blob: 5656d094e7f42aa9dc539f87641ce69e992321ad [file] [log] [blame] [raw]
/*
* Copyright (C) Igor Sysoev
* Copyright (C) Nginx, Inc.
* Copyright (C) Yawning Angel <yawning at schwanenlied dot me>
*/
#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_event.h>
#define POLARSSL_DN_MAX_LENGTH 256
#define POLARSSL_SSL_CIPHER_MAX_LENGTH 64
static void ngx_ssl_handshake_handler(ngx_event_t *ev);
static ngx_int_t ngx_ssl_handle_recv(ngx_connection_t *c, int n);
static void ngx_ssl_write_handler(ngx_event_t *wev);
static void ngx_ssl_read_handler(ngx_event_t *rev);
static void ngx_ssl_shutdown_handler(ngx_event_t *ev);
static void ngx_ssl_expire_sessions(ngx_ssl_session_cache_t *cache,
ngx_slab_pool_t *shpool, ngx_uint_t n);
static void ngx_ssl_session_rbtree_insert_value(ngx_rbtree_node_t *temp,
ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel);
static int ngx_polarssl_get_cache(void *ctx, ssl_session *session);
static int ngx_polarssl_set_cache(void *ctx, const ssl_session *session);
static void ngx_cdecl ngx_polarssl_error(ngx_uint_t level, ngx_log_t *log,
ngx_err_t err, int sslerr, char *fmt, ...);
static int ngx_polarssl_cipher_in_list(const int id, const int *ciphersuites);
static ngx_int_t ngx_polarssl_set_cipher_list(ngx_ssl_t *ssl,
const char *ciphers);
static const char *ngx_polarssl_verify_error_str(int n);
static int ngx_polarssl_rng(void *data, unsigned char *output, size_t output_len);
static void ngx_polarssl_exit(ngx_cycle_t *cycle);
static ctr_drbg_context ngx_ctr_drbg;
#if (NGX_THREADS)
static ngx_mutex *ngx_ctr_drbg_mutex;
#endif
static ngx_command_t ngx_polarssl_commands[] = {
ngx_null_command
};
static ngx_core_module_t ngx_polarssl_module_ctx = {
ngx_string("polarssl"),
NULL,
NULL
};
ngx_module_t ngx_polarssl_module = {
NGX_MODULE_V1,
&ngx_polarssl_module_ctx, /* module context */
ngx_polarssl_commands, /* module directives */
NGX_CORE_MODULE, /* module type */
NULL, /* init master */
NULL, /* init module */
NULL, /* init process */
NULL, /* init thread */
NULL, /* exit thread */
NULL, /* exit process */
ngx_polarssl_exit, /* exit master */
NGX_MODULE_V1_PADDING
};
ngx_int_t
ngx_ssl_init(ngx_log_t *log)
{
static unsigned char ctr_drbg_custom[] = "nginx-polarssl";
entropy_context entropy;
int sslerr;
/* Initialize the PRNG */
entropy_init(&entropy);
sslerr = ctr_drbg_init(&ngx_ctr_drbg, entropy_func, &entropy,
ctr_drbg_custom, ngx_strlen(ctr_drbg_custom));
if (sslerr != 0) {
ngx_polarssl_error(NGX_LOG_EMERG, log, 0, sslerr,
"ctr_drbg_init() failed");
return NGX_ERROR;
}
#if (NGX_THREADS)
ngx_ctr_drbg_mutex = ngx_mutex_init(log, 0);
if (ngx_ctr_drbg_mutex == NULL) {
return NGX_ERROR;
}
#endif
return NGX_OK;
}
ngx_int_t
ngx_ssl_create(ngx_ssl_t *ssl, ngx_uint_t protocols, void *data)
{
int minor_min = 99;
int minor_max = -99;
ssl->data = data;
ssl->builtin_session_cache = NGX_SSL_NO_SCACHE;
ssl->cache_shm_zone = NULL;
/*
* PolarSSL only allows the user to specify the minimum and* maximum
* versions of SSL/TLS to support.
*/
if (protocols & NGX_SSL_SSLv3) {
minor_min = SSL_MINOR_VERSION_0;
minor_max = SSL_MINOR_VERSION_0;
}
if (protocols & NGX_SSL_TLSv1) {
minor_min = ngx_min(minor_min, SSL_MINOR_VERSION_1);
minor_max = SSL_MINOR_VERSION_1;
}
if (protocols & NGX_SSL_TLSv1_1) {
minor_min = ngx_min(minor_min, SSL_MINOR_VERSION_2);
minor_max = SSL_MINOR_VERSION_2;
}
if (protocols & NGX_SSL_TLSv1_2) {
minor_min = ngx_min(minor_min, SSL_MINOR_VERSION_3);
minor_max = SSL_MINOR_VERSION_3;
}
ssl->minor_min = minor_min;
ssl->minor_max = minor_max;
/* Initialize the rest of the global state with sane defaults */
ssl->ciphersuites = NULL;
ngx_memset(&ssl->dhm_ctx, 0, sizeof(dhm_context));
ngx_memset(&ssl->own_cert, 0, sizeof(x509_crt));
ngx_memset(&ssl->own_key, 0, sizeof(rsa_context));
ngx_memset(&ssl->ca_cert, 0, sizeof(x509_crt));
ngx_memset(&ssl->ca_crl, 0, sizeof(x509_crl));
ssl->have_own_cert = 0;
ssl->have_ca_cert = 0;
ssl->have_ca_crl = 0;
ssl->ctx = ssl;
return NGX_OK;
}
ngx_int_t
ngx_ssl_certificate(ngx_conf_t *cf, ngx_ssl_t *ssl, ngx_str_t *cert,
ngx_str_t *key)
{
int sslerr;
pk_context pk;
pk_init( &pk );
if (ngx_conf_full_name(cf->cycle, cert, 1) != NGX_OK) {
return NGX_ERROR;
}
sslerr = x509_crt_parse_file(&ssl->own_cert, (char *) cert->data);
if (sslerr != 0) {
ngx_polarssl_error(NGX_LOG_EMERG, ssl->log, 0, sslerr,
"x509_crt_parse_file(%p, \"%s\") failed",
&ssl->own_cert, cert->data);
return NGX_ERROR;
}
if (ngx_conf_full_name(cf->cycle, key, 1) != NGX_OK) {
return NGX_ERROR;
}
sslerr = pk_parse_keyfile( &pk, (char *) key->data, NULL);
if (sslerr != 0) {
ngx_polarssl_error(NGX_LOG_EMERG, ssl->log, 0, sslerr,
"pk_parse_keyfile(%p, \"%s\", NULL) failed",
