|  | /*	$OpenBSD: sha2.c,v 1.11 2005/08/08 08:05:35 espie Exp $	*/ | 
|  |  | 
|  | /* | 
|  | * FILE:	sha2.c | 
|  | * AUTHOR:	Aaron D. Gifford <me@aarongifford.com> | 
|  | * | 
|  | * Copyright (c) 2000-2001, Aaron D. Gifford | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. Neither the name of the copyright holder nor the names of contributors | 
|  | *    may be used to endorse or promote products derived from this software | 
|  | *    without specific prior written permission. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ | 
|  | */ | 
|  |  | 
|  | /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */ | 
|  |  | 
|  | #include "includes.h" | 
|  |  | 
|  | #include <openssl/opensslv.h> | 
|  |  | 
|  | #if !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \ | 
|  | (OPENSSL_VERSION_NUMBER >= 0x00907000L) | 
|  | #include <sys/types.h> | 
|  | #include <string.h> | 
|  | #include "sha2.h" | 
|  |  | 
|  | /* | 
|  | * UNROLLED TRANSFORM LOOP NOTE: | 
|  | * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform | 
|  | * loop version for the hash transform rounds (defined using macros | 
|  | * later in this file).  Either define on the command line, for example: | 
|  | * | 
|  | *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c | 
|  | * | 
|  | * or define below: | 
|  | * | 
|  | *   #define SHA2_UNROLL_TRANSFORM | 
|  | * | 
|  | */ | 
|  |  | 
|  | /*** SHA-256/384/512 Machine Architecture Definitions *****************/ | 
|  | /* | 
|  | * BYTE_ORDER NOTE: | 
|  | * | 
|  | * Please make sure that your system defines BYTE_ORDER.  If your | 
|  | * architecture is little-endian, make sure it also defines | 
|  | * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are | 
|  | * equivilent. | 
|  | * | 
|  | * If your system does not define the above, then you can do so by | 
|  | * hand like this: | 
|  | * | 
|  | *   #define LITTLE_ENDIAN 1234 | 
|  | *   #define BIG_ENDIAN    4321 | 
|  | * | 
|  | * And for little-endian machines, add: | 
|  | * | 
|  | *   #define BYTE_ORDER LITTLE_ENDIAN | 
|  | * | 
|  | * Or for big-endian machines: | 
|  | * | 
|  | *   #define BYTE_ORDER BIG_ENDIAN | 
|  | * | 
|  | * The FreeBSD machine this was written on defines BYTE_ORDER | 
|  | * appropriately by including <sys/types.h> (which in turn includes | 
|  | * <machine/endian.h> where the appropriate definitions are actually | 
|  | * made). | 
|  | */ | 
|  | #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) | 
|  | #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /*** SHA-256/384/512 Various Length Definitions ***********************/ | 
|  | /* NOTE: Most of these are in sha2.h */ | 
|  | #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8) | 
|  | #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16) | 
|  | #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16) | 
|  |  | 
|  | /*** ENDIAN SPECIFIC COPY MACROS **************************************/ | 
|  | #define BE_8_TO_32(dst, cp) do {					\ | 
|  | (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\ | 
|  | ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\ | 
|  | } while(0) | 
|  |  | 
|  | #define BE_8_TO_64(dst, cp) do {					\ | 
|  | (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\ | 
|  | ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\ | 
|  | ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\ | 
|  | ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define BE_64_TO_8(cp, src) do {					\ | 
|  | (cp)[0] = (src) >> 56;						\ | 
|  | (cp)[1] = (src) >> 48;						\ | 
|  | (cp)[2] = (src) >> 40;						\ | 
|  | (cp)[3] = (src) >> 32;						\ | 
|  | (cp)[4] = (src) >> 24;						\ | 
