blob: 953c6338f9eb15cece079c5f757d2710ee0f7968 [file] [log] [blame] [raw]
/* BEGIN_HEADER */
#include "mbedtls/rsa.h"
#include "mbedtls/rsa_internal.h"
#include "mbedtls/md2.h"
#include "mbedtls/md4.h"
#include "mbedtls/md5.h"
#include "mbedtls/sha1.h"
#include "mbedtls/sha256.h"
#include "mbedtls/sha512.h"
#include "mbedtls/entropy.h"
#include "mbedtls/ctr_drbg.h"
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_RSA_C:MBEDTLS_BIGNUM_C:MBEDTLS_GENPRIME
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void mbedtls_rsa_pkcs1_sign( char *message_hex_string, int padding_mode, int digest,
int mod, int radix_P, char *input_P, int radix_Q,
char *input_Q, int radix_N, char *input_N, int radix_E,
char *input_E, char *result_hex_str, int result )
{
unsigned char message_str[1000];
unsigned char hash_result[1000];
unsigned char output[1000];
unsigned char output_str[1000];
mbedtls_rsa_context ctx;
mbedtls_mpi N, P, Q, E;
int msg_len;
rnd_pseudo_info rnd_info;
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P );
mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E );
mbedtls_rsa_init( &ctx, padding_mode, 0 );
memset( message_str, 0x00, 1000 );
memset( hash_result, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) );
TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, &P, &Q, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 );
TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == 0 );
msg_len = unhexify( message_str, message_hex_string );
if( mbedtls_md_info_from_type( digest ) != NULL )
TEST_ASSERT( mbedtls_md( mbedtls_md_info_from_type( digest ),
message_str, msg_len, hash_result ) == 0 );
TEST_ASSERT( mbedtls_rsa_pkcs1_sign( &ctx, &rnd_pseudo_rand, &rnd_info,
MBEDTLS_RSA_PRIVATE, digest, 0,
hash_result, output ) == result );
if( result == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, result_hex_str ) == 0 );
}
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P );
mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E );
mbedtls_rsa_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_rsa_pkcs1_verify( char *message_hex_string, int padding_mode, int digest,
int mod, int radix_N, char *input_N, int radix_E,
char *input_E, char *result_hex_str, int result )
{
unsigned char message_str[1000];
unsigned char hash_result[1000];
unsigned char result_str[1000];
mbedtls_rsa_context ctx;
int msg_len;
mbedtls_mpi N, E;
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E );
mbedtls_rsa_init( &ctx, padding_mode, 0 );
memset( message_str, 0x00, 1000 );
memset( hash_result, 0x00, 1000 );
memset( result_str, 0x00, 1000 );
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == 0 );
msg_len = unhexify( message_str, message_hex_string );
unhexify( result_str, result_hex_str );
if( mbedtls_md_info_from_type( digest ) != NULL )
TEST_ASSERT( mbedtls_md( mbedtls_md_info_from_type( digest ), message_str, msg_len, hash_result ) == 0 );
TEST_ASSERT( mbedtls_rsa_pkcs1_verify( &ctx, NULL, NULL, MBEDTLS_RSA_PUBLIC, digest, 0, hash_result, result_str ) == result );
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E );
mbedtls_rsa_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void rsa_pkcs1_sign_raw( char *message_hex_string, char *hash_result_string,
int padding_mode, int mod, int radix_P, char *input_P,
int radix_Q, char *input_Q, int radix_N,
char *input_N, int radix_E, char *input_E,
char *result_hex_str )
{
int res;
unsigned char message_str[1000];
unsigned char hash_result[1000];
unsigned char output[1000];
unsigned char output_str[1000];
mbedtls_rsa_context ctx;
mbedtls_mpi N, P, Q, E;
int hash_len;
rnd_pseudo_info rnd_info;
mbedtls_rsa_init( &ctx, padding_mode, 0 );
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P );
mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E );
memset( message_str, 0x00, 1000 );
memset( hash_result, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) );
TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, &P, &Q, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 );
TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == 0 );
unhexify( message_str, message_hex_string );
hash_len = unhexify( hash_result, hash_result_string );
TEST_ASSERT( mbedtls_rsa_pkcs1_sign( &ctx, &rnd_pseudo_rand, &rnd_info,
MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_NONE,
hash_len, hash_result, output ) == 0 );
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, result_hex_str ) == 0 );
#if defined(MBEDTLS_PKCS1_V15)
/* For PKCS#1 v1.5, there is an alternative way to generate signatures */
if( padding_mode == MBEDTLS_RSA_PKCS_V15 )
{
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
res = mbedtls_rsa_rsaes_pkcs1_v15_encrypt( &ctx,
&rnd_pseudo_rand, &rnd_info, MBEDTLS_RSA_PRIVATE,
hash_len, hash_result, output );
#if !defined(MBEDTLS_RSA_ALT)
TEST_ASSERT( res == 0 );
#else
TEST_ASSERT( ( res == 0 ) ||
( res == MBEDTLS_ERR_RSA_UNSUPPORTED_OPERATION ) );
#endif
if( res == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, result_hex_str ) == 0 );
}
}
#endif /* MBEDTLS_PKCS1_V15 */
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P );
mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E );