&ssl->own_key, key->data);
return NGX_ERROR;
}
ssl->have_own_cert = 1;
return NGX_OK;
}
ngx_int_t
ngx_ssl_client_certificate(ngx_conf_t *cf, ngx_ssl_t *ssl, ngx_str_t *cert,
ngx_int_t depth)
{
int sslerr;
if (cert->len == 0) {
return NGX_OK;
}
if (ngx_conf_full_name(cf->cycle, cert, 1) != NGX_OK) {
return NGX_ERROR;
}
sslerr = x509_crt_parse_file(&ssl->ca_cert, (char *) cert->data);
if (sslerr != 0) {
ngx_polarssl_error(NGX_LOG_EMERG, ssl->log, 0, sslerr,
"x509_crt_parse_file(%p, \"%s\") failed",
&ssl->ca_cert, cert->data);
return NGX_ERROR;
}
ssl->have_ca_cert = 1;
return NGX_OK;
}
ngx_int_t
ngx_ssl_trusted_certificate(ngx_conf_t *cf, ngx_ssl_t *ssl, ngx_str_t *cert,
ngx_int_t depth)
{
int sslerr;
if (cert->len == 0) {
return NGX_OK;
}
if (ngx_conf_full_name(cf->cycle, cert, 1) != NGX_OK) {
return NGX_ERROR;
}
/* Just add the certificate to the CA cert chain */
sslerr = x509_crt_parse_file(&ssl->ca_cert, (char *) cert->data);
if (sslerr != 0) {
ngx_polarssl_error(NGX_LOG_EMERG, ssl->log, 0, sslerr,
"x509_crt_parse_file(%p, \"%s\") failed",
&ssl->ca_cert, cert->data);
return NGX_ERROR;
}
ssl->have_ca_cert = 1;
return NGX_OK;
}
ngx_int_t
ngx_ssl_crl(ngx_conf_t *cf, ngx_ssl_t *ssl, ngx_str_t *crl)
{
int sslerr;
if (crl->len == 0) {
return NGX_OK;
}
if (ngx_conf_full_name(cf->cycle, crl, 1) != NGX_OK) {
return NGX_ERROR;
}
sslerr = x509_crl_parse_file(&ssl->ca_crl, (char *) crl->data);
if (sslerr != 0) {
ngx_polarssl_error(NGX_LOG_EMERG, ssl->log, 0, sslerr,
"x509_crl_parse_file(%p, \"%s\") failed",
&ssl->ca_crl, crl->data, sslerr);
return NGX_ERROR;
}
ssl->have_ca_crl = 1;
return NGX_ERROR;
}
ngx_int_t
ngx_ssl_stapling(ngx_conf_t *cf, ngx_ssl_t *ssl, ngx_str_t *file,
ngx_str_t *responder, ngx_uint_t verify)
{
/* Not supported by PolarSSL */
return NGX_ERROR;
}
ngx_int_t
ngx_ssl_stapling_resolver(ngx_conf_t *cf, ngx_ssl_t *ssl,
ngx_resolver_t *resolver, ngx_msec_t resolver_timeout)
{
/* Not supported by PolarSSL */
return NGX_ERROR;
}
ngx_int_t
ngx_ssl_dhparam(ngx_conf_t *cf, ngx_ssl_t *ssl, ngx_str_t *file)
{
int sslerr;
static unsigned char dh1024_pem[] = {
"-----BEGIN DH PARAMETERS-----\n"
"MIGHAoGBALu8LcrYRnSQfEP89YDpz9vZWKP1aLQtSwju1OsPs1BMbAMCducQgAxc\n"
"y7qokiYUxb7spWWl/fHSh6K8BJvmd4Bg6RqSp1fjBI9osHb302zI8pul34HcLKcl\n"
"7OZicMyaUDXYzs7vnqAnSmOrHlj6/UmI0PZdFGdX2gcd8EXP4WubAgEC\n"
"-----END DH PARAMETERS-----"
};
if (file->len == 0) {
sslerr = dhm_parse_dhm(&ssl->dhm_ctx, dh1024_pem,
ngx_strlen(dh1024_pem));
if (sslerr != 0) {
ngx_polarssl_error(NGX_LOG_EMERG, ssl->log, 0, sslerr,
"dhm_parse_dhm() failed");
return NGX_ERROR;
}
return NGX_OK;
}
if (ngx_conf_full_name(cf->cycle, file, 1) != NGX_OK) {
return NGX_ERROR;
}
sslerr = dhm_parse_dhmfile(&ssl->dhm_ctx, (char *) file->data);
if (sslerr != 0) {
ngx_polarssl_error(NGX_LOG_EMERG, ssl->log, 0, sslerr,
"dhm_parse_dhmfile(%p, \"%s\") failed",
&ssl->dhm_ctx, file->data);
return NGX_ERROR;
}
return NGX_OK;
}
ngx_int_t
ngx_ssl_ecdh_curve(ngx_conf_t *cf, ngx_ssl_t *ssl, ngx_str_t *name)
{
/* ECDH is not supported by PolarSSL */
return NGX_OK;
}
ngx_int_t
ngx_ssl_cipher_list(ngx_conf_t *cf, ngx_ssl_t *ssl, ngx_str_t *ciphers)
{
return ngx_polarssl_set_cipher_list(ssl, (const char *) ciphers->data);
}
void
ngx_ssl_sni_fn(ngx_ssl_t *ssl, int (*sni_fn)(void *, ssl_context *,
const unsigned char *, size_t))
{
ssl->sni_fn = sni_fn;
}
ngx_int_t
ngx_ssl_session_cache(ngx_ssl_t *ssl, ngx_str_t *sess_ctx,
ssize_t builtin_session_cache, ngx_shm_zone_t *shm_zone, time_t timeout)
{
/*
* Setting up the session cache is done on a per connection basis
* like everything else in PolarSSL, so save the user provided
* setting till later, unless they want to use the builtin
* cache.
*
* If they want to use the builtin cache, log an error because
* the builtin cache is not supported (and probably not worth
* supporting since it is rather trivial, and the one that this
* module provides is better within the context of ngnix).
*/
if (builtin_session_cache == NGX_SSL_DFLT_BUILTIN_SCACHE) {
ngx_log_error(NGX_LOG_EMERG, ssl->log, 0,
"PolarSSL's builtin session cache is not supported.");
return NGX_ERROR;
}
ssl->builtin_session_cache = builtin_session_cache;
if (builtin_session_cache != NGX_SSL_NO_SCACHE) {
ssl->cache_shm_zone = shm_zone;
ssl->cache_ttl = timeout;
}
return NGX_OK;
}
ngx_int_t
ngx_ssl_session_cache_init(ngx_shm_zone_t *shm_zone, void *data)
{
size_t len;
ngx_slab_pool_t *shpool;
ngx_ssl_session_cache_t *cache;
if (data) {
shm_zone->data = data;
return NGX_OK;
}
if (shm_zone->shm.exists) {
shm_zone->data = data;
return NGX_OK;
}
/*
* Much like ngx_event_openssl, we use a red-black tree and a queue as
* the backing store for our cache.
