|  | /* $OpenBSD: moduli.c,v 1.29 2014/08/21 01:08:52 doug Exp $ */ | 
|  | /* | 
|  | * Copyright 1994 Phil Karn <karn@qualcomm.com> | 
|  | * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com> | 
|  | * Copyright 2000 Niels Provos <provos@citi.umich.edu> | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR | 
|  | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
|  | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. | 
|  | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, | 
|  | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | 
|  | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Two-step process to generate safe primes for DHGEX | 
|  | * | 
|  | *  Sieve candidates for "safe" primes, | 
|  | *  suitable for use as Diffie-Hellman moduli; | 
|  | *  that is, where q = (p-1)/2 is also prime. | 
|  | * | 
|  | * First step: generate candidate primes (memory intensive) | 
|  | * Second step: test primes' safety (processor intensive) | 
|  | */ | 
|  |  | 
|  | #include "includes.h" | 
|  |  | 
|  | #include <sys/param.h> | 
|  | #include <sys/types.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/dh.h> | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <stdarg.h> | 
|  | #include <time.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include "xmalloc.h" | 
|  | #include "dh.h" | 
|  | #include "log.h" | 
|  | #include "misc.h" | 
|  |  | 
|  | #include "openbsd-compat/openssl-compat.h" | 
|  |  | 
|  | /* | 
|  | * File output defines | 
|  | */ | 
|  |  | 
|  | /* need line long enough for largest moduli plus headers */ | 
|  | #define QLINESIZE		(100+8192) | 
|  |  | 
|  | /* | 
|  | * Size: decimal. | 
|  | * Specifies the number of the most significant bit (0 to M). | 
|  | * WARNING: internally, usually 1 to N. | 
|  | */ | 
|  | #define QSIZE_MINIMUM		(511) | 
|  |  | 
|  | /* | 
|  | * Prime sieving defines | 
|  | */ | 
|  |  | 
|  | /* Constant: assuming 8 bit bytes and 32 bit words */ | 
|  | #define SHIFT_BIT	(3) | 
|  | #define SHIFT_BYTE	(2) | 
|  | #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE) | 
|  | #define SHIFT_MEGABYTE	(20) | 
|  | #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE) | 
|  |  | 
|  | /* | 
|  | * Using virtual memory can cause thrashing.  This should be the largest | 
|  | * number that is supported without a large amount of disk activity -- | 
|  | * that would increase the run time from hours to days or weeks! | 
|  | */ | 
|  | #define LARGE_MINIMUM	(8UL)	/* megabytes */ | 
|  |  | 
|  | /* | 
|  | * Do not increase this number beyond the unsigned integer bit size. | 
|  | * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits). | 
|  | */ | 
|  | #define LARGE_MAXIMUM	(127UL)	/* megabytes */ | 
|  |  | 
|  | /* | 
|  | * Constant: when used with 32-bit integers, the largest sieve prime | 
|  | * has to be less than 2**32. | 
|  | */ | 
|  | #define SMALL_MAXIMUM	(0xffffffffUL) | 
|  |  | 
|  | /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */ | 
|  | #define TINY_NUMBER	(1UL<<16) | 
|  |  | 
|  | /* Ensure enough bit space for testing 2*q. */ | 
|  | #define TEST_MAXIMUM	(1UL<<16) | 
|  | #define TEST_MINIMUM	(QSIZE_MINIMUM + 1) | 
|  | /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */ | 
|  | #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */ | 
|  |  | 
|  | /* bit operations on 32-bit words */ | 
|  | #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31))) | 
|  | #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31))) | 
|  | #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31))) | 