mbedtls_rsa_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void rsa_pkcs1_verify_raw( char *message_hex_string, char *hash_result_string,
int padding_mode, int mod, int radix_N,
char *input_N, int radix_E, char *input_E,
char *result_hex_str, int correct )
{
int res;
unsigned char message_str[1000];
unsigned char hash_result[1000];
unsigned char result_str[1000];
unsigned char output[1000];
mbedtls_rsa_context ctx;
size_t hash_len;
mbedtls_mpi N, E;
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E );
mbedtls_rsa_init( &ctx, padding_mode, 0 );
memset( message_str, 0x00, 1000 );
memset( hash_result, 0x00, 1000 );
memset( result_str, 0x00, 1000 );
memset( output, 0x00, sizeof( output ) );
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == 0 );
unhexify( message_str, message_hex_string );
hash_len = unhexify( hash_result, hash_result_string );
unhexify( result_str, result_hex_str );
TEST_ASSERT( mbedtls_rsa_pkcs1_verify( &ctx, NULL, NULL,
MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_NONE,
hash_len, hash_result,
result_str ) == correct );
#if defined(MBEDTLS_PKCS1_V15)
/* For PKCS#1 v1.5, there is an alternative way to verify signatures */
if( padding_mode == MBEDTLS_RSA_PKCS_V15 )
{
int ok;
size_t olen;
res = mbedtls_rsa_rsaes_pkcs1_v15_decrypt( &ctx,
NULL, NULL, MBEDTLS_RSA_PUBLIC,
&olen, result_str, output, sizeof( output ) );
#if !defined(MBEDTLS_RSA_ALT)
TEST_ASSERT( res == 0 );
#else
TEST_ASSERT( ( res == 0 ) ||
( res == MBEDTLS_ERR_RSA_UNSUPPORTED_OPERATION ) );
#endif
if( res == 0 )
{
ok = olen == hash_len && memcmp( output, hash_result, olen ) == 0;
if( correct == 0 )
TEST_ASSERT( ok == 1 );
else
TEST_ASSERT( ok == 0 );
}
}
#endif /* MBEDTLS_PKCS1_V15 */
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E );
mbedtls_rsa_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_rsa_pkcs1_encrypt( char *message_hex_string, int padding_mode, int mod,
int radix_N, char *input_N, int radix_E, char *input_E,
char *result_hex_str, int result )
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
mbedtls_rsa_context ctx;
size_t msg_len;
rnd_pseudo_info rnd_info;
mbedtls_mpi N, E;
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E );
memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) );
mbedtls_rsa_init( &ctx, padding_mode, 0 );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == 0 );
msg_len = unhexify( message_str, message_hex_string );
TEST_ASSERT( mbedtls_rsa_pkcs1_encrypt( &ctx, &rnd_pseudo_rand, &rnd_info,
MBEDTLS_RSA_PUBLIC, msg_len,
message_str, output ) == result );
if( result == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, result_hex_str ) == 0 );
}
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E );
mbedtls_rsa_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void rsa_pkcs1_encrypt_bad_rng( char *message_hex_string, int padding_mode,
int mod, int radix_N, char *input_N,
int radix_E, char *input_E,
char *result_hex_str, int result )
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
mbedtls_rsa_context ctx;
size_t msg_len;
mbedtls_mpi N, E;
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E );
mbedtls_rsa_init( &ctx, padding_mode, 0 );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == 0 );
msg_len = unhexify( message_str, message_hex_string );
TEST_ASSERT( mbedtls_rsa_pkcs1_encrypt( &ctx, &rnd_zero_rand, NULL,
MBEDTLS_RSA_PUBLIC, msg_len,
message_str, output ) == result );
if( result == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, result_hex_str ) == 0 );
}
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E );
mbedtls_rsa_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_rsa_pkcs1_decrypt( char *message_hex_string, int padding_mode, int mod,
int radix_P, char *input_P, int radix_Q, char *input_Q,
int radix_N, char *input_N, int radix_E, char *input_E,
int max_output, char *result_hex_str, int result )
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
mbedtls_rsa_context ctx;
size_t output_len;
rnd_pseudo_info rnd_info;
mbedtls_mpi N, P, Q, E;
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P );
mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E );
mbedtls_rsa_init( &ctx, padding_mode, 0 );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) );
TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, &P, &Q, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 );
TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == 0 );
unhexify( message_str, message_hex_string );
output_len = 0;
TEST_ASSERT( mbedtls_rsa_pkcs1_decrypt( &ctx, rnd_pseudo_rand, &rnd_info, MBEDTLS_RSA_PRIVATE, &output_len, message_str, output, max_output ) == result );
if( result == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strncasecmp( (char *) output_str, result_hex_str, strlen( result_hex_str ) ) == 0 );
}
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P );
mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E );
mbedtls_rsa_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_rsa_public( char *message_hex_string, int mod, int radix_N, char *input_N,
int radix_E, char *input_E, char *result_hex_str, int result )
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
mbedtls_rsa_context ctx, ctx2; /* Also test mbedtls_rsa_copy() while at it */
mbedtls_mpi N, E;
