| /* $OpenBSD: rijndael.c,v 1.7 2001/02/04 15:32:24 stevesk Exp $ */ |
| |
| /* This is an independent implementation of the encryption algorithm: */ |
| /* */ |
| /* RIJNDAEL by Joan Daemen and Vincent Rijmen */ |
| /* */ |
| /* which is a candidate algorithm in the Advanced Encryption Standard */ |
| /* programme of the US National Institute of Standards and Technology. */ |
| /* */ |
| /* Copyright in this implementation is held by Dr B R Gladman but I */ |
| /* hereby give permission for its free direct or derivative use subject */ |
| /* to acknowledgment of its origin and compliance with any conditions */ |
| /* that the originators of the algorithm place on its exploitation. */ |
| /* */ |
| /* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */ |
| |
| /* Timing data for Rijndael (rijndael.c) |
| |
| Algorithm: rijndael (rijndael.c) |
| |
| 128 bit key: |
| Key Setup: 305/1389 cycles (encrypt/decrypt) |
| Encrypt: 374 cycles = 68.4 mbits/sec |
| Decrypt: 352 cycles = 72.7 mbits/sec |
| Mean: 363 cycles = 70.5 mbits/sec |
| |
| 192 bit key: |
| Key Setup: 277/1595 cycles (encrypt/decrypt) |
| Encrypt: 439 cycles = 58.3 mbits/sec |
| Decrypt: 425 cycles = 60.2 mbits/sec |
| Mean: 432 cycles = 59.3 mbits/sec |
| |
| 256 bit key: |
| Key Setup: 374/1960 cycles (encrypt/decrypt) |
| Encrypt: 502 cycles = 51.0 mbits/sec |
| Decrypt: 498 cycles = 51.4 mbits/sec |
| Mean: 500 cycles = 51.2 mbits/sec |
| |
| */ |
| |
| #include "config.h" |
| #include "rijndael.h" |
| |
| void gen_tabs __P((void)); |
| |
| /* 3. Basic macros for speeding up generic operations */ |
| |
| /* Circular rotate of 32 bit values */ |
| |
| #define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n)))) |
| #define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n)))) |
| |
| /* Invert byte order in a 32 bit variable */ |
| |
| #define bswap(x) ((rotl(x, 8) & 0x00ff00ff) | (rotr(x, 8) & 0xff00ff00)) |
| |
| /* Extract byte from a 32 bit quantity (little endian notation) */ |
| |
| #define byte(x,n) ((u1byte)((x) >> (8 * n))) |
| |
| #ifdef WORDS_BIGENDIAN |
| #define BYTE_SWAP |
| #endif |
| |
| #ifdef BYTE_SWAP |
| #define io_swap(x) bswap(x) |
| #else |
| #define io_swap(x) (x) |
| #endif |
| |
| #define LARGE_TABLES |
| |
| u1byte pow_tab[256]; |
| u1byte log_tab[256]; |
| u1byte sbx_tab[256]; |
| u1byte isb_tab[256]; |
| u4byte rco_tab[ 10]; |
| u4byte ft_tab[4][256]; |
| u4byte it_tab[4][256]; |
| |
| #ifdef LARGE_TABLES |
| u4byte fl_tab[4][256]; |
| u4byte il_tab[4][256]; |
| #endif |
| |
| u4byte tab_gen = 0; |
| |
| #define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0) |
| |
| #define f_rn(bo, bi, n, k) \ |
| bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ |
| ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ |
| ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) |
| |
| #define i_rn(bo, bi, n, k) \ |
| bo[n] = it_tab[0][byte(bi[n],0)] ^ \ |
| it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ |
| it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) |
| |
| #ifdef LARGE_TABLES |
| |
| #define ls_box(x) \ |
| ( fl_tab[0][byte(x, 0)] ^ \ |
| fl_tab[1][byte(x, 1)] ^ \ |
| fl_tab[2][byte(x, 2)] ^ \ |
| fl_tab[3][byte(x, 3)] ) |
| |
| #define f_rl(bo, bi, n, k) \ |
| bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ |
| fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ |
| fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) |
| |
| #define i_rl(bo, bi, n, k) \ |
| bo[n] = il_tab[0][byte(bi[n],0)] ^ \ |
| il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ |
| il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) |
| |
| #else |
| |
| #define ls_box(x) \ |
| ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \ |
| ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \ |
| ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \ |
| ((u4byte)sbx_tab[byte(x, 3)] << 24) |
| |
| #define f_rl(bo, bi, n, k) \ |
| bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \ |
| rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \ |
| rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \ |
| rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n) |
| |
| #define i_rl(bo, bi, n, k) \ |
| bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \ |
| rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \ |
| rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \ |
| rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n) |
| |
| #endif |
| |
| void |
| gen_tabs(void) |
| { |
| u4byte i, t; |
| u1byte p, q; |
| |
| /* log and power tables for GF(2**8) finite field with */ |
| /* 0x11b as modular polynomial - the simplest prmitive */ |
| /* root is 0x11, used here to generate the tables */ |
| |
| for(i = 0,p = 1; i < 256; ++i) { |
| pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i; |
| |
| p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0); |
| } |
| |
| log_tab[1] = 0; p = 1; |
| |
| for(i = 0; i < 10; ++i) { |
| rco_tab[i] = p; |
| |
| p = (p << 1) ^ (p & 0x80 ? 0x1b : 0); |
| } |
| |
| /* note that the affine byte transformation matrix in */ |
| /* rijndael specification is in big endian format with */ |
| /* bit 0 as the most significant bit. In the remainder */ |
| /* of the specification the bits are numbered from the */ |
| /* least significant end of a byte. */ |
| |
| for(i = 0; i < 256; ++i) { |
| p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p; |
| q = (q >> 7) | (q << 1); p ^= q; |
| q = (q >> 7) | (q << 1); p ^= q; |
| q = (q >> 7) | (q << 1); p ^= q; |
| q = (q >> 7) | (q << 1); p ^= q ^ 0x63; |
| sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i; |
| } |
| |
| for(i = 0; i < 256; ++i) { |
| p = sbx_tab[i]; |
| |
| #ifdef LARGE_TABLES |
| |
| t = p; fl_tab[0][i] = t; |
| fl_tab[1][i] = rotl(t, 8); |
| fl_tab[2][i] = rotl(t, 16); |
| fl_tab[3][i] = rotl(t, 24); |
| #endif |
| t = ((u4byte)ff_mult(2, p)) | |
| ((u4byte)p << 8) | |
| ((u4byte)p << 16) | |
| ((u4byte)ff_mult(3, p) << 24); |
| |
| ft_tab[0][i] = t; |
| ft_tab[1][i] = rotl(t, 8); |
| ft_tab[2][i] = rotl(t, 16); |
| ft_tab[3][i] = rotl(t, 24); |
| |
| p = isb_tab[i]; |
| |
| #ifdef LARGE_TABLES |
| |
| t = p; il_tab[0][i] = t; |
| il_tab[1][i] = rotl(t, 8); |
| il_tab[2][i] = rotl(t, 16); |
| il_tab[3][i] = rotl(t, 24); |
| #endif |
| t = ((u4byte)ff_mult(14, p)) | |
| ((u4byte)ff_mult( 9, p) << 8) | |
| ((u4byte)ff_mult(13, p) << 16) | |
| ((u4byte)ff_mult(11, p) << 24); |
| |
| it_tab[0][i] = t; |
| it_tab[1][i] = rotl(t, 8); |
| it_tab[2][i] = rotl(t, 16); |
| it_tab[3][i] = rotl(t, 24); |
| } |
| |
| tab_gen = 1; |
| } |
| |
| #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) |
| |
| #define imix_col(y,x) \ |
| u = star_x(x); \ |
| v = star_x(u); \ |
| w = star_x(v); \ |
| t = w ^ (x); \ |
| (y) = u ^ v ^ w; \ |
| (y) ^= rotr(u ^ t, 8) ^ \ |
| rotr(v ^ t, 16) ^ \ |
| rotr(t,24) |
| |
| /* initialise the key schedule from the user supplied key */ |
| |
| #define loop4(i) \ |
| { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ |
| t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \ |
| t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \ |
| t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \ |
| t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \ |
| } |
| |
| #define loop6(i) \ |
| { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ |
| t ^= e_key[6 * i]; e_key[6 * i + 6] = t; \ |
| t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t; \ |
| t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t; \ |
| t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t; \ |
| t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t; \ |
| t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t; \ |
| } |
| |
| #define loop8(i) \ |
| { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ |
| t ^= e_key[8 * i]; e_key[8 * i + 8] = t; \ |
| t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t; \ |
| t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t; \ |
| t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t; \ |
