blob: b06fc7af537b5f9d7544ffb4d575fbf0124c0199 [file] [log] [blame] [raw]
/*
* Copyright (C) 1995-1998 by Darren Reed.
*
* See the IPFILTER.LICENCE file for details on licencing.
*/
#if defined(KERNEL) || defined(_KERNEL)
# undef KERNEL
# undef _KERNEL
# define KERNEL 1
# define _KERNEL 1
#endif
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/file.h>
#if !defined(_KERNEL) && !defined(__KERNEL__)
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# define _KERNEL
# define KERNEL
# ifdef __OpenBSD__
struct file;
# endif
# include <sys/uio.h>
# undef _KERNEL
# undef KERNEL
#else
# include <sys/systm.h>
# if !defined(__SVR4) && !defined(__svr4__)
# include <sys/mbuf.h>
# endif
# include <sys/select.h>
# if __FreeBSD_version >= 500000
# include <sys/selinfo.h>
# endif
#endif
#if defined(__NetBSD__) && (__NetBSD_Version__ >= 104000000)
# include <sys/proc.h>
#endif
#if defined(_KERNEL) && (__FreeBSD_version >= 220000)
# include <sys/filio.h>
# include <sys/fcntl.h>
# if (__FreeBSD_version >= 300000) && !defined(IPFILTER_LKM)
# include "opt_ipfilter.h"
# endif
#else
# include <sys/ioctl.h>
#endif
#include <sys/time.h>
#if !defined(linux)
# include <sys/protosw.h>
#endif
#include <sys/socket.h>
#if defined(__SVR4) || defined(__svr4__)
# include <sys/filio.h>
# include <sys/byteorder.h>
# ifdef _KERNEL
# include <sys/dditypes.h>
# endif
# include <sys/stream.h>
# include <sys/kmem.h>
#endif
#include <net/if.h>
#ifdef sun
# include <net/af.h>
#endif
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#if !defined(linux)
# include <netinet/ip_var.h>
#endif
#if !defined(__hpux) && !defined(linux)
# include <netinet/tcp_fsm.h>
#endif
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#include "netinet/ip_compat.h"
#include <netinet/tcpip.h>
#include "netinet/ip_fil.h"
#include "netinet/ip_nat.h"
#include "netinet/ip_frag.h"
#include "netinet/ip_state.h"
#include "netinet/ip_proxy.h"
#include "netinet/ip_sync.h"
#ifdef USE_INET6
#include <netinet/icmp6.h>
#endif
#if (__FreeBSD_version >= 300000)
# include <sys/malloc.h>
# if defined(_KERNEL) && !defined(IPFILTER_LKM)
# include <sys/libkern.h>
# include <sys/systm.h>
# endif
#endif
/* END OF INCLUDES */
#if !defined(lint)
static const char rcsid[] = "@(#)$Id$";
#endif
#define SYNC_STATETABSZ 256
#define SYNC_NATTABSZ 256
#ifdef IPFILTER_SYNC
# if SOLARIS && defined(_KERNEL)
extern struct pollhead iplpollhead[IPL_LOGSIZE];
# endif
ipfmutex_t ipf_syncadd, ipsl_mutex;
ipfrwlock_t ipf_syncstate, ipf_syncnat;
#if SOLARIS && defined(_KERNEL)
kcondvar_t ipslwait;
#endif
synclist_t *syncstatetab[SYNC_STATETABSZ];
synclist_t *syncnattab[SYNC_NATTABSZ];
synclogent_t synclog[SYNCLOG_SZ];
syncupdent_t syncupd[SYNCLOG_SZ];
u_int ipf_syncnum = 1;
u_int ipf_syncwrap = 0;
u_int sl_idx = 0, /* next available sync log entry */
su_idx = 0, /* next available sync update entry */
sl_tail = 0, /* next sync log entry to read */
su_tail = 0; /* next sync update entry to read */