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E );
mbedtls_rsa_init( &ctx, MBEDTLS_RSA_PKCS_V15, 0 );
mbedtls_rsa_init( &ctx2, MBEDTLS_RSA_PKCS_V15, 0 );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == 0 );
unhexify( message_str, message_hex_string );
TEST_ASSERT( mbedtls_rsa_public( &ctx, message_str, output ) == result );
if( result == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, result_hex_str ) == 0 );
}
/* And now with the copy */
TEST_ASSERT( mbedtls_rsa_copy( &ctx2, &ctx ) == 0 );
/* clear the original to be sure */
mbedtls_rsa_free( &ctx );
TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx2 ) == 0 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
TEST_ASSERT( mbedtls_rsa_public( &ctx2, message_str, output ) == result );
if( result == 0 )
{
hexify( output_str, output, ctx2.len );
TEST_ASSERT( strcasecmp( (char *) output_str, result_hex_str ) == 0 );
}
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E );
mbedtls_rsa_free( &ctx );
mbedtls_rsa_free( &ctx2 );
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_rsa_private( char *message_hex_string, int mod, int radix_P, char *input_P,
int radix_Q, char *input_Q, int radix_N, char *input_N,
int radix_E, char *input_E, char *result_hex_str, int result )
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
mbedtls_rsa_context ctx, ctx2; /* Also test mbedtls_rsa_copy() while at it */
mbedtls_mpi N, P, Q, E;
rnd_pseudo_info rnd_info;
int i;
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P );
mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E );
mbedtls_rsa_init( &ctx, MBEDTLS_RSA_PKCS_V15, 0 );
mbedtls_rsa_init( &ctx2, MBEDTLS_RSA_PKCS_V15, 0 );
memset( message_str, 0x00, 1000 );
memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) );
TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, &P, &Q, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( &ctx ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 );
TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == 0 );
unhexify( message_str, message_hex_string );
/* repeat three times to test updating of blinding values */
for( i = 0; i < 3; i++ )
{
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
TEST_ASSERT( mbedtls_rsa_private( &ctx, rnd_pseudo_rand, &rnd_info,
message_str, output ) == result );
if( result == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str,
result_hex_str ) == 0 );
}
}
/* And now one more time with the copy */
TEST_ASSERT( mbedtls_rsa_copy( &ctx2, &ctx ) == 0 );
/* clear the original to be sure */
mbedtls_rsa_free( &ctx );
TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx2 ) == 0 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
TEST_ASSERT( mbedtls_rsa_private( &ctx2, rnd_pseudo_rand, &rnd_info,
message_str, output ) == result );
if( result == 0 )
{
hexify( output_str, output, ctx2.len );
TEST_ASSERT( strcasecmp( (char *) output_str,
result_hex_str ) == 0 );
}
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P );
mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E );
mbedtls_rsa_free( &ctx ); mbedtls_rsa_free( &ctx2 );
}
/* END_CASE */
/* BEGIN_CASE */
void rsa_check_privkey_null()
{
mbedtls_rsa_context ctx;
memset( &ctx, 0x00, sizeof( mbedtls_rsa_context ) );
TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_rsa_check_pubkey( int radix_N, char *input_N, int radix_E, char *input_E,
int result )
{
mbedtls_rsa_context ctx;
mbedtls_mpi N, E;
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &E );
mbedtls_rsa_init( &ctx, MBEDTLS_RSA_PKCS_V15, 0 );
if( strlen( input_N ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
}
if( strlen( input_E ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
}
TEST_ASSERT( mbedtls_rsa_import( &ctx, &N, NULL, NULL, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == result );
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &E );
mbedtls_rsa_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_rsa_check_privkey( int mod, int radix_P, char *input_P, int radix_Q,
char *input_Q, int radix_N, char *input_N,
int radix_E, char *input_E, int radix_D, char *input_D,
int radix_DP, char *input_DP, int radix_DQ,
char *input_DQ, int radix_QP, char *input_QP,
int result )
{
mbedtls_rsa_context ctx;
mbedtls_rsa_init( &ctx, MBEDTLS_RSA_PKCS_V15, 0 );
ctx.len = mod / 8;
if( strlen( input_P ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &ctx.P, radix_P, input_P ) == 0 );
}
if( strlen( input_Q ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &ctx.Q, radix_Q, input_Q ) == 0 );
}
if( strlen( input_N ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &ctx.N, radix_N, input_N ) == 0 );
}
if( strlen( input_E ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &ctx.E, radix_E, input_E ) == 0 );
}
if( strlen( input_D ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &ctx.D, radix_D, input_D ) == 0 );
}
#if !defined(MBEDTLS_RSA_NO_CRT)
if( strlen( input_DP ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &ctx.DP, radix_DP, input_DP ) == 0 );
}
if( strlen( input_DQ ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &ctx.DQ, radix_DQ, input_DQ ) == 0 );
}
if( strlen( input_QP ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &ctx.QP, radix_QP, input_QP ) == 0 );