|  | (cp)[5] = (src) >> 16;						\ | 
|  | (cp)[6] = (src) >> 8;						\ | 
|  | (cp)[7] = (src);						\ | 
|  | } while (0) | 
|  |  | 
|  | #define BE_32_TO_8(cp, src) do {					\ | 
|  | (cp)[0] = (src) >> 24;						\ | 
|  | (cp)[1] = (src) >> 16;						\ | 
|  | (cp)[2] = (src) >> 8;						\ | 
|  | (cp)[3] = (src);						\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Macro for incrementally adding the unsigned 64-bit integer n to the | 
|  | * unsigned 128-bit integer (represented using a two-element array of | 
|  | * 64-bit words): | 
|  | */ | 
|  | #define ADDINC128(w,n) do {						\ | 
|  | (w)[0] += (u_int64_t)(n);					\ | 
|  | if ((w)[0] < (n)) {						\ | 
|  | (w)[1]++;						\ | 
|  | }								\ | 
|  | } while (0) | 
|  |  | 
|  | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ | 
|  | /* | 
|  | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: | 
|  | * | 
|  | *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and | 
|  | *   S is a ROTATION) because the SHA-256/384/512 description document | 
|  | *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this | 
|  | *   same "backwards" definition. | 
|  | */ | 
|  | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ | 
|  | #define R(b,x) 		((x) >> (b)) | 
|  | /* 32-bit Rotate-right (used in SHA-256): */ | 
|  | #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b)))) | 
|  | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ | 
|  | #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b)))) | 
|  |  | 
|  | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ | 
|  | #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z))) | 
|  | #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) | 
|  |  | 
|  | /* Four of six logical functions used in SHA-256: */ | 
|  | #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x))) | 
|  | #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x))) | 
|  | #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x))) | 
|  | #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x))) | 
|  |  | 
|  | /* Four of six logical functions used in SHA-384 and SHA-512: */ | 
|  | #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) | 
|  | #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) | 
|  | #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x))) | 
|  | #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x))) | 
|  |  | 
|  |  | 
|  | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ | 
|  | /* Hash constant words K for SHA-256: */ | 
|  | const static u_int32_t K256[64] = { | 
|  | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, | 
|  | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, | 
|  | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, | 
|  | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, | 
|  | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, | 
|  | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, | 
|  | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, | 
|  | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, | 
|  | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, | 
|  | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, | 
|  | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, | 
|  | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, | 
|  | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, | 
|  | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, | 
|  | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, | 
|  | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL | 
|  | }; | 
|  |  | 
|  | /* Initial hash value H for SHA-256: */ | 
|  | const static u_int32_t sha256_initial_hash_value[8] = { | 
|  | 0x6a09e667UL, | 
