| /* from OpenBSD: sha2.c,v 1.11 2005/08/08 08:05:35 espie Exp */ |
| |
| /* |
| * FILE: sha2.c |
| * AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
| * |
| * Copyright (c) 2000-2001, Aaron D. Gifford |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the copyright holder nor the names of contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ |
| */ |
| |
| /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */ |
| |
| #include "includes.h" |
| |
| #ifdef WITH_OPENSSL |
| # include <openssl/opensslv.h> |
| # if !defined(HAVE_EVP_SHA256) && (OPENSSL_VERSION_NUMBER >= 0x00907000L) |
| # define _NEED_SHA2 1 |
| # endif |
| #else |
| # define _NEED_SHA2 1 |
| #endif |
| |
| #if defined(_NEED_SHA2) && !defined(HAVE_SHA256_UPDATE) |
| |
| #include <string.h> |
| |
| /* |
| * UNROLLED TRANSFORM LOOP NOTE: |
| * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
| * loop version for the hash transform rounds (defined using macros |
| * later in this file). Either define on the command line, for example: |
| * |
| * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
| * |
| * or define below: |
| * |
| * #define SHA2_UNROLL_TRANSFORM |
| * |
| */ |
| |
| /*** SHA-256/384/512 Machine Architecture Definitions *****************/ |
| /* |
| * BYTE_ORDER NOTE: |
| * |
| * Please make sure that your system defines BYTE_ORDER. If your |
| * architecture is little-endian, make sure it also defines |
| * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are |
| * equivilent. |
| * |
| * If your system does not define the above, then you can do so by |
| * hand like this: |
| * |
| * #define LITTLE_ENDIAN 1234 |
| * #define BIG_ENDIAN 4321 |
| * |
| * And for little-endian machines, add: |
| * |
| * #define BYTE_ORDER LITTLE_ENDIAN |
| * |
| * Or for big-endian machines: |
| * |
| * #define BYTE_ORDER BIG_ENDIAN |
| * |
| * The FreeBSD machine this was written on defines BYTE_ORDER |
| * appropriately by including <sys/types.h> (which in turn includes |
| * <machine/endian.h> where the appropriate definitions are actually |
| * made). |
| */ |
| #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) |
| #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN |
| #endif |
| |
| |
| /*** SHA-256/384/512 Various Length Definitions ***********************/ |
| /* NOTE: Most of these are in sha2.h */ |
| #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
| #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) |
| #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
| |
| /*** ENDIAN SPECIFIC COPY MACROS **************************************/ |
| #define BE_8_TO_32(dst, cp) do { \ |
| (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ |
| ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ |
| } while(0) |
| |
| #define BE_8_TO_64(dst, cp) do { \ |
| (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ |
| ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ |
| ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ |
| ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ |
| } while (0) |
| |
| #define BE_64_TO_8(cp, src) do { \ |
| (cp)[0] = (src) >> 56; \ |
| (cp)[1] = (src) >> 48; \ |
| (cp)[2] = (src) >> 40; \ |
| (cp)[3] = (src) >> 32; \ |
| (cp)[4] = (src) >> 24; \ |
| (cp)[5] = (src) >> 16; \ |
| (cp)[6] = (src) >> 8; \ |
| (cp)[7] = (src); \ |
| } while (0) |
| |
| #define BE_32_TO_8(cp, src) do { \ |
| (cp)[0] = (src) >> 24; \ |
| (cp)[1] = (src) >> 16; \ |
| (cp)[2] = (src) >> 8; \ |
| (cp)[3] = (src); \ |
| } while (0) |
| |
| /* |
| * Macro for incrementally adding the unsigned 64-bit integer n to the |
| * unsigned 128-bit integer (represented using a two-element array of |
| * 64-bit words): |
| */ |
| #define ADDINC128(w,n) do { \ |
| (w)[0] += (u_int64_t)(n); \ |
| if ((w)[0] < (n)) { \ |
| (w)[1]++; \ |
| } \ |
| } while (0) |
| |
| /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
| /* |
| * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
| * |
| * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
| * S is a ROTATION) because the SHA-256/384/512 description document |
| * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
| * same "backwards" definition. |
