|  | /* $OpenBSD: key.c,v 1.115 2014/01/09 23:20:00 djm Exp $ */ | 
|  | /* | 
|  | * read_bignum(): | 
|  | * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland | 
|  | * | 
|  | * As far as I am concerned, the code I have written for this software | 
|  | * can be used freely for any purpose.  Any derived versions of this | 
|  | * software must be clearly marked as such, and if the derived work is | 
|  | * incompatible with the protocol description in the RFC file, it must be | 
|  | * called by a name other than "ssh" or "Secure Shell". | 
|  | * | 
|  | * | 
|  | * Copyright (c) 2000, 2001 Markus Friedl.  All rights reserved. | 
|  | * Copyright (c) 2008 Alexander von Gernler.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR | 
|  | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
|  | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. | 
|  | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, | 
|  | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | 
|  | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include "includes.h" | 
|  |  | 
|  | #include <sys/param.h> | 
|  | #include <sys/types.h> | 
|  |  | 
|  | #include "crypto_api.h" | 
|  |  | 
|  | #include <openssl/evp.h> | 
|  | #include <openbsd-compat/openssl-compat.h> | 
|  |  | 
|  | #include <stdarg.h> | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "xmalloc.h" | 
|  | #include "key.h" | 
|  | #include "rsa.h" | 
|  | #include "uuencode.h" | 
|  | #include "buffer.h" | 
|  | #include "log.h" | 
|  | #include "misc.h" | 
|  | #include "ssh2.h" | 
|  | #include "digest.h" | 
|  |  | 
|  | static int to_blob(const Key *, u_char **, u_int *, int); | 
|  | static Key *key_from_blob2(const u_char *, u_int, int); | 
|  |  | 
|  | static struct KeyCert * | 
|  | cert_new(void) | 
|  | { | 
|  | struct KeyCert *cert; | 
|  |  | 
|  | cert = xcalloc(1, sizeof(*cert)); | 
|  | buffer_init(&cert->certblob); | 
|  | buffer_init(&cert->critical); | 
|  | buffer_init(&cert->extensions); | 
|  | cert->key_id = NULL; | 
|  | cert->principals = NULL; | 
|  | cert->signature_key = NULL; | 
|  | return cert; | 
|  | } | 
|  |  | 
|  | Key * | 
|  | key_new(int type) | 
|  | { | 
|  | Key *k; | 
|  | RSA *rsa; | 
|  | DSA *dsa; | 
|  | k = xcalloc(1, sizeof(*k)); | 
|  | k->type = type; | 
|  | k->ecdsa = NULL; | 
|  | k->ecdsa_nid = -1; | 
|  | k->dsa = NULL; | 
|  | k->rsa = NULL; | 
|  | k->cert = NULL; | 
|  | k->ed25519_sk = NULL; | 
|  | k->ed25519_pk = NULL; | 
|  | switch (k->type) { | 
|  | case KEY_RSA1: | 
|  | case KEY_RSA: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | if ((rsa = RSA_new()) == NULL) | 
|  | fatal("key_new: RSA_new failed"); | 
|  | if ((rsa->n = BN_new()) == NULL) | 
|  | fatal("key_new: BN_new failed"); | 
|  | if ((rsa->e = BN_new()) == NULL) | 
|  | fatal("key_new: BN_new failed"); | 
|  | k->rsa = rsa; | 
|  | break; | 
|  | case KEY_DSA: | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | if ((dsa = DSA_new()) == NULL) | 
|  | fatal("key_new: DSA_new failed"); | 
|  | if ((dsa->p = BN_new()) == NULL) | 
|  | fatal("key_new: BN_new failed"); | 
|  | if ((dsa->q = BN_new()) == NULL) | 
|  | fatal("key_new: BN_new failed"); | 
|  | if ((dsa->g = BN_new()) == NULL) | 
|  | fatal("key_new: BN_new failed"); | 
|  | if ((dsa->pub_key = BN_new()) == NULL) | 
|  | fatal("key_new: BN_new failed"); | 
|  | k->dsa = dsa; | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA: | 
|  | case KEY_ECDSA_CERT: | 
|  | /* Cannot do anything until we know the group */ | 
|  | break; | 
|  | #endif | 
|  | case KEY_ED25519: | 
|  | case KEY_ED25519_CERT: | 
|  | /* no need to prealloc */ | 
|  | break; | 
|  | case KEY_UNSPEC: | 
|  | break; | 
|  | default: | 
|  | fatal("key_new: bad key type %d", k->type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (key_is_cert(k)) | 
|  | k->cert = cert_new(); | 
|  |  | 
|  | return k; | 
|  | } | 
|  |  | 
|  | void | 
|  | key_add_private(Key *k) | 
|  | { | 
|  | switch (k->type) { | 
|  | case KEY_RSA1: | 
|  | case KEY_RSA: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | if ((k->rsa->d = BN_new()) == NULL) | 
|  | fatal("key_new_private: BN_new failed"); | 
|  | if ((k->rsa->iqmp = BN_new()) == NULL) | 
|  | fatal("key_new_private: BN_new failed"); | 
|  | if ((k->rsa->q = BN_new()) == NULL) | 
|  | fatal("key_new_private: BN_new failed"); | 
|  | if ((k->rsa->p = BN_new()) == NULL) | 
|  | fatal("key_new_private: BN_new failed"); | 
|  | if ((k->rsa->dmq1 = BN_new()) == NULL) | 
|  | fatal("key_new_private: BN_new failed"); | 
|  | if ((k->rsa->dmp1 = BN_new()) == NULL) | 
|  | fatal("key_new_private: BN_new failed"); | 
|  | break; | 
|  | case KEY_DSA: | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | if ((k->dsa->priv_key = BN_new()) == NULL) | 
|  | fatal("key_new_private: BN_new failed"); | 
|  | break; | 
|  | case KEY_ECDSA: | 
|  | case KEY_ECDSA_CERT: | 
|  | /* Cannot do anything until we know the group */ | 
|  | break; | 
|  | case KEY_ED25519: | 
|  | case KEY_ED25519_CERT: | 
|  | /* no need to prealloc */ | 
|  | break; | 
|  | case KEY_UNSPEC: | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | Key * | 
|  | key_new_private(int type) | 
|  | { | 
|  | Key *k = key_new(type); | 
|  |  | 
|  | key_add_private(k); | 
|  | return k; | 
|  | } | 
|  |  | 
|  | static void | 
|  | cert_free(struct KeyCert *cert) | 
|  | { | 
|  | u_int i; | 
|  |  | 
|  | buffer_free(&cert->certblob); | 
|  | buffer_free(&cert->critical); | 
|  | buffer_free(&cert->extensions); | 
|  | free(cert->key_id); | 
|  | for (i = 0; i < cert->nprincipals; i++) | 
|  | free(cert->principals[i]); | 
|  | free(cert->principals); | 
|  | if (cert->signature_key != NULL) | 
|  | key_free(cert->signature_key); | 
|  | free(cert); | 
|  | } | 
|  |  | 
|  | void | 
|  | key_free(Key *k) | 
|  | { | 
|  | if (k == NULL) | 
|  | fatal("key_free: key is NULL"); | 
|  | switch (k->type) { | 
|  | case KEY_RSA1: | 
|  | case KEY_RSA: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | if (k->rsa != NULL) | 
|  | RSA_free(k->rsa); | 
|  | k->rsa = NULL; | 
|  | break; | 
|  | case KEY_DSA: | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | if (k->dsa != NULL) | 
|  | DSA_free(k->dsa); | 
|  | k->dsa = NULL; | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA: | 
|  | case KEY_ECDSA_CERT: | 
|  | if (k->ecdsa != NULL) | 
|  | EC_KEY_free(k->ecdsa); | 
|  | k->ecdsa = NULL; | 
|  | break; | 
|  | #endif | 
|  | case KEY_ED25519: | 
|  | case KEY_ED25519_CERT: | 
|  | if (k->ed25519_pk) { | 
|  | memset(k->ed25519_pk, 0, ED25519_PK_SZ); | 
|  | free(k->ed25519_pk); | 
|  | k->ed25519_pk = NULL; | 
|  | } | 
|  | if (k->ed25519_sk) { | 
|  | memset(k->ed25519_sk, 0, ED25519_SK_SZ); | 
|  | free(k->ed25519_sk); | 
|  | k->ed25519_sk = NULL; | 
|  | } | 
|  | break; | 
|  | case KEY_UNSPEC: | 
|  | break; | 
|  | default: | 
|  | fatal("key_free: bad key type %d", k->type); | 
|  | break; | 
|  | } | 
|  | if (key_is_cert(k)) { | 
|  | if (k->cert != NULL) | 
|  | cert_free(k->cert); | 
|  | k->cert = NULL; | 
|  | } | 
|  |  | 
|  | free(k); | 
|  | } | 
|  |  | 
|  | static int | 
|  | cert_compare(struct KeyCert *a, struct KeyCert *b) | 
|  | { | 
|  | if (a == NULL && b == NULL) | 
|  | return 1; | 
|  | if (a == NULL || b == NULL) | 
|  | return 0; | 
|  | if (buffer_len(&a->certblob) != buffer_len(&b->certblob)) | 
|  | return 0; | 
|  | if (timingsafe_bcmp(buffer_ptr(&a->certblob), buffer_ptr(&b->certblob), | 
|  | buffer_len(&a->certblob)) != 0) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare public portions of key only, allowing comparisons between | 
|  | * certificates and plain keys too. | 
|  | */ | 
|  | int | 
|  | key_equal_public(const Key *a, const Key *b) | 
|  | { | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | BN_CTX *bnctx; | 
|  | #endif | 
|  |  | 
|  | if (a == NULL || b == NULL || | 
|  | key_type_plain(a->type) != key_type_plain(b->type)) | 
|  | return 0; | 
|  |  | 
|  | switch (a->type) { | 
|  | case KEY_RSA1: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | case KEY_RSA: | 
|  | return a->rsa != NULL && b->rsa != NULL && | 
|  | BN_cmp(a->rsa->e, b->rsa->e) == 0 && | 
|  | BN_cmp(a->rsa->n, b->rsa->n) == 0; | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | case KEY_DSA: | 
|  | return a->dsa != NULL && b->dsa != NULL && | 
|  | BN_cmp(a->dsa->p, b->dsa->p) == 0 && | 
|  | BN_cmp(a->dsa->q, b->dsa->q) == 0 && | 
|  | BN_cmp(a->dsa->g, b->dsa->g) == 0 && | 
|  | BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA_CERT: | 
|  | case KEY_ECDSA: | 
|  | if (a->ecdsa == NULL || b->ecdsa == NULL || | 
|  | EC_KEY_get0_public_key(a->ecdsa) == NULL || | 
|  | EC_KEY_get0_public_key(b->ecdsa) == NULL) | 
|  | return 0; | 
|  | if ((bnctx = BN_CTX_new()) == NULL) | 
|  | fatal("%s: BN_CTX_new failed", __func__); | 
|  | if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa), | 
|  | EC_KEY_get0_group(b->ecdsa), bnctx) != 0 || | 
|  | EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa), | 
|  | EC_KEY_get0_public_key(a->ecdsa), | 
|  | EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) { | 
|  | BN_CTX_free(bnctx); | 
|  | return 0; | 
|  | } | 
|  | BN_CTX_free(bnctx); | 
|  | return 1; | 
|  | #endif /* OPENSSL_HAS_ECC */ | 
|  | case KEY_ED25519: | 
|  | case KEY_ED25519_CERT: | 
|  | return a->ed25519_pk != NULL && b->ed25519_pk != NULL && | 
|  | memcmp(a->ed25519_pk, b->ed25519_pk, ED25519_PK_SZ) == 0; | 
|  | default: | 
|  | fatal("key_equal: bad key type %d", a->type); | 
|  | } | 
|  | /* NOTREACHED */ | 
|  | } | 
|  |  | 
|  | int | 
|  | key_equal(const Key *a, const Key *b) | 
|  | { | 
|  | if (a == NULL || b == NULL || a->type != b->type) | 
|  | return 0; | 
|  | if (key_is_cert(a)) { | 
|  | if (!cert_compare(a->cert, b->cert)) | 
|  | return 0; | 
|  | } | 
|  | return key_equal_public(a, b); | 
|  | } | 
|  |  | 
|  | u_char* | 
|  | key_fingerprint_raw(const Key *k, enum fp_type dgst_type, | 
|  | u_int *dgst_raw_length) | 
|  | { | 
|  | u_char *blob = NULL; | 
|  | u_char *retval = NULL; | 
|  | u_int len = 0; | 
|  | int nlen, elen, hash_alg = -1; | 
|  |  | 
|  | *dgst_raw_length = 0; | 
|  |  | 
|  | /* XXX switch to DIGEST_* directly? */ | 
|  | switch (dgst_type) { | 
