| /* $OpenBSD: ge25519.c,v 1.2 2013/12/07 00:26:37 djm Exp $ */ |
| |
| /* Public Domain, from supercop-20130419/crypto_sign/ed25519/ref/ge25519.c */ |
| |
| #include "fe25519.h" |
| #include "sc25519.h" |
| #include "ge25519.h" |
| |
| /* |
| * Arithmetic on the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2 |
| * with d = -(121665/121666) = 37095705934669439343138083508754565189542113879843219016388785533085940283555 |
| * Base point: (15112221349535400772501151409588531511454012693041857206046113283949847762202,46316835694926478169428394003475163141307993866256225615783033603165251855960); |
| */ |
| |
| /* d */ |
| static const fe25519 ge25519_ecd = {{0xA3, 0x78, 0x59, 0x13, 0xCA, 0x4D, 0xEB, 0x75, 0xAB, 0xD8, 0x41, 0x41, 0x4D, 0x0A, 0x70, 0x00, |
| 0x98, 0xE8, 0x79, 0x77, 0x79, 0x40, 0xC7, 0x8C, 0x73, 0xFE, 0x6F, 0x2B, 0xEE, 0x6C, 0x03, 0x52}}; |
| /* 2*d */ |
| static const fe25519 ge25519_ec2d = {{0x59, 0xF1, 0xB2, 0x26, 0x94, 0x9B, 0xD6, 0xEB, 0x56, 0xB1, 0x83, 0x82, 0x9A, 0x14, 0xE0, 0x00, |
| 0x30, 0xD1, 0xF3, 0xEE, 0xF2, 0x80, 0x8E, 0x19, 0xE7, 0xFC, 0xDF, 0x56, 0xDC, 0xD9, 0x06, 0x24}}; |
| /* sqrt(-1) */ |
| static const fe25519 ge25519_sqrtm1 = {{0xB0, 0xA0, 0x0E, 0x4A, 0x27, 0x1B, 0xEE, 0xC4, 0x78, 0xE4, 0x2F, 0xAD, 0x06, 0x18, 0x43, 0x2F, |
| 0xA7, 0xD7, 0xFB, 0x3D, 0x99, 0x00, 0x4D, 0x2B, 0x0B, 0xDF, 0xC1, 0x4F, 0x80, 0x24, 0x83, 0x2B}}; |
| |
| #define ge25519_p3 ge25519 |
| |
| typedef struct |
| { |
| fe25519 x; |
| fe25519 z; |
| fe25519 y; |
| fe25519 t; |
| } ge25519_p1p1; |
| |
| typedef struct |
| { |
| fe25519 x; |
| fe25519 y; |
| fe25519 z; |
| } ge25519_p2; |
| |
| typedef struct |
| { |
| fe25519 x; |
| fe25519 y; |
| } ge25519_aff; |
| |
| |
| /* Packed coordinates of the base point */ |
| const ge25519 ge25519_base = {{{0x1A, 0xD5, 0x25, 0x8F, 0x60, 0x2D, 0x56, 0xC9, 0xB2, 0xA7, 0x25, 0x95, 0x60, 0xC7, 0x2C, 0x69, |
| 0x5C, 0xDC, 0xD6, 0xFD, 0x31, 0xE2, 0xA4, 0xC0, 0xFE, 0x53, 0x6E, 0xCD, 0xD3, 0x36, 0x69, 0x21}}, |
| {{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, |
| 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}}, |
| {{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, |
| {{0xA3, 0xDD, 0xB7, 0xA5, 0xB3, 0x8A, 0xDE, 0x6D, 0xF5, 0x52, 0x51, 0x77, 0x80, 0x9F, 0xF0, 0x20, |
| 0x7D, 0xE3, 0xAB, 0x64, 0x8E, 0x4E, 0xEA, 0x66, 0x65, 0x76, 0x8B, 0xD7, 0x0F, 0x5F, 0x87, 0x67}}}; |
| |
| /* Multiples of the base point in affine representation */ |
| static const ge25519_aff ge25519_base_multiples_affine[425] = { |
| #include "ge25519_base.data" |
| }; |
| |
| static void p1p1_to_p2(ge25519_p2 *r, const ge25519_p1p1 *p) |
| { |
| fe25519_mul(&r->x, &p->x, &p->t); |
| fe25519_mul(&r->y, &p->y, &p->z); |
| fe25519_mul(&r->z, &p->z, &p->t); |
| } |
| |