|  | 0xbb67ae85UL, | 
|  | 0x3c6ef372UL, | 
|  | 0xa54ff53aUL, | 
|  | 0x510e527fUL, | 
|  | 0x9b05688cUL, | 
|  | 0x1f83d9abUL, | 
|  | 0x5be0cd19UL | 
|  | }; | 
|  |  | 
|  | /* Hash constant words K for SHA-384 and SHA-512: */ | 
|  | const static u_int64_t K512[80] = { | 
|  | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, | 
|  | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, | 
|  | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, | 
|  | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, | 
|  | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, | 
|  | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, | 
|  | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, | 
|  | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, | 
|  | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, | 
|  | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, | 
|  | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, | 
|  | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, | 
|  | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, | 
|  | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, | 
|  | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, | 
|  | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, | 
|  | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, | 
|  | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, | 
|  | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, | 
|  | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, | 
|  | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, | 
|  | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, | 
|  | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, | 
|  | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, | 
|  | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, | 
|  | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, | 
|  | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, | 
|  | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, | 
|  | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, | 
|  | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, | 
|  | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, | 
|  | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, | 
|  | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, | 
|  | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, | 
|  | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, | 
|  | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, | 
|  | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, | 
|  | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, | 
|  | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, | 
|  | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL | 
|  | }; | 
|  |  | 
|  | /* Initial hash value H for SHA-384 */ | 
|  | const static u_int64_t sha384_initial_hash_value[8] = { | 
|  | 0xcbbb9d5dc1059ed8ULL, | 
|  | 0x629a292a367cd507ULL, | 
|  | 0x9159015a3070dd17ULL, | 
|  | 0x152fecd8f70e5939ULL, | 
|  | 0x67332667ffc00b31ULL, | 
|  | 0x8eb44a8768581511ULL, | 
|  | 0xdb0c2e0d64f98fa7ULL, | 
|  | 0x47b5481dbefa4fa4ULL | 
|  | }; | 
|  |  | 
|  | /* Initial hash value H for SHA-512 */ | 
|  | const static u_int64_t sha512_initial_hash_value[8] = { | 
|  | 0x6a09e667f3bcc908ULL, | 
|  | 0xbb67ae8584caa73bULL, | 
|  | 0x3c6ef372fe94f82bULL, | 
|  | 0xa54ff53a5f1d36f1ULL, | 
|  | 0x510e527fade682d1ULL, | 
|  | 0x9b05688c2b3e6c1fULL, | 
|  | 0x1f83d9abfb41bd6bULL, | 
|  | 0x5be0cd19137e2179ULL | 
|  | }; | 
|  |  | 
|  |  | 
|  | /*** SHA-256: *********************************************************/ | 
|  | void | 
|  | SHA256_Init(SHA256_CTX *context) | 
|  | { | 