|  |  | 
|  | /* | 
|  | * Prime testing defines | 
|  | */ | 
|  |  | 
|  | /* Minimum number of primality tests to perform */ | 
|  | #define TRIAL_MINIMUM	(4) | 
|  |  | 
|  | /* | 
|  | * Sieving data (XXX - move to struct) | 
|  | */ | 
|  |  | 
|  | /* sieve 2**16 */ | 
|  | static u_int32_t *TinySieve, tinybits; | 
|  |  | 
|  | /* sieve 2**30 in 2**16 parts */ | 
|  | static u_int32_t *SmallSieve, smallbits, smallbase; | 
|  |  | 
|  | /* sieve relative to the initial value */ | 
|  | static u_int32_t *LargeSieve, largewords, largetries, largenumbers; | 
|  | static u_int32_t largebits, largememory;	/* megabytes */ | 
|  | static BIGNUM *largebase; | 
|  |  | 
|  | int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *); | 
|  | int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long, | 
|  | unsigned long); | 
|  |  | 
|  | /* | 
|  | * print moduli out in consistent form, | 
|  | */ | 
|  | static int | 
|  | qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries, | 
|  | u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus) | 
|  | { | 
|  | struct tm *gtm; | 
|  | time_t time_now; | 
|  | int res; | 
|  |  | 
|  | time(&time_now); | 
|  | gtm = gmtime(&time_now); | 
|  |  | 
|  | res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ", | 
|  | gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday, | 
|  | gtm->tm_hour, gtm->tm_min, gtm->tm_sec, | 
|  | otype, otests, otries, osize, ogenerator); | 
|  |  | 
|  | if (res < 0) | 
|  | return (-1); | 
|  |  | 
|  | if (BN_print_fp(ofile, omodulus) < 1) | 
|  | return (-1); | 
|  |  | 
|  | res = fprintf(ofile, "\n"); | 
|  | fflush(ofile); | 
|  |  | 
|  | return (res > 0 ? 0 : -1); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Sieve p's and q's with small factors | 
|  | */ | 
|  | static void | 
|  | sieve_large(u_int32_t s) | 
|  | { | 
|  | u_int32_t r, u; | 
|  |  | 
|  | debug3("sieve_large %u", s); | 
|  | largetries++; | 
|  | /* r = largebase mod s */ | 
|  | r = BN_mod_word(largebase, s); | 
|  | if (r == 0) | 
|  | u = 0; /* s divides into largebase exactly */ | 
|  | else | 
|  | u = s - r; /* largebase+u is first entry divisible by s */ | 
|  |  | 
|  | if (u < largebits * 2) { | 
|  | /* | 
|  | * The sieve omits p's and q's divisible by 2, so ensure that | 
|  | * largebase+u is odd. Then, step through the sieve in | 
|  | * increments of 2*s | 
|  | */ | 
|  | if (u & 0x1) | 
|  | u += s; /* Make largebase+u odd, and u even */ | 
|  |  | 
|  | /* Mark all multiples of 2*s */ | 
|  | for (u /= 2; u < largebits; u += s) | 
|  | BIT_SET(LargeSieve, u); | 
|  | } | 
|  |  | 
|  | /* r = p mod s */ | 
|  | r = (2 * r + 1) % s; | 
|  | if (r == 0) | 
|  | u = 0; /* s divides p exactly */ | 
|  | else | 
|  | u = s - r; /* p+u is first entry divisible by s */ | 
|  |  | 
|  | if (u < largebits * 4) { | 
|  | /* | 
|  | * The sieve omits p's divisible by 4, so ensure that | 
|  | * largebase+u is not. Then, step through the sieve in | 
|  | * increments of 4*s | 
|  | */ | 
|  | while (u & 0x3) { | 
|  | if (SMALL_MAXIMUM - u < s) | 
|  | return; | 
|  | u += s; | 
|  | } | 
|  |  | 
|  | /* Mark all multiples of 4*s */ | 
|  | for (u /= 4; u < largebits; u += s) | 
|  | BIT_SET(LargeSieve, u); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * list candidates for Sophie-Germain primes (where q = (p-1)/2) | 
|  | * to standard output. | 
|  | * The list is checked against small known primes (less than 2**30). | 
|  | */ | 
|  | int | 
|  | gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start) | 