*/
shpool = (ngx_slab_pool_t *) shm_zone->shm.addr;
cache = ngx_slab_alloc(shpool, sizeof(ngx_ssl_session_cache_t));
if (cache == NULL) {
return NGX_ERROR;
}
shpool->data = cache;
shm_zone->data = cache;
ngx_rbtree_init(&cache->session_rbtree, &cache->sentinel,
ngx_ssl_session_rbtree_insert_value);
ngx_queue_init(&cache->expire_queue);
len = sizeof(" in SSL session shared cache \"\"") + shm_zone->shm.name.len;
shpool->log_ctx = ngx_slab_alloc(shpool, len);
if (shpool->log_ctx == NULL) {
return NGX_ERROR;
}
ngx_sprintf(shpool->log_ctx, " in SSL session shared cache \"%V\"%Z",
&shm_zone->shm.name);
return NGX_OK;
}
ngx_int_t
ngx_ssl_session_ticket_keys(ngx_conf_t *cf, ngx_ssl_t *ssl, ngx_array_t *paths)
{
if (paths) {
ngx_log_error(NGX_LOG_WARN, ssl->log, 0,
"\"ssl_session_ticket_keys\" ignored, not supported");
}
return NGX_OK;
}
void
ngx_ssl_remove_cached_session(ngx_ssl_t *ssl, ngx_ssl_session_t *sess)
{
ngx_shm_zone_t *shm_zone;
ngx_slab_pool_t *shpool;
ngx_ssl_session_cache_t *cache;
ngx_rbtree_node_t *node, *sentinel;
ngx_ssl_sess_id_t *sess_id;
int rc;
uint32_t hash;
shm_zone = ssl->cache_shm_zone;
if (shm_zone == NULL) {
return;
}
shpool = (ngx_slab_pool_t*) shm_zone->shm.addr;
cache = shm_zone->data;
hash = ngx_crc32_short(sess->id, sess->length);
ngx_shmtx_lock(&shpool->mutex);
node = cache->session_rbtree.root;
sentinel = cache->session_rbtree.sentinel;
while (node != sentinel) {
if (hash < node->key) {
node = node->left;
continue;
}
if (hash > node->key) {
node = node->right;
continue;
}
/* hash == node->key */
sess_id = (ngx_ssl_sess_id_t *) node;
rc = ngx_memn2cmp(sess->id, sess_id->session->id, sess->length,
node->data);
if (rc == 0) {
ngx_queue_remove(&sess_id->queue);
ngx_rbtree_delete(&cache->session_rbtree, node);
ngx_slab_free_locked(shpool, sess_id->session);
ngx_slab_free_locked(shpool, sess_id);
goto done;
}
node = (rc < 0) ? node->left : node->right;
}
done:
ngx_shmtx_unlock(&shpool->mutex);
}
static int
ngx_polarssl_get_cache(void *ctx, ssl_session *session)
{
ngx_shm_zone_t *shm_zone;
ngx_slab_pool_t *shpool;
ngx_ssl_session_cache_t *cache;
ngx_rbtree_node_t *node, *sentinel;
ngx_ssl_sess_id_t *sess_id;
time_t expires;
int rc;
uint32_t hash;
if (ctx == NULL) {
/* NGX_SSL_NONE_SCACHE: Every search is a cache miss */
return 1;
}
hash = ngx_crc32_short(session->id, session->length);
shm_zone = ctx;
shpool = (ngx_slab_pool_t*) shm_zone->shm.addr;
cache = shm_zone->data;
ngx_shmtx_lock(&shpool->mutex);
node = cache->session_rbtree.root;
sentinel = cache->session_rbtree.sentinel;
while (node != sentinel) {
if (hash < node->key) {
node = node->left;
continue;
}
if (hash > node->key) {
node = node->right;
continue;
}
/* hash == node->key */
sess_id = (ngx_ssl_sess_id_t *) node;
rc = ngx_memn2cmp(session->id, sess_id->session->id, session->length,
node->data);
if (rc == 0) {
if (session->ciphersuite != sess_id->session->ciphersuite ||
session->compression != sess_id->session->compression ||
session->length != sess_id->session->length) {
/* The ciphersuite/compression changed out from under us */
goto done;
}
/* Check the expiry time */
expires = (time_t) sess_id->session->peer_cert;
if (expires > ngx_time()) {
/* Cache hit */
ngx_memcpy(session->master, sess_id->session->master, 48);
ngx_shmtx_unlock(&shpool->mutex);
return 0;
}
/* Cache entry expired */
ngx_queue_remove(&sess_id->queue);
ngx_rbtree_delete(&cache->session_rbtree, node);
ngx_slab_free_locked(shpool, sess_id->session);
ngx_slab_free_locked(shpool, sess_id);
goto done;
}
node = (rc < 0) ? node->left : node->right;
}
done:
ngx_shmtx_unlock(&shpool->mutex);
return 1;
}
static int
ngx_polarssl_set_cache(void *ctx, const ssl_session *session)
{
ngx_shm_zone_t *shm_zone;
ngx_slab_pool_t *shpool;
ngx_ssl_session_cache_t *cache;
ngx_ssl_sess_id_t *sess_id;
ngx_ssl_session_t *cached_sess;
uint32_t hash;
if (ctx == NULL) {
/* NGX_SSL_NONE_SCACHE: Never cache any entries, but pretend to do so. */
return 0;
}
shm_zone = ctx;
shpool = (ngx_slab_pool_t*) shm_zone->shm.addr;
cache = shm_zone->data;
ngx_shmtx_lock(&shpool->mutex);
/*
* Because we need to store the entire ssl_session, in the cache we allocate
* the entry and the ssl_session separately. The entry is 64 bytes in size
* on 64 bit architectures, and ssl_session is 112 bytes.
*
* Since we explicitly do not cache the peer certificate (requires a deep
* copy), we hijack session.peer_cert and use that to store the expiration
* time. As far as I know sizeof(void *) == sizeof(time_t) is a reasonable
* assumption to make. This doesn't actually save anything on 64 bit
* systems, but it *may* on 32 bit and it's not practical to break up a
* ssl_session without being vulnerable to PolarSSL code changes.