|  | case SSH_FP_MD5: | 
|  | hash_alg = SSH_DIGEST_MD5; | 
|  | break; | 
|  | case SSH_FP_SHA1: | 
|  | hash_alg = SSH_DIGEST_SHA1; | 
|  | break; | 
|  | case SSH_FP_SHA256: | 
|  | hash_alg = SSH_DIGEST_SHA256; | 
|  | break; | 
|  | default: | 
|  | fatal("%s: bad digest type %d", __func__, dgst_type); | 
|  | } | 
|  | switch (k->type) { | 
|  | case KEY_RSA1: | 
|  | nlen = BN_num_bytes(k->rsa->n); | 
|  | elen = BN_num_bytes(k->rsa->e); | 
|  | len = nlen + elen; | 
|  | blob = xmalloc(len); | 
|  | BN_bn2bin(k->rsa->n, blob); | 
|  | BN_bn2bin(k->rsa->e, blob + nlen); | 
|  | break; | 
|  | case KEY_DSA: | 
|  | case KEY_ECDSA: | 
|  | case KEY_RSA: | 
|  | case KEY_ED25519: | 
|  | key_to_blob(k, &blob, &len); | 
|  | break; | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | case KEY_ECDSA_CERT: | 
|  | case KEY_RSA_CERT: | 
|  | case KEY_ED25519_CERT: | 
|  | /* We want a fingerprint of the _key_ not of the cert */ | 
|  | to_blob(k, &blob, &len, 1); | 
|  | break; | 
|  | case KEY_UNSPEC: | 
|  | return retval; | 
|  | default: | 
|  | fatal("%s: bad key type %d", __func__, k->type); | 
|  | break; | 
|  | } | 
|  | if (blob != NULL) { | 
|  | retval = xmalloc(SSH_DIGEST_MAX_LENGTH); | 
|  | if ((ssh_digest_memory(hash_alg, blob, len, | 
|  | retval, SSH_DIGEST_MAX_LENGTH)) != 0) | 
|  | fatal("%s: digest_memory failed", __func__); | 
|  | memset(blob, 0, len); | 
|  | free(blob); | 
|  | *dgst_raw_length = ssh_digest_bytes(hash_alg); | 
|  | } else { | 
|  | fatal("%s: blob is null", __func__); | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static char * | 
|  | key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len) | 
|  | { | 
|  | char *retval; | 
|  | u_int i; | 
|  |  | 
|  | retval = xcalloc(1, dgst_raw_len * 3 + 1); | 
|  | for (i = 0; i < dgst_raw_len; i++) { | 
|  | char hex[4]; | 
|  | snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]); | 
|  | strlcat(retval, hex, dgst_raw_len * 3 + 1); | 
|  | } | 
|  |  | 
|  | /* Remove the trailing ':' character */ | 
|  | retval[(dgst_raw_len * 3) - 1] = '\0'; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static char * | 
|  | key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len) | 
|  | { | 
|  | char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' }; | 
|  | char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm', | 
|  | 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' }; | 
|  | u_int i, j = 0, rounds, seed = 1; | 
|  | char *retval; | 
|  |  | 
|  | rounds = (dgst_raw_len / 2) + 1; | 
|  | retval = xcalloc((rounds * 6), sizeof(char)); | 
|  | retval[j++] = 'x'; | 
|  | for (i = 0; i < rounds; i++) { | 
|  | u_int idx0, idx1, idx2, idx3, idx4; | 
|  | if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) { | 
|  | idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) + | 
|  | seed) % 6; | 
|  | idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15; | 
|  | idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) + | 
|  | (seed / 6)) % 6; | 
|  | retval[j++] = vowels[idx0]; | 
|  | retval[j++] = consonants[idx1]; | 
|  | retval[j++] = vowels[idx2]; | 
|  | if ((i + 1) < rounds) { | 
|  | idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15; | 
|  | idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15; | 
|  | retval[j++] = consonants[idx3]; | 
|  | retval[j++] = '-'; | 
|  | retval[j++] = consonants[idx4]; | 
|  | seed = ((seed * 5) + | 
|  | ((((u_int)(dgst_raw[2 * i])) * 7) + | 
|  | ((u_int)(dgst_raw[(2 * i) + 1])))) % 36; | 
|  | } | 
|  | } else { | 
|  | idx0 = seed % 6; | 
|  | idx1 = 16; | 
|  | idx2 = seed / 6; | 
|  | retval[j++] = vowels[idx0]; | 
|  | retval[j++] = consonants[idx1]; | 
|  | retval[j++] = vowels[idx2]; | 
|  | } | 
|  | } | 
|  | retval[j++] = 'x'; | 
|  | retval[j++] = '\0'; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Draw an ASCII-Art representing the fingerprint so human brain can | 
|  | * profit from its built-in pattern recognition ability. | 
|  | * This technique is called "random art" and can be found in some | 
|  | * scientific publications like this original paper: | 
|  | * | 
|  | * "Hash Visualization: a New Technique to improve Real-World Security", | 
|  | * Perrig A. and Song D., 1999, International Workshop on Cryptographic | 
|  | * Techniques and E-Commerce (CrypTEC '99) | 
|  | * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf | 
|  | * | 
|  | * The subject came up in a talk by Dan Kaminsky, too. | 
|  | * | 
|  | * If you see the picture is different, the key is different. | 
|  | * If the picture looks the same, you still know nothing. | 
|  | * | 
|  | * The algorithm used here is a worm crawling over a discrete plane, | 
|  | * leaving a trace (augmenting the field) everywhere it goes. | 
|  | * Movement is taken from dgst_raw 2bit-wise.  Bumping into walls | 
|  | * makes the respective movement vector be ignored for this turn. | 
|  | * Graphs are not unambiguous, because circles in graphs can be | 
|  | * walked in either direction. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Field sizes for the random art.  Have to be odd, so the starting point | 
|  | * can be in the exact middle of the picture, and FLDBASE should be >=8 . | 
|  | * Else pictures would be too dense, and drawing the frame would | 
|  | * fail, too, because the key type would not fit in anymore. | 
|  | */ | 
|  | #define	FLDBASE		8 | 
|  | #define	FLDSIZE_Y	(FLDBASE + 1) | 
|  | #define	FLDSIZE_X	(FLDBASE * 2 + 1) | 
|  | static char * | 
|  | key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k) | 
|  | { | 
|  | /* | 
|  | * Chars to be used after each other every time the worm | 
|  | * intersects with itself.  Matter of taste. | 
|  | */ | 
|  | char	*augmentation_string = " .o+=*BOX@%&#/^SE"; | 
|  | char	*retval, *p; | 
|  | u_char	 field[FLDSIZE_X][FLDSIZE_Y]; | 
|  | u_int	 i, b; | 
|  | int	 x, y; | 
|  | size_t	 len = strlen(augmentation_string) - 1; | 
|  |  | 
|  | retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2)); | 
|  |  | 
|  | /* initialize field */ | 
|  | memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char)); | 
|  | x = FLDSIZE_X / 2; | 
|  | y = FLDSIZE_Y / 2; | 
|  |  | 
|  | /* process raw key */ | 
|  | for (i = 0; i < dgst_raw_len; i++) { | 
|  | int input; | 
|  | /* each byte conveys four 2-bit move commands */ | 
|  | input = dgst_raw[i]; | 
|  | for (b = 0; b < 4; b++) { | 
|  | /* evaluate 2 bit, rest is shifted later */ | 
|  | x += (input & 0x1) ? 1 : -1; | 
|  | y += (input & 0x2) ? 1 : -1; | 
|  |  | 
|  | /* assure we are still in bounds */ | 
|  | x = MAX(x, 0); | 
|  | y = MAX(y, 0); | 
|  | x = MIN(x, FLDSIZE_X - 1); | 
|  | y = MIN(y, FLDSIZE_Y - 1); | 
|  |  | 
|  | /* augment the field */ | 
|  | if (field[x][y] < len - 2) | 
|  | field[x][y]++; | 
|  | input = input >> 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* mark starting point and end point*/ | 
|  | field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1; | 
|  | field[x][y] = len; | 
|  |  | 
|  | /* fill in retval */ | 
|  | snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k)); | 
|  | p = strchr(retval, '\0'); | 
|  |  | 
|  | /* output upper border */ | 
|  | for (i = p - retval - 1; i < FLDSIZE_X; i++) | 
|  | *p++ = '-'; | 
|  | *p++ = '+'; | 
|  | *p++ = '\n'; | 
|  |  | 
|  | /* output content */ | 
|  | for (y = 0; y < FLDSIZE_Y; y++) { | 
|  | *p++ = '|'; | 
|  | for (x = 0; x < FLDSIZE_X; x++) | 
|  | *p++ = augmentation_string[MIN(field[x][y], len)]; | 
|  | *p++ = '|'; | 
|  | *p++ = '\n'; | 
|  | } | 
|  |  | 
|  | /* output lower border */ | 
|  | *p++ = '+'; | 
|  | for (i = 0; i < FLDSIZE_X; i++) | 
|  | *p++ = '-'; | 
|  | *p++ = '+'; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | char * | 
|  | key_fingerprint(const Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep) | 
|  | { | 
|  | char *retval = NULL; | 
|  | u_char *dgst_raw; | 
|  | u_int dgst_raw_len; | 
|  |  | 
|  | dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len); | 
|  | if (!dgst_raw) | 
|  | fatal("key_fingerprint: null from key_fingerprint_raw()"); | 
|  | switch (dgst_rep) { | 
|  | case SSH_FP_HEX: | 
|  | retval = key_fingerprint_hex(dgst_raw, dgst_raw_len); | 
|  | break; | 
|  | case SSH_FP_BUBBLEBABBLE: | 
|  | retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len); | 
|  | break; | 
|  | case SSH_FP_RANDOMART: | 
|  | retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k); | 
|  | break; | 
|  | default: | 
|  | fatal("key_fingerprint: bad digest representation %d", | 
|  | dgst_rep); | 
|  | break; | 
|  | } | 
|  | memset(dgst_raw, 0, dgst_raw_len); | 
|  | free(dgst_raw); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads a multiple-precision integer in decimal from the buffer, and advances | 
|  | * the pointer.  The integer must already be initialized.  This function is | 
|  | * permitted to modify the buffer.  This leaves *cpp to point just beyond the | 
|  | * last processed (and maybe modified) character.  Note that this may modify | 
|  | * the buffer containing the number. | 
|  | */ | 
|  | static int | 
|  | read_bignum(char **cpp, BIGNUM * value) | 
|  | { | 
|  | char *cp = *cpp; | 
|  | int old; | 
|  |  | 
|  | /* Skip any leading whitespace. */ | 
|  | for (; *cp == ' ' || *cp == '\t'; cp++) | 
|  | ; | 
|  |  | 
|  | /* Check that it begins with a decimal digit. */ | 
|  | if (*cp < '0' || *cp > '9') | 
|  | return 0; | 
|  |  | 
|  | /* Save starting position. */ | 
|  | *cpp = cp; | 
|  |  | 
|  | /* Move forward until all decimal digits skipped. */ | 
|  | for (; *cp >= '0' && *cp <= '9'; cp++) | 
|  | ; | 
|  |  | 
|  | /* Save the old terminating character, and replace it by \0. */ | 
|  | old = *cp; | 
|  | *cp = 0; | 
|  |  | 
|  | /* Parse the number. */ | 
|  | if (BN_dec2bn(&value, *cpp) == 0) | 
|  | return 0; | 
|  |  | 
|  | /* Restore old terminating character. */ | 
|  | *cp = old; | 
|  |  | 
|  | /* Move beyond the number and return success. */ | 
|  | *cpp = cp; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | write_bignum(FILE *f, BIGNUM *num) | 
|  | { | 
|  | char *buf = BN_bn2dec(num); | 
|  | if (buf == NULL) { | 
|  | error("write_bignum: BN_bn2dec() failed"); | 
|  | return 0; | 
