| /* |
| * Elliptic curve DSA |
| * |
| * Copyright (C) 2006-2014, ARM Limited, All Rights Reserved |
| * |
| * This file is part of mbed TLS (https://tls.mbed.org) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| /* |
| * References: |
| * |
| * SEC1 http://www.secg.org/index.php?action=secg,docs_secg |
| */ |
| |
| #if !defined(POLARSSL_CONFIG_FILE) |
| #include "mbedtls/config.h" |
| #else |
| #include POLARSSL_CONFIG_FILE |
| #endif |
| |
| #if defined(POLARSSL_ECDSA_C) |
| |
| #include "mbedtls/ecdsa.h" |
| #include "mbedtls/asn1write.h" |
| |
| #include <string.h> |
| |
| #if defined(POLARSSL_ECDSA_DETERMINISTIC) |
| #include "mbedtls/hmac_drbg.h" |
| #endif |
| |
| /* |
| * Derive a suitable integer for group grp from a buffer of length len |
| * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3 |
| */ |
| static int derive_mpi( const ecp_group *grp, mpi *x, |
| const unsigned char *buf, size_t blen ) |
| { |
| int ret; |
| size_t n_size = ( grp->nbits + 7 ) / 8; |
| size_t use_size = blen > n_size ? n_size : blen; |
| |
| MPI_CHK( mpi_read_binary( x, buf, use_size ) ); |
| if( use_size * 8 > grp->nbits ) |
| MPI_CHK( mpi_shift_r( x, use_size * 8 - grp->nbits ) ); |
| |
| /* While at it, reduce modulo N */ |
| if( mpi_cmp_mpi( x, &grp->N ) >= 0 ) |
| MPI_CHK( mpi_sub_mpi( x, x, &grp->N ) ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| /* |
| * Compute ECDSA signature of a hashed message (SEC1 4.1.3) |
| * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message) |
| */ |
| int ecdsa_sign( ecp_group *grp, mpi *r, mpi *s, |
| const mpi *d, const unsigned char *buf, size_t blen, |
| int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) |
| { |
| int ret, key_tries, sign_tries, blind_tries; |
| ecp_point R; |
| mpi k, e, t; |
| |
| /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ |
| if( grp->N.p == NULL ) |
| return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); |
| |
| ecp_point_init( &R ); |
| mpi_init( &k ); mpi_init( &e ); mpi_init( &t ); |
| |
| sign_tries = 0; |
| do |
| { |
| /* |
| * Steps 1-3: generate a suitable ephemeral keypair |
| * and set r = xR mod n |
| */ |
| key_tries = 0; |
| do |
| { |
| MPI_CHK( ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) ); |
| MPI_CHK( mpi_mod_mpi( r, &R.X, &grp->N ) ); |
| |
| if( key_tries++ > 10 ) |
| { |
| ret = POLARSSL_ERR_ECP_RANDOM_FAILED; |
| goto cleanup; |
| } |
| } |
| while( mpi_cmp_int( r, 0 ) == 0 ); |
| |
| /* |
| * Step 5: derive MPI from hashed message |
| */ |
| MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); |
| |
| /* |
| * Generate a random value to blind inv_mod in next step, |
| * avoiding a potential timing leak. |
| */ |
| blind_tries = 0; |
| do |
| { |
| size_t n_size = ( grp->nbits + 7 ) / 8; |
| MPI_CHK( mpi_fill_random( &t, n_size, f_rng, p_rng ) ); |
| MPI_CHK( mpi_shift_r( &t, 8 * n_size - grp->nbits ) ); |
| |
| /* See ecp_gen_keypair() */ |
| if( ++blind_tries > 30 ) |
| return( POLARSSL_ERR_ECP_RANDOM_FAILED ); |
| } |
| while( mpi_cmp_int( &t, 1 ) < 0 || |
| mpi_cmp_mpi( &t, &grp->N ) >= 0 ); |
| |
| /* |
| * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n |
| */ |
| MPI_CHK( mpi_mul_mpi( s, r, d ) ); |
| MPI_CHK( mpi_add_mpi( &e, &e, s ) ); |
| MPI_CHK( mpi_mul_mpi( &e, &e, &t ) ); |
| MPI_CHK( mpi_mul_mpi( &k, &k, &t ) ); |
| MPI_CHK( mpi_inv_mod( s, &k, &grp->N ) ); |
| MPI_CHK( mpi_mul_mpi( s, s, &e ) ); |
| MPI_CHK( mpi_mod_mpi( s, s, &grp->N ) ); |
| |
| if( sign_tries++ > 10 ) |
| { |
| ret = POLARSSL_ERR_ECP_RANDOM_FAILED; |
| goto cleanup; |
| } |
| } |
| while( mpi_cmp_int( s, 0 ) == 0 ); |
| |
| cleanup: |
| ecp_point_free( &R ); |
| mpi_free( &k ); mpi_free( &e ); mpi_free( &t ); |
| |
| return( ret ); |
| } |
| |
