|  | /* $OpenBSD: smult_curve25519_ref.c,v 1.2 2013/11/02 22:02:14 markus Exp $ */ | 
|  | /* | 
|  | version 20081011 | 
|  | Matthew Dempsky | 
|  | Public domain. | 
|  | Derived from public domain code by D. J. Bernstein. | 
|  | */ | 
|  |  | 
|  | int crypto_scalarmult_curve25519(unsigned char *, const unsigned char *, const unsigned char *); | 
|  |  | 
|  | static void add(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) | 
|  | { | 
|  | unsigned int j; | 
|  | unsigned int u; | 
|  | u = 0; | 
|  | for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; } | 
|  | u += a[31] + b[31]; out[31] = u; | 
|  | } | 
|  |  | 
|  | static void sub(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) | 
|  | { | 
|  | unsigned int j; | 
|  | unsigned int u; | 
|  | u = 218; | 
|  | for (j = 0;j < 31;++j) { | 
|  | u += a[j] + 65280 - b[j]; | 
|  | out[j] = u & 255; | 
|  | u >>= 8; | 
|  | } | 
|  | u += a[31] - b[31]; | 
|  | out[31] = u; | 
|  | } | 
|  |  | 
|  | static void squeeze(unsigned int a[32]) | 
|  | { | 
|  | unsigned int j; | 
|  | unsigned int u; | 
|  | u = 0; | 
|  | for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } | 
|  | u += a[31]; a[31] = u & 127; | 
|  | u = 19 * (u >> 7); | 
|  | for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } | 
|  | u += a[31]; a[31] = u; | 
|  | } | 
|  |  | 
|  | static const unsigned int minusp[32] = { | 
|  | 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128 | 
|  | } ; | 
|  |  | 
|  | static void freeze(unsigned int a[32]) | 
|  | { | 
|  | unsigned int aorig[32]; | 
|  | unsigned int j; | 
|  | unsigned int negative; | 
|  |  | 
|  | for (j = 0;j < 32;++j) aorig[j] = a[j]; | 
|  | add(a,a,minusp); | 
|  | negative = -((a[31] >> 7) & 1); | 
|  | for (j = 0;j < 32;++j) a[j] ^= negative & (aorig[j] ^ a[j]); | 
|  | } | 
|  |  | 
|  | static void mult(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) | 
|  | { | 
|  | unsigned int i; | 
|  | unsigned int j; | 
|  | unsigned int u; | 
|  |  | 
|  | for (i = 0;i < 32;++i) { | 
|  | u = 0; | 
|  | for (j = 0;j <= i;++j) u += a[j] * b[i - j]; | 
|  | for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j]; | 
|  | out[i] = u; | 
|  | } | 
|  | squeeze(out); | 
|  | } | 
|  |  | 
|  | static void mult121665(unsigned int out[32],const unsigned int a[32]) | 
|  | { | 
|  | unsigned int j; | 
|  | unsigned int u; | 
|  |  | 
|  | u = 0; | 
|  | for (j = 0;j < 31;++j) { u += 121665 * a[j]; out[j] = u & 255; u >>= 8; } | 
|  | u += 121665 * a[31]; out[31] = u & 127; | 
|  | u = 19 * (u >> 7); | 
|  | for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; } | 
|  | u += out[j]; out[j] = u; | 
|  | } | 
|  |  | 
|  | static void square(unsigned int out[32],const unsigned int a[32]) | 
|  | { | 
|  | unsigned int i; | 