*/
/* Prune some sessions from the cache to ensure the allocation succeds */
ngx_ssl_expire_sessions(cache, shpool, 1);
cached_sess = ngx_slab_alloc_locked(shpool, sizeof(ngx_ssl_session_t));
if (cached_sess == NULL) {
/* Prune the oldest non-expired session, and try again */
ngx_ssl_expire_sessions(cache, shpool, 0);
cached_sess = ngx_slab_alloc_locked(shpool, sizeof(ngx_ssl_session_t));
if (cached_sess == NULL) {
goto failed;
}
}
sess_id = ngx_slab_alloc_locked(shpool, sizeof(ngx_ssl_sess_id_t));
if (sess_id == NULL) {
goto failed;
}
memcpy(cached_sess, session, sizeof(ngx_ssl_session_t));
cached_sess->peer_cert = (x509_crt *) (ngx_time() + cache->ttl);
hash = ngx_crc32_short(cached_sess->id, cached_sess->length);
sess_id->node.key = hash;
sess_id->node.data = (u_char) cached_sess->length;
sess_id->session = cached_sess;
ngx_queue_insert_head(&cache->expire_queue, &sess_id->queue);
ngx_rbtree_insert(&cache->session_rbtree, &sess_id->node);
ngx_shmtx_unlock(&shpool->mutex);
return 0;
failed:
ngx_shmtx_unlock(&shpool->mutex);
return 1;
}
static void
ngx_ssl_expire_sessions(ngx_ssl_session_cache_t *cache,
ngx_slab_pool_t *shpool, ngx_uint_t n)
{
time_t now, then;
ngx_queue_t *q;
ngx_ssl_sess_id_t *sess_id;
now = ngx_time();
while (n < 3) {
if (ngx_queue_empty(&cache->expire_queue)) {
return;
}
q = ngx_queue_last(&cache->expire_queue);
sess_id = ngx_queue_data(q, ngx_ssl_sess_id_t, queue);
then = (time_t) sess_id->session->peer_cert;
if (n++ != 0 && then > now) {
return;
}
ngx_queue_remove(q);
ngx_rbtree_delete(&cache->session_rbtree, &sess_id->node);
ngx_slab_free_locked(shpool, sess_id->session);
ngx_slab_free_locked(shpool, sess_id);
}
}
static void
ngx_ssl_session_rbtree_insert_value(ngx_rbtree_node_t *temp,
ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel)
{
ngx_rbtree_node_t **p;
ngx_ssl_sess_id_t *sess_id, *sess_id_temp;
for ( ;; ) {
if (node->key < temp->key) {
p = &temp->left;
} else if (node->key > temp->key) {
p = &temp->right;
} else { /* node->key == temp->key */
sess_id = (ngx_ssl_sess_id_t *) node;
sess_id_temp = (ngx_ssl_sess_id_t *) temp;
p = (ngx_memn2cmp(sess_id->session->id, sess_id_temp->session->id,
(size_t) node->data, (size_t) temp->data)
< 0) ? &temp->left : &temp->right;
}
if (*p == sentinel) {
break;
}
temp = *p;
}
*p = node;
node->parent = temp;
node->left = sentinel;
node->right = sentinel;
ngx_rbt_red(node);
}
ngx_int_t
ngx_ssl_set_session(ngx_connection_t *c, ngx_ssl_session_t *session)
{
/*
* TODO: ngx_http_upstream_round_robin uses this to set a SSL session to
* allow session reuse.
*
* PolarSSL has ssl_set_session, but it does the copy on set. The module
* that actually uses this increments a refcount in ngx_ssl_get_session
* instead so implementing this is requires more understanding of how
* ngx_http_upstream_round_robin works.
*/
return NGX_OK;
}
ngx_ssl_session_t*
ngx_ssl_get_session(ngx_connection_t *c)
{
/* TODO: ngx_http_upstream_round_robin uses this to copy a SSL session */
return NULL;
}
ngx_ssl_session_t *
ngx_ssl_peek_session(ngx_connection_t *c)
{
return c->ssl->connection->session;
}
void
ngx_ssl_free_session(ngx_ssl_session_t *session)
{
/* TODO: ngx_http_upstream_round_robin uses this to free a copied SSL session */
}
ngx_int_t
ngx_ssl_have_peer_cert(ngx_connection_t *c)
{
if (ssl_get_peer_cert(c->ssl->connection) != NULL) {
return NGX_OK;
}
return NGX_ERROR;
}
ngx_int_t
ngx_ssl_verify_result(ngx_connection_t *c, long *rc, const char **errstr)
{
int sslerr;
sslerr = ssl_get_verify_result(c->ssl->connection);
if (sslerr != 0) {
*rc = sslerr;
*errstr = ngx_polarssl_verify_error_str(sslerr);
return NGX_ERROR;
}
return NGX_OK;
}
ngx_int_t
ngx_ssl_get_protocol(ngx_connection_t *c, ngx_pool_t *pool, ngx_str_t *s)
{
s->data = (u_char *) ssl_get_version(c->ssl->connection);
return NGX_OK;
}
ngx_int_t
ngx_ssl_get_cipher_name(ngx_connection_t *c, ngx_pool_t *pool, ngx_str_t *s)
{
s->data = (u_char *) ssl_get_ciphersuite(c->ssl->connection);
return NGX_OK;
}
ngx_int_t
ngx_ssl_get_session_id(ngx_connection_t *c, ngx_pool_t *pool, ngx_str_t *s)
{
ssl_session *session = c->ssl->connection->session;
/*
* ngx_event_openssl's implementation of this returns a hexdump of
* the ASN.1 encoded SSL session object. Our implementation just
* returns a hexdump of the session id, because this routine is not
* named ngx_ssl_get_entire_session_object.
*/
s->len = session->length * 2;
s->data = ngx_pnalloc(pool, s->len);
if (s->data == NULL) {
return NGX_ERROR;
}
ngx_hex_dump(s->data, session->id, session->length);
return NGX_OK;
}
ngx_int_t
ngx_ssl_get_raw_certificate(ngx_connection_t *c, ngx_pool_t *pool, ngx_str_t *s)
{
static const int header_len = 29;
static const int footer_len = 25;
static const unsigned char pem_header[] = { "-----BEGIN CERTIFICATE-----\r\n" };
static const unsigned char pem_footer[] = { "-----END CERTIFICATE-----" };
size_t len = 0, i;
const x509_crt *cert;
unsigned char *p = NULL;
/*
* PolarSSL does not have a built in routine to write certificates
* in PEM format. Thankfully it's relatively easy to do since it
* keeps a copy of the DER format certificate around.
*/
cert = ssl_get_peer_cert(c->ssl->connection);
if (cert == NULL || cert->raw.len == 0) {
return NGX_OK;
}
/* Determine how much buffer space is required */
base64_encode(p, &len, cert->raw.p, cert->raw.len);
len += (len / 64 + 1) * 2;
len += header_len;
len += footer_len;
p = s->data = ngx_pnalloc(pool, len);
if (s->data == NULL) {
return NGX_ERROR;
}
/* Append the header */
ngx_memcpy(p, pem_header, header_len);
p += header_len;
/* Base64 encode the cert, inserting newlines every 64 characters. */
for (i = 0; i < cert->raw.len; /* i incremented in body */) {
size_t to_encode = (cert->raw.len - i > 48) ? 48 : cert->raw.len - i;
size_t dlen = len - (p - s->data);
base64_encode(p, &dlen, cert->raw.p + i, to_encode);
p += dlen;
*p++ = '\r';
*p++ = '\n';
i+= to_encode;
}
/* Append the footer */
ngx_memcpy(p, pem_footer, footer_len);
p += footer_len;
*p = '\0';
s->len = ngx_strlen(s->data);
return NGX_OK;
}
ngx_int_t
ngx_ssl_get_certificate(ngx_connection_t *c, ngx_pool_t *pool, ngx_str_t *s)
{
/*
* As far as I can tell, both of ngx_ssl_get_certificate and
* ngx_ssl_get_raw_certificate just return the peer certificate
* in PEM format, with ngx_ssl_get_certificate messing with
* whitespace.
*
* Since our PEM generator doesn't prefix any lines with whitespace
* at all, the functions can just return identical output.