|  | } | 
|  | fprintf(f, " %s", buf); | 
|  | OPENSSL_free(buf); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* returns 1 ok, -1 error */ | 
|  | int | 
|  | key_read(Key *ret, char **cpp) | 
|  | { | 
|  | Key *k; | 
|  | int success = -1; | 
|  | char *cp, *space; | 
|  | int len, n, type; | 
|  | u_int bits; | 
|  | u_char *blob; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | int curve_nid = -1; | 
|  | #endif | 
|  |  | 
|  | cp = *cpp; | 
|  |  | 
|  | switch (ret->type) { | 
|  | case KEY_RSA1: | 
|  | /* Get number of bits. */ | 
|  | if (*cp < '0' || *cp > '9') | 
|  | return -1;	/* Bad bit count... */ | 
|  | for (bits = 0; *cp >= '0' && *cp <= '9'; cp++) | 
|  | bits = 10 * bits + *cp - '0'; | 
|  | if (bits == 0) | 
|  | return -1; | 
|  | *cpp = cp; | 
|  | /* Get public exponent, public modulus. */ | 
|  | if (!read_bignum(cpp, ret->rsa->e)) | 
|  | return -1; | 
|  | if (!read_bignum(cpp, ret->rsa->n)) | 
|  | return -1; | 
|  | /* validate the claimed number of bits */ | 
|  | if ((u_int)BN_num_bits(ret->rsa->n) != bits) { | 
|  | verbose("key_read: claimed key size %d does not match " | 
|  | "actual %d", bits, BN_num_bits(ret->rsa->n)); | 
|  | return -1; | 
|  | } | 
|  | success = 1; | 
|  | break; | 
|  | case KEY_UNSPEC: | 
|  | case KEY_RSA: | 
|  | case KEY_DSA: | 
|  | case KEY_ECDSA: | 
|  | case KEY_ED25519: | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | case KEY_ECDSA_CERT: | 
|  | case KEY_RSA_CERT: | 
|  | case KEY_ED25519_CERT: | 
|  | space = strchr(cp, ' '); | 
|  | if (space == NULL) { | 
|  | debug3("key_read: missing whitespace"); | 
|  | return -1; | 
|  | } | 
|  | *space = '\0'; | 
|  | type = key_type_from_name(cp); | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | if (key_type_plain(type) == KEY_ECDSA && | 
|  | (curve_nid = key_ecdsa_nid_from_name(cp)) == -1) { | 
|  | debug("key_read: invalid curve"); | 
|  | return -1; | 
|  | } | 
|  | #endif | 
|  | *space = ' '; | 
|  | if (type == KEY_UNSPEC) { | 
|  | debug3("key_read: missing keytype"); | 
|  | return -1; | 
|  | } | 
|  | cp = space+1; | 
|  | if (*cp == '\0') { | 
|  | debug3("key_read: short string"); | 
|  | return -1; | 
|  | } | 
|  | if (ret->type == KEY_UNSPEC) { | 
|  | ret->type = type; | 
|  | } else if (ret->type != type) { | 
|  | /* is a key, but different type */ | 
|  | debug3("key_read: type mismatch"); | 
|  | return -1; | 
|  | } | 
|  | len = 2*strlen(cp); | 
|  | blob = xmalloc(len); | 
|  | n = uudecode(cp, blob, len); | 
|  | if (n < 0) { | 
|  | error("key_read: uudecode %s failed", cp); | 
|  | free(blob); | 
|  | return -1; | 
|  | } | 
|  | k = key_from_blob(blob, (u_int)n); | 
|  | free(blob); | 
|  | if (k == NULL) { | 
|  | error("key_read: key_from_blob %s failed", cp); | 
|  | return -1; | 
|  | } | 
|  | if (k->type != type) { | 
|  | error("key_read: type mismatch: encoding error"); | 
|  | key_free(k); | 
|  | return -1; | 
|  | } | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | if (key_type_plain(type) == KEY_ECDSA && | 
|  | curve_nid != k->ecdsa_nid) { | 
|  | error("key_read: type mismatch: EC curve mismatch"); | 
|  | key_free(k); | 
|  | return -1; | 
|  | } | 
|  | #endif | 
|  | /*XXXX*/ | 
|  | if (key_is_cert(ret)) { | 
|  | if (!key_is_cert(k)) { | 
|  | error("key_read: loaded key is not a cert"); | 
|  | key_free(k); | 
|  | return -1; | 
|  | } | 
|  | if (ret->cert != NULL) | 
|  | cert_free(ret->cert); | 
|  | ret->cert = k->cert; | 
|  | k->cert = NULL; | 
|  | } | 
|  | if (key_type_plain(ret->type) == KEY_RSA) { | 
|  | if (ret->rsa != NULL) | 
|  | RSA_free(ret->rsa); | 
|  | ret->rsa = k->rsa; | 
|  | k->rsa = NULL; | 
|  | #ifdef DEBUG_PK | 
|  | RSA_print_fp(stderr, ret->rsa, 8); | 
|  | #endif | 
|  | } | 
|  | if (key_type_plain(ret->type) == KEY_DSA) { | 
|  | if (ret->dsa != NULL) | 
|  | DSA_free(ret->dsa); | 
|  | ret->dsa = k->dsa; | 
|  | k->dsa = NULL; | 
|  | #ifdef DEBUG_PK | 
|  | DSA_print_fp(stderr, ret->dsa, 8); | 
|  | #endif | 
|  | } | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | if (key_type_plain(ret->type) == KEY_ECDSA) { | 
|  | if (ret->ecdsa != NULL) | 
|  | EC_KEY_free(ret->ecdsa); | 
|  | ret->ecdsa = k->ecdsa; | 
|  | ret->ecdsa_nid = k->ecdsa_nid; | 
|  | k->ecdsa = NULL; | 
|  | k->ecdsa_nid = -1; | 
|  | #ifdef DEBUG_PK | 
|  | key_dump_ec_key(ret->ecdsa); | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  | if (key_type_plain(ret->type) == KEY_ED25519) { | 
|  | free(ret->ed25519_pk); | 
|  | ret->ed25519_pk = k->ed25519_pk; | 
|  | k->ed25519_pk = NULL; | 
|  | #ifdef DEBUG_PK | 
|  | /* XXX */ | 
|  | #endif | 
|  | } | 
|  | success = 1; | 
|  | /*XXXX*/ | 
|  | key_free(k); | 
|  | if (success != 1) | 
|  | break; | 
|  | /* advance cp: skip whitespace and data */ | 
|  | while (*cp == ' ' || *cp == '\t') | 
|  | cp++; | 
|  | while (*cp != '\0' && *cp != ' ' && *cp != '\t') | 
|  | cp++; | 
|  | *cpp = cp; | 
|  | break; | 
|  | default: | 
|  | fatal("key_read: bad key type: %d", ret->type); | 
|  | break; | 
|  | } | 
|  | return success; | 
|  | } | 
|  |  | 
|  | int | 
|  | key_write(const Key *key, FILE *f) | 
|  | { | 
|  | int n, success = 0; | 
|  | u_int len, bits = 0; | 
|  | u_char *blob; | 
|  | char *uu; | 
|  |  | 
|  | if (key_is_cert(key)) { | 
|  | if (key->cert == NULL) { | 
|  | error("%s: no cert data", __func__); | 
|  | return 0; | 
|  | } | 
|  | if (buffer_len(&key->cert->certblob) == 0) { | 
|  | error("%s: no signed certificate blob", __func__); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (key->type) { | 
|  | case KEY_RSA1: | 
|  | if (key->rsa == NULL) | 
|  | return 0; | 
|  | /* size of modulus 'n' */ | 
|  | bits = BN_num_bits(key->rsa->n); | 
|  | fprintf(f, "%u", bits); | 
|  | if (write_bignum(f, key->rsa->e) && | 
|  | write_bignum(f, key->rsa->n)) | 
|  | return 1; | 
|  | error("key_write: failed for RSA key"); | 
|  | return 0; | 
|  | case KEY_DSA: | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | if (key->dsa == NULL) | 
|  | return 0; | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA: | 
|  | case KEY_ECDSA_CERT: | 
|  | if (key->ecdsa == NULL) | 
|  | return 0; | 
|  | break; | 
|  | #endif | 
|  | case KEY_ED25519: | 
|  | case KEY_ED25519_CERT: | 
|  | if (key->ed25519_pk == NULL) | 
|  | return 0; | 
|  | break; | 
|  | case KEY_RSA: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | if (key->rsa == NULL) | 
|  | return 0; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | key_to_blob(key, &blob, &len); | 
|  | uu = xmalloc(2*len); | 
|  | n = uuencode(blob, len, uu, 2*len); | 
|  | if (n > 0) { | 
|  | fprintf(f, "%s %s", key_ssh_name(key), uu); | 
|  | success = 1; | 
|  | } | 
|  | free(blob); | 
|  | free(uu); | 
|  |  | 
|  | return success; | 
|  | } | 
|  |  | 
|  | const char * | 
|  | key_cert_type(const Key *k) | 
|  | { | 
|  | switch (k->cert->type) { | 
|  | case SSH2_CERT_TYPE_USER: | 
|  | return "user"; | 
|  | case SSH2_CERT_TYPE_HOST: | 
|  | return "host"; | 
|  | default: | 
|  | return "unknown"; | 
|  | } | 
|  | } | 
|  |  | 
|  | struct keytype { | 
|  | char *name; | 
|  | char *shortname; | 
|  | int type; | 
|  | int nid; | 
|  | int cert; | 
|  | }; | 
|  | static const struct keytype keytypes[] = { | 
|  | { NULL, "RSA1", KEY_RSA1, 0, 0 }, | 
|  | { "ssh-rsa", "RSA", KEY_RSA, 0, 0 }, | 
|  | { "ssh-dss", "DSA", KEY_DSA, 0, 0 }, | 
|  | { "ssh-ed25519", "ED25519", KEY_ED25519, 0, 0 }, | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | { "ecdsa-sha2-nistp256", "ECDSA", KEY_ECDSA, NID_X9_62_prime256v1, 0 }, | 
|  | { "ecdsa-sha2-nistp384", "ECDSA", KEY_ECDSA, NID_secp384r1, 0 }, | 
|  | # ifdef OPENSSL_HAS_NISTP521 | 
|  | { "ecdsa-sha2-nistp521", "ECDSA", KEY_ECDSA, NID_secp521r1, 0 }, | 
|  | # endif | 
|  | #endif /* OPENSSL_HAS_ECC */ | 
|  | { "ssh-rsa-cert-v01@openssh.com", "RSA-CERT", KEY_RSA_CERT, 0, 1 }, | 
|  | { "ssh-dss-cert-v01@openssh.com", "DSA-CERT", KEY_DSA_CERT, 0, 1 }, | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | { "ecdsa-sha2-nistp256-cert-v01@openssh.com", "ECDSA-CERT", | 
|  | KEY_ECDSA_CERT, NID_X9_62_prime256v1, 1 }, | 
|  | { "ecdsa-sha2-nistp384-cert-v01@openssh.com", "ECDSA-CERT", | 
|  | KEY_ECDSA_CERT, NID_secp384r1, 1 }, | 
|  | # ifdef OPENSSL_HAS_NISTP521 | 
|  | { "ecdsa-sha2-nistp521-cert-v01@openssh.com", "ECDSA-CERT", | 
|  | KEY_ECDSA_CERT, NID_secp521r1, 1 }, | 
|  | # endif | 
|  | #endif /* OPENSSL_HAS_ECC */ | 
|  | { "ssh-rsa-cert-v00@openssh.com", "RSA-CERT-V00", | 
|  | KEY_RSA_CERT_V00, 0, 1 }, | 
|  | { "ssh-dss-cert-v00@openssh.com", "DSA-CERT-V00", | 
|  | KEY_DSA_CERT_V00, 0, 1 }, | 
|  | { "ssh-ed25519-cert-v01@openssh.com", "ED25519-CERT", | 
|  | KEY_ED25519_CERT, 0, 1 }, | 
|  | { NULL, NULL, -1, -1, 0 } | 
|  | }; | 
|  |  | 
|  | const char * | 
|  | key_type(const Key *k) | 
|  | { | 
|  | const struct keytype *kt; | 
|  |  | 
|  | for (kt = keytypes; kt->type != -1; kt++) { | 
|  | if (kt->type == k->type) | 
|  | return kt->shortname; | 
|  | } | 
|  | return "unknown"; | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | key_ssh_name_from_type_nid(int type, int nid) | 
|  | { | 
|  | const struct keytype *kt; | 
|  |  | 
|  | for (kt = keytypes; kt->type != -1; kt++) { | 
|  | if (kt->type == type && (kt->nid == 0 || kt->nid == nid)) | 
|  | return kt->name; | 
|  | } | 
|  | return "ssh-unknown"; | 
|  | } | 
|  |  | 
|  | const char * | 
|  | key_ssh_name(const Key *k) | 
|  | { | 
|  | return key_ssh_name_from_type_nid(k->type, k->ecdsa_nid); | 
|  | } | 
|  |  | 
|  | const char * | 
|  | key_ssh_name_plain(const Key *k) | 
|  | { | 
|  | return key_ssh_name_from_type_nid(key_type_plain(k->type), | 
|  | k->ecdsa_nid); | 
|  | } | 
|  |  | 
|  | int | 
|  | key_type_from_name(char *name) | 
|  | { | 
|  | const struct keytype *kt; | 
|  |  | 
|  | for (kt = keytypes; kt->type != -1; kt++) { | 
|  | /* Only allow shortname matches for plain key types */ | 
|  | if ((kt->name != NULL && strcmp(name, kt->name) == 0) || | 
|  | (!kt->cert && strcasecmp(kt->shortname, name) == 0)) | 
|  | return kt->type; | 
|  | } | 
|  | debug2("key_type_from_name: unknown key type '%s'", name); | 
|  | return KEY_UNSPEC; | 
|  | } | 
|  |  | 
|  | int | 
|  | key_ecdsa_nid_from_name(const char *name) | 