|  | if (context == NULL) | 
|  | return; | 
|  | memcpy(context->state, sha256_initial_hash_value, | 
|  | sizeof(sha256_initial_hash_value)); | 
|  | memset(context->buffer, 0, sizeof(context->buffer)); | 
|  | context->bitcount = 0; | 
|  | } | 
|  |  | 
|  | #ifdef SHA2_UNROLL_TRANSFORM | 
|  |  | 
|  | /* Unrolled SHA-256 round macros: */ | 
|  |  | 
|  | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \ | 
|  | BE_8_TO_32(W256[j], data);					    \ | 
|  | data += 4;							    \ | 
|  | T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ | 
|  | (d) += T1;							    \ | 
|  | (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \ | 
|  | j++;								    \ | 
|  | } while(0) | 
|  |  | 
|  | #define ROUND256(a,b,c,d,e,f,g,h) do {					    \ | 
|  | s0 = W256[(j+1)&0x0f];						    \ | 
|  | s0 = sigma0_256(s0);						    \ | 
|  | s1 = W256[(j+14)&0x0f];						    \ | 
|  | s1 = sigma1_256(s1);						    \ | 
|  | T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \ | 
|  | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \ | 
|  | (d) += T1;							    \ | 
|  | (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \ | 
|  | j++;								    \ | 
|  | } while(0) | 
|  |  | 
|  | void | 
|  | SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) | 
|  | { | 
|  | u_int32_t	a, b, c, d, e, f, g, h, s0, s1; | 
|  | u_int32_t	T1, W256[16]; | 
|  | int		j; | 
|  |  | 
|  | /* Initialize registers with the prev. intermediate value */ | 
|  | a = state[0]; | 
|  | b = state[1]; | 
|  | c = state[2]; | 
|  | d = state[3]; | 
|  | e = state[4]; | 
|  | f = state[5]; | 
|  | g = state[6]; | 
|  | h = state[7]; | 
|  |  | 
|  | j = 0; | 
|  | do { | 
|  | /* Rounds 0 to 15 (unrolled): */ | 
|  | ROUND256_0_TO_15(a,b,c,d,e,f,g,h); | 
|  | ROUND256_0_TO_15(h,a,b,c,d,e,f,g); | 
|  | ROUND256_0_TO_15(g,h,a,b,c,d,e,f); | 
|  | ROUND256_0_TO_15(f,g,h,a,b,c,d,e); | 
|  | ROUND256_0_TO_15(e,f,g,h,a,b,c,d); | 
|  | ROUND256_0_TO_15(d,e,f,g,h,a,b,c); | 
|  | ROUND256_0_TO_15(c,d,e,f,g,h,a,b); | 
|  | ROUND256_0_TO_15(b,c,d,e,f,g,h,a); | 
|  | } while (j < 16); | 
|  |  | 
|  | /* Now for the remaining rounds up to 63: */ | 
|  | do { | 
|  | ROUND256(a,b,c,d,e,f,g,h); | 
|  | ROUND256(h,a,b,c,d,e,f,g); | 
|  | ROUND256(g,h,a,b,c,d,e,f); | 
|  | ROUND256(f,g,h,a,b,c,d,e); | 
|  | ROUND256(e,f,g,h,a,b,c,d); | 
|  | ROUND256(d,e,f,g,h,a,b,c); | 
|  | ROUND256(c,d,e,f,g,h,a,b); | 
|  | ROUND256(b,c,d,e,f,g,h,a); | 
|  | } while (j < 64); | 
|  |  | 
|  | /* Compute the current intermediate hash value */ | 
|  | state[0] += a; | 
|  | state[1] += b; | 
|  | state[2] += c; | 
|  | state[3] += d; | 
|  | state[4] += e; | 
|  | state[5] += f; | 
|  | state[6] += g; | 
|  | state[7] += h; | 
|  |  | 
|  | /* Clean up */ | 
|  | a = b = c = d = e = f = g = h = T1 = 0; | 
|  | } | 
|  |  | 
|  | #else /* SHA2_UNROLL_TRANSFORM */ | 
|  |  | 
|  | void | 
|  | SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) | 
|  | { | 
|  | u_int32_t	a, b, c, d, e, f, g, h, s0, s1; | 
|  | u_int32_t	T1, T2, W256[16]; | 
|  | int		j; | 
|  |  | 
|  | /* Initialize registers with the prev. intermediate value */ | 
|  | a = state[0]; | 
|  | b = state[1]; | 
|  | c = state[2]; | 
|  | d = state[3]; | 
|  | e = state[4]; | 
|  | f = state[5]; | 
|  | g = state[6]; | 
|  | h = state[7]; | 
|  |  | 
|  | j = 0; | 
|  | do { | 
|  | BE_8_TO_32(W256[j], data); | 
|  | data += 4; | 
|  | /* Apply the SHA-256 compression function to update a..h */ | 
|  | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; | 
|  | T2 = Sigma0_256(a) + Maj(a, b, c); | 
|  | h = g; | 
|  | g = f; | 
|  | f = e; | 
|  | e = d + T1; | 
|  | d = c; | 
|  | c = b; | 
|  | b = a; | 
|  | a = T1 + T2; | 