}
#else
((void) radix_DP); ((void) input_DP);
((void) radix_DQ); ((void) input_DQ);
((void) radix_QP); ((void) input_QP);
#endif
TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == result );
exit:
mbedtls_rsa_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void rsa_check_pubpriv( int mod, int radix_Npub, char *input_Npub,
int radix_Epub, char *input_Epub,
int radix_P, char *input_P, int radix_Q,
char *input_Q, int radix_N, char *input_N,
int radix_E, char *input_E, int radix_D, char *input_D,
int radix_DP, char *input_DP, int radix_DQ,
char *input_DQ, int radix_QP, char *input_QP,
int result )
{
mbedtls_rsa_context pub, prv;
mbedtls_rsa_init( &pub, MBEDTLS_RSA_PKCS_V15, 0 );
mbedtls_rsa_init( &prv, MBEDTLS_RSA_PKCS_V15, 0 );
pub.len = mod / 8;
prv.len = mod / 8;
if( strlen( input_Npub ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &pub.N, radix_Npub, input_Npub ) == 0 );
}
if( strlen( input_Epub ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &pub.E, radix_Epub, input_Epub ) == 0 );
}
if( strlen( input_P ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &prv.P, radix_P, input_P ) == 0 );
}
if( strlen( input_Q ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &prv.Q, radix_Q, input_Q ) == 0 );
}
if( strlen( input_N ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &prv.N, radix_N, input_N ) == 0 );
}
if( strlen( input_E ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &prv.E, radix_E, input_E ) == 0 );
}
if( strlen( input_D ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &prv.D, radix_D, input_D ) == 0 );
}
#if !defined(MBEDTLS_RSA_NO_CRT)
if( strlen( input_DP ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &prv.DP, radix_DP, input_DP ) == 0 );
}
if( strlen( input_DQ ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &prv.DQ, radix_DQ, input_DQ ) == 0 );
}
if( strlen( input_QP ) )
{
TEST_ASSERT( mbedtls_mpi_read_string( &prv.QP, radix_QP, input_QP ) == 0 );
}
#else
((void) radix_DP); ((void) input_DP);
((void) radix_DQ); ((void) input_DQ);
((void) radix_QP); ((void) input_QP);
#endif
TEST_ASSERT( mbedtls_rsa_check_pub_priv( &pub, &prv ) == result );
exit:
mbedtls_rsa_free( &pub );
mbedtls_rsa_free( &prv );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_CTR_DRBG_C:MBEDTLS_ENTROPY_C:ENTROPY_HAVE_STRONG */
void mbedtls_rsa_gen_key( int nrbits, int exponent, int result)
{
mbedtls_rsa_context ctx;
mbedtls_entropy_context entropy;
mbedtls_ctr_drbg_context ctr_drbg;
const char *pers = "test_suite_rsa";
mbedtls_ctr_drbg_init( &ctr_drbg );
mbedtls_entropy_init( &entropy );
mbedtls_rsa_init ( &ctx, 0, 0 );
TEST_ASSERT( mbedtls_ctr_drbg_seed( &ctr_drbg, mbedtls_entropy_func,
&entropy, (const unsigned char *) pers,
strlen( pers ) ) == 0 );
TEST_ASSERT( mbedtls_rsa_gen_key( &ctx, mbedtls_ctr_drbg_random, &ctr_drbg, nrbits, exponent ) == result );
if( result == 0 )
{
TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &ctx.P, &ctx.Q ) > 0 );
}
exit:
mbedtls_rsa_free( &ctx );
mbedtls_ctr_drbg_free( &ctr_drbg );
mbedtls_entropy_free( &entropy );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_CTR_DRBG_C:MBEDTLS_ENTROPY_C */
void mbedtls_rsa_deduce_primes( int radix_N, char *input_N,
int radix_D, char *input_D,
int radix_E, char *input_E,
int radix_P, char *output_P,
int radix_Q, char *output_Q,
int corrupt, int result )
{
mbedtls_mpi N, P, Pp, Q, Qp, D, E;
mbedtls_mpi_init( &N );
mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q );
mbedtls_mpi_init( &Pp ); mbedtls_mpi_init( &Qp );
mbedtls_mpi_init( &D ); mbedtls_mpi_init( &E );
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &D, radix_D, input_D ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &Qp, radix_P, output_P ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &Pp, radix_Q, output_Q ) == 0 );
if( corrupt )
TEST_ASSERT( mbedtls_mpi_add_int( &D, &D, 2 ) == 0 );
/* Try to deduce P, Q from N, D, E only. */
TEST_ASSERT( mbedtls_rsa_deduce_primes( &N, &D, &E, &P, &Q ) == result );
if( !corrupt )
{
/* Check if (P,Q) = (Pp, Qp) or (P,Q) = (Qp, Pp) */
TEST_ASSERT( ( mbedtls_mpi_cmp_mpi( &P, &Pp ) == 0 && mbedtls_mpi_cmp_mpi( &Q, &Qp ) == 0 ) ||
( mbedtls_mpi_cmp_mpi( &P, &Qp ) == 0 && mbedtls_mpi_cmp_mpi( &Q, &Pp ) == 0 ) );
}
exit:
mbedtls_mpi_free( &N );
mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q );
mbedtls_mpi_free( &Pp ); mbedtls_mpi_free( &Qp );
mbedtls_mpi_free( &D ); mbedtls_mpi_free( &E );
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_rsa_deduce_private_exponent( int radix_P, char *input_P,
int radix_Q, char *input_Q,
int radix_E, char *input_E,
int radix_D, char *output_D,
int corrupt, int result )
{
mbedtls_mpi P, Q, D, Dp, E, R, Rp;
mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q );
mbedtls_mpi_init( &D ); mbedtls_mpi_init( &Dp );
mbedtls_mpi_init( &E );
mbedtls_mpi_init( &R ); mbedtls_mpi_init( &Rp );
TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &Dp, radix_D, output_D ) == 0 );
if( corrupt )
{
/* Make E even */
TEST_ASSERT( mbedtls_mpi_set_bit( &E, 0, 0 ) == 0 );
}
/* Try to deduce D from N, P, Q, E. */
TEST_ASSERT( mbedtls_rsa_deduce_private_exponent( &P, &Q,
&E, &D ) == result );
if( !corrupt )
{
/*
* Check that D and Dp agree modulo LCM(P-1, Q-1).
