Failed to determine encrypted key size");
*ret_encrypt_key = TAKE_PTR(b);
*ret_encrypt_key_size = l;
return 0;
}
int rsa_pkey_to_suitable_key_size(
EVP_PKEY *pkey,
size_t *ret_suitable_key_size) {
size_t suitable_key_size;
int bits;
assert_se(pkey);
assert_se(ret_suitable_key_size);
/* Analyzes the specified public key and that it is RSA. If so, will return a suitable size for a
* disk encryption key to encrypt with RSA for use in PKCS#11 security token schemes. */
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_RSA)
return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), "X.509 certificate does not refer to RSA key.");
bits = EVP_PKEY_bits(pkey);
log_debug("Bits in RSA key: %i", bits);
/* We use PKCS#1 padding for the RSA cleartext, hence let's leave some extra space for it, hence only
* generate a random key half the size of the RSA length */
suitable_key_size = bits / 8 / 2;
if (suitable_key_size < 1)
return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Uh, RSA key size too short?");
*ret_suitable_key_size = suitable_key_size;
return 0;
}
# if PREFER_OPENSSL
int string_hashsum(
const char *s,
size_t len,
const EVP_MD *md_algorithm,
char **ret) {
uint8_t hash[EVP_MAX_MD_SIZE];
size_t hash_size;
char *enc;
int r;
hash_size = EVP_MD_size(md_algorithm);
assert(hash_size > 0);
r = openssl_hash(md_algorithm, s, len, hash, NULL);
if (r < 0)
return r;
enc = hexmem(hash, hash_size);
if (!enc)
return -ENOMEM;
*ret = enc;
return 0;
}
# endif
#endif