|  |  | 
|  | j++; | 
|  | } while (j < 16); | 
|  |  | 
|  | do { | 
|  | /* Part of the message block expansion: */ | 
|  | s0 = W256[(j+1)&0x0f]; | 
|  | s0 = sigma0_256(s0); | 
|  | s1 = W256[(j+14)&0x0f]; | 
|  | s1 = sigma1_256(s1); | 
|  |  | 
|  | /* Apply the SHA-256 compression function to update a..h */ | 
|  | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + | 
|  | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); | 
|  | T2 = Sigma0_256(a) + Maj(a, b, c); | 
|  | h = g; | 
|  | g = f; | 
|  | f = e; | 
|  | e = d + T1; | 
|  | d = c; | 
|  | c = b; | 
|  | b = a; | 
|  | a = T1 + T2; | 
|  |  | 
|  | j++; | 
|  | } while (j < 64); | 
|  |  | 
|  | /* Compute the current intermediate hash value */ | 
|  | state[0] += a; | 
|  | state[1] += b; | 
|  | state[2] += c; | 
|  | state[3] += d; | 
|  | state[4] += e; | 
|  | state[5] += f; | 
|  | state[6] += g; | 
|  | state[7] += h; | 
|  |  | 
|  | /* Clean up */ | 
|  | a = b = c = d = e = f = g = h = T1 = T2 = 0; | 
|  | } | 
|  |  | 
|  | #endif /* SHA2_UNROLL_TRANSFORM */ | 
|  |  | 
|  | void | 
|  | SHA256_Update(SHA256_CTX *context, const u_int8_t *data, size_t len) | 
|  | { | 
|  | size_t	freespace, usedspace; | 
|  |  | 
|  | /* Calling with no data is valid (we do nothing) */ | 
|  | if (len == 0) | 
|  | return; | 
|  |  | 
|  | usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; | 
|  | if (usedspace > 0) { | 
|  | /* Calculate how much free space is available in the buffer */ | 
|  | freespace = SHA256_BLOCK_LENGTH - usedspace; | 
|  |  | 
|  | if (len >= freespace) { | 
|  | /* Fill the buffer completely and process it */ | 
|  | memcpy(&context->buffer[usedspace], data, freespace); | 
|  | context->bitcount += freespace << 3; | 
|  | len -= freespace; | 
|  | data += freespace; | 
|  | SHA256_Transform(context->state, context->buffer); | 
|  | } else { | 
|  | /* The buffer is not yet full */ | 
|  | memcpy(&context->buffer[usedspace], data, len); | 
|  | context->bitcount += len << 3; | 
|  | /* Clean up: */ | 
|  | usedspace = freespace = 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  | while (len >= SHA256_BLOCK_LENGTH) { | 
|  | /* Process as many complete blocks as we can */ | 
|  | SHA256_Transform(context->state, data); | 
|  | context->bitcount += SHA256_BLOCK_LENGTH << 3; | 
|  | len -= SHA256_BLOCK_LENGTH; | 
|  | data += SHA256_BLOCK_LENGTH; | 
|  | } | 
|  | if (len > 0) { | 
|  | /* There's left-overs, so save 'em */ | 
|  | memcpy(context->buffer, data, len); | 
|  | context->bitcount += len << 3; | 
|  | } | 
|  | /* Clean up: */ | 
|  | usedspace = freespace = 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | SHA256_Pad(SHA256_CTX *context) | 
|  | { | 
|  | unsigned int	usedspace; | 
|  |  | 
|  | usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; | 
|  | if (usedspace > 0) { | 
|  | /* Begin padding with a 1 bit: */ | 
|  | context->buffer[usedspace++] = 0x80; | 
|  |  | 
|  | if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { | 
|  | /* Set-up for the last transform: */ | 
|  | memset(&context->buffer[usedspace], 0, | 
|  | SHA256_SHORT_BLOCK_LENGTH - usedspace); | 
|  | } else { | 
|  | if (usedspace < SHA256_BLOCK_LENGTH) { | 
|  | memset(&context->buffer[usedspace], 0, | 
|  | SHA256_BLOCK_LENGTH - usedspace); | 
|  | } | 
|  | /* Do second-to-last transform: */ | 
|  | SHA256_Transform(context->state, context->buffer); | 
|  |  | 
|  | /* Prepare for last transform: */ | 
|  | memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); | 
|  | } | 
|  | } else { | 
|  | /* Set-up for the last transform: */ | 
|  | memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); | 
|  |  | 