|  | { | 
|  | BIGNUM *q; | 
|  | u_int32_t j, r, s, t; | 
|  | u_int32_t smallwords = TINY_NUMBER >> 6; | 
|  | u_int32_t tinywords = TINY_NUMBER >> 6; | 
|  | time_t time_start, time_stop; | 
|  | u_int32_t i; | 
|  | int ret = 0; | 
|  |  | 
|  | largememory = memory; | 
|  |  | 
|  | if (memory != 0 && | 
|  | (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) { | 
|  | error("Invalid memory amount (min %ld, max %ld)", | 
|  | LARGE_MINIMUM, LARGE_MAXIMUM); | 
|  | return (-1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set power to the length in bits of the prime to be generated. | 
|  | * This is changed to 1 less than the desired safe prime moduli p. | 
|  | */ | 
|  | if (power > TEST_MAXIMUM) { | 
|  | error("Too many bits: %u > %lu", power, TEST_MAXIMUM); | 
|  | return (-1); | 
|  | } else if (power < TEST_MINIMUM) { | 
|  | error("Too few bits: %u < %u", power, TEST_MINIMUM); | 
|  | return (-1); | 
|  | } | 
|  | power--; /* decrement before squaring */ | 
|  |  | 
|  | /* | 
|  | * The density of ordinary primes is on the order of 1/bits, so the | 
|  | * density of safe primes should be about (1/bits)**2. Set test range | 
|  | * to something well above bits**2 to be reasonably sure (but not | 
|  | * guaranteed) of catching at least one safe prime. | 
|  | */ | 
|  | largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER)); | 
|  |  | 
|  | /* | 
|  | * Need idea of how much memory is available. We don't have to use all | 
|  | * of it. | 
|  | */ | 
|  | if (largememory > LARGE_MAXIMUM) { | 
|  | logit("Limited memory: %u MB; limit %lu MB", | 
|  | largememory, LARGE_MAXIMUM); | 
|  | largememory = LARGE_MAXIMUM; | 
|  | } | 
|  |  | 
|  | if (largewords <= (largememory << SHIFT_MEGAWORD)) { | 
|  | logit("Increased memory: %u MB; need %u bytes", | 
|  | largememory, (largewords << SHIFT_BYTE)); | 
|  | largewords = (largememory << SHIFT_MEGAWORD); | 
|  | } else if (largememory > 0) { | 
|  | logit("Decreased memory: %u MB; want %u bytes", | 
|  | largememory, (largewords << SHIFT_BYTE)); | 
|  | largewords = (largememory << SHIFT_MEGAWORD); | 
|  | } | 
|  |  | 
|  | TinySieve = xcalloc(tinywords, sizeof(u_int32_t)); | 
|  | tinybits = tinywords << SHIFT_WORD; | 
|  |  | 
|  | SmallSieve = xcalloc(smallwords, sizeof(u_int32_t)); | 
|  | smallbits = smallwords << SHIFT_WORD; | 
|  |  | 
|  | /* | 
|  | * dynamically determine available memory | 
|  | */ | 
|  | while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL) | 
|  | largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */ | 
|  |  | 
|  | largebits = largewords << SHIFT_WORD; | 
|  | largenumbers = largebits * 2;	/* even numbers excluded */ | 
|  |  | 
|  | /* validation check: count the number of primes tried */ | 
|  | largetries = 0; | 
|  | if ((q = BN_new()) == NULL) | 
|  | fatal("BN_new failed"); | 
|  |  | 
|  | /* | 
|  | * Generate random starting point for subprime search, or use | 
|  | * specified parameter. | 
|  | */ | 
|  | if ((largebase = BN_new()) == NULL) | 
|  | fatal("BN_new failed"); | 
|  | if (start == NULL) { | 
|  | if (BN_rand(largebase, power, 1, 1) == 0) | 
|  | fatal("BN_rand failed"); | 
|  | } else { | 
|  | if (BN_copy(largebase, start) == NULL) | 
|  | fatal("BN_copy: failed"); | 
|  | } | 
|  |  | 
|  | /* ensure odd */ | 
|  | if (BN_set_bit(largebase, 0) == 0) | 
|  | fatal("BN_set_bit: failed"); | 
|  |  | 
|  | time(&time_start); | 
|  |  | 
|  | logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start), | 
|  | largenumbers, power); | 