*/
return ngx_ssl_get_raw_certificate(c, pool, s);
}
ngx_int_t
ngx_ssl_get_subject_dn(ngx_connection_t *c, ngx_pool_t *pool, ngx_str_t *s)
{
const x509_crt *cert;
int len;
cert = ssl_get_peer_cert(c->ssl->connection);
if (cert == NULL) {
return NGX_OK;
}
s->data = ngx_pnalloc(pool, POLARSSL_DN_MAX_LENGTH);
if (s->data == NULL) {
return NGX_ERROR;
}
len = x509_dn_gets((char *) s->data, POLARSSL_DN_MAX_LENGTH - 1,
&cert->subject);
if (len < 0) {
return NGX_ERROR;
}
s->len = len;
return NGX_OK;
}
ngx_int_t
ngx_ssl_get_issuer_dn(ngx_connection_t *c, ngx_pool_t *pool, ngx_str_t *s)
{
const x509_crt *cert;
int len;
cert = ssl_get_peer_cert(c->ssl->connection);
if (cert == NULL) {
return NGX_OK;
}
s->data = ngx_pnalloc(pool, POLARSSL_DN_MAX_LENGTH);
if (s->data == NULL) {
return NGX_ERROR;
}
len = x509_dn_gets((char *) s->data, POLARSSL_DN_MAX_LENGTH - 1,
&cert->issuer);
if (len < 0) {
return NGX_ERROR;
}
s->len = len;
return NGX_OK;
}
ngx_int_t
ngx_ssl_get_serial_number(ngx_connection_t *c, ngx_pool_t *pool, ngx_str_t *s)
{
const x509_crt *cert;
int len;
cert = ssl_get_peer_cert(c->ssl->connection);
if (cert == NULL) {
return NGX_OK;
}
len = cert->serial.len * 3 + 1;
s->data = ngx_palloc(pool, len);
if (s->data == NULL) {
return NGX_ERROR;
}
len = x509_serial_gets((char *) s->data, len - 1, &cert->serial);
if (len < 0) {
return NGX_ERROR;
}
s->len = len;
return NGX_OK;
}
ngx_int_t
ngx_ssl_get_client_verify(ngx_connection_t *c, ngx_pool_t *pool, ngx_str_t *s)
{
const x509_crt *cert;
if (ssl_get_verify_result(c->ssl->connection) != 0) {
ngx_str_set(s, "FAILED");
return NGX_OK;
}
cert = ssl_get_peer_cert(c->ssl->connection);
if (cert) {
ngx_str_set(s, "SUCCESS");
} else {
ngx_str_set(s, "NONE");
}
return NGX_OK;
}
ngx_int_t
ngx_ssl_create_connection(ngx_ssl_t *ssl, ngx_connection_t *c,
ngx_uint_t flags)
{
ngx_ssl_connection_t *sc;
ngx_ssl_conn_t *ssl_ctx;
ngx_ssl_session_cache_t *cache;
int sslerr;
sc = ngx_pcalloc(c->pool, sizeof(ngx_ssl_connection_t));
if (sc == NULL) {
return NGX_ERROR;
}
sc->buffer = ((flags % NGX_SSL_BUFFER) != 0);
/* Allocate the PolarSSL context */
ssl_ctx = ngx_pcalloc(c->pool, sizeof(ngx_ssl_conn_t));
if (sc == NULL) {
return NGX_ERROR;
}
/*
* Initialize this PolarSSL context
*
* Note: We also setup the options traditionally set in ngx_ssl_create
* here since each ssl_ctx is unique to each fd.
*/
sslerr = ssl_init(ssl_ctx);
if (sslerr != 0) {
ngx_polarssl_error(NGX_LOG_ALERT, ssl->log, 0, sslerr,
"ssl_init failed");
return NGX_ERROR;
}
if (flags & NGX_SSL_CLIENT) {
ssl_set_endpoint(ssl_ctx, SSL_IS_CLIENT);
if (ssl->have_own_cert) {
ssl_set_own_cert_rsa(ssl_ctx, &ssl->own_cert, &ssl->own_key);
}
} else {
ssl_set_endpoint(ssl_ctx, SSL_IS_SERVER);
ssl_set_own_cert_rsa(ssl_ctx, &ssl->own_cert, &ssl->own_key);
}
if (ssl->have_ca_cert) {
if (ssl->have_ca_crl) {
ssl_set_ca_chain(ssl_ctx, &ssl->ca_cert, &ssl->ca_crl, NULL);
} else {
ssl_set_ca_chain(ssl_ctx, &ssl->ca_cert, NULL, NULL);
}
/*
* ngx_event_openssl has the callback rigged to allow the handshake
* to continue even if verification fails. We shall do the same.
*/
ssl_set_authmode(ssl_ctx, SSL_VERIFY_OPTIONAL);
} else {
ssl_set_authmode(ssl_ctx, SSL_VERIFY_NONE);
}
ssl_set_min_version(ssl_ctx, SSL_MAJOR_VERSION_3, ssl->minor_min);
ssl_set_max_version(ssl_ctx, SSL_MAJOR_VERSION_3, ssl->minor_max);
ssl_set_renegotiation(ssl_ctx, SSL_RENEGOTIATION_ENABLED);
ssl_legacy_renegotiation(ssl_ctx, SSL_LEGACY_NO_RENEGOTIATION);
ssl_set_rng(ssl_ctx, ngx_polarssl_rng, &ngx_ctr_drbg);
ssl_set_bio(ssl_ctx, net_recv, &c->fd, net_send, &c->fd);
ssl_set_dh_param_ctx(ssl_ctx, &ssl->dhm_ctx);
ssl_set_ciphersuites(ssl_ctx, ssl->ciphersuites);
if (ssl->builtin_session_cache == NGX_SSL_NONE_SCACHE) {
ssl_set_session_cache(ssl_ctx,
ngx_polarssl_get_cache, NULL,
ngx_polarssl_set_cache, NULL);
}
if (ssl->builtin_session_cache != NGX_SSL_NO_SCACHE) {
cache = ssl->cache_shm_zone->data;
cache->ttl = ssl->cache_ttl;
ssl_set_session_cache(ssl_ctx,
ngx_polarssl_get_cache, ssl->cache_shm_zone,
ngx_polarssl_set_cache, ssl->cache_shm_zone);
}
if (ssl->sni_fn) {
ssl_set_sni(ssl_ctx, ssl->sni_fn, c);
}
/* All done, the connection is good to go now */
sc->connection = ssl_ctx;
c->ssl = sc;
return NGX_OK;
}
ngx_int_t
ngx_ssl_handshake(ngx_connection_t *c)
{
int sslerr;
sslerr = ssl_handshake(c->ssl->connection);
if (sslerr == 0) {
if (ngx_handle_read_event(c->read, 0) != NGX_OK) {
return NGX_ERROR;
}
if (ngx_handle_write_event(c->write, 0) != NGX_OK) {
return NGX_ERROR;
}
c->ssl->handshaked = 1;
c->recv = ngx_ssl_recv;
c->send = ngx_ssl_write;
c->recv_chain = ngx_ssl_recv_chain;
c->send_chain = ngx_ssl_send_chain;
/*
* Versions of PolarSSL this is developed against are not vulnerable
* to CVE-2009-3555, leave renegotiaton as is.