|  | /* Begin padding with a 1 bit: */ | 
|  | *context->buffer = 0x80; | 
|  | } | 
|  | /* Store the length of input data (in bits) in big endian format: */ | 
|  | BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], | 
|  | context->bitcount); | 
|  |  | 
|  | /* Final transform: */ | 
|  | SHA256_Transform(context->state, context->buffer); | 
|  |  | 
|  | /* Clean up: */ | 
|  | usedspace = 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context) | 
|  | { | 
|  | SHA256_Pad(context); | 
|  |  | 
|  | /* If no digest buffer is passed, we don't bother doing this: */ | 
|  | if (digest != NULL) { | 
|  | #if BYTE_ORDER == LITTLE_ENDIAN | 
|  | int	i; | 
|  |  | 
|  | /* Convert TO host byte order */ | 
|  | for (i = 0; i < 8; i++) | 
|  | BE_32_TO_8(digest + i * 4, context->state[i]); | 
|  | #else | 
|  | memcpy(digest, context->state, SHA256_DIGEST_LENGTH); | 
|  | #endif | 
|  | memset(context, 0, sizeof(*context)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /*** SHA-512: *********************************************************/ | 
|  | void | 
|  | SHA512_Init(SHA512_CTX *context) | 
|  | { | 
|  | if (context == NULL) | 
|  | return; | 
|  | memcpy(context->state, sha512_initial_hash_value, | 
|  | sizeof(sha512_initial_hash_value)); | 
|  | memset(context->buffer, 0, sizeof(context->buffer)); | 
|  | context->bitcount[0] = context->bitcount[1] =  0; | 
|  | } | 
|  |  | 
|  | #ifdef SHA2_UNROLL_TRANSFORM | 
|  |  | 
|  | /* Unrolled SHA-512 round macros: */ | 
|  |  | 
|  | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \ | 
|  | BE_8_TO_64(W512[j], data);					    \ | 
|  | data += 8;							    \ | 
|  | T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ | 
|  | (d) += T1;							    \ | 
|  | (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \ | 
|  | j++;								    \ | 
|  | } while(0) | 
|  |  | 
|  |  | 
|  | #define ROUND512(a,b,c,d,e,f,g,h) do {					    \ | 
|  | s0 = W512[(j+1)&0x0f];						    \ | 
|  | s0 = sigma0_512(s0);						    \ | 
|  | s1 = W512[(j+14)&0x0f];						    \ | 
|  | s1 = sigma1_512(s1);						    \ | 
|  | T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \ | 
|  | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \ | 
|  | (d) += T1;							    \ | 
|  | (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \ | 
|  | j++;								    \ | 
|  | } while(0) | 
|  |  | 
|  | void | 
|  | SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) | 
|  | { | 
|  | u_int64_t	a, b, c, d, e, f, g, h, s0, s1; | 
|  | u_int64_t	T1, W512[16]; | 
|  | int		j; | 
|  |  | 
|  | /* Initialize registers with the prev. intermediate value */ | 
|  | a = state[0]; | 
|  | b = state[1]; | 
|  | c = state[2]; | 
|  | d = state[3]; | 
|  | e = state[4]; | 
|  | f = state[5]; | 
|  | g = state[6]; | 
|  | h = state[7]; | 
|  |  | 
|  | j = 0; | 
|  | do { | 
|  | /* Rounds 0 to 15 (unrolled): */ | 
|  | ROUND512_0_TO_15(a,b,c,d,e,f,g,h); | 
|  | ROUND512_0_TO_15(h,a,b,c,d,e,f,g); | 
|  | ROUND512_0_TO_15(g,h,a,b,c,d,e,f); | 
|  | ROUND512_0_TO_15(f,g,h,a,b,c,d,e); | 
|  | ROUND512_0_TO_15(e,f,g,h,a,b,c,d); | 
|  | ROUND512_0_TO_15(d,e,f,g,h,a,b,c); | 
|  | ROUND512_0_TO_15(c,d,e,f,g,h,a,b); | 
|  | ROUND512_0_TO_15(b,c,d,e,f,g,h,a); | 
|  | } while (j < 16); | 
|  |  | 
|  | /* Now for the remaining rounds up to 79: */ | 
|  | do { | 
|  | ROUND512(a,b,c,d,e,f,g,h); | 
|  | ROUND512(h,a,b,c,d,e,f,g); | 
|  | ROUND512(g,h,a,b,c,d,e,f); | 
|  | ROUND512(f,g,h,a,b,c,d,e); | 
|  | ROUND512(e,f,g,h,a,b,c,d); | 
|  | ROUND512(d,e,f,g,h,a,b,c); | 
|  | ROUND512(c,d,e,f,g,h,a,b); | 
|  | ROUND512(b,c,d,e,f,g,h,a); | 
|  | } while (j < 80); | 
|  |  | 
|  | /* Compute the current intermediate hash value */ | 