|  | debug2("start point: 0x%s", BN_bn2hex(largebase)); | 
|  |  | 
|  | /* | 
|  | * TinySieve | 
|  | */ | 
|  | for (i = 0; i < tinybits; i++) { | 
|  | if (BIT_TEST(TinySieve, i)) | 
|  | continue; /* 2*i+3 is composite */ | 
|  |  | 
|  | /* The next tiny prime */ | 
|  | t = 2 * i + 3; | 
|  |  | 
|  | /* Mark all multiples of t */ | 
|  | for (j = i + t; j < tinybits; j += t) | 
|  | BIT_SET(TinySieve, j); | 
|  |  | 
|  | sieve_large(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start the small block search at the next possible prime. To avoid | 
|  | * fencepost errors, the last pass is skipped. | 
|  | */ | 
|  | for (smallbase = TINY_NUMBER + 3; | 
|  | smallbase < (SMALL_MAXIMUM - TINY_NUMBER); | 
|  | smallbase += TINY_NUMBER) { | 
|  | for (i = 0; i < tinybits; i++) { | 
|  | if (BIT_TEST(TinySieve, i)) | 
|  | continue; /* 2*i+3 is composite */ | 
|  |  | 
|  | /* The next tiny prime */ | 
|  | t = 2 * i + 3; | 
|  | r = smallbase % t; | 
|  |  | 
|  | if (r == 0) { | 
|  | s = 0; /* t divides into smallbase exactly */ | 
|  | } else { | 
|  | /* smallbase+s is first entry divisible by t */ | 
|  | s = t - r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The sieve omits even numbers, so ensure that | 
|  | * smallbase+s is odd. Then, step through the sieve | 
|  | * in increments of 2*t | 
|  | */ | 
|  | if (s & 1) | 
|  | s += t; /* Make smallbase+s odd, and s even */ | 
|  |  | 
|  | /* Mark all multiples of 2*t */ | 
|  | for (s /= 2; s < smallbits; s += t) | 
|  | BIT_SET(SmallSieve, s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SmallSieve | 
|  | */ | 
|  | for (i = 0; i < smallbits; i++) { | 
|  | if (BIT_TEST(SmallSieve, i)) | 
|  | continue; /* 2*i+smallbase is composite */ | 
|  |  | 
|  | /* The next small prime */ | 
|  | sieve_large((2 * i) + smallbase); | 
|  | } | 
|  |  | 
|  | memset(SmallSieve, 0, smallwords << SHIFT_BYTE); | 
|  | } | 
|  |  | 
|  | time(&time_stop); | 
|  |  | 
|  | logit("%.24s Sieved with %u small primes in %ld seconds", | 
|  | ctime(&time_stop), largetries, (long) (time_stop - time_start)); | 
|  |  | 
|  | for (j = r = 0; j < largebits; j++) { | 
|  | if (BIT_TEST(LargeSieve, j)) | 
|  | continue; /* Definitely composite, skip */ | 
|  |  | 
|  | debug2("test q = largebase+%u", 2 * j); | 
|  | if (BN_set_word(q, 2 * j) == 0) | 
|  | fatal("BN_set_word failed"); | 
|  | if (BN_add(q, q, largebase) == 0) | 
|  | fatal("BN_add failed"); | 
|  | if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN, | 
|  | MODULI_TESTS_SIEVE, largetries, | 
|  | (power - 1) /* MSB */, (0), q) == -1) { | 
|  | ret = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | r++; /* count q */ | 
|  | } | 
|  |  | 
|  | time(&time_stop); | 
|  |  | 
|  | free(LargeSieve); | 
|  | free(SmallSieve); | 
|  | free(TinySieve); | 
|  |  | 
|  | logit("%.24s Found %u candidates", ctime(&time_stop), r); | 
|  |  | 
|  | return (ret); | 
|  | } | 
|  |  | 
|  | static void | 
|  | write_checkpoint(char *cpfile, u_int32_t lineno) | 
|  | { | 
|  | FILE *fp; | 
|  | char tmp[MAXPATHLEN]; | 
|  | int r; | 
|  |  | 
|  | r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile); | 
|  | if (r == -1 || r >= MAXPATHLEN) { | 
|  | logit("write_checkpoint: temp pathname too long"); | 
|  | return; | 
|  | } | 
|  | if ((r = mkstemp(tmp)) == -1) { | 
|  | logit("mkstemp(%s): %s", tmp, strerror(errno)); | 
|  | return; | 
|  | } | 
|  | if ((fp = fdopen(r, "w")) == NULL) { | 
|  | logit("write_checkpoint: fdopen: %s", strerror(errno)); | 
|  | unlink(tmp); | 