| static void p1p1_to_p3(ge25519_p3 *r, const ge25519_p1p1 *p) |
| { |
| p1p1_to_p2((ge25519_p2 *)r, p); |
| fe25519_mul(&r->t, &p->x, &p->y); |
| } |
| |
| static void ge25519_mixadd2(ge25519_p3 *r, const ge25519_aff *q) |
| { |
| fe25519 a,b,t1,t2,c,d,e,f,g,h,qt; |
| fe25519_mul(&qt, &q->x, &q->y); |
| fe25519_sub(&a, &r->y, &r->x); /* A = (Y1-X1)*(Y2-X2) */ |
| fe25519_add(&b, &r->y, &r->x); /* B = (Y1+X1)*(Y2+X2) */ |
| fe25519_sub(&t1, &q->y, &q->x); |
| fe25519_add(&t2, &q->y, &q->x); |
| fe25519_mul(&a, &a, &t1); |
| fe25519_mul(&b, &b, &t2); |
| fe25519_sub(&e, &b, &a); /* E = B-A */ |
| fe25519_add(&h, &b, &a); /* H = B+A */ |
| fe25519_mul(&c, &r->t, &qt); /* C = T1*k*T2 */ |
| fe25519_mul(&c, &c, &ge25519_ec2d); |
| fe25519_add(&d, &r->z, &r->z); /* D = Z1*2 */ |
| fe25519_sub(&f, &d, &c); /* F = D-C */ |
| fe25519_add(&g, &d, &c); /* G = D+C */ |
| fe25519_mul(&r->x, &e, &f); |
| fe25519_mul(&r->y, &h, &g); |
| fe25519_mul(&r->z, &g, &f); |
| fe25519_mul(&r->t, &e, &h); |
| } |
| |
| static void add_p1p1(ge25519_p1p1 *r, const ge25519_p3 *p, const ge25519_p3 *q) |
| { |
| fe25519 a, b, c, d, t; |
| |
| fe25519_sub(&a, &p->y, &p->x); /* A = (Y1-X1)*(Y2-X2) */ |
| fe25519_sub(&t, &q->y, &q->x); |
| fe25519_mul(&a, &a, &t); |
| fe25519_add(&b, &p->x, &p->y); /* B = (Y1+X1)*(Y2+X2) */ |
| fe25519_add(&t, &q->x, &q->y); |
| fe25519_mul(&b, &b, &t); |
| fe25519_mul(&c, &p->t, &q->t); /* C = T1*k*T2 */ |
| fe25519_mul(&c, &c, &ge25519_ec2d); |
| fe25519_mul(&d, &p->z, &q->z); /* D = Z1*2*Z2 */ |
| fe25519_add(&d, &d, &d); |
| fe25519_sub(&r->x, &b, &a); /* E = B-A */ |
| fe25519_sub(&r->t, &d, &c); /* F = D-C */ |
| fe25519_add(&r->z, &d, &c); /* G = D+C */ |
| fe25519_add(&r->y, &b, &a); /* H = B+A */ |
| } |
| |
| /* See http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd */ |
| static void dbl_p1p1(ge25519_p1p1 *r, const ge25519_p2 *p) |
| { |
| fe25519 a,b,c,d; |
| fe25519_square(&a, &p->x); |
| fe25519_square(&b, &p->y); |
| fe25519_square(&c, &p->z); |
| fe25519_add(&c, &c, &c); |
| fe25519_neg(&d, &a); |
| |
| fe25519_add(&r->x, &p->x, &p->y); |
| fe25519_square(&r->x, &r->x); |
| fe25519_sub(&r->x, &r->x, &a); |
| fe25519_sub(&r->x, &r->x, &b); |
| fe25519_add(&r->z, &d, &b); |
| fe25519_sub(&r->t, &r->z, &c); |
| fe25519_sub(&r->y, &d, &b); |
| } |
| |
| /* Constant-time version of: if(b) r = p */ |
| static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b) |
| { |
| fe25519_cmov(&r->x, &p->x, b); |
| fe25519_cmov(&r->y, &p->y, b); |
| } |
| |
| static unsigned char equal(signed char b,signed char c) |
| { |
| unsigned char ub = b; |
| unsigned char uc = c; |
| unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */ |
| crypto_uint32 y = x; /* 0: yes; 1..255: no */ |
| y -= 1; /* 4294967295: yes; 0..254: no */ |