| */ |
| /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
| #define R(b,x) ((x) >> (b)) |
| /* 32-bit Rotate-right (used in SHA-256): */ |
| #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) |
| /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
| #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) |
| |
| /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
| #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
| #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| |
| /* Four of six logical functions used in SHA-256: */ |
| #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
| #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
| #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
| #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
| |
| /* Four of six logical functions used in SHA-384 and SHA-512: */ |
| #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
| #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
| #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
| #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
| |
| |
| /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
| /* Hash constant words K for SHA-256: */ |
| const static u_int32_t K256[64] = { |
| 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
| 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
| 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
| 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
| 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
| 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
| 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
| 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
| 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
| 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
| 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
| 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
| 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
| 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
| 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
| 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
| }; |
| |
| /* Initial hash value H for SHA-256: */ |
| const static u_int32_t sha256_initial_hash_value[8] = { |
| 0x6a09e667UL, |
| 0xbb67ae85UL, |
| 0x3c6ef372UL, |
| 0xa54ff53aUL, |
| 0x510e527fUL, |
| 0x9b05688cUL, |
| 0x1f83d9abUL, |
| 0x5be0cd19UL |
| }; |
| |
| /* Hash constant words K for SHA-384 and SHA-512: */ |
| const static u_int64_t K512[80] = { |
| 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
| 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
| 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
| 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
| 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
| 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
| 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
| 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
| 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
| 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
| 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
| 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
| 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
| 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
| 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
| 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
| 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
| 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
| 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
| 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
| 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
| 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
| 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
| 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
| 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
| 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
| 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
| 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
| 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
| 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