| #if defined(POLARSSL_ECDSA_DETERMINISTIC) |
| /* |
| * Deterministic signature wrapper |
| */ |
| int ecdsa_sign_det( ecp_group *grp, mpi *r, mpi *s, |
| const mpi *d, const unsigned char *buf, size_t blen, |
| md_type_t md_alg ) |
| { |
| int ret; |
| hmac_drbg_context rng_ctx; |
| unsigned char data[2 * POLARSSL_ECP_MAX_BYTES]; |
| size_t grp_len = ( grp->nbits + 7 ) / 8; |
| const md_info_t *md_info; |
| mpi h; |
| |
| if( ( md_info = md_info_from_type( md_alg ) ) == NULL ) |
| return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); |
| |
| mpi_init( &h ); |
| memset( &rng_ctx, 0, sizeof( hmac_drbg_context ) ); |
| |
| /* Use private key and message hash (reduced) to initialize HMAC_DRBG */ |
| MPI_CHK( mpi_write_binary( d, data, grp_len ) ); |
| MPI_CHK( derive_mpi( grp, &h, buf, blen ) ); |
| MPI_CHK( mpi_write_binary( &h, data + grp_len, grp_len ) ); |
| hmac_drbg_init_buf( &rng_ctx, md_info, data, 2 * grp_len ); |
| |
| ret = ecdsa_sign( grp, r, s, d, buf, blen, |
| hmac_drbg_random, &rng_ctx ); |
| |
| cleanup: |
| hmac_drbg_free( &rng_ctx ); |
| mpi_free( &h ); |
| |
| return( ret ); |
| } |
| #endif /* POLARSSL_ECDSA_DETERMINISTIC */ |
| |
| /* |
| * Verify ECDSA signature of hashed message (SEC1 4.1.4) |
| * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message) |
| */ |
| int ecdsa_verify( ecp_group *grp, |
| const unsigned char *buf, size_t blen, |
| const ecp_point *Q, const mpi *r, const mpi *s) |
| { |
| int ret; |
| mpi e, s_inv, u1, u2; |
| ecp_point R, P; |
| |
| ecp_point_init( &R ); ecp_point_init( &P ); |
| mpi_init( &e ); mpi_init( &s_inv ); mpi_init( &u1 ); mpi_init( &u2 ); |
| |
| /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ |
| if( grp->N.p == NULL ) |
| return( POLARSSL_ERR_ECP_BAD_INPUT_DATA ); |
| |
| /* |
| * Step 1: make sure r and s are in range 1..n-1 |
| */ |
| if( mpi_cmp_int( r, 1 ) < 0 || mpi_cmp_mpi( r, &grp->N ) >= 0 || |
| mpi_cmp_int( s, 1 ) < 0 || mpi_cmp_mpi( s, &grp->N ) >= 0 ) |
| { |
| ret = POLARSSL_ERR_ECP_VERIFY_FAILED; |
| goto cleanup; |
| } |
| |
| /* |
| * Additional precaution: make sure Q is valid |
| */ |
| MPI_CHK( ecp_check_pubkey( grp, Q ) ); |
| |
| /* |
| * Step 3: derive MPI from hashed message |
| */ |
| MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); |
| |
| /* |
| * Step 4: u1 = e / s mod n, u2 = r / s mod n |
| */ |
| MPI_CHK( mpi_inv_mod( &s_inv, s, &grp->N ) ); |
| |
| MPI_CHK( mpi_mul_mpi( &u1, &e, &s_inv ) ); |
| MPI_CHK( mpi_mod_mpi( &u1, &u1, &grp->N ) ); |
| |
| MPI_CHK( mpi_mul_mpi( &u2, r, &s_inv ) ); |
| MPI_CHK( mpi_mod_mpi( &u2, &u2, &grp->N ) ); |
| |
| /* |
| * Step 5: R = u1 G + u2 Q |
| * |
| * Since we're not using any secret data, no need to pass a RNG to |
| * ecp_mul() for countermesures. |
| */ |
| MPI_CHK( ecp_mul( grp, &R, &u1, &grp->G, NULL, NULL ) ); |
| MPI_CHK( ecp_mul( grp, &P, &u2, Q, NULL, NULL ) ); |
| MPI_CHK( ecp_add( grp, &R, &R, &P ) ); |
| |
| if( ecp_is_zero( &R ) ) |
| { |
| ret = POLARSSL_ERR_ECP_VERIFY_FAILED; |
| goto cleanup; |
| } |
| |
| /* |
| * Step 6: convert xR to an integer (no-op) |
| * Step 7: reduce xR mod n (gives v) |
| */ |
| MPI_CHK( mpi_mod_mpi( &R.X, &R.X, &grp->N ) ); |
| |
| /* |
| * Step 8: check if v (that is, R.X) is equal to r |
| */ |
| if( mpi_cmp_mpi( &R.X, r ) != 0 ) |
| { |
| ret = POLARSSL_ERR_ECP_VERIFY_FAILED; |
| goto cleanup; |
| } |
| |
| cleanup: |
| ecp_point_free( &R ); ecp_point_free( &P ); |
| mpi_free( &e ); mpi_free( &s_inv ); mpi_free( &u1 ); mpi_free( &u2 ); |
| |
| return( ret ); |
| } |
| |
| /* |
| * Convert a signature (given by context) to ASN.1 |
| */ |
| static int ecdsa_signature_to_asn1( const mpi *r, const mpi *s, |
| unsigned char *sig, size_t *slen ) |
| { |
| int ret; |