| y >>= 31; /* 1: yes; 0: no */ |
| return y; |
| } |
| |
| static unsigned char negative(signed char b) |
| { |
| unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */ |
| x >>= 63; /* 1: yes; 0: no */ |
| return x; |
| } |
| |
| static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b) |
| { |
| /* constant time */ |
| fe25519 v; |
| *t = ge25519_base_multiples_affine[5*pos+0]; |
| cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],equal(b,1) | equal(b,-1)); |
| cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],equal(b,2) | equal(b,-2)); |
| cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],equal(b,3) | equal(b,-3)); |
| cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],equal(b,-4)); |
| fe25519_neg(&v, &t->x); |
| fe25519_cmov(&t->x, &v, negative(b)); |
| } |
| |
| static void setneutral(ge25519 *r) |
| { |
| fe25519_setzero(&r->x); |
| fe25519_setone(&r->y); |
| fe25519_setone(&r->z); |
| fe25519_setzero(&r->t); |
| } |
| |
| /* ******************************************************************** |
| * EXPORTED FUNCTIONS |
| ******************************************************************** */ |
| |
| /* return 0 on success, -1 otherwise */ |
| int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32]) |
| { |
| unsigned char par; |
| fe25519 t, chk, num, den, den2, den4, den6; |
| fe25519_setone(&r->z); |
| par = p[31] >> 7; |
| fe25519_unpack(&r->y, p); |
| fe25519_square(&num, &r->y); /* x = y^2 */ |
| fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */ |
| fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */ |
| fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */ |
| |
| /* Computation of sqrt(num/den) */ |
| /* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */ |
| fe25519_square(&den2, &den); |
| fe25519_square(&den4, &den2); |
| fe25519_mul(&den6, &den4, &den2); |
| fe25519_mul(&t, &den6, &num); |
| fe25519_mul(&t, &t, &den); |
| |
| fe25519_pow2523(&t, &t); |
| /* 2. computation of r->x = t * num * den^3 */ |
| fe25519_mul(&t, &t, &num); |
| fe25519_mul(&t, &t, &den); |
| fe25519_mul(&t, &t, &den); |
| fe25519_mul(&r->x, &t, &den); |
| |
| /* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */ |
| fe25519_square(&chk, &r->x); |
| fe25519_mul(&chk, &chk, &den); |
| if (!fe25519_iseq_vartime(&chk, &num)) |
| fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1); |
| |
| /* 4. Now we have one of the two square roots, except if input was not a square */ |
| fe25519_square(&chk, &r->x); |
| fe25519_mul(&chk, &chk, &den); |
| if (!fe25519_iseq_vartime(&chk, &num)) |
| return -1; |
| |
| /* 5. Choose the desired square root according to parity: */ |
| if(fe25519_getparity(&r->x) != (1-par)) |
| fe25519_neg(&r->x, &r->x); |
| |
| fe25519_mul(&r->t, &r->x, &r->y); |