int ipf_sync_debug = 0;
# if !defined(sparc) && !defined(__hppa)
void ipfsync_tcporder __P((int, struct tcpdata *));
void ipfsync_natorder __P((int, struct nat *));
void ipfsync_storder __P((int, struct ipstate *));
# endif
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_init */
/* Returns: int - 0 == success, -1 == failure */
/* Parameters: Nil */
/* */
/* Initialise all of the locks required for the sync code and initialise */
/* any data structures, as required. */
/* ------------------------------------------------------------------------ */
int ipfsync_init()
{
RWLOCK_INIT(&ipf_syncstate, "add things to state sync table");
RWLOCK_INIT(&ipf_syncnat, "add things to nat sync table");
MUTEX_INIT(&ipf_syncadd, "add things to sync table");
MUTEX_INIT(&ipsl_mutex, "add things to sync table");
# if SOLARIS && defined(_KERNEL)
cv_init(&ipslwait, "ipsl condvar", CV_DRIVER, NULL);
# endif
bzero((char *)syncnattab, sizeof(syncnattab));
bzero((char *)syncstatetab, sizeof(syncstatetab));
return 0;
}
# if !defined(sparc) && !defined(__hppa)
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_tcporder */
/* Returns: Nil */
/* Parameters: way(I) - direction of byte order conversion. */
/* td(IO) - pointer to data to be converted. */
/* */
/* Do byte swapping on values in the TCP state information structure that */
/* need to be used at both ends by the host in their native byte order. */
/* ------------------------------------------------------------------------ */
void ipfsync_tcporder(way, td)
int way;
tcpdata_t *td;
{
if (way) {
td->td_maxwin = htons(td->td_maxwin);
td->td_end = htonl(td->td_end);
td->td_maxend = htonl(td->td_maxend);
} else {
td->td_maxwin = ntohs(td->td_maxwin);
td->td_end = ntohl(td->td_end);
td->td_maxend = ntohl(td->td_maxend);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_natorder */
/* Returns: Nil */
/* Parameters: way(I) - direction of byte order conversion. */
/* nat(IO) - pointer to data to be converted. */
/* */
/* Do byte swapping on values in the NAT data structure that need to be */
/* used at both ends by the host in their native byte order. */
/* ------------------------------------------------------------------------ */
void ipfsync_natorder(way, n)
int way;
nat_t *n;
{
if (way) {
n->nat_age = htonl(n->nat_age);
n->nat_flags = htonl(n->nat_flags);
n->nat_ipsumd = htonl(n->nat_ipsumd);
n->nat_use = htonl(n->nat_use);
n->nat_dir = htonl(n->nat_dir);
} else {
n->nat_age = ntohl(n->nat_age);
n->nat_flags = ntohl(n->nat_flags);
n->nat_ipsumd = ntohl(n->nat_ipsumd);
n->nat_use = ntohl(n->nat_use);
n->nat_dir = ntohl(n->nat_dir);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_storder */
/* Returns: Nil */
/* Parameters: way(I) - direction of byte order conversion. */
/* ips(IO) - pointer to data to be converted. */
/* */
/* Do byte swapping on values in the IP state data structure that need to */