|  | { | 
|  | const struct keytype *kt; | 
|  |  | 
|  | for (kt = keytypes; kt->type != -1; kt++) { | 
|  | if (kt->type != KEY_ECDSA && kt->type != KEY_ECDSA_CERT) | 
|  | continue; | 
|  | if (kt->name != NULL && strcmp(name, kt->name) == 0) | 
|  | return kt->nid; | 
|  | } | 
|  | debug2("%s: unknown/non-ECDSA key type '%s'", __func__, name); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | char * | 
|  | key_alg_list(int certs_only, int plain_only) | 
|  | { | 
|  | char *ret = NULL; | 
|  | size_t nlen, rlen = 0; | 
|  | const struct keytype *kt; | 
|  |  | 
|  | for (kt = keytypes; kt->type != -1; kt++) { | 
|  | if (kt->name == NULL) | 
|  | continue; | 
|  | if ((certs_only && !kt->cert) || (plain_only && kt->cert)) | 
|  | continue; | 
|  | if (ret != NULL) | 
|  | ret[rlen++] = '\n'; | 
|  | nlen = strlen(kt->name); | 
|  | ret = xrealloc(ret, 1, rlen + nlen + 2); | 
|  | memcpy(ret + rlen, kt->name, nlen + 1); | 
|  | rlen += nlen; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int | 
|  | key_type_is_cert(int type) | 
|  | { | 
|  | const struct keytype *kt; | 
|  |  | 
|  | for (kt = keytypes; kt->type != -1; kt++) { | 
|  | if (kt->type == type) | 
|  | return kt->cert; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | key_type_is_valid_ca(int type) | 
|  | { | 
|  | switch (type) { | 
|  | case KEY_RSA: | 
|  | case KEY_DSA: | 
|  | case KEY_ECDSA: | 
|  | case KEY_ED25519: | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | u_int | 
|  | key_size(const Key *k) | 
|  | { | 
|  | switch (k->type) { | 
|  | case KEY_RSA1: | 
|  | case KEY_RSA: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | return BN_num_bits(k->rsa->n); | 
|  | case KEY_DSA: | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | return BN_num_bits(k->dsa->p); | 
|  | case KEY_ED25519: | 
|  | return 256;	/* XXX */ | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA: | 
|  | case KEY_ECDSA_CERT: | 
|  | return key_curve_nid_to_bits(k->ecdsa_nid); | 
|  | #endif | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static RSA * | 
|  | rsa_generate_private_key(u_int bits) | 
|  | { | 
|  | RSA *private = RSA_new(); | 
|  | BIGNUM *f4 = BN_new(); | 
|  |  | 
|  | if (private == NULL) | 
|  | fatal("%s: RSA_new failed", __func__); | 
|  | if (f4 == NULL) | 
|  | fatal("%s: BN_new failed", __func__); | 
|  | if (!BN_set_word(f4, RSA_F4)) | 
|  | fatal("%s: BN_new failed", __func__); | 
|  | if (!RSA_generate_key_ex(private, bits, f4, NULL)) | 
|  | fatal("%s: key generation failed.", __func__); | 
|  | BN_free(f4); | 
|  | return private; | 
|  | } | 
|  |  | 
|  | static DSA* | 
|  | dsa_generate_private_key(u_int bits) | 
|  | { | 
|  | DSA *private = DSA_new(); | 
|  |  | 
|  | if (private == NULL) | 
|  | fatal("%s: DSA_new failed", __func__); | 
|  | if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL, | 
|  | NULL, NULL)) | 
|  | fatal("%s: DSA_generate_parameters failed", __func__); | 
|  | if (!DSA_generate_key(private)) | 
|  | fatal("%s: DSA_generate_key failed.", __func__); | 
|  | return private; | 
|  | } | 
|  |  | 
|  | int | 
|  | key_ecdsa_bits_to_nid(int bits) | 
|  | { | 
|  | switch (bits) { | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case 256: | 
|  | return NID_X9_62_prime256v1; | 
|  | case 384: | 
|  | return NID_secp384r1; | 
|  | # ifdef OPENSSL_HAS_NISTP521 | 
|  | case 521: | 
|  | return NID_secp521r1; | 
|  | # endif | 
|  | #endif | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | int | 
|  | key_ecdsa_key_to_nid(EC_KEY *k) | 
|  | { | 
|  | EC_GROUP *eg; | 
|  | int nids[] = { | 
|  | NID_X9_62_prime256v1, | 
|  | NID_secp384r1, | 
|  | # ifdef OPENSSL_HAS_NISTP521 | 
|  | NID_secp521r1, | 
|  | # endif | 
|  | -1 | 
|  | }; | 
|  | int nid; | 
|  | u_int i; | 
|  | BN_CTX *bnctx; | 
|  | const EC_GROUP *g = EC_KEY_get0_group(k); | 
|  |  | 
|  | /* | 
|  | * The group may be stored in a ASN.1 encoded private key in one of two | 
|  | * ways: as a "named group", which is reconstituted by ASN.1 object ID | 
|  | * or explicit group parameters encoded into the key blob. Only the | 
|  | * "named group" case sets the group NID for us, but we can figure | 
|  | * it out for the other case by comparing against all the groups that | 
|  | * are supported. | 
|  | */ | 
|  | if ((nid = EC_GROUP_get_curve_name(g)) > 0) | 
|  | return nid; | 
|  | if ((bnctx = BN_CTX_new()) == NULL) | 
|  | fatal("%s: BN_CTX_new() failed", __func__); | 
|  | for (i = 0; nids[i] != -1; i++) { | 
|  | if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL) | 
|  | fatal("%s: EC_GROUP_new_by_curve_name failed", | 
|  | __func__); | 
|  | if (EC_GROUP_cmp(g, eg, bnctx) == 0) | 
|  | break; | 
|  | EC_GROUP_free(eg); | 
|  | } | 
|  | BN_CTX_free(bnctx); | 
|  | debug3("%s: nid = %d", __func__, nids[i]); | 
|  | if (nids[i] != -1) { | 
|  | /* Use the group with the NID attached */ | 
|  | EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE); | 
|  | if (EC_KEY_set_group(k, eg) != 1) | 
|  | fatal("%s: EC_KEY_set_group", __func__); | 
|  | } | 
|  | return nids[i]; | 
|  | } | 
|  |  | 
|  | static EC_KEY* | 
|  | ecdsa_generate_private_key(u_int bits, int *nid) | 
|  | { | 
|  | EC_KEY *private; | 
|  |  | 
|  | if ((*nid = key_ecdsa_bits_to_nid(bits)) == -1) | 
|  | fatal("%s: invalid key length", __func__); | 
|  | if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL) | 
|  | fatal("%s: EC_KEY_new_by_curve_name failed", __func__); | 
|  | if (EC_KEY_generate_key(private) != 1) | 
|  | fatal("%s: EC_KEY_generate_key failed", __func__); | 
|  | EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE); | 
|  | return private; | 
|  | } | 
|  | #endif /* OPENSSL_HAS_ECC */ | 
|  |  | 
|  | Key * | 
|  | key_generate(int type, u_int bits) | 
|  | { | 
|  | Key *k = key_new(KEY_UNSPEC); | 
|  | switch (type) { | 
|  | case KEY_DSA: | 
|  | k->dsa = dsa_generate_private_key(bits); | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA: | 
|  | k->ecdsa = ecdsa_generate_private_key(bits, &k->ecdsa_nid); | 
|  | break; | 
|  | #endif | 
|  | case KEY_RSA: | 
|  | case KEY_RSA1: | 
|  | k->rsa = rsa_generate_private_key(bits); | 
|  | break; | 
|  | case KEY_ED25519: | 
|  | k->ed25519_pk = xmalloc(ED25519_PK_SZ); | 
|  | k->ed25519_sk = xmalloc(ED25519_SK_SZ); | 
|  | crypto_sign_ed25519_keypair(k->ed25519_pk, k->ed25519_sk); | 
|  | break; | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | case KEY_DSA_CERT: | 
|  | fatal("key_generate: cert keys cannot be generated directly"); | 
|  | default: | 
|  | fatal("key_generate: unknown type %d", type); | 
|  | } | 
|  | k->type = type; | 
|  | return k; | 
|  | } | 
|  |  | 
|  | void | 
|  | key_cert_copy(const Key *from_key, struct Key *to_key) | 
|  | { | 
|  | u_int i; | 
|  | const struct KeyCert *from; | 
|  | struct KeyCert *to; | 
|  |  | 
|  | if (to_key->cert != NULL) { | 
|  | cert_free(to_key->cert); | 
|  | to_key->cert = NULL; | 
|  | } | 
|  |  | 
|  | if ((from = from_key->cert) == NULL) | 
|  | return; | 
|  |  | 
|  | to = to_key->cert = cert_new(); | 
|  |  | 
|  | buffer_append(&to->certblob, buffer_ptr(&from->certblob), | 
|  | buffer_len(&from->certblob)); | 
|  |  | 
|  | buffer_append(&to->critical, | 
|  | buffer_ptr(&from->critical), buffer_len(&from->critical)); | 
|  | buffer_append(&to->extensions, | 
|  | buffer_ptr(&from->extensions), buffer_len(&from->extensions)); | 
|  |  | 
|  | to->serial = from->serial; | 
|  | to->type = from->type; | 
|  | to->key_id = from->key_id == NULL ? NULL : xstrdup(from->key_id); | 
|  | to->valid_after = from->valid_after; | 
|  | to->valid_before = from->valid_before; | 
|  | to->signature_key = from->signature_key == NULL ? | 
|  | NULL : key_from_private(from->signature_key); | 
|  |  | 
|  | to->nprincipals = from->nprincipals; | 
|  | if (to->nprincipals > CERT_MAX_PRINCIPALS) | 
|  | fatal("%s: nprincipals (%u) > CERT_MAX_PRINCIPALS (%u)", | 
|  | __func__, to->nprincipals, CERT_MAX_PRINCIPALS); | 
|  | if (to->nprincipals > 0) { | 
|  | to->principals = xcalloc(from->nprincipals, | 
|  | sizeof(*to->principals)); | 
|  | for (i = 0; i < to->nprincipals; i++) | 
|  | to->principals[i] = xstrdup(from->principals[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | Key * | 
|  | key_from_private(const Key *k) | 
|  | { | 
|  | Key *n = NULL; | 
|  | switch (k->type) { | 
|  | case KEY_DSA: | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | n = key_new(k->type); | 
|  | if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) || | 
|  | (BN_copy(n->dsa->q, k->dsa->q) == NULL) || | 
|  | (BN_copy(n->dsa->g, k->dsa->g) == NULL) || | 
|  | (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL)) | 
|  | fatal("key_from_private: BN_copy failed"); | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA: | 
|  | case KEY_ECDSA_CERT: | 
|  | n = key_new(k->type); | 
|  | n->ecdsa_nid = k->ecdsa_nid; | 
|  | if ((n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid)) == NULL) | 
|  | fatal("%s: EC_KEY_new_by_curve_name failed", __func__); | 
|  | if (EC_KEY_set_public_key(n->ecdsa, | 
|  | EC_KEY_get0_public_key(k->ecdsa)) != 1) | 
|  | fatal("%s: EC_KEY_set_public_key failed", __func__); | 
|  | break; | 
|  | #endif | 
|  | case KEY_RSA: | 
|  | case KEY_RSA1: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | n = key_new(k->type); | 
|  | if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) || | 
|  | (BN_copy(n->rsa->e, k->rsa->e) == NULL)) | 
|  | fatal("key_from_private: BN_copy failed"); | 
|  | break; | 
|  | case KEY_ED25519: | 
|  | case KEY_ED25519_CERT: | 
|  | n = key_new(k->type); | 
|  | if (k->ed25519_pk != NULL) { | 
|  | n->ed25519_pk = xmalloc(ED25519_PK_SZ); | 
|  | memcpy(n->ed25519_pk, k->ed25519_pk, ED25519_PK_SZ); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | fatal("key_from_private: unknown type %d", k->type); | 
|  | break; | 
|  | } | 
|  | if (key_is_cert(k)) | 
|  | key_cert_copy(k, n); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | int | 
|  | key_names_valid2(const char *names) | 
|  | { | 
|  | char *s, *cp, *p; | 
|  |  | 
|  | if (names == NULL || strcmp(names, "") == 0) | 
|  | return 0; | 
|  | s = cp = xstrdup(names); | 
|  | for ((p = strsep(&cp, ",")); p && *p != '\0'; | 