*/
/* Replace P,Q by P-1, Q-1 */
TEST_ASSERT( mbedtls_mpi_sub_int( &P, &P, 1 ) == 0 );
TEST_ASSERT( mbedtls_mpi_sub_int( &Q, &Q, 1 ) == 0 );
/* Check D == Dp modulo P-1 */
TEST_ASSERT( mbedtls_mpi_mod_mpi( &R, &D, &P ) == 0 );
TEST_ASSERT( mbedtls_mpi_mod_mpi( &Rp, &Dp, &P ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &Rp ) == 0 );
/* Check D == Dp modulo Q-1 */
TEST_ASSERT( mbedtls_mpi_mod_mpi( &R, &D, &Q ) == 0 );
TEST_ASSERT( mbedtls_mpi_mod_mpi( &Rp, &Dp, &Q ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &Rp ) == 0 );
}
exit:
mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q );
mbedtls_mpi_free( &D ); mbedtls_mpi_free( &Dp );
mbedtls_mpi_free( &E );
mbedtls_mpi_free( &R ); mbedtls_mpi_free( &Rp );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_CTR_DRBG_C:MBEDTLS_ENTROPY_C:ENTROPY_HAVE_STRONG */
void mbedtls_rsa_import( int radix_N, char *input_N,
int radix_P, char *input_P,
int radix_Q, char *input_Q,
int radix_D, char *input_D,
int radix_E, char *input_E,
int successive,
int is_priv,
int res_check,
int res_complete )
{
mbedtls_mpi N, P, Q, D, E;
mbedtls_rsa_context ctx;
/* Buffers used for encryption-decryption test */
unsigned char *buf_orig = NULL;
unsigned char *buf_enc = NULL;
unsigned char *buf_dec = NULL;
mbedtls_entropy_context entropy;
mbedtls_ctr_drbg_context ctr_drbg;
const char *pers = "test_suite_rsa";
const int have_N = ( strlen( input_N ) > 0 );
const int have_P = ( strlen( input_P ) > 0 );
const int have_Q = ( strlen( input_Q ) > 0 );
const int have_D = ( strlen( input_D ) > 0 );
const int have_E = ( strlen( input_E ) > 0 );
mbedtls_ctr_drbg_init( &ctr_drbg );
mbedtls_entropy_init( &entropy );
mbedtls_rsa_init( &ctx, 0, 0 );
mbedtls_mpi_init( &N );
mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q );
mbedtls_mpi_init( &D ); mbedtls_mpi_init( &E );
TEST_ASSERT( mbedtls_ctr_drbg_seed( &ctr_drbg, mbedtls_entropy_func, &entropy,
(const unsigned char *) pers, strlen( pers ) ) == 0 );
if( have_N )
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
if( have_P )
TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 );
if( have_Q )
TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 );
if( have_D )
TEST_ASSERT( mbedtls_mpi_read_string( &D, radix_D, input_D ) == 0 );
if( have_E )
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
if( !successive )
{
TEST_ASSERT( mbedtls_rsa_import( &ctx,
have_N ? &N : NULL,
have_P ? &P : NULL,
have_Q ? &Q : NULL,
have_D ? &D : NULL,
have_E ? &E : NULL ) == 0 );
}
else
{
/* Import N, P, Q, D, E separately.