| 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
| 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
| 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
| 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
| 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
| 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
| 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
| 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
| 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
| 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL |
| }; |
| |
| /* Initial hash value H for SHA-384 */ |
| const static u_int64_t sha384_initial_hash_value[8] = { |
| 0xcbbb9d5dc1059ed8ULL, |
| 0x629a292a367cd507ULL, |
| 0x9159015a3070dd17ULL, |
| 0x152fecd8f70e5939ULL, |
| 0x67332667ffc00b31ULL, |
| 0x8eb44a8768581511ULL, |
| 0xdb0c2e0d64f98fa7ULL, |
| 0x47b5481dbefa4fa4ULL |
| }; |
| |
| /* Initial hash value H for SHA-512 */ |
| const static u_int64_t sha512_initial_hash_value[8] = { |
| 0x6a09e667f3bcc908ULL, |
| 0xbb67ae8584caa73bULL, |
| 0x3c6ef372fe94f82bULL, |
| 0xa54ff53a5f1d36f1ULL, |
| 0x510e527fade682d1ULL, |
| 0x9b05688c2b3e6c1fULL, |
| 0x1f83d9abfb41bd6bULL, |
| 0x5be0cd19137e2179ULL |
| }; |
| |
| |
| /*** SHA-256: *********************************************************/ |
| void |
| SHA256_Init(SHA256_CTX *context) |
| { |
| if (context == NULL) |
| return; |
| memcpy(context->state, sha256_initial_hash_value, |
| sizeof(sha256_initial_hash_value)); |
| memset(context->buffer, 0, sizeof(context->buffer)); |
| context->bitcount = 0; |
| } |
| |
| #ifdef SHA2_UNROLL_TRANSFORM |
| |
| /* Unrolled SHA-256 round macros: */ |
| |
| #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ |
| BE_8_TO_32(W256[j], data); \ |
| data += 4; \ |
| T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ |
| (d) += T1; \ |
| (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ |
| j++; \ |
| } while(0) |
| |
| #define ROUND256(a,b,c,d,e,f,g,h) do { \ |
| s0 = W256[(j+1)&0x0f]; \ |
| s0 = sigma0_256(s0); \ |
| s1 = W256[(j+14)&0x0f]; \ |
| s1 = sigma1_256(s1); \ |
| T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ |
| (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
| (d) += T1; \ |
| (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ |
| j++; \ |
| } while(0) |
| |
| void |
| SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) |
| { |
| u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
| u_int32_t T1, W256[16]; |
| int j; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| f = state[5]; |
| g = state[6]; |
| h = state[7]; |
| |
| j = 0; |
| do { |
| /* Rounds 0 to 15 (unrolled): */ |
| ROUND256_0_TO_15(a,b,c,d,e,f,g,h); |
| ROUND256_0_TO_15(h,a,b,c,d,e,f,g); |
| ROUND256_0_TO_15(g,h,a,b,c,d,e,f); |
| ROUND256_0_TO_15(f,g,h,a,b,c,d,e); |
| ROUND256_0_TO_15(e,f,g,h,a,b,c,d); |
| ROUND256_0_TO_15(d,e,f,g,h,a,b,c); |
| ROUND256_0_TO_15(c,d,e,f,g,h,a,b); |
| ROUND256_0_TO_15(b,c,d,e,f,g,h,a); |
| } while (j < 16); |
| |
| /* Now for the remaining rounds up to 63: */ |
| do { |
| ROUND256(a,b,c,d,e,f,g,h); |
| ROUND256(h,a,b,c,d,e,f,g); |
| ROUND256(g,h,a,b,c,d,e,f); |
| ROUND256(f,g,h,a,b,c,d,e); |
| ROUND256(e,f,g,h,a,b,c,d); |
| ROUND256(d,e,f,g,h,a,b,c); |
| ROUND256(c,d,e,f,g,h,a,b); |
| ROUND256(b,c,d,e,f,g,h,a); |
| } while (j < 64); |
| |
| /* Compute the current intermediate hash value */ |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| state[5] += f; |
| state[6] += g; |
| state[7] += h; |
| |
| /* Clean up */ |
| a = b = c = d = e = f = g = h = T1 = 0; |
| } |
| |
| #else /* SHA2_UNROLL_TRANSFORM */ |
| |
| void |
| SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) |
| { |
| u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
| u_int32_t T1, T2, W256[16]; |
| int j; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| f = state[5]; |
| g = state[6]; |
| h = state[7]; |
| |
| j = 0; |
| do { |
| BE_8_TO_32(W256[j], data); |
| data += 4; |
| /* Apply the SHA-256 compression function to update a..h */ |
| T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; |
| T2 = Sigma0_256(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } while (j < 16); |
