| #if defined(POLARSSL_PLATFORM_C) |
| #include "polarssl/platform.h" |
| #else |
| #include <stdio.h> |
| #define polarssl_printf printf |
| #define polarssl_fprintf fprintf |
| #define polarssl_malloc malloc |
| #define polarssl_free free |
| #define polarssl_exit exit |
| #define polarssl_fprintf fprintf |
| #define polarssl_printf printf |
| #define polarssl_snprintf snprintf |
| #endif |
| |
| #ifdef _MSC_VER |
| #include <basetsd.h> |
| typedef UINT32 uint32_t; |
| #else |
| #include <inttypes.h> |
| #endif |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #define assert(a) if( !( a ) ) \ |
| { \ |
| polarssl_fprintf( stderr, "Assertion Failed at %s:%d - %s\n", \ |
| __FILE__, __LINE__, #a ); \ |
| polarssl_exit( 1 ); \ |
| } |
| |
| /* |
| * 32-bit integer manipulation macros (big endian) |
| */ |
| #ifndef GET_UINT32_BE |
| #define GET_UINT32_BE(n,b,i) \ |
| { \ |
| (n) = ( (uint32_t) (b)[(i) ] << 24 ) \ |
| | ( (uint32_t) (b)[(i) + 1] << 16 ) \ |
| | ( (uint32_t) (b)[(i) + 2] << 8 ) \ |
| | ( (uint32_t) (b)[(i) + 3] ); \ |
| } |
| #endif |
| |
| #ifndef PUT_UINT32_BE |
| #define PUT_UINT32_BE(n,b,i) \ |
| { \ |
| (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ |
| (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ |
| (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ |
| (b)[(i) + 3] = (unsigned char) ( (n) ); \ |
| } |
| #endif |
| |
| static int unhexify( unsigned char *obuf, const char *ibuf ) |
| { |
| unsigned char c, c2; |
| int len = strlen( ibuf ) / 2; |
| assert( strlen( ibuf ) % 2 == 0 ); // must be even number of bytes |
| |
| while( *ibuf != 0 ) |
| { |
| c = *ibuf++; |
| if( c >= '0' && c <= '9' ) |
| c -= '0'; |
| else if( c >= 'a' && c <= 'f' ) |
| c -= 'a' - 10; |
| else if( c >= 'A' && c <= 'F' ) |
| c -= 'A' - 10; |
| else |
| assert( 0 ); |
| |
| c2 = *ibuf++; |
| if( c2 >= '0' && c2 <= '9' ) |
| c2 -= '0'; |
| else if( c2 >= 'a' && c2 <= 'f' ) |
| c2 -= 'a' - 10; |
| else if( c2 >= 'A' && c2 <= 'F' ) |
| c2 -= 'A' - 10; |
| else |
| assert( 0 ); |
| |
| *obuf++ = ( c << 4 ) | c2; |
| } |
| |
| return len; |
| } |
| |
| static void hexify( unsigned char *obuf, const unsigned char *ibuf, int len ) |
| { |
| unsigned char l, h; |
| |
| while( len != 0 ) |
| { |
| h = *ibuf / 16; |
| l = *ibuf % 16; |
| |
| if( h < 10 ) |
| *obuf++ = '0' + h; |
| else |
| *obuf++ = 'a' + h - 10; |
| |
| if( l < 10 ) |
| *obuf++ = '0' + l; |
| else |
| *obuf++ = 'a' + l - 10; |
| |
| ++ibuf; |
| len--; |
| } |
| } |
| |
| /** |
| * Allocate and zeroize a buffer. |
| * |
| * If the size if zero, a pointer to a zeroized 1-byte buffer is returned. |
| * |
| * For convenience, dies if allocation fails. |
| */ |
| static unsigned char *zero_alloc( size_t len ) |
| { |
| void *p; |
| size_t actual_len = ( len != 0 ) ? len : 1; |
| |
| p = polarssl_malloc( actual_len ); |
| assert( p != NULL ); |
| |
| memset( p, 0x00, actual_len ); |
| |
| return( p ); |
| } |
| |
| /** |
| * Allocate and fill a buffer from hex data. |
| * |
| * The buffer is sized exactly as needed. This allows to detect buffer |
| * overruns (including overreads) when running the test suite under valgrind. |
| * |
| * If the size if zero, a pointer to a zeroized 1-byte buffer is returned. |
| * |
| * For convenience, dies if allocation fails. |
| */ |
| static unsigned char *unhexify_alloc( const char *ibuf, size_t *olen ) |
| { |
| unsigned char *obuf; |
| |
| *olen = strlen( ibuf ) / 2; |
| |
| if( *olen == 0 ) |
| return( zero_alloc( *olen ) ); |
| |
| obuf = polarssl_malloc( *olen ); |
| assert( obuf != NULL ); |
| |
| (void) unhexify( obuf, ibuf ); |