* This should make no functional difference. */
TEST_ASSERT( mbedtls_rsa_import( &ctx,
have_N ? &N : NULL,
NULL, NULL, NULL, NULL ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx,
NULL,
have_P ? &P : NULL,
NULL, NULL, NULL ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx,
NULL, NULL,
have_Q ? &Q : NULL,
NULL, NULL ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx,
NULL, NULL, NULL,
have_D ? &D : NULL,
NULL ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx,
NULL, NULL, NULL, NULL,
have_E ? &E : NULL ) == 0 );
}
TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == res_complete );
/* On expected success, perform some public and private
* key operations to check if the key is working properly. */
if( res_complete == 0 )
{
if( is_priv )
TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == res_check );
else
TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == res_check );
if( res_check != 0 )
goto exit;
buf_orig = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) );
buf_enc = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) );
buf_dec = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) );
if( buf_orig == NULL || buf_enc == NULL || buf_dec == NULL )
goto exit;
TEST_ASSERT( mbedtls_ctr_drbg_random( &ctr_drbg,
buf_orig, mbedtls_rsa_get_len( &ctx ) ) == 0 );
/* Make sure the number we're generating is smaller than the modulus */
buf_orig[0] = 0x00;
TEST_ASSERT( mbedtls_rsa_public( &ctx, buf_orig, buf_enc ) == 0 );
if( is_priv )
{
TEST_ASSERT( mbedtls_rsa_private( &ctx, mbedtls_ctr_drbg_random,
&ctr_drbg, buf_enc,
buf_dec ) == 0 );
TEST_ASSERT( memcmp( buf_orig, buf_dec,
mbedtls_rsa_get_len( &ctx ) ) == 0 );
}
}
exit:
mbedtls_free( buf_orig );
mbedtls_free( buf_enc );
mbedtls_free( buf_dec );
mbedtls_rsa_free( &ctx );
mbedtls_ctr_drbg_free( &ctr_drbg );
mbedtls_entropy_free( &entropy );
mbedtls_mpi_free( &N );
mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q );
mbedtls_mpi_free( &D ); mbedtls_mpi_free( &E );
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_rsa_export( int radix_N, char *input_N,
int radix_P, char *input_P,
int radix_Q, char *input_Q,
int radix_D, char *input_D,
int radix_E, char *input_E,
int is_priv,
int successive )
{
/* Original MPI's with which we set up the RSA context */
mbedtls_mpi N, P, Q, D, E;
/* Exported MPI's */
mbedtls_mpi Ne, Pe, Qe, De, Ee;
const int have_N = ( strlen( input_N ) > 0 );
const int have_P = ( strlen( input_P ) > 0 );
const int have_Q = ( strlen( input_Q ) > 0 );
const int have_D = ( strlen( input_D ) > 0 );
const int have_E = ( strlen( input_E ) > 0 );
mbedtls_rsa_context ctx;
mbedtls_rsa_init( &ctx, 0, 0 );
mbedtls_mpi_init( &N );
mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q );
mbedtls_mpi_init( &D ); mbedtls_mpi_init( &E );
mbedtls_mpi_init( &Ne );
mbedtls_mpi_init( &Pe ); mbedtls_mpi_init( &Qe );
mbedtls_mpi_init( &De ); mbedtls_mpi_init( &Ee );
/* Setup RSA context */
if( have_N )
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
if( have_P )
TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 );
if( have_Q )
TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 );
if( have_D )
TEST_ASSERT( mbedtls_mpi_read_string( &D, radix_D, input_D ) == 0 );
if( have_E )
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( &ctx,
strlen( input_N ) ? &N : NULL,
strlen( input_P ) ? &P : NULL,
strlen( input_Q ) ? &Q : NULL,
strlen( input_D ) ? &D : NULL,
strlen( input_E ) ? &E : NULL ) == 0 );
TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 );
/*
* Export parameters and compare to original ones.
*/
/* N and E must always be present. */
if( !successive )
{
TEST_ASSERT( mbedtls_rsa_export( &ctx, &Ne, NULL, NULL, NULL, &Ee ) == 0 );
}
else
{
TEST_ASSERT( mbedtls_rsa_export( &ctx, &Ne, NULL, NULL, NULL, NULL ) == 0 );
TEST_ASSERT( mbedtls_rsa_export( &ctx, NULL, NULL, NULL, NULL, &Ee ) == 0 );
}
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &N, &Ne ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &E, &Ee ) == 0 );
/* If we were providing enough information to setup a complete private context,
* we expect to be able to export all core parameters. */
if( is_priv )
{
if( !successive )
{
TEST_ASSERT( mbedtls_rsa_export( &ctx, NULL, &Pe, &Qe,
&De, NULL ) == 0 );
}
else
{
TEST_ASSERT( mbedtls_rsa_export( &ctx, NULL, &Pe, NULL,
NULL, NULL ) == 0 );
TEST_ASSERT( mbedtls_rsa_export( &ctx, NULL, NULL, &Qe,
NULL, NULL ) == 0 );
TEST_ASSERT( mbedtls_rsa_export( &ctx, NULL, NULL, NULL,
&De, NULL ) == 0 );
}
if( have_P )
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &P, &Pe ) == 0 );