/* be used at both ends by the host in their native byte order. */
/* ------------------------------------------------------------------------ */
void ipfsync_storder(way, ips)
int way;
ipstate_t *ips;
{
ipfsync_tcporder(way, &ips->is_tcp.ts_data[0]);
ipfsync_tcporder(way, &ips->is_tcp.ts_data[1]);
if (way) {
ips->is_hv = htonl(ips->is_hv);
ips->is_die = htonl(ips->is_die);
ips->is_pass = htonl(ips->is_pass);
ips->is_flags = htonl(ips->is_flags);
ips->is_opt[0] = htonl(ips->is_opt[0]);
ips->is_opt[1] = htonl(ips->is_opt[1]);
ips->is_optmsk[0] = htonl(ips->is_optmsk[0]);
ips->is_optmsk[1] = htonl(ips->is_optmsk[1]);
ips->is_sec = htons(ips->is_sec);
ips->is_secmsk = htons(ips->is_secmsk);
ips->is_auth = htons(ips->is_auth);
ips->is_authmsk = htons(ips->is_authmsk);
ips->is_s0[0] = htonl(ips->is_s0[0]);
ips->is_s0[1] = htonl(ips->is_s0[1]);
ips->is_smsk[0] = htons(ips->is_smsk[0]);
ips->is_smsk[1] = htons(ips->is_smsk[1]);
} else {
ips->is_hv = ntohl(ips->is_hv);
ips->is_die = ntohl(ips->is_die);
ips->is_pass = ntohl(ips->is_pass);
ips->is_flags = ntohl(ips->is_flags);
ips->is_opt[0] = ntohl(ips->is_opt[0]);
ips->is_opt[1] = ntohl(ips->is_opt[1]);
ips->is_optmsk[0] = ntohl(ips->is_optmsk[0]);
ips->is_optmsk[1] = ntohl(ips->is_optmsk[1]);
ips->is_sec = ntohs(ips->is_sec);
ips->is_secmsk = ntohs(ips->is_secmsk);
ips->is_auth = ntohs(ips->is_auth);
ips->is_authmsk = ntohs(ips->is_authmsk);
ips->is_s0[0] = ntohl(ips->is_s0[0]);
ips->is_s0[1] = ntohl(ips->is_s0[1]);
ips->is_smsk[0] = ntohl(ips->is_smsk[0]);
ips->is_smsk[1] = ntohl(ips->is_smsk[1]);
}
}
# else /* !defined(sparc) && !defined(__hppa) */
# define ipfsync_tcporder(x,y)
# define ipfsync_natorder(x,y)
# define ipfsync_storder(x,y)
# endif /* !defined(sparc) && !defined(__hppa) */
/* enable this for debugging */
# ifdef _KERNEL
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_write */
/* Returns: int - 0 == success, else error value. */
/* Parameters: uio(I) - pointer to information about data to write */
/* */
/* Moves data from user space into the kernel and uses it for updating data */
/* structures in the state/NAT tables. */
/* ------------------------------------------------------------------------ */
int ipfsync_write(uio)
struct uio *uio;
{
synchdr_t sh;
/*
* THIS MUST BE SUFFICIENT LARGE TO STORE
* ANY POSSIBLE DATA TYPE
*/
char data[2048];
int err = 0;
# if (BSD >= 199306) || defined(__FreeBSD__) || defined(__osf__)
uio->uio_rw = UIO_WRITE;
# endif
/* Try to get bytes */
while (uio->uio_resid > 0) {
if (uio->uio_resid >= sizeof(sh)) {
err = UIOMOVE(&sh, sizeof(sh), UIO_WRITE, uio);
if (err) {
if (ipf_sync_debug > 2)
printf("uiomove(header) failed: %d\n",
err);
return err;
}
/* convert to host order */
sh.sm_magic = ntohl(sh.sm_magic);
sh.sm_len = ntohl(sh.sm_len);
sh.sm_num = ntohl(sh.sm_num);
if (ipf_sync_debug > 8)
printf("[%d] Read v:%d p:%d cmd:%d table:%d rev:%d len:%d magic:%x\n",
sh.sm_num, sh.sm_v, sh.sm_p, sh.sm_cmd,