|  | unsigned int j; | 
|  | unsigned int u; | 
|  |  | 
|  | for (i = 0;i < 32;++i) { | 
|  | u = 0; | 
|  | for (j = 0;j < i - j;++j) u += a[j] * a[i - j]; | 
|  | for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j]; | 
|  | u *= 2; | 
|  | if ((i & 1) == 0) { | 
|  | u += a[i / 2] * a[i / 2]; | 
|  | u += 38 * a[i / 2 + 16] * a[i / 2 + 16]; | 
|  | } | 
|  | out[i] = u; | 
|  | } | 
|  | squeeze(out); | 
|  | } | 
|  |  | 
|  | static void select(unsigned int p[64],unsigned int q[64],const unsigned int r[64],const unsigned int s[64],unsigned int b) | 
|  | { | 
|  | unsigned int j; | 
|  | unsigned int t; | 
|  | unsigned int bminus1; | 
|  |  | 
|  | bminus1 = b - 1; | 
|  | for (j = 0;j < 64;++j) { | 
|  | t = bminus1 & (r[j] ^ s[j]); | 
|  | p[j] = s[j] ^ t; | 
|  | q[j] = r[j] ^ t; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mainloop(unsigned int work[64],const unsigned char e[32]) | 
|  | { | 
|  | unsigned int xzm1[64]; | 
|  | unsigned int xzm[64]; | 
|  | unsigned int xzmb[64]; | 
|  | unsigned int xzm1b[64]; | 
|  | unsigned int xznb[64]; | 
|  | unsigned int xzn1b[64]; | 
|  | unsigned int a0[64]; | 
|  | unsigned int a1[64]; | 
|  | unsigned int b0[64]; | 
|  | unsigned int b1[64]; | 
|  | unsigned int c1[64]; | 
|  | unsigned int r[32]; | 
|  | unsigned int s[32]; | 
|  | unsigned int t[32]; | 
|  | unsigned int u[32]; | 
|  | unsigned int j; | 
|  | unsigned int b; | 
|  | int pos; | 
|  |  | 
|  | for (j = 0;j < 32;++j) xzm1[j] = work[j]; | 
|  | xzm1[32] = 1; | 
|  | for (j = 33;j < 64;++j) xzm1[j] = 0; | 
|  |  | 
|  | xzm[0] = 1; | 
|  | for (j = 1;j < 64;++j) xzm[j] = 0; | 
|  |  | 
|  | for (pos = 254;pos >= 0;--pos) { | 
|  | b = e[pos / 8] >> (pos & 7); | 
|  | b &= 1; | 
|  | select(xzmb,xzm1b,xzm,xzm1,b); | 
|  | add(a0,xzmb,xzmb + 32); | 
|  | sub(a0 + 32,xzmb,xzmb + 32); | 
|  | add(a1,xzm1b,xzm1b + 32); | 
|  | sub(a1 + 32,xzm1b,xzm1b + 32); | 
|  | square(b0,a0); | 
|  | square(b0 + 32,a0 + 32); | 
|  | mult(b1,a1,a0 + 32); | 
|  | mult(b1 + 32,a1 + 32,a0); | 
|  | add(c1,b1,b1 + 32); | 
|  | sub(c1 + 32,b1,b1 + 32); | 
|  | square(r,c1 + 32); | 
|  | sub(s,b0,b0 + 32); | 
|  | mult121665(t,s); | 
|  | add(u,t,b0); | 
|  | mult(xznb,b0,b0 + 32); | 
|  | mult(xznb + 32,s,u); | 
|  | square(xzn1b,c1); | 
|  | mult(xzn1b + 32,r,work); | 
|  | select(xzm,xzm1,xznb,xzn1b,b); | 
|  | } | 
|  |  | 
|  | for (j = 0;j < 64;++j) work[j] = xzm[j]; | 
|  | } | 
|  |  | 
|  | static void recip(unsigned int out[32],const unsigned int z[32]) | 
|  | { | 
|  | unsigned int z2[32]; | 
|  | unsigned int z9[32]; | 
|  | unsigned int z11[32]; | 
|  | unsigned int z2_5_0[32]; | 
|  | unsigned int z2_10_0[32]; | 
|  | unsigned int z2_20_0[32]; | 
|  | unsigned int z2_50_0[32]; | 
|  | unsigned int z2_100_0[32]; | 