| t = e_key[8 * i + 4] ^ ls_box(t); \ |
| e_key[8 * i + 12] = t; \ |
| t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \ |
| t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \ |
| t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \ |
| } |
| |
| rijndael_ctx * |
| rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len, |
| int encrypt) |
| { |
| u4byte i, t, u, v, w; |
| u4byte *e_key = ctx->e_key; |
| u4byte *d_key = ctx->d_key; |
| |
| ctx->decrypt = !encrypt; |
| |
| if(!tab_gen) |
| gen_tabs(); |
| |
| ctx->k_len = (key_len + 31) / 32; |
| |
| e_key[0] = io_swap(in_key[0]); e_key[1] = io_swap(in_key[1]); |
| e_key[2] = io_swap(in_key[2]); e_key[3] = io_swap(in_key[3]); |
| |
| switch(ctx->k_len) { |
| case 4: t = e_key[3]; |
| for(i = 0; i < 10; ++i) |
| loop4(i); |
| break; |
| |
| case 6: e_key[4] = io_swap(in_key[4]); t = e_key[5] = io_swap(in_key[5]); |
| for(i = 0; i < 8; ++i) |
| loop6(i); |
| break; |
| |
| case 8: e_key[4] = io_swap(in_key[4]); e_key[5] = io_swap(in_key[5]); |
| e_key[6] = io_swap(in_key[6]); t = e_key[7] = io_swap(in_key[7]); |
| for(i = 0; i < 7; ++i) |
| loop8(i); |
| break; |
| } |
| |
| if (!encrypt) { |
| d_key[0] = e_key[0]; d_key[1] = e_key[1]; |
| d_key[2] = e_key[2]; d_key[3] = e_key[3]; |
| |
| for(i = 4; i < 4 * ctx->k_len + 24; ++i) { |
| imix_col(d_key[i], e_key[i]); |
| } |
| } |
| |
| return ctx; |
| } |
| |
| /* encrypt a block of text */ |
| |
| #define f_nround(bo, bi, k) \ |
| f_rn(bo, bi, 0, k); \ |
| f_rn(bo, bi, 1, k); \ |
| f_rn(bo, bi, 2, k); \ |
| f_rn(bo, bi, 3, k); \ |
| k += 4 |
| |
| #define f_lround(bo, bi, k) \ |
| f_rl(bo, bi, 0, k); \ |
| f_rl(bo, bi, 1, k); \ |
| f_rl(bo, bi, 2, k); \ |
| f_rl(bo, bi, 3, k) |
| |
| void |
| rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk) |
| { |
| u4byte k_len = ctx->k_len; |
| u4byte *e_key = ctx->e_key; |
| u4byte b0[4], b1[4], *kp; |
| |
| b0[0] = io_swap(in_blk[0]) ^ e_key[0]; |
| b0[1] = io_swap(in_blk[1]) ^ e_key[1]; |
| b0[2] = io_swap(in_blk[2]) ^ e_key[2]; |
| b0[3] = io_swap(in_blk[3]) ^ e_key[3]; |
| |
| kp = e_key + 4; |
| |
| if(k_len > 6) { |
| f_nround(b1, b0, kp); f_nround(b0, b1, kp); |
| } |
| |
| if(k_len > 4) { |
| f_nround(b1, b0, kp); f_nround(b0, b1, kp); |
| } |
| |
| f_nround(b1, b0, kp); f_nround(b0, b1, kp); |
| f_nround(b1, b0, kp); f_nround(b0, b1, kp); |
| f_nround(b1, b0, kp); f_nround(b0, b1, kp); |
| f_nround(b1, b0, kp); f_nround(b0, b1, kp); |
| f_nround(b1, b0, kp); f_lround(b0, b1, kp); |
| |
| out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]); |
| out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]); |
| } |
| |
| /* decrypt a block of text */ |
| |
| #define i_nround(bo, bi, k) \ |
| i_rn(bo, bi, 0, k); \ |
| i_rn(bo, bi, 1, k); \ |
| i_rn(bo, bi, 2, k); \ |
| i_rn(bo, bi, 3, k); \ |
| k -= 4 |
| |
| #define i_lround(bo, bi, k) \ |
| i_rl(bo, bi, 0, k); \ |
| i_rl(bo, bi, 1, k); \ |
| i_rl(bo, bi, 2, k); \ |
| i_rl(bo, bi, 3, k) |
| |
| void |
| rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk) |
| { |
| u4byte b0[4], b1[4], *kp; |
| u4byte k_len = ctx->k_len; |
| u4byte *e_key = ctx->e_key; |
| u4byte *d_key = ctx->d_key; |
| |
| b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24]; |
| b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25]; |
| b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26]; |
| b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27]; |
| |
| kp = d_key + 4 * (k_len + 5); |
| |
| if(k_len > 6) { |
| i_nround(b1, b0, kp); i_nround(b0, b1, kp); |
| } |
| |
| if(k_len > 4) { |
| i_nround(b1, b0, kp); i_nround(b0, b1, kp); |
| } |
| |
| i_nround(b1, b0, kp); i_nround(b0, b1, kp); |
| i_nround(b1, b0, kp); i_nround(b0, b1, kp); |
| i_nround(b1, b0, kp); i_nround(b0, b1, kp); |
| i_nround(b1, b0, kp); i_nround(b0, b1, kp); |
| i_nround(b1, b0, kp); i_lround(b0, b1, kp); |
| |
| out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]); |
| out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]); |
| } |