blob: f2e68fcddde64138509fda313b6da19ccb9a3516 [file] [log] [blame] [raw]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#if defined(__i386__) || defined(__x86_64__)
#include <cpuid.h>
#endif
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/random.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#if HAVE_SYS_AUXV_H
# include <sys/auxv.h>
#endif
#include "alloc-util.h"
#include "env-util.h"
#include "errno-util.h"
#include "fd-util.h"
#include "fileio.h"
#include "io-util.h"
#include "missing_random.h"
#include "missing_syscall.h"
#include "parse-util.h"
#include "random-util.h"
#include "siphash24.h"
#include "time-util.h"
static bool srand_called = false;
int genuine_random_bytes(void *p, size_t n, RandomFlags flags) {
static int have_syscall = -1;
_cleanup_close_ int fd = -1;
/* Gathers some high-quality randomness from the kernel. This call won't block, unless the RANDOM_BLOCK
* flag is set. If it doesn't block, it will still always return some data from the kernel, regardless
* of whether the random pool is fully initialized or not. When creating cryptographic key material you
* should always use RANDOM_BLOCK. */
if (n == 0)
return 0;
/* Use the getrandom() syscall unless we know we don't have it. */
if (have_syscall != 0 && !HAS_FEATURE_MEMORY_SANITIZER) {
for (;;) {
ssize_t l = getrandom(p, n, FLAGS_SET(flags, RANDOM_BLOCK) ? 0 : GRND_INSECURE);
if (l > 0) {
have_syscall = true;
if ((size_t) l == n)
return 0; /* Yay, success! */
/* We didn't get enough data, so try again */
assert((size_t) l < n);
p = (uint8_t*) p + l;
n -= l;
continue;
} else if (l == 0) {
have_syscall = true;
return -EIO;
} else if (ERRNO_IS_NOT_SUPPORTED(errno)) {
/* We lack the syscall, continue with reading from /dev/urandom. */
have_syscall = false;
break;
} else if (errno == EINVAL) {
/* If we previously passed GRND_INSECURE, and this flag isn't known, then
* we're likely running an old kernel which has getrandom() but not
* GRND_INSECURE. In this case, fall back to /dev/urandom. */
if (!FLAGS_SET(flags, RANDOM_BLOCK))
break;
return -errno;
} else
return -errno;
}
}
fd = open("/dev/urandom", O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd < 0)
return errno == ENOENT ? -ENOSYS : -errno;
return loop_read_exact(fd, p, n, true);
}
static void clear_srand_initialization(void) {
srand_called = false;
}
void initialize_srand(void) {
static bool pthread_atfork_registered = false;
unsigned x;
#if HAVE_SYS_AUXV_H
const void *auxv;
#endif
if (srand_called)
return;
#if HAVE_SYS_AUXV_H
/* The kernel provides us with 16 bytes of entropy in auxv, so let's try to make use of that to seed
* the pseudo-random generator. It's better than nothing... But let's first hash it to make it harder
* to recover the original value by watching any pseudo-random bits we generate. After all the
* AT_RANDOM data might be used by other stuff too (in particular: ASLR), and we probably shouldn't
* leak the seed for that. */
auxv = ULONG_TO_PTR(getauxval(AT_RANDOM));
if (auxv) {
static const uint8_t auxval_hash_key[16] = {
0x92, 0x6e, 0xfe, 0x1b, 0xcf, 0x00, 0x52, 0x9c, 0xcc, 0x42, 0xcf, 0xdc, 0x94, 0x1f, 0x81, 0x0f
};
x = (unsigned) siphash24(auxv, 16, auxval_hash_key);
} else
#endif
x = 0;
x ^= (unsigned) now(CLOCK_REALTIME);
x ^= (unsigned) gettid();
srand(x);
srand_called = true;
if (!pthread_atfork_registered) {
(void) pthread_atfork(NULL, NULL, clear_srand_initialization);
pthread_atfork_registered = true;
}
}
/* INT_MAX gives us only 31 bits, so use 24 out of that. */
#if RAND_MAX >= INT_MAX
assert_cc(RAND_MAX >= 16777215);
# define RAND_STEP 3
#else
/* SHORT_INT_MAX or lower gives at most 15 bits, we just use 8 out of that. */
assert_cc(RAND_MAX >= 255);
# define RAND_STEP 1
#endif
void pseudo_random_bytes(void *p, size_t n) {
uint8_t *q;
/* This returns pseudo-random data using libc's rand() function. You probably never want to call this
* directly, because why would you use this if you can get better stuff cheaply? Use random_bytes()
* instead, see below: it will fall back to this function if there's nothing better to get, but only
* then. */
initialize_srand();
for (q = p; q < (uint8_t*) p + n; q += RAND_STEP) {
unsigned rr;
rr = (unsigned) rand();
#if RAND_STEP >= 3
if ((size_t) (q - (uint8_t*) p + 2) < n)
q[2] = rr >> 16;
#endif
#if RAND_STEP >= 2
if ((size_t) (q - (uint8_t*) p + 1) < n)
q[1] = rr >> 8;
#endif
q[0] = rr;
}
}
void random_bytes(void *p, size_t n) {
/* This returns high quality randomness if we can get it cheaply. If we can't because for some reason
* it is not available we'll try some crappy fallbacks.