| |
| return( obuf ); |
| } |
| |
| /** |
| * This function just returns data from rand(). |
| * Although predictable and often similar on multiple |
| * runs, this does not result in identical random on |
| * each run. So do not use this if the results of a |
| * test depend on the random data that is generated. |
| * |
| * rng_state shall be NULL. |
| */ |
| static int rnd_std_rand( void *rng_state, unsigned char *output, size_t len ) |
| { |
| #if !defined(__OpenBSD__) |
| size_t i; |
| |
| if( rng_state != NULL ) |
| rng_state = NULL; |
| |
| for( i = 0; i < len; ++i ) |
| output[i] = rand(); |
| #else |
| if( rng_state != NULL ) |
| rng_state = NULL; |
| |
| arc4random_buf( output, len ); |
| #endif /* !OpenBSD */ |
| |
| return( 0 ); |
| } |
| |
| /** |
| * This function only returns zeros |
| * |
| * rng_state shall be NULL. |
| */ |
| static int rnd_zero_rand( void *rng_state, unsigned char *output, size_t len ) |
| { |
| if( rng_state != NULL ) |
| rng_state = NULL; |
| |
| memset( output, 0, len ); |
| |
| return( 0 ); |
| } |
| |
| typedef struct |
| { |
| unsigned char *buf; |
| size_t length; |
| } rnd_buf_info; |
| |
| /** |
| * This function returns random based on a buffer it receives. |
| * |
| * rng_state shall be a pointer to a rnd_buf_info structure. |
| * |
| * The number of bytes released from the buffer on each call to |
| * the random function is specified by per_call. (Can be between |
| * 1 and 4) |
| * |
| * After the buffer is empty it will return rand(); |
| */ |
| static int rnd_buffer_rand( void *rng_state, unsigned char *output, size_t len ) |
| { |
| rnd_buf_info *info = (rnd_buf_info *) rng_state; |
| size_t use_len; |
| |
| if( rng_state == NULL ) |
| return( rnd_std_rand( NULL, output, len ) ); |
| |
| use_len = len; |
| if( len > info->length ) |
| use_len = info->length; |
| |
| if( use_len ) |
| { |
| memcpy( output, info->buf, use_len ); |
| info->buf += use_len; |
| info->length -= use_len; |
| } |
| |
| if( len - use_len > 0 ) |
| return( rnd_std_rand( NULL, output + use_len, len - use_len ) ); |
| |
| return( 0 ); |
| } |
| |
| /** |
| * Info structure for the pseudo random function |
| * |
| * Key should be set at the start to a test-unique value. |
| * Do not forget endianness! |
| * State( v0, v1 ) should be set to zero. |
| */ |
| typedef struct |
| { |
| uint32_t key[16]; |
| uint32_t v0, v1; |
| } rnd_pseudo_info; |
| |
| /** |
| * This function returns random based on a pseudo random function. |
| * This means the results should be identical on all systems. |
| * Pseudo random is based on the XTEA encryption algorithm to |
| * generate pseudorandom. |
| * |
| * rng_state shall be a pointer to a rnd_pseudo_info structure. |
| */ |
| static int rnd_pseudo_rand( void *rng_state, unsigned char *output, size_t len ) |
| { |
| rnd_pseudo_info *info = (rnd_pseudo_info *) rng_state; |
| uint32_t i, *k, sum, delta=0x9E3779B9; |
| unsigned char result[4], *out = output; |
| |
| if( rng_state == NULL ) |
| return( rnd_std_rand( NULL, output, len ) ); |
| |
| k = info->key; |
| |
| while( len > 0 ) |
| { |
| size_t use_len = ( len > 4 ) ? 4 : len; |
| sum = 0; |
| |
| for( i = 0; i < 32; i++ ) |
| { |
| info->v0 += ( ( ( info->v1 << 4 ) ^ ( info->v1 >> 5 ) ) |
| + info->v1 ) ^ ( sum + k[sum & 3] ); |
| sum += delta; |
| info->v1 += ( ( ( info->v0 << 4 ) ^ ( info->v0 >> 5 ) ) |
| + info->v0 ) ^ ( sum + k[( sum>>11 ) & 3] ); |
| } |
| |
| PUT_UINT32_BE( info->v0, result, 0 ); |
| memcpy( out, result, use_len ); |
| len -= use_len; |
| out += 4; |
| } |
| |
| return( 0 ); |
| } |