|  | (p = strsep(&cp, ","))) { | 
|  | switch (key_type_from_name(p)) { | 
|  | case KEY_RSA1: | 
|  | case KEY_UNSPEC: | 
|  | free(s); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | debug3("key names ok: [%s]", names); | 
|  | free(s); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | cert_parse(Buffer *b, Key *key, const u_char *blob, u_int blen) | 
|  | { | 
|  | u_char *principals, *critical, *exts, *sig_key, *sig; | 
|  | u_int signed_len, plen, clen, sklen, slen, kidlen, elen; | 
|  | Buffer tmp; | 
|  | char *principal; | 
|  | int ret = -1; | 
|  | int v00 = key->type == KEY_DSA_CERT_V00 || | 
|  | key->type == KEY_RSA_CERT_V00; | 
|  |  | 
|  | buffer_init(&tmp); | 
|  |  | 
|  | /* Copy the entire key blob for verification and later serialisation */ | 
|  | buffer_append(&key->cert->certblob, blob, blen); | 
|  |  | 
|  | elen = 0; /* Not touched for v00 certs */ | 
|  | principals = exts = critical = sig_key = sig = NULL; | 
|  | if ((!v00 && buffer_get_int64_ret(&key->cert->serial, b) != 0) || | 
|  | buffer_get_int_ret(&key->cert->type, b) != 0 || | 
|  | (key->cert->key_id = buffer_get_cstring_ret(b, &kidlen)) == NULL || | 
|  | (principals = buffer_get_string_ret(b, &plen)) == NULL || | 
|  | buffer_get_int64_ret(&key->cert->valid_after, b) != 0 || | 
|  | buffer_get_int64_ret(&key->cert->valid_before, b) != 0 || | 
|  | (critical = buffer_get_string_ret(b, &clen)) == NULL || | 
|  | (!v00 && (exts = buffer_get_string_ret(b, &elen)) == NULL) || | 
|  | (v00 && buffer_get_string_ptr_ret(b, NULL) == NULL) || /* nonce */ | 
|  | buffer_get_string_ptr_ret(b, NULL) == NULL || /* reserved */ | 
|  | (sig_key = buffer_get_string_ret(b, &sklen)) == NULL) { | 
|  | error("%s: parse error", __func__); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Signature is left in the buffer so we can calculate this length */ | 
|  | signed_len = buffer_len(&key->cert->certblob) - buffer_len(b); | 
|  |  | 
|  | if ((sig = buffer_get_string_ret(b, &slen)) == NULL) { | 
|  | error("%s: parse error", __func__); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (key->cert->type != SSH2_CERT_TYPE_USER && | 
|  | key->cert->type != SSH2_CERT_TYPE_HOST) { | 
|  | error("Unknown certificate type %u", key->cert->type); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | buffer_append(&tmp, principals, plen); | 
|  | while (buffer_len(&tmp) > 0) { | 
|  | if (key->cert->nprincipals >= CERT_MAX_PRINCIPALS) { | 
|  | error("%s: Too many principals", __func__); | 
|  | goto out; | 
|  | } | 
|  | if ((principal = buffer_get_cstring_ret(&tmp, &plen)) == NULL) { | 
|  | error("%s: Principals data invalid", __func__); | 
|  | goto out; | 
|  | } | 
|  | key->cert->principals = xrealloc(key->cert->principals, | 
|  | key->cert->nprincipals + 1, sizeof(*key->cert->principals)); | 
|  | key->cert->principals[key->cert->nprincipals++] = principal; | 
|  | } | 
|  |  | 
|  | buffer_clear(&tmp); | 
|  |  | 
|  | buffer_append(&key->cert->critical, critical, clen); | 
|  | buffer_append(&tmp, critical, clen); | 
|  | /* validate structure */ | 
|  | while (buffer_len(&tmp) != 0) { | 
|  | if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL || | 
|  | buffer_get_string_ptr_ret(&tmp, NULL) == NULL) { | 
|  | error("%s: critical option data invalid", __func__); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | buffer_clear(&tmp); | 
|  |  | 
|  | buffer_append(&key->cert->extensions, exts, elen); | 
|  | buffer_append(&tmp, exts, elen); | 
|  | /* validate structure */ | 
|  | while (buffer_len(&tmp) != 0) { | 
|  | if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL || | 
|  | buffer_get_string_ptr_ret(&tmp, NULL) == NULL) { | 
|  | error("%s: extension data invalid", __func__); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | buffer_clear(&tmp); | 
|  |  | 
|  | if ((key->cert->signature_key = key_from_blob2(sig_key, sklen, 0)) | 
|  | == NULL) { | 
|  | error("%s: Signature key invalid", __func__); | 
|  | goto out; | 
|  | } | 
|  | if (!key_type_is_valid_ca(key->cert->signature_key->type)) { | 
|  | error("%s: Invalid signature key type %s (%d)", __func__, | 
|  | key_type(key->cert->signature_key), | 
|  | key->cert->signature_key->type); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (key_verify(key->cert->signature_key, sig, slen, | 
|  | buffer_ptr(&key->cert->certblob), signed_len)) { | 
|  | case 1: | 
|  | ret = 0; | 
|  | break; /* Good signature */ | 
|  | case 0: | 
|  | error("%s: Invalid signature on certificate", __func__); | 
|  | goto out; | 
|  | case -1: | 
|  | error("%s: Certificate signature verification failed", | 
|  | __func__); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | buffer_free(&tmp); | 
|  | free(principals); | 
|  | free(critical); | 
|  | free(exts); | 
|  | free(sig_key); | 
|  | free(sig); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static Key * | 
|  | key_from_blob2(const u_char *blob, u_int blen, int allow_cert) | 
|  | { | 
|  | Buffer b; | 
|  | int rlen, type; | 
|  | u_int len; | 
|  | char *ktype = NULL, *curve = NULL; | 
|  | u_char *pk = NULL; | 
|  | Key *key = NULL; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | EC_POINT *q = NULL; | 
|  | int nid = -1; | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_PK | 
|  | dump_base64(stderr, blob, blen); | 
|  | #endif | 
|  | buffer_init(&b); | 
|  | buffer_append(&b, blob, blen); | 
|  | if ((ktype = buffer_get_cstring_ret(&b, NULL)) == NULL) { | 
|  | error("key_from_blob: can't read key type"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | type = key_type_from_name(ktype); | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | if (key_type_plain(type) == KEY_ECDSA) | 
|  | nid = key_ecdsa_nid_from_name(ktype); | 
|  | #endif | 
|  | if (!allow_cert && key_type_is_cert(type)) { | 
|  | error("key_from_blob: certificate not allowed in this context"); | 
|  | goto out; | 
|  | } | 
|  | switch (type) { | 
|  | case KEY_RSA_CERT: | 
|  | (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */ | 
|  | /* FALLTHROUGH */ | 
|  | case KEY_RSA: | 
|  | case KEY_RSA_CERT_V00: | 
|  | key = key_new(type); | 
|  | if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 || | 
|  | buffer_get_bignum2_ret(&b, key->rsa->n) == -1) { | 
|  | error("key_from_blob: can't read rsa key"); | 
|  | badkey: | 
|  | key_free(key); | 
|  | key = NULL; | 
|  | goto out; | 
|  | } | 
|  | #ifdef DEBUG_PK | 
|  | RSA_print_fp(stderr, key->rsa, 8); | 
|  | #endif | 
|  | break; | 
|  | case KEY_DSA_CERT: | 
|  | (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */ | 
|  | /* FALLTHROUGH */ | 
|  | case KEY_DSA: | 
|  | case KEY_DSA_CERT_V00: | 
|  | key = key_new(type); | 
|  | if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 || | 
|  | buffer_get_bignum2_ret(&b, key->dsa->q) == -1 || | 
|  | buffer_get_bignum2_ret(&b, key->dsa->g) == -1 || | 
|  | buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) { | 
|  | error("key_from_blob: can't read dsa key"); | 
|  | goto badkey; | 
|  | } | 
|  | #ifdef DEBUG_PK | 
|  | DSA_print_fp(stderr, key->dsa, 8); | 
|  | #endif | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA_CERT: | 
|  | (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */ | 
|  | /* FALLTHROUGH */ | 
|  | case KEY_ECDSA: | 
|  | key = key_new(type); | 
|  | key->ecdsa_nid = nid; | 
|  | if ((curve = buffer_get_string_ret(&b, NULL)) == NULL) { | 
|  | error("key_from_blob: can't read ecdsa curve"); | 
|  | goto badkey; | 
|  | } | 
|  | if (key->ecdsa_nid != key_curve_name_to_nid(curve)) { | 
|  | error("key_from_blob: ecdsa curve doesn't match type"); | 
|  | goto badkey; | 
|  | } | 
|  | if (key->ecdsa != NULL) | 
|  | EC_KEY_free(key->ecdsa); | 
|  | if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid)) | 
|  | == NULL) | 
|  | fatal("key_from_blob: EC_KEY_new_by_curve_name failed"); | 
|  | if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL) | 
|  | fatal("key_from_blob: EC_POINT_new failed"); | 
|  | if (buffer_get_ecpoint_ret(&b, EC_KEY_get0_group(key->ecdsa), | 
|  | q) == -1) { | 
|  | error("key_from_blob: can't read ecdsa key point"); | 
|  | goto badkey; | 
|  | } | 
|  | if (key_ec_validate_public(EC_KEY_get0_group(key->ecdsa), | 
|  | q) != 0) | 
|  | goto badkey; | 
|  | if (EC_KEY_set_public_key(key->ecdsa, q) != 1) | 
|  | fatal("key_from_blob: EC_KEY_set_public_key failed"); | 
|  | #ifdef DEBUG_PK | 
|  | key_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q); | 
|  | #endif | 
|  | break; | 
|  | #endif /* OPENSSL_HAS_ECC */ | 
|  | case KEY_ED25519_CERT: | 
|  | (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */ | 
|  | /* FALLTHROUGH */ | 
|  | case KEY_ED25519: | 
|  | if ((pk = buffer_get_string_ret(&b, &len)) == NULL) { | 
|  | error("key_from_blob: can't read ed25519 key"); | 
|  | goto badkey; | 
|  | } | 
|  | if (len != ED25519_PK_SZ) { | 
|  | error("key_from_blob: ed25519 len %d != %d", | 
|  | len, ED25519_PK_SZ); | 
|  | goto badkey; | 
|  | } | 
|  | key = key_new(type); | 
|  | key->ed25519_pk = pk; | 
|  | pk = NULL; | 
|  | break; | 
|  | case KEY_UNSPEC: | 
|  | key = key_new(type); | 
|  | break; | 
|  | default: | 
|  | error("key_from_blob: cannot handle type %s", ktype); | 
|  | goto out; | 
|  | } | 
|  | if (key_is_cert(key) && cert_parse(&b, key, blob, blen) == -1) { | 
|  | error("key_from_blob: can't parse cert data"); | 
|  | goto badkey; | 
|  | } | 
|  | rlen = buffer_len(&b); | 
|  | if (key != NULL && rlen != 0) | 
|  | error("key_from_blob: remaining bytes in key blob %d", rlen); | 
|  | out: | 
|  | free(ktype); | 
|  | free(curve); | 
|  | free(pk); | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | if (q != NULL) | 
|  | EC_POINT_free(q); | 
|  | #endif | 
|  | buffer_free(&b); | 
|  | return key; | 
|  | } | 
|  |  | 
|  | Key * | 
|  | key_from_blob(const u_char *blob, u_int blen) | 
|  | { | 
|  | return key_from_blob2(blob, blen, 1); | 
|  | } | 
|  |  | 
|  | static int | 
|  | to_blob(const Key *key, u_char **blobp, u_int *lenp, int force_plain) | 
|  | { | 
|  | Buffer b; | 
|  | int len, type; | 
|  |  | 
|  | if (blobp != NULL) | 
|  | *blobp = NULL; | 
|  | if (lenp != NULL) | 
|  | *lenp = 0; | 
|  | if (key == NULL) { | 
|  | error("key_to_blob: key == NULL"); | 
