| BEGIN_HEADER |
| #include <polarssl/rsa.h> |
| #include <polarssl/md2.h> |
| #include <polarssl/md4.h> |
| #include <polarssl/md5.h> |
| #include <polarssl/sha1.h> |
| #include <polarssl/sha2.h> |
| #include <polarssl/sha4.h> |
| #include <polarssl/havege.h> |
| END_HEADER |
| |
| BEGIN_CASE |
| rsa_pkcs1_sign:message_hex_string:padding_mode:digest:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str:result |
| { |
| unsigned char message_str[1000]; |
| unsigned char hash_result[1000]; |
| unsigned char output[1000]; |
| unsigned char output_str[1000]; |
| rsa_context ctx; |
| mpi P1, Q1, H, G; |
| int msg_len; |
| |
| mpi_init( &P1, &Q1, &H, &G, NULL ); |
| rsa_init( &ctx, {padding_mode}, 0, NULL, NULL ); |
| |
| memset( message_str, 0x00, 1000 ); |
| memset( hash_result, 0x00, 1000 ); |
| memset( output, 0x00, 1000 ); |
| memset( output_str, 0x00, 1000 ); |
| |
| ctx.len = {mod} / 8; |
| TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); |
| |
| TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); |
| TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); |
| TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); |
| TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 ); |
| TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 ); |
| TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); |
| TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); |
| TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); |
| |
| TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); |
| |
| msg_len = unhexify( message_str, {message_hex_string} ); |
| |
| if( {digest} == SIG_RSA_MD2 ) |
| md2( message_str, msg_len, hash_result ); |
| else if( {digest} == SIG_RSA_MD4 ) |
| md4( message_str, msg_len, hash_result ); |
| else if( {digest} == SIG_RSA_MD5 ) |
| md5( message_str, msg_len, hash_result ); |
| else if( {digest} == SIG_RSA_SHA1 ) |
| sha1( message_str, msg_len, hash_result ); |
| else if( {digest} == SIG_RSA_SHA224 ) |
| sha2( message_str, msg_len, hash_result, 1 ); |
| else if( {digest} == SIG_RSA_SHA256 ) |
| sha2( message_str, msg_len, hash_result, 0 ); |
| else if( {digest} == SIG_RSA_SHA384 ) |
| sha4( message_str, msg_len, hash_result, 1 ); |
| else if( {digest} == SIG_RSA_SHA512 ) |
| sha4( message_str, msg_len, hash_result, 0 ); |
| |
| TEST_ASSERT( rsa_pkcs1_sign( &ctx, RSA_PRIVATE, {digest}, 0, hash_result, output ) == {result} ); |
| if( {result} == 0 ) |
| { |
| hexify( output_str, output, ctx.len ); |
| |
| TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); |
| } |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_pkcs1_verify:message_hex_string:padding_mode:digest:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result |
| { |
| unsigned char message_str[1000]; |
| unsigned char hash_result[1000]; |
| unsigned char result_str[1000]; |
| rsa_context ctx; |
| int msg_len; |
| |
| rsa_init( &ctx, {padding_mode}, 0, NULL, NULL ); |
| memset( message_str, 0x00, 1000 ); |
| memset( hash_result, 0x00, 1000 ); |
| memset( result_str, 0x00, 1000 ); |
| |
| ctx.len = {mod} / 8; |
| TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); |
| |
| TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); |
| |
| msg_len = unhexify( message_str, {message_hex_string} ); |
| unhexify( result_str, {result_hex_str} ); |
| |
| if( {digest} == SIG_RSA_MD2 ) |
| md2( message_str, msg_len, hash_result ); |
| else if( {digest} == SIG_RSA_MD4 ) |
| md4( message_str, msg_len, hash_result ); |
| else if( {digest} == SIG_RSA_MD5 ) |
| md5( message_str, msg_len, hash_result ); |
| else if( {digest} == SIG_RSA_SHA1 ) |
| sha1( message_str, msg_len, hash_result ); |
| else if( {digest} == SIG_RSA_SHA224 ) |
| sha2( message_str, msg_len, hash_result, 1 ); |
| else if( {digest} == SIG_RSA_SHA256 ) |
| sha2( message_str, msg_len, hash_result, 0 ); |
| else if( {digest} == SIG_RSA_SHA384 ) |
| sha4( message_str, msg_len, hash_result, 1 ); |
| else if( {digest} == SIG_RSA_SHA512 ) |
| sha4( message_str, msg_len, hash_result, 0 ); |
| |
| TEST_ASSERT( rsa_pkcs1_verify( &ctx, RSA_PUBLIC, {digest}, 0, hash_result, result_str ) == {result} ); |
| } |
| END_CASE |
| |
| |
| BEGIN_CASE |
| rsa_pkcs1_sign_raw:message_hex_string:hash_result_string:padding_mode:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str |
| { |
| unsigned char message_str[1000]; |
| unsigned char hash_result[1000]; |
| unsigned char output[1000]; |
| unsigned char output_str[1000]; |
| rsa_context ctx; |
| mpi P1, Q1, H, G; |
| int msg_len, hash_len; |
| |
| mpi_init( &P1, &Q1, &H, &G, NULL ); |