|  | state[0] += a; | 
|  | state[1] += b; | 
|  | state[2] += c; | 
|  | state[3] += d; | 
|  | state[4] += e; | 
|  | state[5] += f; | 
|  | state[6] += g; | 
|  | state[7] += h; | 
|  |  | 
|  | /* Clean up */ | 
|  | a = b = c = d = e = f = g = h = T1 = 0; | 
|  | } | 
|  |  | 
|  | #else /* SHA2_UNROLL_TRANSFORM */ | 
|  |  | 
|  | void | 
|  | SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) | 
|  | { | 
|  | u_int64_t	a, b, c, d, e, f, g, h, s0, s1; | 
|  | u_int64_t	T1, T2, W512[16]; | 
|  | int		j; | 
|  |  | 
|  | /* Initialize registers with the prev. intermediate value */ | 
|  | a = state[0]; | 
|  | b = state[1]; | 
|  | c = state[2]; | 
|  | d = state[3]; | 
|  | e = state[4]; | 
|  | f = state[5]; | 
|  | g = state[6]; | 
|  | h = state[7]; | 
|  |  | 
|  | j = 0; | 
|  | do { | 
|  | BE_8_TO_64(W512[j], data); | 
|  | data += 8; | 
|  | /* Apply the SHA-512 compression function to update a..h */ | 
|  | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; | 
|  | T2 = Sigma0_512(a) + Maj(a, b, c); | 
|  | h = g; | 
|  | g = f; | 
|  | f = e; | 
|  | e = d + T1; | 
|  | d = c; | 
|  | c = b; | 
|  | b = a; | 
|  | a = T1 + T2; | 
|  |  | 
|  | j++; | 
|  | } while (j < 16); | 
|  |  | 
|  | do { | 
|  | /* Part of the message block expansion: */ | 
|  | s0 = W512[(j+1)&0x0f]; | 
|  | s0 = sigma0_512(s0); | 
|  | s1 = W512[(j+14)&0x0f]; | 
|  | s1 =  sigma1_512(s1); | 
|  |  | 
|  | /* Apply the SHA-512 compression function to update a..h */ | 
|  | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + | 
|  | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); | 
|  | T2 = Sigma0_512(a) + Maj(a, b, c); | 
|  | h = g; | 
|  | g = f; | 
|  | f = e; | 
|  | e = d + T1; | 
|  | d = c; | 
|  | c = b; | 
|  | b = a; | 
|  | a = T1 + T2; | 
|  |  | 
|  | j++; | 
|  | } while (j < 80); | 
|  |  | 
|  | /* Compute the current intermediate hash value */ | 
|  | state[0] += a; | 
|  | state[1] += b; | 
|  | state[2] += c; | 
|  | state[3] += d; | 
|  | state[4] += e; | 
|  | state[5] += f; | 
|  | state[6] += g; | 
|  | state[7] += h; | 
|  |  | 
|  | /* Clean up */ | 
|  | a = b = c = d = e = f = g = h = T1 = T2 = 0; | 
|  | } | 
|  |  | 
|  | #endif /* SHA2_UNROLL_TRANSFORM */ | 
|  |  | 
|  | void | 
|  | SHA512_Update(SHA512_CTX *context, const u_int8_t *data, size_t len) | 
|  | { | 
|  | size_t	freespace, usedspace; | 
|  |  | 
|  | /* Calling with no data is valid (we do nothing) */ | 
|  | if (len == 0) | 
|  | return; | 
|  |  | 
|  | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; | 
|  | if (usedspace > 0) { | 
|  | /* Calculate how much free space is available in the buffer */ | 
|  | freespace = SHA512_BLOCK_LENGTH - usedspace; | 
|  |  | 
|  | if (len >= freespace) { | 
|  | /* Fill the buffer completely and process it */ | 
|  | memcpy(&context->buffer[usedspace], data, freespace); | 
|  | ADDINC128(context->bitcount, freespace << 3); | 
|  | len -= freespace; | 
|  | data += freespace; | 
|  | SHA512_Transform(context->state, context->buffer); | 
|  | } else { | 
|  | /* The buffer is not yet full */ | 
|  | memcpy(&context->buffer[usedspace], data, len); | 
|  | ADDINC128(context->bitcount, len << 3); | 
|  | /* Clean up: */ | 
|  | usedspace = freespace = 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  | while (len >= SHA512_BLOCK_LENGTH) { | 
|  | /* Process as many complete blocks as we can */ | 
|  | SHA512_Transform(context->state, data); | 
|  | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); | 
|  | len -= SHA512_BLOCK_LENGTH; | 
|  | data += SHA512_BLOCK_LENGTH; | 
|  | } | 
|  | if (len > 0) { | 
|  | /* There's left-overs, so save 'em */ | 
|  | memcpy(context->buffer, data, len); | 