|  | return 0; | 
|  | } | 
|  | buffer_init(&b); | 
|  | type = force_plain ? key_type_plain(key->type) : key->type; | 
|  | switch (type) { | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | case KEY_ECDSA_CERT: | 
|  | case KEY_RSA_CERT: | 
|  | case KEY_ED25519_CERT: | 
|  | /* Use the existing blob */ | 
|  | buffer_append(&b, buffer_ptr(&key->cert->certblob), | 
|  | buffer_len(&key->cert->certblob)); | 
|  | break; | 
|  | case KEY_DSA: | 
|  | buffer_put_cstring(&b, | 
|  | key_ssh_name_from_type_nid(type, key->ecdsa_nid)); | 
|  | buffer_put_bignum2(&b, key->dsa->p); | 
|  | buffer_put_bignum2(&b, key->dsa->q); | 
|  | buffer_put_bignum2(&b, key->dsa->g); | 
|  | buffer_put_bignum2(&b, key->dsa->pub_key); | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA: | 
|  | buffer_put_cstring(&b, | 
|  | key_ssh_name_from_type_nid(type, key->ecdsa_nid)); | 
|  | buffer_put_cstring(&b, key_curve_nid_to_name(key->ecdsa_nid)); | 
|  | buffer_put_ecpoint(&b, EC_KEY_get0_group(key->ecdsa), | 
|  | EC_KEY_get0_public_key(key->ecdsa)); | 
|  | break; | 
|  | #endif | 
|  | case KEY_RSA: | 
|  | buffer_put_cstring(&b, | 
|  | key_ssh_name_from_type_nid(type, key->ecdsa_nid)); | 
|  | buffer_put_bignum2(&b, key->rsa->e); | 
|  | buffer_put_bignum2(&b, key->rsa->n); | 
|  | break; | 
|  | case KEY_ED25519: | 
|  | buffer_put_cstring(&b, | 
|  | key_ssh_name_from_type_nid(type, key->ecdsa_nid)); | 
|  | buffer_put_string(&b, key->ed25519_pk, ED25519_PK_SZ); | 
|  | break; | 
|  | default: | 
|  | error("key_to_blob: unsupported key type %d", key->type); | 
|  | buffer_free(&b); | 
|  | return 0; | 
|  | } | 
|  | len = buffer_len(&b); | 
|  | if (lenp != NULL) | 
|  | *lenp = len; | 
|  | if (blobp != NULL) { | 
|  | *blobp = xmalloc(len); | 
|  | memcpy(*blobp, buffer_ptr(&b), len); | 
|  | } | 
|  | memset(buffer_ptr(&b), 0, len); | 
|  | buffer_free(&b); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | int | 
|  | key_to_blob(const Key *key, u_char **blobp, u_int *lenp) | 
|  | { | 
|  | return to_blob(key, blobp, lenp, 0); | 
|  | } | 
|  |  | 
|  | int | 
|  | key_sign( | 
|  | const Key *key, | 
|  | u_char **sigp, u_int *lenp, | 
|  | const u_char *data, u_int datalen) | 
|  | { | 
|  | switch (key->type) { | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | case KEY_DSA: | 
|  | return ssh_dss_sign(key, sigp, lenp, data, datalen); | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA_CERT: | 
|  | case KEY_ECDSA: | 
|  | return ssh_ecdsa_sign(key, sigp, lenp, data, datalen); | 
|  | #endif | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | case KEY_RSA: | 
|  | return ssh_rsa_sign(key, sigp, lenp, data, datalen); | 
|  | case KEY_ED25519: | 
|  | case KEY_ED25519_CERT: | 
|  | return ssh_ed25519_sign(key, sigp, lenp, data, datalen); | 
|  | default: | 
|  | error("key_sign: invalid key type %d", key->type); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * key_verify returns 1 for a correct signature, 0 for an incorrect signature | 
|  | * and -1 on error. | 
|  | */ | 
|  | int | 
|  | key_verify( | 
|  | const Key *key, | 
|  | const u_char *signature, u_int signaturelen, | 
|  | const u_char *data, u_int datalen) | 
|  | { | 
|  | if (signaturelen == 0) | 
|  | return -1; | 
|  |  | 
|  | switch (key->type) { | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | case KEY_DSA: | 
|  | return ssh_dss_verify(key, signature, signaturelen, data, datalen); | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA_CERT: | 
|  | case KEY_ECDSA: | 
|  | return ssh_ecdsa_verify(key, signature, signaturelen, data, datalen); | 
|  | #endif | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | case KEY_RSA: | 
|  | return ssh_rsa_verify(key, signature, signaturelen, data, datalen); | 
|  | case KEY_ED25519: | 
|  | case KEY_ED25519_CERT: | 
|  | return ssh_ed25519_verify(key, signature, signaturelen, data, datalen); | 
|  | default: | 
|  | error("key_verify: invalid key type %d", key->type); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Converts a private to a public key */ | 
|  | Key * | 
|  | key_demote(const Key *k) | 
|  | { | 
|  | Key *pk; | 
|  |  | 
|  | pk = xcalloc(1, sizeof(*pk)); | 
|  | pk->type = k->type; | 
|  | pk->flags = k->flags; | 
|  | pk->ecdsa_nid = k->ecdsa_nid; | 
|  | pk->dsa = NULL; | 
|  | pk->ecdsa = NULL; | 
|  | pk->rsa = NULL; | 
|  | pk->ed25519_pk = NULL; | 
|  | pk->ed25519_sk = NULL; | 
|  |  | 
|  | switch (k->type) { | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | key_cert_copy(k, pk); | 
|  | /* FALLTHROUGH */ | 
|  | case KEY_RSA1: | 
|  | case KEY_RSA: | 
|  | if ((pk->rsa = RSA_new()) == NULL) | 
|  | fatal("key_demote: RSA_new failed"); | 
|  | if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL) | 
|  | fatal("key_demote: BN_dup failed"); | 
|  | if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL) | 
|  | fatal("key_demote: BN_dup failed"); | 
|  | break; | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | key_cert_copy(k, pk); | 
|  | /* FALLTHROUGH */ | 
|  | case KEY_DSA: | 
|  | if ((pk->dsa = DSA_new()) == NULL) | 
|  | fatal("key_demote: DSA_new failed"); | 
|  | if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL) | 
|  | fatal("key_demote: BN_dup failed"); | 
|  | if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL) | 
|  | fatal("key_demote: BN_dup failed"); | 
|  | if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL) | 
|  | fatal("key_demote: BN_dup failed"); | 
|  | if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL) | 
|  | fatal("key_demote: BN_dup failed"); | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA_CERT: | 
|  | key_cert_copy(k, pk); | 
|  | /* FALLTHROUGH */ | 
|  | case KEY_ECDSA: | 
|  | if ((pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid)) == NULL) | 
|  | fatal("key_demote: EC_KEY_new_by_curve_name failed"); | 
|  | if (EC_KEY_set_public_key(pk->ecdsa, | 
|  | EC_KEY_get0_public_key(k->ecdsa)) != 1) | 
|  | fatal("key_demote: EC_KEY_set_public_key failed"); | 
|  | break; | 
|  | #endif | 
|  | case KEY_ED25519_CERT: | 
|  | key_cert_copy(k, pk); | 
|  | /* FALLTHROUGH */ | 
|  | case KEY_ED25519: | 
|  | if (k->ed25519_pk != NULL) { | 
|  | pk->ed25519_pk = xmalloc(ED25519_PK_SZ); | 
|  | memcpy(pk->ed25519_pk, k->ed25519_pk, ED25519_PK_SZ); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | fatal("key_demote: bad key type %d", k->type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return (pk); | 
|  | } | 
|  |  | 
|  | int | 
|  | key_is_cert(const Key *k) | 
|  | { | 
|  | if (k == NULL) | 
|  | return 0; | 
|  | return key_type_is_cert(k->type); | 
|  | } | 
|  |  | 
|  | /* Return the cert-less equivalent to a certified key type */ | 
|  | int | 
|  | key_type_plain(int type) | 
|  | { | 
|  | switch (type) { | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | return KEY_RSA; | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | return KEY_DSA; | 
|  | case KEY_ECDSA_CERT: | 
|  | return KEY_ECDSA; | 
|  | case KEY_ED25519_CERT: | 
|  | return KEY_ED25519; | 
|  | default: | 
|  | return type; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Convert a plain key to their _CERT equivalent */ | 
|  | int | 
|  | key_to_certified(Key *k, int legacy) | 
|  | { | 
|  | switch (k->type) { | 
|  | case KEY_RSA: | 
|  | k->cert = cert_new(); | 
|  | k->type = legacy ? KEY_RSA_CERT_V00 : KEY_RSA_CERT; | 
|  | return 0; | 
|  | case KEY_DSA: | 
|  | k->cert = cert_new(); | 
|  | k->type = legacy ? KEY_DSA_CERT_V00 : KEY_DSA_CERT; | 
|  | return 0; | 
|  | case KEY_ECDSA: | 
|  | if (legacy) | 
|  | fatal("%s: legacy ECDSA certificates are not supported", | 
|  | __func__); | 
|  | k->cert = cert_new(); | 
|  | k->type = KEY_ECDSA_CERT; | 
|  | return 0; | 
|  | case KEY_ED25519: | 
|  | if (legacy) | 
|  | fatal("%s: legacy ED25519 certificates are not " | 
|  | "supported", __func__); | 
|  | k->cert = cert_new(); | 
|  | k->type = KEY_ED25519_CERT; | 
|  | return 0; | 
|  | default: | 
|  | error("%s: key has incorrect type %s", __func__, key_type(k)); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Convert a certificate to its raw key equivalent */ | 
|  | int | 
|  | key_drop_cert(Key *k) | 
|  | { | 
|  | if (!key_type_is_cert(k->type)) { | 
|  | error("%s: key has incorrect type %s", __func__, key_type(k)); | 
|  | return -1; | 
|  | } | 
|  | cert_free(k->cert); | 
|  | k->cert = NULL; | 
|  | k->type = key_type_plain(k->type); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Sign a certified key, (re-)generating the signed certblob. */ | 
|  | int | 
|  | key_certify(Key *k, Key *ca) | 
|  | { | 
|  | Buffer principals; | 
|  | u_char *ca_blob, *sig_blob, nonce[32]; | 
|  | u_int i, ca_len, sig_len; | 
|  |  | 
|  | if (k->cert == NULL) { | 
|  | error("%s: key lacks cert info", __func__); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!key_is_cert(k)) { | 
|  | error("%s: certificate has unknown type %d", __func__, | 
|  | k->cert->type); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!key_type_is_valid_ca(ca->type)) { | 
|  | error("%s: CA key has unsupported type %s", __func__, | 
|  | key_type(ca)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | key_to_blob(ca, &ca_blob, &ca_len); | 
|  |  | 
|  | buffer_clear(&k->cert->certblob); | 
|  | buffer_put_cstring(&k->cert->certblob, key_ssh_name(k)); | 
|  |  | 
|  | /* -v01 certs put nonce first */ | 
|  | arc4random_buf(&nonce, sizeof(nonce)); | 
|  | if (!key_cert_is_legacy(k)) | 
|  | buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce)); | 
|  |  | 
|  | /* XXX this substantially duplicates to_blob(); refactor */ | 
|  | switch (k->type) { | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | buffer_put_bignum2(&k->cert->certblob, k->dsa->p); | 
|  | buffer_put_bignum2(&k->cert->certblob, k->dsa->q); | 
|  | buffer_put_bignum2(&k->cert->certblob, k->dsa->g); | 
|  | buffer_put_bignum2(&k->cert->certblob, k->dsa->pub_key); | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA_CERT: | 
|  | buffer_put_cstring(&k->cert->certblob, | 
|  | key_curve_nid_to_name(k->ecdsa_nid)); | 
|  | buffer_put_ecpoint(&k->cert->certblob, | 
|  | EC_KEY_get0_group(k->ecdsa), | 
|  | EC_KEY_get0_public_key(k->ecdsa)); | 
|  | break; | 