| unsigned char buf[POLARSSL_ECDSA_MAX_LEN]; |
| unsigned char *p = buf + sizeof( buf ); |
| size_t len = 0; |
| |
| ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, s ) ); |
| ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, r ) ); |
| |
| ASN1_CHK_ADD( len, asn1_write_len( &p, buf, len ) ); |
| ASN1_CHK_ADD( len, asn1_write_tag( &p, buf, |
| ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ); |
| |
| memcpy( sig, p, len ); |
| *slen = len; |
| |
| return( 0 ); |
| } |
| |
| /* |
| * Compute and write signature |
| */ |
| int ecdsa_write_signature( ecdsa_context *ctx, md_type_t md_alg, |
| const unsigned char *hash, size_t hlen, |
| unsigned char *sig, size_t *slen, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng ) |
| { |
| int ret; |
| mpi r, s; |
| |
| mpi_init( &r ); |
| mpi_init( &s ); |
| |
| #if defined(POLARSSL_ECDSA_DETERMINISTIC) |
| (void) f_rng; |
| (void) p_rng; |
| |
| MPI_CHK( ecdsa_sign_det( &ctx->grp, &r, &s, &ctx->d, |
| hash, hlen, md_alg ) ); |
| #else |
| (void) md_alg; |
| |
| MPI_CHK( ecdsa_sign( &ctx->grp, &r, &s, &ctx->d, |
| hash, hlen, f_rng, p_rng ) ); |
| #endif |
| |
| MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, slen ) ); |
| |
| cleanup: |
| mpi_free( &r ); |
| mpi_free( &s ); |
| |
| return( ret ); |
| } |
| |
| #if ! defined(POLARSSL_DEPRECATED_REMOVED) |
| int ecdsa_write_signature_det( ecdsa_context *ctx, |
| const unsigned char *hash, size_t hlen, |
| unsigned char *sig, size_t *slen, |
| md_type_t md_alg ) |
| { |
| return( ecdsa_write_signature( ctx, md_alg, hash, hlen, sig, slen, |
| NULL, NULL ) ); |
| } |
| #endif |
| |
| /* |
| * Read and check signature |
| */ |
| int ecdsa_read_signature( ecdsa_context *ctx, |
| const unsigned char *hash, size_t hlen, |
| const unsigned char *sig, size_t slen ) |
| { |
| int ret; |
| unsigned char *p = (unsigned char *) sig; |
| const unsigned char *end = sig + slen; |
| size_t len; |
| mpi r, s; |
| |
| mpi_init( &r ); |
| mpi_init( &s ); |
| |
| if( ( ret = asn1_get_tag( &p, end, &len, |
| ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 ) |
| { |
| ret += POLARSSL_ERR_ECP_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| if( p + len != end ) |
| { |
| ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA + |
| POLARSSL_ERR_ASN1_LENGTH_MISMATCH; |
| goto cleanup; |
| } |
| |
| if( ( ret = asn1_get_mpi( &p, end, &r ) ) != 0 || |
| ( ret = asn1_get_mpi( &p, end, &s ) ) != 0 ) |
| { |
| ret += POLARSSL_ERR_ECP_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| if( ( ret = ecdsa_verify( &ctx->grp, hash, hlen, |
| &ctx->Q, &r, &s ) ) != 0 ) |
| goto cleanup; |
| |
| if( p != end ) |
| ret = POLARSSL_ERR_ECP_SIG_LEN_MISMATCH; |
| |
| cleanup: |
| mpi_free( &r ); |
| mpi_free( &s ); |
| |
| return( ret ); |
| } |
| |
| /* |
| * Generate key pair |
| */ |
| int ecdsa_genkey( ecdsa_context *ctx, ecp_group_id gid, |
| int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) |
| { |
| return( ecp_use_known_dp( &ctx->grp, gid ) || |
| ecp_gen_keypair( &ctx->grp, &ctx->d, &ctx->Q, f_rng, p_rng ) ); |
| } |
| |
| /* |
| * Set context from an ecp_keypair |
| */ |
| int ecdsa_from_keypair( ecdsa_context *ctx, const ecp_keypair *key ) |
| { |
| int ret; |
| |
| if( ( ret = ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 || |
| ( ret = mpi_copy( &ctx->d, &key->d ) ) != 0 || |
| ( ret = ecp_copy( &ctx->Q, &key->Q ) ) != 0 ) |
| { |
| ecdsa_free( ctx ); |
| } |
| |
| return( ret ); |
| } |
| |
| /* |
| * Initialize context |
| */ |
| void ecdsa_init( ecdsa_context *ctx ) |
| { |
| ecp_keypair_init( ctx ); |
| } |
| |
| /* |
| * Free context |
| */ |
| void ecdsa_free( ecdsa_context *ctx ) |
| { |
| ecp_keypair_free( ctx ); |
| } |
| |
| #endif /* POLARSSL_ECDSA_C */ |