|  | ADDINC128(context->bitcount, len << 3); | 
|  | } | 
|  | /* Clean up: */ | 
|  | usedspace = freespace = 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | SHA512_Pad(SHA512_CTX *context) | 
|  | { | 
|  | unsigned int	usedspace; | 
|  |  | 
|  | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; | 
|  | if (usedspace > 0) { | 
|  | /* Begin padding with a 1 bit: */ | 
|  | context->buffer[usedspace++] = 0x80; | 
|  |  | 
|  | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { | 
|  | /* Set-up for the last transform: */ | 
|  | memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); | 
|  | } else { | 
|  | if (usedspace < SHA512_BLOCK_LENGTH) { | 
|  | memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); | 
|  | } | 
|  | /* Do second-to-last transform: */ | 
|  | SHA512_Transform(context->state, context->buffer); | 
|  |  | 
|  | /* And set-up for the last transform: */ | 
|  | memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); | 
|  | } | 
|  | } else { | 
|  | /* Prepare for final transform: */ | 
|  | memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); | 
|  |  | 
|  | /* Begin padding with a 1 bit: */ | 
|  | *context->buffer = 0x80; | 
|  | } | 
|  | /* Store the length of input data (in bits) in big endian format: */ | 
|  | BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], | 
|  | context->bitcount[1]); | 
|  | BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], | 
|  | context->bitcount[0]); | 
|  |  | 
|  | /* Final transform: */ | 
|  | SHA512_Transform(context->state, context->buffer); | 
|  |  | 
|  | /* Clean up: */ | 
|  | usedspace = 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | SHA512_Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context) | 
|  | { | 
|  | SHA512_Pad(context); | 
|  |  | 
|  | /* If no digest buffer is passed, we don't bother doing this: */ | 
|  | if (digest != NULL) { | 
|  | #if BYTE_ORDER == LITTLE_ENDIAN | 
|  | int	i; | 
|  |  | 
|  | /* Convert TO host byte order */ | 
|  | for (i = 0; i < 8; i++) | 
|  | BE_64_TO_8(digest + i * 8, context->state[i]); | 
|  | #else | 
|  | memcpy(digest, context->state, SHA512_DIGEST_LENGTH); | 
|  | #endif | 
|  | memset(context, 0, sizeof(*context)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | #if 0 | 
|  | /*** SHA-384: *********************************************************/ | 
|  | void | 
|  | SHA384_Init(SHA384_CTX *context) | 
|  | { | 
|  | if (context == NULL) | 
|  | return; | 
|  | memcpy(context->state, sha384_initial_hash_value, | 
|  | sizeof(sha384_initial_hash_value)); | 
|  | memset(context->buffer, 0, sizeof(context->buffer)); | 
|  | context->bitcount[0] = context->bitcount[1] = 0; | 
|  | } | 
|  |  | 
|  | __weak_alias(SHA384_Transform, SHA512_Transform); | 
|  | __weak_alias(SHA384_Update, SHA512_Update); | 
|  | __weak_alias(SHA384_Pad, SHA512_Pad); | 
|  |  | 
|  | void | 
|  | SHA384_Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context) | 
|  | { | 
|  | SHA384_Pad(context); | 
|  |  | 
|  | /* If no digest buffer is passed, we don't bother doing this: */ | 
|  | if (digest != NULL) { | 
|  | #if BYTE_ORDER == LITTLE_ENDIAN | 
|  | int	i; | 
|  |  | 
|  | /* Convert TO host byte order */ | 
|  | for (i = 0; i < 6; i++) | 
|  | BE_64_TO_8(digest + i * 8, context->state[i]); | 
|  | #else | 
|  | memcpy(digest, context->state, SHA384_DIGEST_LENGTH); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Zero out state data */ | 
|  | memset(context, 0, sizeof(*context)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif /* !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \ | 
|  | (OPENSSL_VERSION_NUMBER >= 0x00907000L) */ |