| |
| do { |
| /* Part of the message block expansion: */ |
| s0 = W256[(j+1)&0x0f]; |
| s0 = sigma0_256(s0); |
| s1 = W256[(j+14)&0x0f]; |
| s1 = sigma1_256(s1); |
| |
| /* Apply the SHA-256 compression function to update a..h */ |
| T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + |
| (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
| T2 = Sigma0_256(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } while (j < 64); |
| |
| /* Compute the current intermediate hash value */ |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| state[5] += f; |
| state[6] += g; |
| state[7] += h; |
| |
| /* Clean up */ |
| a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| } |
| |
| #endif /* SHA2_UNROLL_TRANSFORM */ |
| |
| void |
| SHA256_Update(SHA256_CTX *context, const u_int8_t *data, size_t len) |
| { |
| size_t freespace, usedspace; |
| |
| /* Calling with no data is valid (we do nothing) */ |
| if (len == 0) |
| return; |
| |
| usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; |
| if (usedspace > 0) { |
| /* Calculate how much free space is available in the buffer */ |
| freespace = SHA256_BLOCK_LENGTH - usedspace; |
| |
| if (len >= freespace) { |
| /* Fill the buffer completely and process it */ |
| memcpy(&context->buffer[usedspace], data, freespace); |
| context->bitcount += freespace << 3; |
| len -= freespace; |
| data += freespace; |
| SHA256_Transform(context->state, context->buffer); |
| } else { |
| /* The buffer is not yet full */ |
| memcpy(&context->buffer[usedspace], data, len); |
| context->bitcount += len << 3; |
| /* Clean up: */ |
| usedspace = freespace = 0; |
| return; |
| } |
| } |
| while (len >= SHA256_BLOCK_LENGTH) { |
| /* Process as many complete blocks as we can */ |
| SHA256_Transform(context->state, data); |
| context->bitcount += SHA256_BLOCK_LENGTH << 3; |
| len -= SHA256_BLOCK_LENGTH; |
| data += SHA256_BLOCK_LENGTH; |
| } |
| if (len > 0) { |
| /* There's left-overs, so save 'em */ |
| memcpy(context->buffer, data, len); |
| context->bitcount += len << 3; |
| } |
| /* Clean up: */ |
| usedspace = freespace = 0; |
| } |
| |
| void |
| SHA256_Pad(SHA256_CTX *context) |
| { |
| unsigned int usedspace; |
| |
| usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; |
| if (usedspace > 0) { |
| /* Begin padding with a 1 bit: */ |
| context->buffer[usedspace++] = 0x80; |
| |
| if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { |
| /* Set-up for the last transform: */ |
| memset(&context->buffer[usedspace], 0, |
| SHA256_SHORT_BLOCK_LENGTH - usedspace); |
| } else { |
| if (usedspace < SHA256_BLOCK_LENGTH) { |
| memset(&context->buffer[usedspace], 0, |
| SHA256_BLOCK_LENGTH - usedspace); |
| } |
| /* Do second-to-last transform: */ |
| SHA256_Transform(context->state, context->buffer); |
| |
| /* Prepare for last transform: */ |
| memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); |
| } |
| } else { |
| /* Set-up for the last transform: */ |
| memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); |
| |
| /* Begin padding with a 1 bit: */ |
| *context->buffer = 0x80; |
| } |
| /* Store the length of input data (in bits) in big endian format: */ |
| BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], |
| context->bitcount); |
| |
| /* Final transform: */ |
| SHA256_Transform(context->state, context->buffer); |
| |
| /* Clean up: */ |
| usedspace = 0; |
| } |
| |
| void |
| SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context) |
| { |
| SHA256_Pad(context); |
| |
| /* If no digest buffer is passed, we don't bother doing this: */ |
| if (digest != NULL) { |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| int i; |
| |
| /* Convert TO host byte order */ |
| for (i = 0; i < 8; i++) |
| BE_32_TO_8(digest + i * 4, context->state[i]); |
| #else |
| memcpy(digest, context->state, SHA256_DIGEST_LENGTH); |
| #endif |
| memset(context, 0, sizeof(*context)); |
| } |
| } |
| |
| |
| /*** SHA-512: *********************************************************/ |
| void |
| SHA512_Init(SHA512_CTX *context) |
| { |
| if (context == NULL) |
| return; |
| memcpy(context->state, sha512_initial_hash_value, |
| sizeof(sha512_initial_hash_value)); |
