| #ifdef _MSC_VER |
| #include <basetsd.h> |
| typedef UINT32 uint32_t; |
| #else |
| #include <inttypes.h> |
| #endif |
| |
| /* |
| * 32-bit integer manipulation macros (big endian) |
| */ |
| #ifndef GET_ULONG_BE |
| #define GET_ULONG_BE(n,b,i) \ |
| { \ |
| (n) = ( (unsigned long) (b)[(i) ] << 24 ) \ |
| | ( (unsigned long) (b)[(i) + 1] << 16 ) \ |
| | ( (unsigned long) (b)[(i) + 2] << 8 ) \ |
| | ( (unsigned long) (b)[(i) + 3] ); \ |
| } |
| #endif |
| |
| #ifndef PUT_ULONG_BE |
| #define PUT_ULONG_BE(n,b,i) \ |
| { \ |
| (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ |
| (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ |
| (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ |
| (b)[(i) + 3] = (unsigned char) ( (n) ); \ |
| } |
| #endif |
| |
| int unhexify(unsigned char *obuf, const char *ibuf) |
| { |
| unsigned char c, c2; |
| int len = strlen(ibuf) / 2; |
| assert(!(strlen(ibuf) %1)); // must be even number of bytes |
| |
| while (*ibuf != 0) |
| { |
| c = *ibuf++; |
| if( c >= '0' && c <= '9' ) |
| c -= '0'; |
| else if( c >= 'a' && c <= 'f' ) |
| c -= 'a' - 10; |
| else if( c >= 'A' && c <= 'F' ) |
| c -= 'A' - 10; |
| else |
| assert( 0 ); |
| |
| c2 = *ibuf++; |
| if( c2 >= '0' && c2 <= '9' ) |
| c2 -= '0'; |
| else if( c2 >= 'a' && c2 <= 'f' ) |
| c2 -= 'a' - 10; |
| else if( c2 >= 'A' && c2 <= 'F' ) |
| c2 -= 'A' - 10; |
| else |
| assert( 0 ); |
| |
| *obuf++ = ( c << 4 ) | c2; |
| } |
| |
| return len; |
| } |
| |
| void hexify(unsigned char *obuf, const unsigned char *ibuf, int len) |
| { |
| unsigned char l, h; |
| |
| while (len != 0) |
| { |
| h = (*ibuf) / 16; |
| l = (*ibuf) % 16; |
| |
| if( h < 10 ) |
| *obuf++ = '0' + h; |
| else |
| *obuf++ = 'a' + h - 10; |
| |
| if( l < 10 ) |
| *obuf++ = '0' + l; |
| else |
| *obuf++ = 'a' + l - 10; |
| |
| ++ibuf; |
| len--; |
| } |
| } |
| |
| /** |
| * This function just returns data from rand(). |
| * Although predictable and often similar on multiple |
| * runs, this does not result in identical random on |
| * each run. So do not use this if the results of a |
| * test depend on the random data that is generated. |
| * |
| * rng_state shall be NULL. |
| */ |
| static int rnd_std_rand( void *rng_state ) |
| { |
| if( rng_state != NULL ) |
| rng_state = NULL; |
| |
| return( rand() ); |
| } |
| |
| /** |
| * This function only returns zeros |
| * |
| * rng_state shall be NULL. |
| */ |
| static int rnd_zero_rand( void *rng_state ) |
| { |
| if( rng_state != NULL ) |
| rng_state = NULL; |
| |
| return( 0 ); |
| } |
| |
| typedef struct |
| { |
| unsigned char *buf; |
| int length; |
| int per_call; |
| } rnd_buf_info; |
| |
| /** |
| * This function returns random based on a buffer it receives. |
| * |
| * rng_state shall be a pointer to a rnd_buf_info structure. |
| * |
| * The number of bytes released from the buffer on each call to |
| * the random function is specified by per_call. (Can be between |
| * 1 and 4) |
| * |
| * After the buffer is empty it will return rand(); |
| */ |
| static int rnd_buffer_rand( void *rng_state ) |
| { |
| rnd_buf_info *info = (rnd_buf_info *) rng_state; |
| int res; |
| |
| if( rng_state == NULL ) |
| return( rand() ); |
| |
| if( info->per_call > 4 ) |
| info->per_call = 4; |
| else if( info->per_call < 1 ) |
| info->per_call = 1; |
| |
| res = rand(); |
| |
| if( info->length >= info->per_call ) |
| { |
| memcpy( &res, info->buf, info->per_call ); |
| info->buf += info->per_call; |
| info->length -= info->per_call; |
| } |
| else if( info->length > 0 ) |
| { |
| memcpy( &res, info->buf, info->length ); |
| info->length = 0; |
| } |
| |
| return( res ); |
| } |
| |
| /** |
| * Info structure for the pseudo random function |
| * |
| * Key should be set at the start to a test-unique value. |
| * Do not forget endianness! |
| * State( v0, v1 ) should be set to zero. |
| */ |
| typedef struct |
| { |
| uint32_t key[16]; |
| uint32_t v0, v1; |
| } rnd_pseudo_info; |
| |
| /** |
| * This function returns random based on a pseudo random function. |
| * This means the results should be identical on all systems. |
| * Pseudo random is based on the XTEA encryption algorithm to |
| * generate pseudorandom. |
| * |
| * rng_state shall be a pointer to a rnd_pseudo_info structure. |
| */ |
| static int rnd_pseudo_rand( void *rng_state ) |
| { |
| rnd_pseudo_info *info = (rnd_pseudo_info *) rng_state; |
| uint32_t i, *k, sum = 0, delta=0x9E3779B9; |
| |
| if( rng_state == NULL ) |
| return( rand() ); |
| |
| k = info->key; |
| for( i = 0; i < 32; i++ ) |
| { |
| info->v0 += (((info->v1 << 4) ^ (info->v1 >> 5)) + info->v1) ^ (sum + k[sum & 3]); |
| sum += delta; |
| info->v1 += (((info->v0 << 4) ^ (info->v0 >> 5)) + info->v0) ^ (sum + k[(sum>>11) & 3]); |
| } |
| |
| return( info->v0 ); |
| } |