sh.sm_table, sh.sm_rev, sh.sm_len,
sh.sm_magic);
if (sh.sm_magic != SYNHDRMAGIC) {
if (ipf_sync_debug > 2)
printf("uiomove(header) invalud %s\n",
"magic");
return EINVAL;
}
if (sh.sm_v != 4 && sh.sm_v != 6) {
if (ipf_sync_debug > 2)
printf("uiomove(header) invalid %s\n",
"protocol");
return EINVAL;
}
if (sh.sm_cmd > SMC_MAXCMD) {
if (ipf_sync_debug > 2)
printf("uiomove(header) invalid %s\n",
"command");
return EINVAL;
}
if (sh.sm_table > SMC_MAXTBL) {
if (ipf_sync_debug > 2)
printf("uiomove(header) invalid %s\n",
"table");
return EINVAL;
}
} else {
/* unsufficient data, wait until next call */
if (ipf_sync_debug > 2)
printf("uiomove(header) insufficient data");
return EAGAIN;
}
/*
* We have a header, so try to read the amount of data
* needed for the request
*/
/* not supported */
if (sh.sm_len == 0) {
if (ipf_sync_debug > 2)
printf("uiomove(data zero length %s\n",
"not supported");
return EINVAL;
}
if (uio->uio_resid >= sh.sm_len) {
err = UIOMOVE(data, sh.sm_len, UIO_WRITE, uio);
if (err) {
if (ipf_sync_debug > 2)
printf("uiomove(data) failed: %d\n",
err);
return err;
}
if (ipf_sync_debug > 7)
printf("uiomove(data) %d bytes read\n",
sh.sm_len);
if (sh.sm_table == SMC_STATE)
err = ipfsync_state(&sh, data);
else if (sh.sm_table == SMC_NAT)
err = ipfsync_nat(&sh, data);
if (ipf_sync_debug > 7)
printf("[%d] Finished with error %d\n",
sh.sm_num, err);
} else {
/* insufficient data, wait until next call */
if (ipf_sync_debug > 2)
printf("uiomove(data) %s %d bytes, got %d\n",
"insufficient data, need",
sh.sm_len, uio->uio_resid);
return EAGAIN;
}
}
/* no more data */
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_read */
/* Returns: int - 0 == success, else error value. */
/* Parameters: uio(O) - pointer to information about where to store data */
/* */
/* This function is called when a user program wants to read some data */
/* for pending state/NAT updates. If no data is available, the caller is */
/* put to sleep, pending a wakeup from the "lower half" of this code. */
/* ------------------------------------------------------------------------ */
int ipfsync_read(uio)
struct uio *uio;
{
syncupdent_t *su;
synclogent_t *sl;
int err = 0;
if ((uio->uio_resid & 3) || (uio->uio_resid < 8))
return EINVAL;
# if (BSD >= 199306) || defined(__FreeBSD__) || defined(__osf__)
uio->uio_rw = UIO_READ;
# endif
MUTEX_ENTER(&ipsl_mutex);
while ((sl_tail == sl_idx) && (su_tail == su_idx)) {
# if SOLARIS && defined(_KERNEL)
if (!cv_wait_sig(&ipslwait, &ipsl_mutex)) {
MUTEX_EXIT(&ipsl_mutex);
return EINTR;
}
# else
# ifdef __hpux
{
lock_t *l;
l = get_sleep_lock(&sl_tail);
err = sleep(&sl_tail, PZERO+1);
if (err) {
MUTEX_EXIT(&ipsl_mutex);
return EINTR;
}
spinunlock(l);
}
# else /* __hpux */
# ifdef __osf__
err = mpsleep(&sl_tail, PSUSP|PCATCH, "ipl sleep", 0,
&ipsl_mutex, MS_LOCK_SIMPLE);
if (err)
return EINTR;
# else
MUTEX_EXIT(&ipsl_mutex);
err = SLEEP(&sl_tail, "ipl sleep");
if (err)
return EINTR;