*/
return NGX_OK;
}
if (sslerr == POLARSSL_ERR_NET_WANT_READ) {
c->read->ready = 0;
c->read->handler = ngx_ssl_handshake_handler;
c->write->handler = ngx_ssl_handshake_handler;
if (ngx_handle_read_event(c->read, 0) != NGX_OK) {
return NGX_ERROR;
}
if (ngx_handle_write_event(c->write, 0) != NGX_OK) {
return NGX_ERROR;
}
return NGX_AGAIN;
}
if (sslerr == POLARSSL_ERR_NET_WANT_WRITE) {
c->write->ready = 0;
c->read->handler = ngx_ssl_handshake_handler;
c->write->handler = ngx_ssl_handshake_handler;
if (ngx_handle_read_event(c->read, 0) != NGX_OK) {
return NGX_ERROR;
}
if (ngx_handle_write_event(c->write, 0) != NGX_OK) {
return NGX_ERROR;
}
return NGX_AGAIN;
}
c->ssl->no_send_shutdown = 1;
c->read->eof = 1;
if (sslerr == POLARSSL_ERR_SSL_CONN_EOF) {
ngx_log_error(NGX_LOG_INFO, c->log, 0,
"peer closed connection in SSL handshake");
return NGX_ERROR;
}
c->read->error = 1;
ngx_polarssl_error(NGX_LOG_ERR, c->log, 0, sslerr, "ssl_handshake() failed");
return NGX_ERROR;
}
static void
ngx_ssl_handshake_handler(ngx_event_t *ev)
{
ngx_connection_t *c;
c = ev->data;
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, c->log, 0,
"SSL handshake handler: %d", ev->write);
if (ev->timedout) {
c->ssl->handler(c);
return;
}
if (ngx_ssl_handshake(c) == NGX_AGAIN) {
return;
}
c->ssl->handler(c);
}
ssize_t
ngx_ssl_recv(ngx_connection_t *c, u_char *buf, size_t size)
{
int n, bytes;
if (c->ssl->last == NGX_ERROR) {
c->read->error = 1;
return NGX_ERROR;
}
if (c->ssl->last == NGX_DONE) {
c->read->ready = 0;
c->read->eof = 1;
return 0;
}
bytes = 0;
for ( ;; ) {
n = ssl_read(c->ssl->connection, buf, size);
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, c->log, 0, "ssl_read: %d", n);
if (n > 0) {
bytes += n;
}
c->ssl->last = ngx_ssl_handle_recv(c, n);
if (c->ssl->last == NGX_OK) {
size -= n;
if (size == 0) {
return bytes;
}
buf += n;
continue;
}
if (bytes) {
return bytes;
}
switch (c->ssl->last) {
case NGX_DONE:
c->read->ready = 0;
c->read->eof = 1;
return 0;
case NGX_ERROR:
c->read->error = 1;
/* fall through */
case NGX_AGAIN:
return c->ssl->last;
}
}
}
static ngx_int_t
ngx_ssl_handle_recv(ngx_connection_t *c, int n)
{
if (n > 0) {
if (c->ssl->saved_write_handler) {
c->write->handler = c->ssl->saved_write_handler;
c->ssl->saved_write_handler = NULL;
c->write->ready = 1;
if (ngx_handle_write_event(c->write, 0) != NGX_OK) {
return NGX_ERROR;
}
ngx_post_event(c->write, &ngx_posted_events);
}
return NGX_OK;
}
if (n == POLARSSL_ERR_NET_WANT_READ) {
c->read->ready = 0;
return NGX_AGAIN;
}
if (n == POLARSSL_ERR_NET_WANT_WRITE) {
c->write->ready = 0;
if (ngx_handle_write_event(c->write, 0) != NGX_OK) {
return NGX_ERROR;
}
/*
* we do not set the timer because there is already the read event timer
*/
if (c->ssl->saved_write_handler == NULL) {
c->ssl->saved_write_handler = c->write->handler;
c->write->handler = ngx_ssl_write_handler;
}
return NGX_AGAIN;
}
c->ssl->no_send_shutdown = 1;
if (n == 0 || n == POLARSSL_ERR_SSL_CONN_EOF ||
n == POLARSSL_ERR_SSL_PEER_CLOSE_NOTIFY) {
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, c->log, 0,
"peer shutdown SSL cleanly");
return NGX_DONE;
}
ngx_polarssl_error(NGX_LOG_ERR, c->log, 0, n, "ssl_read() failed %d ", n);
return NGX_ERROR;
}
static void
ngx_ssl_write_handler(ngx_event_t *wev)
{
ngx_connection_t *c;
c = wev->data;
c->read->handler(c->read);
}
ssize_t
ngx_ssl_write(ngx_connection_t *c, u_char *data, size_t size)
{
int n;
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, c->log, 0, "SSL to write: %d", size);
n = ssl_write(c->ssl->connection, data, size);
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, c->log, 0, "ssl_write: %d", n);
if (n > 0) {
if (c->ssl->saved_read_handler) {
c->read->handler = c->ssl->saved_read_handler;
c->ssl->saved_read_handler = NULL;
c->read->ready = 1;
if (ngx_handle_read_event(c->read, 0) != NGX_OK) {
return NGX_ERROR;
}
ngx_post_event(c->read, &ngx_posted_events);
}
return n;
}
if (n == POLARSSL_ERR_NET_WANT_WRITE) {
c->write->ready = 0;
return NGX_AGAIN;
}
if (n == POLARSSL_ERR_NET_WANT_READ) {
/* FIXME: Should this actually log? It's handled fine. */
ngx_log_error(NGX_LOG_INFO, c->log, 0,
"peer started SSL renegotiation");
c->read->ready = 0;
if (ngx_handle_read_event(c->read, 0) != NGX_OK) {
return NGX_ERROR;
}
/*
* we do not set the timer because there is already
* the write event timer
*/
if (c->ssl->saved_read_handler == NULL) {
c->ssl->saved_read_handler = c->read->handler;
c->read->handler = ngx_ssl_read_handler;
}
return NGX_AGAIN;
}
c->ssl->no_send_shutdown = 1;
c->write->error = 1;
ngx_polarssl_error(NGX_LOG_ERR, c->log, 0, n, "ssl_write() failed");
return NGX_ERROR;
}
static void
ngx_ssl_read_handler(ngx_event_t *rev)
{
ngx_connection_t *c;
c = rev->data;
c->write->handler(c->write);
}
ssize_t
ngx_ssl_recv_chain(ngx_connection_t *c, ngx_chain_t *cl)
{
u_char *last;
ssize_t n, bytes;
ngx_buf_t *b;
bytes = 0;
b = cl->buf;
last = b->last;
for ( ;; ) {
n = ngx_ssl_recv(c, last, b->end - last);
if (n > 0) {
last += n;
bytes += n;
if (last == b->end) {
cl = cl->next;
if (cl == NULL) {
return bytes;
}
b = cl->buf;
last = b->last;
}
continue;
}
if (bytes) {
if (n == 0 || n == NGX_ERROR) {
c->read->ready = 1;
}
return bytes;
}
return n;
}
}
ngx_chain_t *
ngx_ssl_send_chain(ngx_connection_t *c, ngx_chain_t *in, off_t limit)
{
int n;
ngx_uint_t flush;
ssize_t send, size;
ngx_buf_t *buf;
if (!c->ssl->buffer) {