|  | unsigned int t0[32]; | 
|  | unsigned int t1[32]; | 
|  | int i; | 
|  |  | 
|  | /* 2 */ square(z2,z); | 
|  | /* 4 */ square(t1,z2); | 
|  | /* 8 */ square(t0,t1); | 
|  | /* 9 */ mult(z9,t0,z); | 
|  | /* 11 */ mult(z11,z9,z2); | 
|  | /* 22 */ square(t0,z11); | 
|  | /* 2^5 - 2^0 = 31 */ mult(z2_5_0,t0,z9); | 
|  |  | 
|  | /* 2^6 - 2^1 */ square(t0,z2_5_0); | 
|  | /* 2^7 - 2^2 */ square(t1,t0); | 
|  | /* 2^8 - 2^3 */ square(t0,t1); | 
|  | /* 2^9 - 2^4 */ square(t1,t0); | 
|  | /* 2^10 - 2^5 */ square(t0,t1); | 
|  | /* 2^10 - 2^0 */ mult(z2_10_0,t0,z2_5_0); | 
|  |  | 
|  | /* 2^11 - 2^1 */ square(t0,z2_10_0); | 
|  | /* 2^12 - 2^2 */ square(t1,t0); | 
|  | /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t0,t1); square(t1,t0); } | 
|  | /* 2^20 - 2^0 */ mult(z2_20_0,t1,z2_10_0); | 
|  |  | 
|  | /* 2^21 - 2^1 */ square(t0,z2_20_0); | 
|  | /* 2^22 - 2^2 */ square(t1,t0); | 
|  | /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { square(t0,t1); square(t1,t0); } | 
|  | /* 2^40 - 2^0 */ mult(t0,t1,z2_20_0); | 
|  |  | 
|  | /* 2^41 - 2^1 */ square(t1,t0); | 
|  | /* 2^42 - 2^2 */ square(t0,t1); | 
|  | /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t1,t0); square(t0,t1); } | 
|  | /* 2^50 - 2^0 */ mult(z2_50_0,t0,z2_10_0); | 
|  |  | 
|  | /* 2^51 - 2^1 */ square(t0,z2_50_0); | 
|  | /* 2^52 - 2^2 */ square(t1,t0); | 
|  | /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } | 
|  | /* 2^100 - 2^0 */ mult(z2_100_0,t1,z2_50_0); | 
|  |  | 
|  | /* 2^101 - 2^1 */ square(t1,z2_100_0); | 
|  | /* 2^102 - 2^2 */ square(t0,t1); | 
|  | /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { square(t1,t0); square(t0,t1); } | 
|  | /* 2^200 - 2^0 */ mult(t1,t0,z2_100_0); | 
|  |  | 
|  | /* 2^201 - 2^1 */ square(t0,t1); | 
|  | /* 2^202 - 2^2 */ square(t1,t0); | 
|  | /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } | 
|  | /* 2^250 - 2^0 */ mult(t0,t1,z2_50_0); | 
|  |  | 
|  | /* 2^251 - 2^1 */ square(t1,t0); | 
|  | /* 2^252 - 2^2 */ square(t0,t1); | 
|  | /* 2^253 - 2^3 */ square(t1,t0); | 
|  | /* 2^254 - 2^4 */ square(t0,t1); | 
|  | /* 2^255 - 2^5 */ square(t1,t0); | 
|  | /* 2^255 - 21 */ mult(out,t1,z11); | 
|  | } | 
|  |  | 
|  | int crypto_scalarmult_curve25519(unsigned char *q, | 
|  | const unsigned char *n, | 
|  | const unsigned char *p) | 
|  | { | 
|  | unsigned int work[96]; | 
|  | unsigned char e[32]; | 
|  | unsigned int i; | 
|  | for (i = 0;i < 32;++i) e[i] = n[i]; | 
|  | e[0] &= 248; | 
|  | e[31] &= 127; | 
|  | e[31] |= 64; | 
|  | for (i = 0;i < 32;++i) work[i] = p[i]; | 
|  | mainloop(work,e); | 
|  | recip(work + 32,work + 32); | 
|  | mult(work + 64,work,work + 32); | 
|  | freeze(work + 64); | 
|  | for (i = 0;i < 32;++i) q[i] = work[64 + i]; | 
|  | return 0; | 
|  | } |