MUTEX_ENTER(&ipsl_mutex);
# endif /* __osf__ */
# endif /* __hpux */
# endif /* SOLARIS */
}
MUTEX_EXIT(&ipsl_mutex);
READ_ENTER(&ipf_syncstate);
while ((sl_tail < sl_idx) && (uio->uio_resid > sizeof(*sl))) {
sl = synclog + sl_tail++;
err = UIOMOVE(sl, sizeof(*sl), UIO_READ, uio);
if (err != 0)
break;
}
while ((su_tail < su_idx) && (uio->uio_resid > sizeof(*su))) {
su = syncupd + su_tail;
su_tail++;
err = UIOMOVE(su, sizeof(*su), UIO_READ, uio);
if (err != 0)
break;
if (su->sup_hdr.sm_sl != NULL)
su->sup_hdr.sm_sl->sl_idx = -1;
}
MUTEX_ENTER(&ipf_syncadd);
if (su_tail == su_idx)
su_tail = su_idx = 0;
if (sl_tail == sl_idx)
sl_tail = sl_idx = 0;
MUTEX_EXIT(&ipf_syncadd);
RWLOCK_EXIT(&ipf_syncstate);
return err;
}
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_state */
/* Returns: int - 0 == success, else error value. */
/* Parameters: sp(I) - pointer to sync packet data header */
/* uio(I) - pointer to user data for further information */
/* */
/* Updates the state table according to information passed in the sync */
/* header. As required, more data is fetched from the uio structure but */
/* varies depending on the contents of the sync header. This function can */
/* create a new state entry or update one. Deletion is left to the state */
/* structures being timed out correctly. */
/* ------------------------------------------------------------------------ */
int ipfsync_state(sp, data)
synchdr_t *sp;
void *data;
{
synctcp_update_t su;
ipstate_t *is, sn;
synclist_t *sl;
frentry_t *fr;
u_int hv;
int err = 0;
hv = sp->sm_num & (SYNC_STATETABSZ - 1);
switch (sp->sm_cmd)
{
case SMC_CREATE :
bcopy(data, &sn, sizeof(sn));
KMALLOC(is, ipstate_t *);
if (is == NULL) {
err = ENOMEM;
break;
}
KMALLOC(sl, synclist_t *);
if (sl == NULL) {
err = ENOMEM;
KFREE(is);
break;
}
bzero((char *)is, offsetof(ipstate_t, is_die));
bcopy((char *)&sn.is_die, (char *)&is->is_die,
sizeof(*is) - offsetof(ipstate_t, is_die));
ipfsync_storder(0, is);
/*
* We need to find the same rule on the slave as was used on
* the master to create this state entry.
*/
READ_ENTER(&ipf_mutex);
fr = fr_getrulen(IPL_LOGIPF, sn.is_group, sn.is_rulen);
if (fr != NULL) {
MUTEX_ENTER(&fr->fr_lock);
fr->fr_ref++;
fr->fr_statecnt++;
MUTEX_EXIT(&fr->fr_lock);
}
RWLOCK_EXIT(&ipf_mutex);
if (ipf_sync_debug > 4)
printf("[%d] Filter rules = %p\n", sp->sm_num, fr);
is->is_rule = fr;
is->is_sync = sl;
sl->sl_idx = -1;
sl->sl_ips = is;
bcopy(sp, &sl->sl_hdr, sizeof(struct synchdr));
WRITE_ENTER(&ipf_syncstate);
WRITE_ENTER(&ipf_state);
sl->sl_pnext = syncstatetab + hv;
sl->sl_next = syncstatetab[hv];
if (syncstatetab[hv] != NULL)
syncstatetab[hv]->sl_pnext = &sl->sl_next;
syncstatetab[hv] = sl;
MUTEX_DOWNGRADE(&ipf_syncstate);
fr_stinsert(is, sp->sm_rev);
/*
* Do not initialise the interface pointers for the state
* entry as the full complement of interface names may not
* be present.
*
* Put this state entry on its timeout queue.