| rsa_init( &ctx, {padding_mode}, 0, NULL, NULL ); |
| |
| memset( message_str, 0x00, 1000 ); |
| memset( hash_result, 0x00, 1000 ); |
| memset( output, 0x00, 1000 ); |
| memset( output_str, 0x00, 1000 ); |
| |
| ctx.len = {mod} / 8; |
| TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); |
| |
| TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); |
| TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); |
| TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); |
| TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 ); |
| TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 ); |
| TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); |
| TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); |
| TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); |
| |
| TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); |
| |
| msg_len = unhexify( message_str, {message_hex_string} ); |
| hash_len = unhexify( hash_result, {hash_result_string} ); |
| |
| TEST_ASSERT( rsa_pkcs1_sign( &ctx, RSA_PRIVATE, RSA_RAW, hash_len, hash_result, output ) == 0 ); |
| |
| hexify( output_str, output, ctx.len ); |
| |
| TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_pkcs1_verify_raw:message_hex_string:hash_result_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:correct |
| { |
| unsigned char message_str[1000]; |
| unsigned char hash_result[1000]; |
| unsigned char result_str[1000]; |
| rsa_context ctx; |
| int msg_len, hash_len; |
| |
| rsa_init( &ctx, {padding_mode}, 0, NULL, NULL ); |
| memset( message_str, 0x00, 1000 ); |
| memset( hash_result, 0x00, 1000 ); |
| memset( result_str, 0x00, 1000 ); |
| |
| ctx.len = {mod} / 8; |
| TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); |
| |
| TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); |
| |
| msg_len = unhexify( message_str, {message_hex_string} ); |
| hash_len = unhexify( hash_result, {hash_result_string} ); |
| unhexify( result_str, {result_hex_str} ); |
| |
| TEST_ASSERT( rsa_pkcs1_verify( &ctx, RSA_PUBLIC, RSA_RAW, hash_len, hash_result, result_str ) == {correct} ); |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_pkcs1_encrypt:message_hex_string:padding_mode:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result |
| { |
| unsigned char message_str[1000]; |
| unsigned char output[1000]; |
| unsigned char output_str[1000]; |
| rsa_context ctx; |
| int msg_len; |
| |
| rsa_init( &ctx, {padding_mode}, 0, NULL, NULL ); |
| memset( message_str, 0x00, 1000 ); |
| memset( output, 0x00, 1000 ); |
| memset( output_str, 0x00, 1000 ); |
| |
| ctx.len = {mod} / 8; |
| TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); |
| |
| TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); |
| |
| msg_len = unhexify( message_str, {message_hex_string} ); |
| |
| TEST_ASSERT( rsa_pkcs1_encrypt( &ctx, RSA_PUBLIC, msg_len, message_str, output ) == {result} ); |
| if( {result} == 0 ) |
| { |
| hexify( output_str, output, ctx.len ); |
| |
| TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); |
| } |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_pkcs1_decrypt:message_hex_string:padding_mode:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:max_output:result_hex_str:result |
| { |
| unsigned char message_str[1000]; |
| unsigned char output[1000]; |
| unsigned char output_str[1000]; |
| rsa_context ctx; |
| mpi P1, Q1, H, G; |
| int output_len; |
| |
| mpi_init( &P1, &Q1, &H, &G, NULL ); |
| rsa_init( &ctx, {padding_mode}, 0, NULL, NULL ); |
| |
| memset( message_str, 0x00, 1000 ); |
| memset( output, 0x00, 1000 ); |
| memset( output_str, 0x00, 1000 ); |
| |
| ctx.len = {mod} / 8; |
| TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); |
| |
| TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); |
| TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); |
| TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); |
| TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 ); |
| TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 ); |
| TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); |
| TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); |
| TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); |
| |
| TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); |
| |
| unhexify( message_str, {message_hex_string} ); |
| output_len = 0; |
| |
| TEST_ASSERT( rsa_pkcs1_decrypt( &ctx, RSA_PRIVATE, &output_len, message_str, output, {max_output} ) == {result} ); |
| if( {result} == 0 ) |
| { |
| hexify( output_str, output, ctx.len ); |
| |