| return 0; |
| } |
| |
| void ge25519_pack(unsigned char r[32], const ge25519_p3 *p) |
| { |
| fe25519 tx, ty, zi; |
| fe25519_invert(&zi, &p->z); |
| fe25519_mul(&tx, &p->x, &zi); |
| fe25519_mul(&ty, &p->y, &zi); |
| fe25519_pack(r, &ty); |
| r[31] ^= fe25519_getparity(&tx) << 7; |
| } |
| |
| int ge25519_isneutral_vartime(const ge25519_p3 *p) |
| { |
| int ret = 1; |
| if(!fe25519_iszero(&p->x)) ret = 0; |
| if(!fe25519_iseq_vartime(&p->y, &p->z)) ret = 0; |
| return ret; |
| } |
| |
| /* computes [s1]p1 + [s2]p2 */ |
| void ge25519_double_scalarmult_vartime(ge25519_p3 *r, const ge25519_p3 *p1, const sc25519 *s1, const ge25519_p3 *p2, const sc25519 *s2) |
| { |
| ge25519_p1p1 tp1p1; |
| ge25519_p3 pre[16]; |
| unsigned char b[127]; |
| int i; |
| |
| /* precomputation s2 s1 */ |
| setneutral(pre); /* 00 00 */ |
| pre[1] = *p1; /* 00 01 */ |
| dbl_p1p1(&tp1p1,(ge25519_p2 *)p1); p1p1_to_p3( &pre[2], &tp1p1); /* 00 10 */ |
| add_p1p1(&tp1p1,&pre[1], &pre[2]); p1p1_to_p3( &pre[3], &tp1p1); /* 00 11 */ |
| pre[4] = *p2; /* 01 00 */ |
| add_p1p1(&tp1p1,&pre[1], &pre[4]); p1p1_to_p3( &pre[5], &tp1p1); /* 01 01 */ |
| add_p1p1(&tp1p1,&pre[2], &pre[4]); p1p1_to_p3( &pre[6], &tp1p1); /* 01 10 */ |
| add_p1p1(&tp1p1,&pre[3], &pre[4]); p1p1_to_p3( &pre[7], &tp1p1); /* 01 11 */ |
| dbl_p1p1(&tp1p1,(ge25519_p2 *)p2); p1p1_to_p3( &pre[8], &tp1p1); /* 10 00 */ |
| add_p1p1(&tp1p1,&pre[1], &pre[8]); p1p1_to_p3( &pre[9], &tp1p1); /* 10 01 */ |
| dbl_p1p1(&tp1p1,(ge25519_p2 *)&pre[5]); p1p1_to_p3(&pre[10], &tp1p1); /* 10 10 */ |
| add_p1p1(&tp1p1,&pre[3], &pre[8]); p1p1_to_p3(&pre[11], &tp1p1); /* 10 11 */ |
| add_p1p1(&tp1p1,&pre[4], &pre[8]); p1p1_to_p3(&pre[12], &tp1p1); /* 11 00 */ |
| add_p1p1(&tp1p1,&pre[1],&pre[12]); p1p1_to_p3(&pre[13], &tp1p1); /* 11 01 */ |
| add_p1p1(&tp1p1,&pre[2],&pre[12]); p1p1_to_p3(&pre[14], &tp1p1); /* 11 10 */ |
| add_p1p1(&tp1p1,&pre[3],&pre[12]); p1p1_to_p3(&pre[15], &tp1p1); /* 11 11 */ |
| |
| sc25519_2interleave2(b,s1,s2); |
| |
| /* scalar multiplication */ |
| *r = pre[b[126]]; |
| for(i=125;i>=0;i--) |
| { |
| dbl_p1p1(&tp1p1, (ge25519_p2 *)r); |
| p1p1_to_p2((ge25519_p2 *) r, &tp1p1); |
| dbl_p1p1(&tp1p1, (ge25519_p2 *)r); |
| if(b[i]!=0) |
| { |
| p1p1_to_p3(r, &tp1p1); |
| add_p1p1(&tp1p1, r, &pre[b[i]]); |
| } |
| if(i != 0) p1p1_to_p2((ge25519_p2 *)r, &tp1p1); |
| else p1p1_to_p3(r, &tp1p1); |
| } |
| } |
| |
| void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s) |
| { |
| signed char b[85]; |
| int i; |
| ge25519_aff t; |
| sc25519_window3(b,s); |
| |
| choose_t((ge25519_aff *)r, 0, b[0]); |
| fe25519_setone(&r->z); |
| fe25519_mul(&r->t, &r->x, &r->y); |
| for(i=1;i<85;i++) |
| { |
| choose_t(&t, (unsigned long long) i, b[i]); |
| ge25519_mixadd2(r, &t); |
| } |
| } |