*/
/*fr_setstatequeue(is, sp->sm_rev);*/
break;
case SMC_UPDATE :
bcopy(data, &su, sizeof(su));
if (ipf_sync_debug > 4)
printf("[%d] Update age %lu state %d/%d \n",
sp->sm_num, su.stu_age, su.stu_state[0],
su.stu_state[1]);
READ_ENTER(&ipf_syncstate);
for (sl = syncstatetab[hv]; (sl != NULL); sl = sl->sl_next)
if (sl->sl_hdr.sm_num == sp->sm_num)
break;
if (sl == NULL) {
if (ipf_sync_debug > 1)
printf("[%d] State not found - can't update\n",
sp->sm_num);
RWLOCK_EXIT(&ipf_syncstate);
err = ENOENT;
break;
}
READ_ENTER(&ipf_state);
if (ipf_sync_debug > 6)
printf("[%d] Data from state v:%d p:%d cmd:%d table:%d rev:%d\n",
sp->sm_num, sl->sl_hdr.sm_v, sl->sl_hdr.sm_p,
sl->sl_hdr.sm_cmd, sl->sl_hdr.sm_table,
sl->sl_hdr.sm_rev);
is = sl->sl_ips;
MUTEX_ENTER(&is->is_lock);
switch (sp->sm_p)
{
case IPPROTO_TCP :
/* XXX FV --- shouldn't we do ntohl/htonl???? XXX */
is->is_send = su.stu_data[0].td_end;
is->is_maxsend = su.stu_data[0].td_maxend;
is->is_maxswin = su.stu_data[0].td_maxwin;
is->is_state[0] = su.stu_state[0];
is->is_dend = su.stu_data[1].td_end;
is->is_maxdend = su.stu_data[1].td_maxend;
is->is_maxdwin = su.stu_data[1].td_maxwin;
is->is_state[1] = su.stu_state[1];
break;
default :
break;
}
if (ipf_sync_debug > 6)
printf("[%d] Setting timers for state\n", sp->sm_num);
fr_setstatequeue(is, sp->sm_rev);
MUTEX_EXIT(&is->is_lock);
break;
default :
err = EINVAL;
break;
}
if (err == 0) {
RWLOCK_EXIT(&ipf_state);
RWLOCK_EXIT(&ipf_syncstate);
}
if (ipf_sync_debug > 6)
printf("[%d] Update completed with error %d\n",
sp->sm_num, err);
return err;
}
# endif /* _KERNEL */
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_del */
/* Returns: Nil */
/* Parameters: sl(I) - pointer to synclist object to delete */
/* */
/* Deletes an object from the synclist table and free's its memory. */
/* ------------------------------------------------------------------------ */
void ipfsync_del(sl)
synclist_t *sl;
{
WRITE_ENTER(&ipf_syncstate);
*sl->sl_pnext = sl->sl_next;
if (sl->sl_next != NULL)
sl->sl_next->sl_pnext = sl->sl_pnext;
if (sl->sl_idx != -1)
syncupd[sl->sl_idx].sup_hdr.sm_sl = NULL;
RWLOCK_EXIT(&ipf_syncstate);
KFREE(sl);
}
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_nat */
/* Returns: int - 0 == success, else error value. */
/* Parameters: sp(I) - pointer to sync packet data header */
/* uio(I) - pointer to user data for further information */
/* */
/* Updates the NAT table according to information passed in the sync */
/* header. As required, more data is fetched from the uio structure but */
/* varies depending on the contents of the sync header. This function can */
/* create a new NAT entry or update one. Deletion is left to the NAT */
/* structures being timed out correctly. */
/* ------------------------------------------------------------------------ */
int ipfsync_nat(sp, data)
synchdr_t *sp;
void *data;
{
syncupdent_t su;
nat_t *n, *nat;
synclist_t *sl;
u_int hv = 0;
int err;
READ_ENTER(&ipf_syncnat);
switch (sp->sm_cmd)
{
case SMC_CREATE :
KMALLOC(n, nat_t *);
if (n == NULL) {
err = ENOMEM;
break;
}