| memset(context->buffer, 0, sizeof(context->buffer)); |
| context->bitcount[0] = context->bitcount[1] = 0; |
| } |
| |
| #ifdef SHA2_UNROLL_TRANSFORM |
| |
| /* Unrolled SHA-512 round macros: */ |
| |
| #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ |
| BE_8_TO_64(W512[j], data); \ |
| data += 8; \ |
| T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ |
| (d) += T1; \ |
| (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ |
| j++; \ |
| } while(0) |
| |
| |
| #define ROUND512(a,b,c,d,e,f,g,h) do { \ |
| s0 = W512[(j+1)&0x0f]; \ |
| s0 = sigma0_512(s0); \ |
| s1 = W512[(j+14)&0x0f]; \ |
| s1 = sigma1_512(s1); \ |
| T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ |
| (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
| (d) += T1; \ |
| (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ |
| j++; \ |
| } while(0) |
| |
| void |
| SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) |
| { |
| u_int64_t a, b, c, d, e, f, g, h, s0, s1; |
| u_int64_t T1, W512[16]; |
| int j; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| f = state[5]; |
| g = state[6]; |
| h = state[7]; |
| |
| j = 0; |
| do { |
| /* Rounds 0 to 15 (unrolled): */ |
| ROUND512_0_TO_15(a,b,c,d,e,f,g,h); |
| ROUND512_0_TO_15(h,a,b,c,d,e,f,g); |
| ROUND512_0_TO_15(g,h,a,b,c,d,e,f); |
| ROUND512_0_TO_15(f,g,h,a,b,c,d,e); |
| ROUND512_0_TO_15(e,f,g,h,a,b,c,d); |
| ROUND512_0_TO_15(d,e,f,g,h,a,b,c); |
| ROUND512_0_TO_15(c,d,e,f,g,h,a,b); |
| ROUND512_0_TO_15(b,c,d,e,f,g,h,a); |
| } while (j < 16); |
| |
| /* Now for the remaining rounds up to 79: */ |
| do { |
| ROUND512(a,b,c,d,e,f,g,h); |
| ROUND512(h,a,b,c,d,e,f,g); |
| ROUND512(g,h,a,b,c,d,e,f); |
| ROUND512(f,g,h,a,b,c,d,e); |
| ROUND512(e,f,g,h,a,b,c,d); |
| ROUND512(d,e,f,g,h,a,b,c); |
| ROUND512(c,d,e,f,g,h,a,b); |
| ROUND512(b,c,d,e,f,g,h,a); |
| } while (j < 80); |
| |
| /* Compute the current intermediate hash value */ |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| state[5] += f; |
| state[6] += g; |
| state[7] += h; |
| |
| /* Clean up */ |
| a = b = c = d = e = f = g = h = T1 = 0; |
| } |
| |
| #else /* SHA2_UNROLL_TRANSFORM */ |
| |
| void |
| SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) |
| { |
| u_int64_t a, b, c, d, e, f, g, h, s0, s1; |
| u_int64_t T1, T2, W512[16]; |
| int j; |
| |
| /* Initialize registers with the prev. intermediate value */ |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| f = state[5]; |
| g = state[6]; |
| h = state[7]; |
| |
| j = 0; |
| do { |
| BE_8_TO_64(W512[j], data); |
| data += 8; |
| /* Apply the SHA-512 compression function to update a..h */ |
| T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; |
| T2 = Sigma0_512(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } while (j < 16); |
| |
| do { |
| /* Part of the message block expansion: */ |
| s0 = W512[(j+1)&0x0f]; |
| s0 = sigma0_512(s0); |
| s1 = W512[(j+14)&0x0f]; |
| s1 = sigma1_512(s1); |
| |
| /* Apply the SHA-512 compression function to update a..h */ |
| T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + |
| (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
| T2 = Sigma0_512(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| |
| j++; |
| } while (j < 80); |
| |
| /* Compute the current intermediate hash value */ |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| state[5] += f; |
| state[6] += g; |
| state[7] += h; |
| |
| /* Clean up */ |
| a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| } |
| |
| #endif /* SHA2_UNROLL_TRANSFORM */ |
| |
| void |
| SHA512_Update(SHA512_CTX *context, const u_int8_t *data, size_t len) |
| { |
| size_t freespace, usedspace; |
| |
| /* Calling with no data is valid (we do nothing) */ |
| if (len == 0) |
| return; |
| |
| usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; |
| if (usedspace > 0) { |
| /* Calculate how much free space is available in the buffer */ |
| freespace = SHA512_BLOCK_LENGTH - usedspace; |
| |
| if (len >= freespace) { |
| /* Fill the buffer completely and process it */ |
| memcpy(&context->buffer[usedspace], data, freespace); |
| ADDINC128(context->bitcount, freespace << 3); |
| len -= freespace; |
| data += freespace; |