while (in) {
if (ngx_buf_special(in->buf)) {
in = in->next;
continue;
}
n = ngx_ssl_write(c, in->buf->pos, in->buf->last - in->buf->pos);
if (n == NGX_ERROR) {
return NGX_CHAIN_ERROR;
}
if (n == NGX_AGAIN) {
return in;
}
in->buf->pos += n;
c->sent += n;
if (in->buf->pos == in->buf->last) {
in = in->next;
}
}
return in;
}
/* the maximum limit size is the maximum int32_t value - the page size */
if (limit == 0 || limit > (off_t) (NGX_MAX_INT32_VALUE - ngx_pagesize)) {
limit = NGX_MAX_INT32_VALUE - ngx_pagesize;
}
buf = c->ssl->buf;
if (buf == NULL) {
buf = ngx_create_temp_buf(c->pool, NGX_SSL_BUFSIZE);
if (buf == NULL) {
return NGX_CHAIN_ERROR;
}
c->ssl->buf = buf;
}
send = buf->last - buf->pos;
flush = (in == NULL) ? 1 : buf->flush;
for ( ;; ) {
while (in && buf->last < buf->end && send < limit) {
if (in->buf->last_buf || in->buf->flush) {
flush = 1;
}
if (ngx_buf_special(in->buf)) {
in = in->next;
continue;
}
size = in->buf->last - in->buf->pos;
if (size > buf->end - buf->last) {
size = buf->end - buf->last;
}
if (send + size > limit) {
size = (ssize_t) (limit - send);
}
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, c->log, 0,
"SSL buf copy: %d", size);
ngx_memcpy(buf->last, in->buf->pos, size);
buf->last += size;
in->buf->pos += size;
send += size;
if (in->buf->pos == in->buf->last) {
in = in->next;
}
}
if (!flush && send < limit && buf->last < buf->end) {
break;
}
size = buf->last - buf->pos;
if (size == 0) {
buf->flush = 0;
c->buffered &= ~NGX_SSL_BUFFERED;
return in;
}
n = ngx_ssl_write(c, buf->pos, size);
if (n == NGX_ERROR) {
return NGX_CHAIN_ERROR;
}
if (n == NGX_AGAIN) {
break;
}
buf->pos += n;
c->sent += n;
if (n < size) {
break;
}
flush = 0;
buf->pos = buf->start;
buf->last = buf->start;
if (in == NULL || send == limit) {
break;
}
}
buf->flush = flush;
if (buf->pos < buf->last) {
c->buffered |= NGX_SSL_BUFFERED;
} else {
c->buffered &= ~NGX_SSL_BUFFERED;
}
return in;
}
void
ngx_ssl_free_buffer(ngx_connection_t *c)
{
if (c->ssl->buf && c->ssl->buf->start) {
if (ngx_pfree(c->pool, c->ssl->buf->start) == NGX_OK) {
c->ssl->buf->start = NULL;
}
}
}
static void ngx_cdecl
ngx_polarssl_error(ngx_uint_t level, ngx_log_t *log, ngx_err_t err, int sslerr,
char *fmt, ...)
{
va_list args;
u_char *p, *last;
u_char errstr[NGX_MAX_CONF_ERRSTR];
last = errstr + NGX_MAX_CONF_ERRSTR;
va_start(args, fmt);
p = ngx_vslprintf(errstr, last - 1, fmt, args);
va_end(args);
p = ngx_cpystrn(p, (u_char *) " (SSL:", last - p);
error_strerror(sslerr, (char *) p, last - p);
ngx_log_error(level, log, err, "%s", errstr);
}
void ngx_cdecl
ngx_ssl_error(ngx_uint_t level, ngx_log_t *log, ngx_err_t err, char *fmt, ...)
{
va_list args;
// u_char *p, *last;
u_char errstr[NGX_MAX_CONF_ERRSTR];
// last = errstr + NGX_MAX_CONF_ERRSTR;
va_start(args, fmt);
// *p = ngx_vslprintf(errstr, last - 1, fmt, args);
va_end(args);
/*
* PolarSSL does not have an error queue so it's not possible to access the
* last error. This doesn't really matter since this routine is not used
* in PolarSSL builds.
*/
ngx_log_error(level, log, err, "%s", errstr);
}
ngx_int_t
ngx_ssl_shutdown(ngx_connection_t *c)
{
int sslerr;
if (c->timedout || c->ssl->no_send_shutdown || c->ssl->no_wait_shutdown) {
ssl_free(c->ssl->connection);
c->ssl = NULL;
return NGX_OK;
}
sslerr = ssl_close_notify(c->ssl->connection);
if (sslerr == 0 || sslerr == POLARSSL_ERR_SSL_CONN_EOF) {
ssl_free(c->ssl->connection);
c->ssl = NULL;
return NGX_OK;
}
if (sslerr == POLARSSL_ERR_NET_WANT_READ ||
sslerr == POLARSSL_ERR_NET_WANT_WRITE) {
c->read->handler = ngx_ssl_shutdown_handler;
c->write->handler = ngx_ssl_shutdown_handler;
if (ngx_handle_read_event(c->read, 0) != NGX_OK) {
return NGX_ERROR;
}
if (ngx_handle_write_event(c->write, 0) != NGX_OK) {
return NGX_ERROR;
}
if (sslerr == POLARSSL_ERR_NET_WANT_READ) {
ngx_add_timer(c->read, 300000);
}
return NGX_AGAIN;
}
ngx_polarssl_error(NGX_LOG_ERR, c->log, 0, sslerr,
"ssl_close_notify() failed");
ssl_free(c->ssl->connection);
c->ssl = NULL;
return NGX_ERROR;
}
static void
ngx_ssl_shutdown_handler(ngx_event_t *ev)
{
ngx_connection_t *c;
ngx_connection_handler_pt handler;
c = ev->data;
handler = c->ssl->handler;
if (ev->timedout) {
c->timedout = 1;
}
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, ev->log, 0, "SSL shutdown handler");
if (ngx_ssl_shutdown(c) == NGX_AGAIN) {
return;
}
handler(c);
}
void
ngx_ssl_cleanup_ctx(void *data)
{
ngx_ssl_t *ssl = data;
if (ssl->ciphersuites != NULL) {
ngx_free(ssl->ciphersuites);
}
dhm_free(&ssl->dhm_ctx);
if (ssl->have_own_cert) {
x509_crt_free(&ssl->own_cert);
rsa_free(&ssl->own_key);
}
if (ssl->have_ca_cert) {
x509_crt_free(&ssl->ca_cert);
}
if (ssl->have_ca_crl) {
x509_crl_free(&ssl->ca_crl);
}
}
static int
ngx_polarssl_cipher_in_list(const int id, const int *ciphersuites)
{
int i;
for (i = 0; ciphersuites[i] != 0; i++) {
if (id == ciphersuites[i]) {
return 1;
}
}
return 0;
}
static ngx_int_t
ngx_polarssl_set_cipher_list(ngx_ssl_t *ssl, const char *ciphers)
{
static const char ngx_default_ciphers[] = "HIGH:!aNULL:!MD5";
const int *supported_ciphersuites;
char cipher_name[POLARSSL_SSL_CIPHER_MAX_LENGTH];
const char *c, *end, *sep;
int i, idx, cipher_id;
/*
* OpenSSL format cipher lists are somewhat nonsensical as the options
* available under PolarSSL are somewhat more limited (most of the things a
* user would chose to disable are flat out unsupported).