*
* What this function will do:
*
* • Use getrandom(GRND_INSECURE) or /dev/urandom, to return high-quality random values if
* they are cheaply available, or less high-quality random values if they are not.
*
* • This function will return pseudo-random data, generated via libc rand() if nothing
* better is available.
*
* • This function will work fine in early boot
*
* • This function will always succeed
*
* What this function won't do:
*
* • This function will never fail: it will give you randomness no matter what. It might not
* be high quality, but it will return some, possibly generated via libc's rand() call.
*
* • This function will never block: if the only way to get good randomness is a blocking,
* synchronous getrandom() we'll instead provide you with pseudo-random data.
*
* This function is hence great for things like seeding hash tables, generating random numeric UNIX
* user IDs (that are checked for collisions before use) and such.
*
* This function is hence not useful for generating UUIDs or cryptographic key material.
*/
if (genuine_random_bytes(p, n, 0) >= 0)
return;
/* If for some reason some user made /dev/urandom unavailable to us, or the kernel has no entropy, use a PRNG instead. */
pseudo_random_bytes(p, n);
}
size_t random_pool_size(void) {
_cleanup_free_ char *s = NULL;
int r;
/* Read pool size, if possible */
r = read_one_line_file("/proc/sys/kernel/random/poolsize", &s);
if (r < 0)
log_debug_errno(r, "Failed to read pool size from kernel: %m");
else {
unsigned sz;
r = safe_atou(s, &sz);
if (r < 0)
log_debug_errno(r, "Failed to parse pool size: %s", s);
else
/* poolsize is in bits on 2.6, but we want bytes */
return CLAMP(sz / 8, RANDOM_POOL_SIZE_MIN, RANDOM_POOL_SIZE_MAX);
}
/* Use the minimum as default, if we can't retrieve the correct value */
return RANDOM_POOL_SIZE_MIN;
}
int random_write_entropy(int fd, const void *seed, size_t size, bool credit) {
_cleanup_close_ int opened_fd = -1;
int r;
assert(seed || size == 0);
if (size == 0)
return 0;
if (fd < 0) {
opened_fd = open("/dev/urandom", O_WRONLY|O_CLOEXEC|O_NOCTTY);
if (opened_fd < 0)
return -errno;
fd = opened_fd;
}
if (credit) {
_cleanup_free_ struct rand_pool_info *info = NULL;
/* The kernel API only accepts "int" as entropy count (which is in bits), let's avoid any
* chance for confusion here. */
if (size > INT_MAX / 8)
return -EOVERFLOW;
info = malloc(offsetof(struct rand_pool_info, buf) + size);
if (!info)
return -ENOMEM;
info->entropy_count = size * 8;
info->buf_size = size;
memcpy(info->buf, seed, size);
if (ioctl(fd, RNDADDENTROPY, info) < 0)
return -errno;
} else {
r = loop_write(fd, seed, size, false);
if (r < 0)
return r;
}
return 1;
}
uint64_t random_u64_range(uint64_t m) {
uint64_t x, remainder;
/* Generates a random number in the range 0…m-1, unbiased. (Java's algorithm) */
if (m == 0) /* Let's take m == 0 as special case to return an integer from the full range */
return random_u64();
if (m == 1)
return 0;
remainder = UINT64_MAX % m;
do {
x = random_u64();
} while (x >= UINT64_MAX - remainder);
return x % m;
}