|  | #endif | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | buffer_put_bignum2(&k->cert->certblob, k->rsa->e); | 
|  | buffer_put_bignum2(&k->cert->certblob, k->rsa->n); | 
|  | break; | 
|  | case KEY_ED25519_CERT: | 
|  | buffer_put_string(&k->cert->certblob, | 
|  | k->ed25519_pk, ED25519_PK_SZ); | 
|  | break; | 
|  | default: | 
|  | error("%s: key has incorrect type %s", __func__, key_type(k)); | 
|  | buffer_clear(&k->cert->certblob); | 
|  | free(ca_blob); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* -v01 certs have a serial number next */ | 
|  | if (!key_cert_is_legacy(k)) | 
|  | buffer_put_int64(&k->cert->certblob, k->cert->serial); | 
|  |  | 
|  | buffer_put_int(&k->cert->certblob, k->cert->type); | 
|  | buffer_put_cstring(&k->cert->certblob, k->cert->key_id); | 
|  |  | 
|  | buffer_init(&principals); | 
|  | for (i = 0; i < k->cert->nprincipals; i++) | 
|  | buffer_put_cstring(&principals, k->cert->principals[i]); | 
|  | buffer_put_string(&k->cert->certblob, buffer_ptr(&principals), | 
|  | buffer_len(&principals)); | 
|  | buffer_free(&principals); | 
|  |  | 
|  | buffer_put_int64(&k->cert->certblob, k->cert->valid_after); | 
|  | buffer_put_int64(&k->cert->certblob, k->cert->valid_before); | 
|  | buffer_put_string(&k->cert->certblob, | 
|  | buffer_ptr(&k->cert->critical), buffer_len(&k->cert->critical)); | 
|  |  | 
|  | /* -v01 certs have non-critical options here */ | 
|  | if (!key_cert_is_legacy(k)) { | 
|  | buffer_put_string(&k->cert->certblob, | 
|  | buffer_ptr(&k->cert->extensions), | 
|  | buffer_len(&k->cert->extensions)); | 
|  | } | 
|  |  | 
|  | /* -v00 certs put the nonce at the end */ | 
|  | if (key_cert_is_legacy(k)) | 
|  | buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce)); | 
|  |  | 
|  | buffer_put_string(&k->cert->certblob, NULL, 0); /* reserved */ | 
|  | buffer_put_string(&k->cert->certblob, ca_blob, ca_len); | 
|  | free(ca_blob); | 
|  |  | 
|  | /* Sign the whole mess */ | 
|  | if (key_sign(ca, &sig_blob, &sig_len, buffer_ptr(&k->cert->certblob), | 
|  | buffer_len(&k->cert->certblob)) != 0) { | 
|  | error("%s: signature operation failed", __func__); | 
|  | buffer_clear(&k->cert->certblob); | 
|  | return -1; | 
|  | } | 
|  | /* Append signature and we are done */ | 
|  | buffer_put_string(&k->cert->certblob, sig_blob, sig_len); | 
|  | free(sig_blob); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | key_cert_check_authority(const Key *k, int want_host, int require_principal, | 
|  | const char *name, const char **reason) | 
|  | { | 
|  | u_int i, principal_matches; | 
|  | time_t now = time(NULL); | 
|  |  | 
|  | if (want_host) { | 
|  | if (k->cert->type != SSH2_CERT_TYPE_HOST) { | 
|  | *reason = "Certificate invalid: not a host certificate"; | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | if (k->cert->type != SSH2_CERT_TYPE_USER) { | 
|  | *reason = "Certificate invalid: not a user certificate"; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | if (now < 0) { | 
|  | error("%s: system clock lies before epoch", __func__); | 
|  | *reason = "Certificate invalid: not yet valid"; | 
|  | return -1; | 
|  | } | 
|  | if ((u_int64_t)now < k->cert->valid_after) { | 
|  | *reason = "Certificate invalid: not yet valid"; | 
|  | return -1; | 
|  | } | 
|  | if ((u_int64_t)now >= k->cert->valid_before) { | 
|  | *reason = "Certificate invalid: expired"; | 
|  | return -1; | 
|  | } | 
|  | if (k->cert->nprincipals == 0) { | 
|  | if (require_principal) { | 
|  | *reason = "Certificate lacks principal list"; | 
|  | return -1; | 
|  | } | 
|  | } else if (name != NULL) { | 
|  | principal_matches = 0; | 
|  | for (i = 0; i < k->cert->nprincipals; i++) { | 
|  | if (strcmp(name, k->cert->principals[i]) == 0) { | 
|  | principal_matches = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!principal_matches) { | 
|  | *reason = "Certificate invalid: name is not a listed " | 
|  | "principal"; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | key_cert_is_legacy(const Key *k) | 
|  | { | 
|  | switch (k->type) { | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_RSA_CERT_V00: | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* XXX: these are really begging for a table-driven approach */ | 
|  | int | 
|  | key_curve_name_to_nid(const char *name) | 
|  | { | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | if (strcmp(name, "nistp256") == 0) | 
|  | return NID_X9_62_prime256v1; | 
|  | else if (strcmp(name, "nistp384") == 0) | 
|  | return NID_secp384r1; | 
|  | # ifdef OPENSSL_HAS_NISTP521 | 
|  | else if (strcmp(name, "nistp521") == 0) | 
|  | return NID_secp521r1; | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | debug("%s: unsupported EC curve name \"%.100s\"", __func__, name); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | u_int | 
|  | key_curve_nid_to_bits(int nid) | 
|  | { | 
|  | switch (nid) { | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case NID_X9_62_prime256v1: | 
|  | return 256; | 
|  | case NID_secp384r1: | 
|  | return 384; | 
|  | # ifdef OPENSSL_HAS_NISTP521 | 
|  | case NID_secp521r1: | 
|  | return 521; | 
|  | # endif | 
|  | #endif | 
|  | default: | 
|  | error("%s: unsupported EC curve nid %d", __func__, nid); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | const char * | 
|  | key_curve_nid_to_name(int nid) | 
|  | { | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | if (nid == NID_X9_62_prime256v1) | 
|  | return "nistp256"; | 
|  | else if (nid == NID_secp384r1) | 
|  | return "nistp384"; | 
|  | # ifdef OPENSSL_HAS_NISTP521 | 
|  | else if (nid == NID_secp521r1) | 
|  | return "nistp521"; | 
|  | # endif | 
|  | #endif | 
|  | error("%s: unsupported EC curve nid %d", __func__, nid); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | int | 
|  | key_ec_nid_to_hash_alg(int nid) | 
|  | { | 
|  | int kbits = key_curve_nid_to_bits(nid); | 
|  |  | 
|  | if (kbits == 0) | 
|  | fatal("%s: invalid nid %d", __func__, nid); | 
|  | /* RFC5656 section 6.2.1 */ | 
|  | if (kbits <= 256) | 
|  | return SSH_DIGEST_SHA256; | 
|  | else if (kbits <= 384) | 
|  | return SSH_DIGEST_SHA384; | 
|  | else | 
|  | return SSH_DIGEST_SHA512; | 
|  | } | 
|  |  | 
|  | int | 
|  | key_ec_validate_public(const EC_GROUP *group, const EC_POINT *public) | 
|  | { | 
|  | BN_CTX *bnctx; | 
|  | EC_POINT *nq = NULL; | 
|  | BIGNUM *order, *x, *y, *tmp; | 
|  | int ret = -1; | 
|  |  | 
|  | if ((bnctx = BN_CTX_new()) == NULL) | 
|  | fatal("%s: BN_CTX_new failed", __func__); | 
|  | BN_CTX_start(bnctx); | 
|  |  | 
|  | /* | 
|  | * We shouldn't ever hit this case because bignum_get_ecpoint() | 
|  | * refuses to load GF2m points. | 
|  | */ | 
|  | if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != | 
|  | NID_X9_62_prime_field) { | 
|  | error("%s: group is not a prime field", __func__); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Q != infinity */ | 
|  | if (EC_POINT_is_at_infinity(group, public)) { | 
|  | error("%s: received degenerate public key (infinity)", | 
|  | __func__); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if ((x = BN_CTX_get(bnctx)) == NULL || | 
|  | (y = BN_CTX_get(bnctx)) == NULL || | 
|  | (order = BN_CTX_get(bnctx)) == NULL || | 
|  | (tmp = BN_CTX_get(bnctx)) == NULL) | 
|  | fatal("%s: BN_CTX_get failed", __func__); | 
|  |  | 
|  | /* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */ | 
|  | if (EC_GROUP_get_order(group, order, bnctx) != 1) | 
|  | fatal("%s: EC_GROUP_get_order failed", __func__); | 
|  | if (EC_POINT_get_affine_coordinates_GFp(group, public, | 
|  | x, y, bnctx) != 1) | 
|  | fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__); | 
|  | if (BN_num_bits(x) <= BN_num_bits(order) / 2) { | 
|  | error("%s: public key x coordinate too small: " | 
|  | "bits(x) = %d, bits(order)/2 = %d", __func__, | 
|  | BN_num_bits(x), BN_num_bits(order) / 2); | 
|  | goto out; | 
|  | } | 
|  | if (BN_num_bits(y) <= BN_num_bits(order) / 2) { | 
|  | error("%s: public key y coordinate too small: " | 
|  | "bits(y) = %d, bits(order)/2 = %d", __func__, | 
|  | BN_num_bits(x), BN_num_bits(order) / 2); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* nQ == infinity (n == order of subgroup) */ | 
|  | if ((nq = EC_POINT_new(group)) == NULL) | 
|  | fatal("%s: BN_CTX_tmp failed", __func__); | 
|  | if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1) | 
|  | fatal("%s: EC_GROUP_mul failed", __func__); | 
|  | if (EC_POINT_is_at_infinity(group, nq) != 1) { | 
|  | error("%s: received degenerate public key (nQ != infinity)", | 
|  | __func__); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* x < order - 1, y < order - 1 */ | 
|  | if (!BN_sub(tmp, order, BN_value_one())) | 
|  | fatal("%s: BN_sub failed", __func__); | 
|  | if (BN_cmp(x, tmp) >= 0) { | 
|  | error("%s: public key x coordinate >= group order - 1", | 
|  | __func__); | 
|  | goto out; | 
|  | } | 
|  | if (BN_cmp(y, tmp) >= 0) { | 
|  | error("%s: public key y coordinate >= group order - 1", | 
|  | __func__); | 
|  | goto out; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | BN_CTX_free(bnctx); | 
|  | EC_POINT_free(nq); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int | 
|  | key_ec_validate_private(const EC_KEY *key) | 
|  | { | 
|  | BN_CTX *bnctx; | 
|  | BIGNUM *order, *tmp; | 
|  | int ret = -1; | 
|  |  | 
|  | if ((bnctx = BN_CTX_new()) == NULL) | 
|  | fatal("%s: BN_CTX_new failed", __func__); | 
|  | BN_CTX_start(bnctx); | 
|  |  | 
|  | if ((order = BN_CTX_get(bnctx)) == NULL || | 
|  | (tmp = BN_CTX_get(bnctx)) == NULL) | 
|  | fatal("%s: BN_CTX_get failed", __func__); | 
|  |  | 
|  | /* log2(private) > log2(order)/2 */ | 
|  | if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1) | 
|  | fatal("%s: EC_GROUP_get_order failed", __func__); | 
|  | if (BN_num_bits(EC_KEY_get0_private_key(key)) <= | 
|  | BN_num_bits(order) / 2) { | 
|  | error("%s: private key too small: " | 
|  | "bits(y) = %d, bits(order)/2 = %d", __func__, | 
|  | BN_num_bits(EC_KEY_get0_private_key(key)), | 
|  | BN_num_bits(order) / 2); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* private < order - 1 */ | 
|  | if (!BN_sub(tmp, order, BN_value_one())) | 
|  | fatal("%s: BN_sub failed", __func__); | 
|  | if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0) { | 