*
* Till someone can provide a really good reason otherwise, supporting the
* nginx default (HIGH:!aNULL:!MD5) and allowing the user to pass in a
* specific list should be sufficient.
*
* Note: We mimick the OpenSSL behavior of ignoring unknown entries,
* mostly because the modules that call this don't bail out even if 0
* is returned (total failure to configure ciphersuites should be
* a fatal error at config time).
*/
supported_ciphersuites = ssl_list_ciphersuites();
for (i = 0; supported_ciphersuites[i] != 0; i++);
ssl->ciphersuites = ngx_alloc((i + 1) * sizeof(int), ssl->log);
if (ssl->ciphersuites == NULL) {
return NGX_ERROR;
}
if (ngx_strcmp(ciphers, ngx_default_ciphers) == 0) {
/*
* Special case for the default: "HIGH:!aNULL:!MD5":
*
* Just using the list from PolarSSL while probably reasonable does
* not exclude options that are not included in "HIGH" and also will
* (as a last resort) use TLS_RSA_RC4_128_MD5.
*/
for (i = 0, idx = 0; supported_ciphersuites[idx] != 0; idx++) {
switch (supported_ciphersuites[idx]) {
/* aNULL ciphers - Never enabled by default, listed for clarity */
case TLS_RSA_WITH_NULL_MD5:
case TLS_RSA_WITH_NULL_SHA:
case TLS_RSA_WITH_NULL_SHA256:
/* MD5 ciphers */
case TLS_RSA_WITH_RC4_128_MD5:
/* Weak ciphers */
case TLS_RSA_WITH_DES_CBC_SHA:
case TLS_DHE_RSA_WITH_DES_CBC_SHA:
case TLS_RSA_WITH_3DES_EDE_CBC_SHA: /* Key size < 128 */
case TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA: /* Key size < 128 */
continue;
break;
}
ssl->ciphersuites[i] = supported_ciphersuites[idx];
i++;
}
ssl->ciphersuites[i] = 0;
return (i != 0) ? NGX_OK : NGX_ERROR;
}
/* Tokenize the list of ciphers */
c = ciphers;
i = 0;
end = ciphers + ngx_strlen(ciphers);
for (;;) {
ssl->ciphersuites[i] = 0;
sep = ngx_strchr(c, ':');
if (sep == NULL) {
sep = end;
}
/* FIXME: This is probably somewhat cryptic */
if (sep - c > POLARSSL_SSL_CIPHER_MAX_LENGTH) {
ngx_log_error(NGX_LOG_EMERG, ssl->log, 0,
"Out of buffer space when parsing cipher list: %s",
ciphers);
goto skip;
}
ngx_memcpy(cipher_name, c, sep - c);
cipher_name[sep - c] = '\0';
cipher_id = ssl_get_ciphersuite_id(cipher_name);
if (cipher_id == 0) {
ngx_log_error(NGX_LOG_EMERG, ssl->log, 0,
"Unknown cipher requsted: %s", cipher_name);
goto skip;
}
/*
* There are certain ciphers that can be enabled but will never
* be returned in the list obtained by ssl_list_ciphersuites().
*
* While technically a PolarSSL bug, said ciphers are those that
* no one in their right mind will ever enable, so just silently
* ignore them (Not supporting the WEAK/NULL ciphers is a feature).
*
* Additionally, ensure that each cipher is only included once.
*/
if (ngx_polarssl_cipher_in_list(cipher_id, supported_ciphersuites) &&
!ngx_polarssl_cipher_in_list(cipher_id, ssl->ciphersuites)) {
ssl->ciphersuites[i] = cipher_id;
i++;
}
skip:
c = sep + 1;
if (sep == end) {
break;
}
}
return (i != 0) ? NGX_OK : NGX_ERROR;
}
static const char *
ngx_polarssl_verify_error_str(int n)
{
/*
* n is a bit vector consisting of BADCERT_EXPIRED, BADCERT_REVOKED,
* BADCERT_CN_MISMATCH, BADCERT_NOT_TRUSTED.
*/
switch (n) {
case BADCERT_EXPIRED:
return "Certificate expired";
case BADCERT_REVOKED:
return "Certificate revoked";
case BADCERT_CN_MISMATCH:
return "Certificate CN mismatch";
case BADCERT_NOT_TRUSTED:
return "Certificate not trusted";
case BADCERT_EXPIRED | BADCERT_REVOKED:
return "Certificate expired/revoked";
case BADCERT_EXPIRED | BADCERT_CN_MISMATCH:
return "Certificate expired/CN mismatch";
case BADCERT_EXPIRED | BADCERT_NOT_TRUSTED:
return "Certificate expired/not trusted";
case BADCERT_REVOKED | BADCERT_CN_MISMATCH:
return "Certificate revoked/CN mismatch";
case BADCERT_REVOKED | BADCERT_NOT_TRUSTED:
return "Certificate revoked/not trusted";
case BADCERT_CN_MISMATCH | BADCERT_NOT_TRUSTED:
return "Certificate CN mismatch/not trusted";
case BADCERT_EXPIRED | BADCERT_REVOKED | BADCERT_CN_MISMATCH:
return "Certificate expired/revoked/CN mismatch";
case BADCERT_EXPIRED | BADCERT_REVOKED | BADCERT_NOT_TRUSTED:
return "Certificate expired/revoked/not trusted";
case BADCERT_EXPIRED | BADCERT_CN_MISMATCH | BADCERT_NOT_TRUSTED:
return "Certificate expired/CN mismatch/not trusted";
case BADCERT_REVOKED | BADCERT_CN_MISMATCH | BADCERT_NOT_TRUSTED:
return "Certificate revoked/CN mismatch/not trusted";
case BADCERT_EXPIRED | BADCERT_REVOKED | BADCERT_CN_MISMATCH |
BADCERT_NOT_TRUSTED:
return "Certificate expired/revoked/CN mismatch/not trusted";
}
return NULL;
}
static int
ngx_polarssl_rng(void *data, unsigned char *output, size_t output_len)
{
int rval;
#if (NGX_THREADS)
ngx_mutex_lock(ngx_ctr_drbg_mutex);
#endif
rval = ctr_drbg_random(data, output, output_len);
#if (NGX_THREADS)
ngx_mutex_unlock(ngx_ctr_drbg_mutex);
#endif
return rval;
}
static void
ngx_polarssl_exit(ngx_cycle_t *cycle)
{
#if (NGX_THREADS)
ngx_mutex_destroy(ngx_ctr_drbg_mutex);
#endif
}