| TEST_ASSERT( strncasecmp( (char *) output_str, {result_hex_str}, strlen( {result_hex_str} ) ) == 0 ); |
| } |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_public:message_hex_string:mod:radix_N:input_N:radix_E:input_E:result_hex_str:result |
| { |
| unsigned char message_str[1000]; |
| unsigned char output[1000]; |
| unsigned char output_str[1000]; |
| rsa_context ctx; |
| |
| rsa_init( &ctx, RSA_PKCS_V15, 0, NULL, NULL ); |
| memset( message_str, 0x00, 1000 ); |
| memset( output, 0x00, 1000 ); |
| memset( output_str, 0x00, 1000 ); |
| |
| ctx.len = {mod} / 8; |
| TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); |
| |
| TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 ); |
| |
| unhexify( message_str, {message_hex_string} ); |
| |
| TEST_ASSERT( rsa_public( &ctx, message_str, output ) == {result} ); |
| if( {result} == 0 ) |
| { |
| hexify( output_str, output, ctx.len ); |
| |
| TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); |
| } |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_private:message_hex_string:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:result_hex_str:result |
| { |
| unsigned char message_str[1000]; |
| unsigned char output[1000]; |
| unsigned char output_str[1000]; |
| rsa_context ctx; |
| mpi P1, Q1, H, G; |
| |
| mpi_init( &P1, &Q1, &H, &G, NULL ); |
| rsa_init( &ctx, RSA_PKCS_V15, 0, NULL, NULL ); |
| |
| memset( message_str, 0x00, 1000 ); |
| memset( output, 0x00, 1000 ); |
| memset( output_str, 0x00, 1000 ); |
| |
| ctx.len = {mod} / 8; |
| TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); |
| TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); |
| |
| TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 ); |
| TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 ); |
| TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 ); |
| TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 ); |
| TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 ); |
| TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 ); |
| TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 ); |
| TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 ); |
| |
| TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); |
| |
| unhexify( message_str, {message_hex_string} ); |
| |
| TEST_ASSERT( rsa_private( &ctx, message_str, output ) == {result} ); |
| if( {result} == 0 ) |
| { |
| hexify( output_str, output, ctx.len ); |
| |
| TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 ); |
| } |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_check_privkey_null: |
| { |
| rsa_context ctx; |
| memset( &ctx, 0x00, sizeof( rsa_context ) ); |
| |
| TEST_ASSERT( rsa_check_privkey( &ctx ) == POLARSSL_ERR_RSA_KEY_CHECK_FAILED ); |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_check_pubkey:radix_N:input_N:radix_E:input_E:result |
| { |
| rsa_context ctx; |
| |
| rsa_init( &ctx, RSA_PKCS_V15, 0, NULL, NULL ); |
| |
| if( strlen( {input_N} ) ) |
| { |
| TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); |
| } |
| if( strlen( {input_E} ) ) |
| { |
| TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); |
| } |
| |
| TEST_ASSERT( rsa_check_pubkey( &ctx ) == {result} ); |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_check_privkey:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:radix_D:input_D:result |
| { |
| rsa_context ctx; |
| |
| rsa_init( &ctx, RSA_PKCS_V15, 0, NULL, NULL ); |
| |
| ctx.len = {mod} / 8; |
| if( strlen( {input_P} ) ) |
| { |
| TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 ); |
| } |
| if( strlen( {input_Q} ) ) |
| { |
| TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 ); |
| } |
| if( strlen( {input_N} ) ) |
| { |
| TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 ); |
| } |
| if( strlen( {input_E} ) ) |
| { |
| TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 ); |
| } |
| if( strlen( {input_D} ) ) |
| { |
| TEST_ASSERT( mpi_read_string( &ctx.D, {radix_D}, {input_D} ) == 0 ); |
| } |
| |
| TEST_ASSERT( rsa_check_privkey( &ctx ) == {result} ); |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_gen_key:nrbits:exponent:result |
| { |
| rsa_context ctx; |
| havege_state hs; |
| |
| havege_init( &hs ); |
| rsa_init( &ctx, 0, 0, havege_rand, &hs ); |
| |
| TEST_ASSERT( rsa_gen_key( &ctx, {nrbits}, {exponent} ) == {result} ); |
| if( {result} == 0 ) |
| { |
| TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 ); |
| } |
| } |
| END_CASE |
| |
| BEGIN_CASE |
| rsa_selftest: |
| { |
| TEST_ASSERT( rsa_self_test( 0 ) == 0 ); |
| } |
| END_CASE |