|  | error("%s: private key >= group order - 1", __func__); | 
|  | goto out; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | BN_CTX_free(bnctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if defined(DEBUG_KEXECDH) || defined(DEBUG_PK) | 
|  | void | 
|  | key_dump_ec_point(const EC_GROUP *group, const EC_POINT *point) | 
|  | { | 
|  | BIGNUM *x, *y; | 
|  | BN_CTX *bnctx; | 
|  |  | 
|  | if (point == NULL) { | 
|  | fputs("point=(NULL)\n", stderr); | 
|  | return; | 
|  | } | 
|  | if ((bnctx = BN_CTX_new()) == NULL) | 
|  | fatal("%s: BN_CTX_new failed", __func__); | 
|  | BN_CTX_start(bnctx); | 
|  | if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL) | 
|  | fatal("%s: BN_CTX_get failed", __func__); | 
|  | if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != | 
|  | NID_X9_62_prime_field) | 
|  | fatal("%s: group is not a prime field", __func__); | 
|  | if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx) != 1) | 
|  | fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__); | 
|  | fputs("x=", stderr); | 
|  | BN_print_fp(stderr, x); | 
|  | fputs("\ny=", stderr); | 
|  | BN_print_fp(stderr, y); | 
|  | fputs("\n", stderr); | 
|  | BN_CTX_free(bnctx); | 
|  | } | 
|  |  | 
|  | void | 
|  | key_dump_ec_key(const EC_KEY *key) | 
|  | { | 
|  | const BIGNUM *exponent; | 
|  |  | 
|  | key_dump_ec_point(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key)); | 
|  | fputs("exponent=", stderr); | 
|  | if ((exponent = EC_KEY_get0_private_key(key)) == NULL) | 
|  | fputs("(NULL)", stderr); | 
|  | else | 
|  | BN_print_fp(stderr, EC_KEY_get0_private_key(key)); | 
|  | fputs("\n", stderr); | 
|  | } | 
|  | #endif /* defined(DEBUG_KEXECDH) || defined(DEBUG_PK) */ | 
|  | #endif /* OPENSSL_HAS_ECC */ | 
|  |  | 
|  | void | 
|  | key_private_serialize(const Key *key, Buffer *b) | 
|  | { | 
|  | buffer_put_cstring(b, key_ssh_name(key)); | 
|  | switch (key->type) { | 
|  | case KEY_RSA: | 
|  | buffer_put_bignum2(b, key->rsa->n); | 
|  | buffer_put_bignum2(b, key->rsa->e); | 
|  | buffer_put_bignum2(b, key->rsa->d); | 
|  | buffer_put_bignum2(b, key->rsa->iqmp); | 
|  | buffer_put_bignum2(b, key->rsa->p); | 
|  | buffer_put_bignum2(b, key->rsa->q); | 
|  | break; | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | if (key->cert == NULL || buffer_len(&key->cert->certblob) == 0) | 
|  | fatal("%s: no cert/certblob", __func__); | 
|  | buffer_put_string(b, buffer_ptr(&key->cert->certblob), | 
|  | buffer_len(&key->cert->certblob)); | 
|  | buffer_put_bignum2(b, key->rsa->d); | 
|  | buffer_put_bignum2(b, key->rsa->iqmp); | 
|  | buffer_put_bignum2(b, key->rsa->p); | 
|  | buffer_put_bignum2(b, key->rsa->q); | 
|  | break; | 
|  | case KEY_DSA: | 
|  | buffer_put_bignum2(b, key->dsa->p); | 
|  | buffer_put_bignum2(b, key->dsa->q); | 
|  | buffer_put_bignum2(b, key->dsa->g); | 
|  | buffer_put_bignum2(b, key->dsa->pub_key); | 
|  | buffer_put_bignum2(b, key->dsa->priv_key); | 
|  | break; | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | if (key->cert == NULL || buffer_len(&key->cert->certblob) == 0) | 
|  | fatal("%s: no cert/certblob", __func__); | 
|  | buffer_put_string(b, buffer_ptr(&key->cert->certblob), | 
|  | buffer_len(&key->cert->certblob)); | 
|  | buffer_put_bignum2(b, key->dsa->priv_key); | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA: | 
|  | buffer_put_cstring(b, key_curve_nid_to_name(key->ecdsa_nid)); | 
|  | buffer_put_ecpoint(b, EC_KEY_get0_group(key->ecdsa), | 
|  | EC_KEY_get0_public_key(key->ecdsa)); | 
|  | buffer_put_bignum2(b, EC_KEY_get0_private_key(key->ecdsa)); | 
|  | break; | 
|  | case KEY_ECDSA_CERT: | 
|  | if (key->cert == NULL || buffer_len(&key->cert->certblob) == 0) | 
|  | fatal("%s: no cert/certblob", __func__); | 
|  | buffer_put_string(b, buffer_ptr(&key->cert->certblob), | 
|  | buffer_len(&key->cert->certblob)); | 
|  | buffer_put_bignum2(b, EC_KEY_get0_private_key(key->ecdsa)); | 
|  | break; | 
|  | #endif /* OPENSSL_HAS_ECC */ | 
|  | case KEY_ED25519: | 
|  | buffer_put_string(b, key->ed25519_pk, ED25519_PK_SZ); | 
|  | buffer_put_string(b, key->ed25519_sk, ED25519_SK_SZ); | 
|  | break; | 
|  | case KEY_ED25519_CERT: | 
|  | if (key->cert == NULL || buffer_len(&key->cert->certblob) == 0) | 
|  | fatal("%s: no cert/certblob", __func__); | 
|  | buffer_put_string(b, buffer_ptr(&key->cert->certblob), | 
|  | buffer_len(&key->cert->certblob)); | 
|  | buffer_put_string(b, key->ed25519_pk, ED25519_PK_SZ); | 
|  | buffer_put_string(b, key->ed25519_sk, ED25519_SK_SZ); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | Key * | 
|  | key_private_deserialize(Buffer *blob) | 
|  | { | 
|  | char *type_name; | 
|  | Key *k = NULL; | 
|  | u_char *cert; | 
|  | u_int len, pklen, sklen; | 
|  | int type; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | char *curve; | 
|  | BIGNUM *exponent; | 
|  | EC_POINT *q; | 
|  | #endif | 
|  |  | 
|  | type_name = buffer_get_string(blob, NULL); | 
|  | type = key_type_from_name(type_name); | 
|  | switch (type) { | 
|  | case KEY_DSA: | 
|  | k = key_new_private(type); | 
|  | buffer_get_bignum2(blob, k->dsa->p); | 
|  | buffer_get_bignum2(blob, k->dsa->q); | 
|  | buffer_get_bignum2(blob, k->dsa->g); | 
|  | buffer_get_bignum2(blob, k->dsa->pub_key); | 
|  | buffer_get_bignum2(blob, k->dsa->priv_key); | 
|  | break; | 
|  | case KEY_DSA_CERT_V00: | 
|  | case KEY_DSA_CERT: | 
|  | cert = buffer_get_string(blob, &len); | 
|  | if ((k = key_from_blob(cert, len)) == NULL) | 
|  | fatal("Certificate parse failed"); | 
|  | free(cert); | 
|  | key_add_private(k); | 
|  | buffer_get_bignum2(blob, k->dsa->priv_key); | 
|  | break; | 
|  | #ifdef OPENSSL_HAS_ECC | 
|  | case KEY_ECDSA: | 
|  | k = key_new_private(type); | 
|  | k->ecdsa_nid = key_ecdsa_nid_from_name(type_name); | 
|  | curve = buffer_get_string(blob, NULL); | 
|  | if (k->ecdsa_nid != key_curve_name_to_nid(curve)) | 
|  | fatal("%s: curve names mismatch", __func__); | 
|  | free(curve); | 
|  | k->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid); | 
|  | if (k->ecdsa == NULL) | 
|  | fatal("%s: EC_KEY_new_by_curve_name failed", | 
|  | __func__); | 
|  | q = EC_POINT_new(EC_KEY_get0_group(k->ecdsa)); | 
|  | if (q == NULL) | 
|  | fatal("%s: BN_new failed", __func__); | 
|  | if ((exponent = BN_new()) == NULL) | 
|  | fatal("%s: BN_new failed", __func__); | 
|  | buffer_get_ecpoint(blob, | 
|  | EC_KEY_get0_group(k->ecdsa), q); | 
|  | buffer_get_bignum2(blob, exponent); | 
|  | if (EC_KEY_set_public_key(k->ecdsa, q) != 1) | 
|  | fatal("%s: EC_KEY_set_public_key failed", | 
|  | __func__); | 
|  | if (EC_KEY_set_private_key(k->ecdsa, exponent) != 1) | 
|  | fatal("%s: EC_KEY_set_private_key failed", | 
|  | __func__); | 
|  | if (key_ec_validate_public(EC_KEY_get0_group(k->ecdsa), | 
|  | EC_KEY_get0_public_key(k->ecdsa)) != 0) | 
|  | fatal("%s: bad ECDSA public key", __func__); | 
|  | if (key_ec_validate_private(k->ecdsa) != 0) | 
|  | fatal("%s: bad ECDSA private key", __func__); | 
|  | BN_clear_free(exponent); | 
|  | EC_POINT_free(q); | 
|  | break; | 
|  | case KEY_ECDSA_CERT: | 
|  | cert = buffer_get_string(blob, &len); | 
|  | if ((k = key_from_blob(cert, len)) == NULL) | 
|  | fatal("Certificate parse failed"); | 
|  | free(cert); | 
|  | key_add_private(k); | 
|  | if ((exponent = BN_new()) == NULL) | 
|  | fatal("%s: BN_new failed", __func__); | 
|  | buffer_get_bignum2(blob, exponent); | 
|  | if (EC_KEY_set_private_key(k->ecdsa, exponent) != 1) | 
|  | fatal("%s: EC_KEY_set_private_key failed", | 
|  | __func__); | 
|  | if (key_ec_validate_public(EC_KEY_get0_group(k->ecdsa), | 
|  | EC_KEY_get0_public_key(k->ecdsa)) != 0 || | 
|  | key_ec_validate_private(k->ecdsa) != 0) | 
|  | fatal("%s: bad ECDSA key", __func__); | 
|  | BN_clear_free(exponent); | 
|  | break; | 
|  | #endif | 
|  | case KEY_RSA: | 
|  | k = key_new_private(type); | 
|  | buffer_get_bignum2(blob, k->rsa->n); | 
|  | buffer_get_bignum2(blob, k->rsa->e); | 
|  | buffer_get_bignum2(blob, k->rsa->d); | 
|  | buffer_get_bignum2(blob, k->rsa->iqmp); | 
|  | buffer_get_bignum2(blob, k->rsa->p); | 
|  | buffer_get_bignum2(blob, k->rsa->q); | 
|  |  | 
|  | /* Generate additional parameters */ | 
|  | rsa_generate_additional_parameters(k->rsa); | 
|  | break; | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | cert = buffer_get_string(blob, &len); | 
|  | if ((k = key_from_blob(cert, len)) == NULL) | 
|  | fatal("Certificate parse failed"); | 
|  | free(cert); | 
|  | key_add_private(k); | 
|  | buffer_get_bignum2(blob, k->rsa->d); | 
|  | buffer_get_bignum2(blob, k->rsa->iqmp); | 
|  | buffer_get_bignum2(blob, k->rsa->p); | 
|  | buffer_get_bignum2(blob, k->rsa->q); | 
|  | break; | 
|  | case KEY_ED25519: | 
|  | k = key_new_private(type); | 
|  | k->ed25519_pk = buffer_get_string(blob, &pklen); | 
|  | k->ed25519_sk = buffer_get_string(blob, &sklen); | 
|  | if (pklen != ED25519_PK_SZ) | 
|  | fatal("%s: ed25519 pklen %d != %d", | 
|  | __func__, pklen, ED25519_PK_SZ); | 
|  | if (sklen != ED25519_SK_SZ) | 
|  | fatal("%s: ed25519 sklen %d != %d", | 
|  | __func__, sklen, ED25519_SK_SZ); | 
|  | break; | 
|  | case KEY_ED25519_CERT: | 
|  | cert = buffer_get_string(blob, &len); | 
|  | if ((k = key_from_blob(cert, len)) == NULL) | 
|  | fatal("Certificate parse failed"); | 
|  | free(cert); | 
|  | key_add_private(k); | 
|  | k->ed25519_pk = buffer_get_string(blob, &pklen); | 
|  | k->ed25519_sk = buffer_get_string(blob, &sklen); | 
|  | if (pklen != ED25519_PK_SZ) | 
|  | fatal("%s: ed25519 pklen %d != %d", | 
|  | __func__, pklen, ED25519_PK_SZ); | 
|  | if (sklen != ED25519_SK_SZ) | 
|  | fatal("%s: ed25519 sklen %d != %d", | 
|  | __func__, sklen, ED25519_SK_SZ); | 
|  | break; | 
|  | default: | 
|  | free(type_name); | 
|  | buffer_clear(blob); | 
|  | return NULL; | 
|  | } | 
|  | free(type_name); | 
|  |  | 
|  | /* enable blinding */ | 
|  | switch (k->type) { | 
|  | case KEY_RSA: | 
|  | case KEY_RSA_CERT_V00: | 
|  | case KEY_RSA_CERT: | 
|  | case KEY_RSA1: | 
|  | if (RSA_blinding_on(k->rsa, NULL) != 1) { | 
|  | error("%s: RSA_blinding_on failed", __func__); | 
|  | key_free(k); | 
|  | return NULL; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return k; | 
|  | } |