|  | close(r); | 
|  | return; | 
|  | } | 
|  | if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0 | 
|  | && rename(tmp, cpfile) == 0) | 
|  | debug3("wrote checkpoint line %lu to '%s'", | 
|  | (unsigned long)lineno, cpfile); | 
|  | else | 
|  | logit("failed to write to checkpoint file '%s': %s", cpfile, | 
|  | strerror(errno)); | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | read_checkpoint(char *cpfile) | 
|  | { | 
|  | FILE *fp; | 
|  | unsigned long lineno = 0; | 
|  |  | 
|  | if ((fp = fopen(cpfile, "r")) == NULL) | 
|  | return 0; | 
|  | if (fscanf(fp, "%lu\n", &lineno) < 1) | 
|  | logit("Failed to load checkpoint from '%s'", cpfile); | 
|  | else | 
|  | logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno); | 
|  | fclose(fp); | 
|  | return lineno; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | count_lines(FILE *f) | 
|  | { | 
|  | unsigned long count = 0; | 
|  | char lp[QLINESIZE + 1]; | 
|  |  | 
|  | if (fseek(f, 0, SEEK_SET) != 0) { | 
|  | debug("input file is not seekable"); | 
|  | return ULONG_MAX; | 
|  | } | 
|  | while (fgets(lp, QLINESIZE + 1, f) != NULL) | 
|  | count++; | 
|  | rewind(f); | 
|  | debug("input file has %lu lines", count); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static char * | 
|  | fmt_time(time_t seconds) | 
|  | { | 
|  | int day, hr, min; | 
|  | static char buf[128]; | 
|  |  | 
|  | min = (seconds / 60) % 60; | 
|  | hr = (seconds / 60 / 60) % 24; | 
|  | day = seconds / 60 / 60 / 24; | 
|  | if (day > 0) | 
|  | snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min); | 
|  | else | 
|  | snprintf(buf, sizeof buf, "%d:%02d", hr, min); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_progress(unsigned long start_lineno, unsigned long current_lineno, | 
|  | unsigned long end_lineno) | 
|  | { | 
|  | static time_t time_start, time_prev; | 
|  | time_t time_now, elapsed; | 
|  | unsigned long num_to_process, processed, remaining, percent, eta; | 
|  | double time_per_line; | 
|  | char *eta_str; | 
|  |  | 
|  | time_now = monotime(); | 
|  | if (time_start == 0) { | 
|  | time_start = time_prev = time_now; | 
|  | return; | 
|  | } | 
|  | /* print progress after 1m then once per 5m */ | 
|  | if (time_now - time_prev < 5 * 60) | 
|  | return; | 
|  | time_prev = time_now; | 
|  | elapsed = time_now - time_start; | 
|  | processed = current_lineno - start_lineno; | 
|  | remaining = end_lineno - current_lineno; | 
|  | num_to_process = end_lineno - start_lineno; | 
|  | time_per_line = (double)elapsed / processed; | 
|  | /* if we don't know how many we're processing just report count+time */ | 
|  | time(&time_now); | 
|  | if (end_lineno == ULONG_MAX) { | 
|  | logit("%.24s processed %lu in %s", ctime(&time_now), | 
|  | processed, fmt_time(elapsed)); | 
|  | return; | 
|  | } | 
|  | percent = 100 * processed / num_to_process; | 
|  | eta = time_per_line * remaining; | 
|  | eta_str = xstrdup(fmt_time(eta)); | 
|  | logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s", | 
|  | ctime(&time_now), processed, num_to_process, percent, | 
|  | fmt_time(elapsed), eta_str); | 
|  | free(eta_str); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * perform a Miller-Rabin primality test | 
|  | * on the list of candidates | 
|  | * (checking both q and p) | 
|  | * The result is a list of so-call "safe" primes | 
|  | */ | 
|  | int | 
|  | prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted, | 
|  | char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines) | 
|  | { | 