if( have_Q )
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Q, &Qe ) == 0 );
if( have_D )
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &D, &De ) == 0 );
/* While at it, perform a sanity check */
TEST_ASSERT( mbedtls_rsa_validate_params( &Ne, &Pe, &Qe, &De, &Ee,
NULL, NULL ) == 0 );
}
exit:
mbedtls_rsa_free( &ctx );
mbedtls_mpi_free( &N );
mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q );
mbedtls_mpi_free( &D ); mbedtls_mpi_free( &E );
mbedtls_mpi_free( &Ne );
mbedtls_mpi_free( &Pe ); mbedtls_mpi_free( &Qe );
mbedtls_mpi_free( &De ); mbedtls_mpi_free( &Ee );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ENTROPY_C:ENTROPY_HAVE_STRONG */
void mbedtls_rsa_validate_params( int radix_N, char *input_N,
int radix_P, char *input_P,
int radix_Q, char *input_Q,
int radix_D, char *input_D,
int radix_E, char *input_E,
int prng, int result )
{
/* Original MPI's with which we set up the RSA context */
mbedtls_mpi N, P, Q, D, E;
const int have_N = ( strlen( input_N ) > 0 );
const int have_P = ( strlen( input_P ) > 0 );
const int have_Q = ( strlen( input_Q ) > 0 );
const int have_D = ( strlen( input_D ) > 0 );
const int have_E = ( strlen( input_E ) > 0 );
mbedtls_entropy_context entropy;
mbedtls_ctr_drbg_context ctr_drbg;
const char *pers = "test_suite_rsa";
mbedtls_mpi_init( &N );
mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q );
mbedtls_mpi_init( &D ); mbedtls_mpi_init( &E );
mbedtls_ctr_drbg_init( &ctr_drbg );
mbedtls_entropy_init( &entropy );
TEST_ASSERT( mbedtls_ctr_drbg_seed( &ctr_drbg, mbedtls_entropy_func,
&entropy, (const unsigned char *) pers,
strlen( pers ) ) == 0 );
if( have_N )
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
if( have_P )
TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 );
if( have_Q )
TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 );
if( have_D )
TEST_ASSERT( mbedtls_mpi_read_string( &D, radix_D, input_D ) == 0 );
if( have_E )
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_rsa_validate_params( have_N ? &N : NULL,
have_P ? &P : NULL,
have_Q ? &Q : NULL,
have_D ? &D : NULL,
have_E ? &E : NULL,
prng ? mbedtls_ctr_drbg_random : NULL,
prng ? &ctr_drbg : NULL ) == result );
exit:
mbedtls_ctr_drbg_free( &ctr_drbg );
mbedtls_entropy_free( &entropy );
mbedtls_mpi_free( &N );
mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q );
mbedtls_mpi_free( &D ); mbedtls_mpi_free( &E );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_CTR_DRBG_C:MBEDTLS_ENTROPY_C */
void mbedtls_rsa_export_raw( char *input_N, char *input_P,
char *input_Q, char *input_D,
char *input_E, int is_priv,
int successive )
{
/* Original raw buffers with which we set up the RSA context */
unsigned char bufN[1000];
unsigned char bufP[1000];
unsigned char bufQ[1000];
unsigned char bufD[1000];
unsigned char bufE[1000];
size_t lenN = 0;
size_t lenP = 0;
size_t lenQ = 0;
size_t lenD = 0;
size_t lenE = 0;
/* Exported buffers */
unsigned char bufNe[ sizeof( bufN ) ];
unsigned char bufPe[ sizeof( bufP ) ];
unsigned char bufQe[ sizeof( bufQ ) ];
unsigned char bufDe[ sizeof( bufD ) ];
unsigned char bufEe[ sizeof( bufE ) ];
const int have_N = ( strlen( input_N ) > 0 );
const int have_P = ( strlen( input_P ) > 0 );
const int have_Q = ( strlen( input_Q ) > 0 );
const int have_D = ( strlen( input_D ) > 0 );
const int have_E = ( strlen( input_E ) > 0 );
mbedtls_rsa_context ctx;
mbedtls_rsa_init( &ctx, 0, 0 );
/* Setup RSA context */
if( have_N )
lenN = unhexify( bufN, input_N );
if( have_P )
lenP = unhexify( bufP, input_P );
if( have_Q )
lenQ = unhexify( bufQ, input_Q );
if( have_D )
lenD = unhexify( bufD, input_D );
if( have_E )
lenE = unhexify( bufE, input_E );
TEST_ASSERT( mbedtls_rsa_import_raw( &ctx,
have_N ? bufN : NULL, lenN,
have_P ? bufP : NULL, lenP,
have_Q ? bufQ : NULL, lenQ,
have_D ? bufD : NULL, lenD,
have_E ? bufE : NULL, lenE ) == 0 );
TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == 0 );
/*
* Export parameters and compare to original ones.
*/
/* N and E must always be present. */
if( !successive )
{
TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, bufNe, lenN,
NULL, 0, NULL, 0, NULL, 0,
bufEe, lenE ) == 0 );
}
else
{
TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, bufNe, lenN,
NULL, 0, NULL, 0, NULL, 0,
NULL, 0 ) == 0 );
TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, NULL, 0,
NULL, 0, NULL, 0, NULL, 0,
bufEe, lenE ) == 0 );
}
TEST_ASSERT( memcmp( bufN, bufNe, lenN ) == 0 );
TEST_ASSERT( memcmp( bufE, bufEe, lenE ) == 0 );
/* If we were providing enough information to setup a complete private context,