| SHA512_Transform(context->state, context->buffer); |
| } else { |
| /* The buffer is not yet full */ |
| memcpy(&context->buffer[usedspace], data, len); |
| ADDINC128(context->bitcount, len << 3); |
| /* Clean up: */ |
| usedspace = freespace = 0; |
| return; |
| } |
| } |
| while (len >= SHA512_BLOCK_LENGTH) { |
| /* Process as many complete blocks as we can */ |
| SHA512_Transform(context->state, data); |
| ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); |
| len -= SHA512_BLOCK_LENGTH; |
| data += SHA512_BLOCK_LENGTH; |
| } |
| if (len > 0) { |
| /* There's left-overs, so save 'em */ |
| memcpy(context->buffer, data, len); |
| ADDINC128(context->bitcount, len << 3); |
| } |
| /* Clean up: */ |
| usedspace = freespace = 0; |
| } |
| |
| void |
| SHA512_Pad(SHA512_CTX *context) |
| { |
| unsigned int usedspace; |
| |
| usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; |
| if (usedspace > 0) { |
| /* Begin padding with a 1 bit: */ |
| context->buffer[usedspace++] = 0x80; |
| |
| if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { |
| /* Set-up for the last transform: */ |
| memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); |
| } else { |
| if (usedspace < SHA512_BLOCK_LENGTH) { |
| memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); |
| } |
| /* Do second-to-last transform: */ |
| SHA512_Transform(context->state, context->buffer); |
| |
| /* And set-up for the last transform: */ |
| memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); |
| } |
| } else { |
| /* Prepare for final transform: */ |
| memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); |
| |
| /* Begin padding with a 1 bit: */ |
| *context->buffer = 0x80; |
| } |
| /* Store the length of input data (in bits) in big endian format: */ |
| BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], |
| context->bitcount[1]); |
| BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], |
| context->bitcount[0]); |
| |
| /* Final transform: */ |
| SHA512_Transform(context->state, context->buffer); |
| |
| /* Clean up: */ |
| usedspace = 0; |
| } |
| |
| void |
| SHA512_Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context) |
| { |
| SHA512_Pad(context); |
| |
| /* If no digest buffer is passed, we don't bother doing this: */ |
| if (digest != NULL) { |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| int i; |
| |
| /* Convert TO host byte order */ |
| for (i = 0; i < 8; i++) |
| BE_64_TO_8(digest + i * 8, context->state[i]); |
| #else |
| memcpy(digest, context->state, SHA512_DIGEST_LENGTH); |
| #endif |
| memset(context, 0, sizeof(*context)); |
| } |
| } |
| |
| |
| /*** SHA-384: *********************************************************/ |
| void |
| SHA384_Init(SHA384_CTX *context) |
| { |
| if (context == NULL) |
| return; |
| memcpy(context->state, sha384_initial_hash_value, |
| sizeof(sha384_initial_hash_value)); |
| memset(context->buffer, 0, sizeof(context->buffer)); |
| context->bitcount[0] = context->bitcount[1] = 0; |
| } |
| |
| #if 0 |
| __weak_alias(SHA384_Transform, SHA512_Transform); |
| __weak_alias(SHA384_Update, SHA512_Update); |
| __weak_alias(SHA384_Pad, SHA512_Pad); |
| #endif |
| |
| void |
| SHA384_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) |
| { |
| return SHA512_Transform(state, data); |
| } |
| |
| void |
| SHA384_Update(SHA512_CTX *context, const u_int8_t *data, size_t len) |
| { |
| SHA512_Update(context, data, len); |
| } |
| |
| void |
| SHA384_Pad(SHA512_CTX *context) |
| { |
| SHA512_Pad(context); |
| } |
| |
| void |
| SHA384_Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context) |
| { |
| SHA384_Pad(context); |
| |
| /* If no digest buffer is passed, we don't bother doing this: */ |
| if (digest != NULL) { |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| int i; |
| |
| /* Convert TO host byte order */ |
| for (i = 0; i < 6; i++) |
| BE_64_TO_8(digest + i * 8, context->state[i]); |
| #else |
| memcpy(digest, context->state, SHA384_DIGEST_LENGTH); |
| #endif |
| } |
| |
| /* Zero out state data */ |
| memset(context, 0, sizeof(*context)); |
| } |
| |
| #endif /* defined(_NEED_SHA2) && !defined(HAVE_SHA256_UPDATE) */ |