|  | BIGNUM *q, *p, *a; | 
|  | BN_CTX *ctx; | 
|  | char *cp, *lp; | 
|  | u_int32_t count_in = 0, count_out = 0, count_possible = 0; | 
|  | u_int32_t generator_known, in_tests, in_tries, in_type, in_size; | 
|  | unsigned long last_processed = 0, end_lineno; | 
|  | time_t time_start, time_stop; | 
|  | int res; | 
|  |  | 
|  | if (trials < TRIAL_MINIMUM) { | 
|  | error("Minimum primality trials is %d", TRIAL_MINIMUM); | 
|  | return (-1); | 
|  | } | 
|  |  | 
|  | if (num_lines == 0) | 
|  | end_lineno = count_lines(in); | 
|  | else | 
|  | end_lineno = start_lineno + num_lines; | 
|  |  | 
|  | time(&time_start); | 
|  |  | 
|  | if ((p = BN_new()) == NULL) | 
|  | fatal("BN_new failed"); | 
|  | if ((q = BN_new()) == NULL) | 
|  | fatal("BN_new failed"); | 
|  | if ((ctx = BN_CTX_new()) == NULL) | 
|  | fatal("BN_CTX_new failed"); | 
|  |  | 
|  | debug2("%.24s Final %u Miller-Rabin trials (%x generator)", | 
|  | ctime(&time_start), trials, generator_wanted); | 
|  |  | 
|  | if (checkpoint_file != NULL) | 
|  | last_processed = read_checkpoint(checkpoint_file); | 
|  | last_processed = start_lineno = MAX(last_processed, start_lineno); | 
|  | if (end_lineno == ULONG_MAX) | 
|  | debug("process from line %lu from pipe", last_processed); | 
|  | else | 
|  | debug("process from line %lu to line %lu", last_processed, | 
|  | end_lineno); | 
|  |  | 
|  | res = 0; | 
|  | lp = xmalloc(QLINESIZE + 1); | 
|  | while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) { | 
|  | count_in++; | 
|  | if (count_in <= last_processed) { | 
|  | debug3("skipping line %u, before checkpoint or " | 
|  | "specified start line", count_in); | 
|  | continue; | 
|  | } | 
|  | if (checkpoint_file != NULL) | 
|  | write_checkpoint(checkpoint_file, count_in); | 
|  | print_progress(start_lineno, count_in, end_lineno); | 
|  | if (strlen(lp) < 14 || *lp == '!' || *lp == '#') { | 
|  | debug2("%10u: comment or short line", count_in); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* XXX - fragile parser */ | 
|  | /* time */ | 
|  | cp = &lp[14];	/* (skip) */ | 
|  |  | 
|  | /* type */ | 
|  | in_type = strtoul(cp, &cp, 10); | 
|  |  | 
|  | /* tests */ | 
|  | in_tests = strtoul(cp, &cp, 10); | 
|  |  | 
|  | if (in_tests & MODULI_TESTS_COMPOSITE) { | 
|  | debug2("%10u: known composite", count_in); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* tries */ | 
|  | in_tries = strtoul(cp, &cp, 10); | 
|  |  | 
|  | /* size (most significant bit) */ | 
|  | in_size = strtoul(cp, &cp, 10); | 
|  |  | 
|  | /* generator (hex) */ | 
|  | generator_known = strtoul(cp, &cp, 16); | 
|  |  | 
|  | /* Skip white space */ | 
|  | cp += strspn(cp, " "); | 
|  |  | 
|  | /* modulus (hex) */ | 
|  | switch (in_type) { | 
|  | case MODULI_TYPE_SOPHIE_GERMAIN: | 
|  | debug2("%10u: (%u) Sophie-Germain", count_in, in_type); | 
|  | a = q; | 
|  | if (BN_hex2bn(&a, cp) == 0) | 
|  | fatal("BN_hex2bn failed"); | 
|  | /* p = 2*q + 1 */ | 
|  | if (BN_lshift(p, q, 1) == 0) | 
|  | fatal("BN_lshift failed"); | 
|  | if (BN_add_word(p, 1) == 0) | 
|  | fatal("BN_add_word failed"); | 
|  | in_size += 1; | 
|  | generator_known = 0; | 
|  | break; | 
|  | case MODULI_TYPE_UNSTRUCTURED: | 
|  | case MODULI_TYPE_SAFE: | 
|  | case MODULI_TYPE_SCHNORR: | 
|  | case MODULI_TYPE_STRONG: | 
|  | case MODULI_TYPE_UNKNOWN: | 
|  | debug2("%10u: (%u)", count_in, in_type); | 
|  | a = p; | 
|  | if (BN_hex2bn(&a, cp) == 0) | 
|  | fatal("BN_hex2bn failed"); | 
|  | /* q = (p-1) / 2 */ | 
|  | if (BN_rshift(q, p, 1) == 0) | 