* we expect to be able to export all core parameters. */
if( is_priv )
{
if( !successive )
{
TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, NULL, 0,
bufPe, lenP ? lenP : sizeof( bufPe ),
bufQe, lenQ ? lenQ : sizeof( bufQe ),
bufDe, lenD ? lenD : sizeof( bufDe ),
NULL, 0 ) == 0 );
}
else
{
TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, NULL, 0,
bufPe, lenP ? lenP : sizeof( bufPe ),
NULL, 0, NULL, 0,
NULL, 0 ) == 0 );
TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, NULL, 0, NULL, 0,
bufQe, lenQ ? lenQ : sizeof( bufQe ),
NULL, 0, NULL, 0 ) == 0 );
TEST_ASSERT( mbedtls_rsa_export_raw( &ctx, NULL, 0, NULL, 0,
NULL, 0, bufDe, lenD ? lenD : sizeof( bufDe ),
NULL, 0 ) == 0 );
}
if( have_P )
TEST_ASSERT( memcmp( bufP, bufPe, lenP ) == 0 );
if( have_Q )
TEST_ASSERT( memcmp( bufQ, bufQe, lenQ ) == 0 );
if( have_D )
TEST_ASSERT( memcmp( bufD, bufDe, lenD ) == 0 );
}
exit:
mbedtls_rsa_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_CTR_DRBG_C:MBEDTLS_ENTROPY_C:ENTROPY_HAVE_STRONG */
void mbedtls_rsa_import_raw( char *input_N,
char *input_P, char *input_Q,
char *input_D, char *input_E,
int successive,
int is_priv,
int res_check,
int res_complete )
{
unsigned char bufN[1000];
unsigned char bufP[1000];
unsigned char bufQ[1000];
unsigned char bufD[1000];
unsigned char bufE[1000];
/* Buffers used for encryption-decryption test */
unsigned char *buf_orig = NULL;
unsigned char *buf_enc = NULL;
unsigned char *buf_dec = NULL;
size_t lenN = 0;
size_t lenP = 0;
size_t lenQ = 0;
size_t lenD = 0;
size_t lenE = 0;
mbedtls_rsa_context ctx;
mbedtls_entropy_context entropy;
mbedtls_ctr_drbg_context ctr_drbg;
const char *pers = "test_suite_rsa";
mbedtls_ctr_drbg_init( &ctr_drbg );
mbedtls_entropy_init( &entropy );
mbedtls_rsa_init( &ctx, 0, 0 );
TEST_ASSERT( mbedtls_ctr_drbg_seed( &ctr_drbg, mbedtls_entropy_func,
&entropy, (const unsigned char *) pers,
strlen( pers ) ) == 0 );
if( strlen( input_N ) )
lenN = unhexify( bufN, input_N );
if( strlen( input_P ) )
lenP = unhexify( bufP, input_P );
if( strlen( input_Q ) )
lenQ = unhexify( bufQ, input_Q );
if( strlen( input_D ) )
lenD = unhexify( bufD, input_D );
if( strlen( input_E ) )
lenE = unhexify( bufE, input_E );
if( !successive )
{
TEST_ASSERT( mbedtls_rsa_import_raw( &ctx,
( lenN > 0 ) ? bufN : NULL, lenN,
( lenP > 0 ) ? bufP : NULL, lenP,
( lenQ > 0 ) ? bufQ : NULL, lenQ,
( lenD > 0 ) ? bufD : NULL, lenD,
( lenE > 0 ) ? bufE : NULL, lenE ) == 0 );
}
else
{
/* Import N, P, Q, D, E separately.
* This should make no functional difference. */
TEST_ASSERT( mbedtls_rsa_import_raw( &ctx,
( lenN > 0 ) ? bufN : NULL, lenN,
NULL, 0, NULL, 0, NULL, 0, NULL, 0 ) == 0 );
TEST_ASSERT( mbedtls_rsa_import_raw( &ctx,
NULL, 0,
( lenP > 0 ) ? bufP : NULL, lenP,
NULL, 0, NULL, 0, NULL, 0 ) == 0 );
TEST_ASSERT( mbedtls_rsa_import_raw( &ctx,
NULL, 0, NULL, 0,
( lenQ > 0 ) ? bufQ : NULL, lenQ,
NULL, 0, NULL, 0 ) == 0 );
TEST_ASSERT( mbedtls_rsa_import_raw( &ctx,
NULL, 0, NULL, 0, NULL, 0,
( lenD > 0 ) ? bufD : NULL, lenD,
NULL, 0 ) == 0 );
TEST_ASSERT( mbedtls_rsa_import_raw( &ctx,
NULL, 0, NULL, 0, NULL, 0, NULL, 0,
( lenE > 0 ) ? bufE : NULL, lenE ) == 0 );
}
TEST_ASSERT( mbedtls_rsa_complete( &ctx ) == res_complete );
/* On expected success, perform some public and private
* key operations to check if the key is working properly. */
if( res_complete == 0 )
{
if( is_priv )
TEST_ASSERT( mbedtls_rsa_check_privkey( &ctx ) == res_check );
else
TEST_ASSERT( mbedtls_rsa_check_pubkey( &ctx ) == res_check );
if( res_check != 0 )
goto exit;
buf_orig = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) );
buf_enc = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) );
buf_dec = mbedtls_calloc( 1, mbedtls_rsa_get_len( &ctx ) );
if( buf_orig == NULL || buf_enc == NULL || buf_dec == NULL )
goto exit;
TEST_ASSERT( mbedtls_ctr_drbg_random( &ctr_drbg,
buf_orig, mbedtls_rsa_get_len( &ctx ) ) == 0 );
/* Make sure the number we're generating is smaller than the modulus */
buf_orig[0] = 0x00;
TEST_ASSERT( mbedtls_rsa_public( &ctx, buf_orig, buf_enc ) == 0 );
if( is_priv )
{
TEST_ASSERT( mbedtls_rsa_private( &ctx, mbedtls_ctr_drbg_random,
&ctr_drbg, buf_enc,
buf_dec ) == 0 );
TEST_ASSERT( memcmp( buf_orig, buf_dec,
mbedtls_rsa_get_len( &ctx ) ) == 0 );
}
}
exit:
mbedtls_free( buf_orig );
mbedtls_free( buf_enc );
mbedtls_free( buf_dec );
mbedtls_rsa_free( &ctx );
mbedtls_ctr_drbg_free( &ctr_drbg );
mbedtls_entropy_free( &entropy );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SELF_TEST */
void rsa_selftest()
{
TEST_ASSERT( mbedtls_rsa_self_test( 1 ) == 0 );
}
/* END_CASE */