|  | fatal("BN_rshift failed"); | 
|  | break; | 
|  | default: | 
|  | debug2("Unknown prime type"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * due to earlier inconsistencies in interpretation, check | 
|  | * the proposed bit size. | 
|  | */ | 
|  | if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) { | 
|  | debug2("%10u: bit size %u mismatch", count_in, in_size); | 
|  | continue; | 
|  | } | 
|  | if (in_size < QSIZE_MINIMUM) { | 
|  | debug2("%10u: bit size %u too short", count_in, in_size); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (in_tests & MODULI_TESTS_MILLER_RABIN) | 
|  | in_tries += trials; | 
|  | else | 
|  | in_tries = trials; | 
|  |  | 
|  | /* | 
|  | * guess unknown generator | 
|  | */ | 
|  | if (generator_known == 0) { | 
|  | if (BN_mod_word(p, 24) == 11) | 
|  | generator_known = 2; | 
|  | else if (BN_mod_word(p, 12) == 5) | 
|  | generator_known = 3; | 
|  | else { | 
|  | u_int32_t r = BN_mod_word(p, 10); | 
|  |  | 
|  | if (r == 3 || r == 7) | 
|  | generator_known = 5; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * skip tests when desired generator doesn't match | 
|  | */ | 
|  | if (generator_wanted > 0 && | 
|  | generator_wanted != generator_known) { | 
|  | debug2("%10u: generator %d != %d", | 
|  | count_in, generator_known, generator_wanted); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Primes with no known generator are useless for DH, so | 
|  | * skip those. | 
|  | */ | 
|  | if (generator_known == 0) { | 
|  | debug2("%10u: no known generator", count_in); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | count_possible++; | 
|  |  | 
|  | /* | 
|  | * The (1/4)^N performance bound on Miller-Rabin is | 
|  | * extremely pessimistic, so don't spend a lot of time | 
|  | * really verifying that q is prime until after we know | 
|  | * that p is also prime. A single pass will weed out the | 
|  | * vast majority of composite q's. | 
|  | */ | 
|  | if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) { | 
|  | debug("%10u: q failed first possible prime test", | 
|  | count_in); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * q is possibly prime, so go ahead and really make sure | 
|  | * that p is prime. If it is, then we can go back and do | 
|  | * the same for q. If p is composite, chances are that | 
|  | * will show up on the first Rabin-Miller iteration so it | 
|  | * doesn't hurt to specify a high iteration count. | 
|  | */ | 
|  | if (!BN_is_prime_ex(p, trials, ctx, NULL)) { | 
|  | debug("%10u: p is not prime", count_in); | 
|  | continue; | 
|  | } | 
|  | debug("%10u: p is almost certainly prime", count_in); | 
|  |  | 
|  | /* recheck q more rigorously */ | 
|  | if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) { | 
|  | debug("%10u: q is not prime", count_in); | 
|  | continue; | 
|  | } | 
|  | debug("%10u: q is almost certainly prime", count_in); | 
|  |  | 
|  | if (qfileout(out, MODULI_TYPE_SAFE, | 
|  | in_tests | MODULI_TESTS_MILLER_RABIN, | 
|  | in_tries, in_size, generator_known, p)) { | 
|  | res = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | count_out++; | 
|  | } | 
|  |  | 
|  | time(&time_stop); | 
|  | free(lp); | 
|  | BN_free(p); | 
|  | BN_free(q); | 
|  | BN_CTX_free(ctx); | 
|  |  | 
|  | if (checkpoint_file != NULL) | 
|  | unlink(checkpoint_file); | 
|  |  | 
|  | logit("%.24s Found %u safe primes of %u candidates in %ld seconds", | 
|  | ctime(&time_stop), count_out, count_possible, | 
|  | (long) (time_stop - time_start)); | 
|  |  | 
|  | return (res); | 
|  | } |