KMALLOC(sl, synclist_t *);
if (sl == NULL) {
err = ENOMEM;
KFREE(n);
break;
}
nat = (nat_t *)data;
bzero((char *)n, offsetof(nat_t, nat_age));
bcopy((char *)&nat->nat_age, (char *)&n->nat_age,
sizeof(*n) - offsetof(nat_t, nat_age));
ipfsync_natorder(0, n);
n->nat_sync = sl;
sl->sl_idx = -1;
sl->sl_ipn = n;
sl->sl_num = ntohl(sp->sm_num);
WRITE_ENTER(&ipf_nat);
sl->sl_pnext = syncnattab + hv;
sl->sl_next = syncnattab[hv];
if (syncnattab[hv] != NULL)
syncnattab[hv]->sl_pnext = &sl->sl_next;
syncnattab[hv] = sl;
nat_insert(n, sl->sl_rev);
RWLOCK_EXIT(&ipf_nat);
break;
case SMC_UPDATE :
bcopy(data, &su, sizeof(su));
for (sl = syncnattab[hv]; (sl != NULL); sl = sl->sl_next)
if (sl->sl_hdr.sm_num == sp->sm_num)
break;
if (sl == NULL) {
err = ENOENT;
break;
}
READ_ENTER(&ipf_nat);
nat = sl->sl_ipn;
MUTEX_ENTER(&nat->nat_lock);
fr_setnatqueue(nat, sl->sl_rev);
MUTEX_EXIT(&nat->nat_lock);
RWLOCK_EXIT(&ipf_nat);
break;
default :
err = EINVAL;
break;
}
RWLOCK_EXIT(&ipf_syncnat);
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_new */
/* Returns: synclist_t* - NULL == failure, else pointer to new synclist */
/* data structure. */
/* Parameters: tab(I) - type of synclist_t to create */
/* fin(I) - pointer to packet information */
/* ptr(I) - pointer to owning object */
/* */
/* Creates a new sync table entry and notifies any sleepers that it's there */
/* waiting to be processed. */
/* ------------------------------------------------------------------------ */
synclist_t *ipfsync_new(tab, fin, ptr)
int tab;
fr_info_t *fin;
void *ptr;
{
synclist_t *sl, *ss;
synclogent_t *sle;
u_int hv, sz;
if (sl_idx == SYNCLOG_SZ)
return NULL;
KMALLOC(sl, synclist_t *);
if (sl == NULL)
return NULL;
MUTEX_ENTER(&ipf_syncadd);
/*
* Get a unique number for this synclist_t. The number is only meant
* to be unique for the lifetime of the structure and may be reused
* later.
*/
ipf_syncnum++;
if (ipf_syncnum == 0) {
ipf_syncnum = 1;
ipf_syncwrap = 1;
}
/*
* Use the synch number of the object as the hash key. Should end up
* with relatively even distribution over time.
* XXX - an attacker could lunch an DoS attack, of sorts, if they are
* the only one causing new table entries by only keeping open every
* nth connection they make, where n is a value in the interval
* [0, SYNC_STATETABSZ-1].
*/
if (tab == SMC_STATE) {
hv = ipf_syncnum & (SYNC_STATETABSZ - 1);
while (ipf_syncwrap != 0) {
for (ss = syncstatetab[hv]; ss; ss = ss->sl_next)
if (ss->sl_hdr.sm_num == ipf_syncnum)
break;
if (ss == NULL)
break;
ipf_syncnum++;
hv = ipf_syncnum & (SYNC_STATETABSZ - 1);
}
sl->sl_pnext = syncstatetab + hv;
sl->sl_next = syncstatetab[hv];
syncstatetab[hv] = sl;
} else {
hv = ipf_syncnum & (SYNC_NATTABSZ - 1);
while (ipf_syncwrap != 0) {
for (ss = syncnattab[hv]; ss; ss = ss->sl_next)
if (ss->sl_hdr.sm_num == ipf_syncnum)
break;
if (ss == NULL)
break;
ipf_syncnum++;
hv = ipf_syncnum & (SYNC_STATETABSZ - 1);
}
sl->sl_pnext = syncnattab + hv;
sl->sl_next = syncnattab[hv];
syncnattab[hv] = sl;
}
sl->sl_num = ipf_syncnum;
MUTEX_EXIT(&ipf_syncadd);
sl->sl_magic = htonl(SYNHDRMAGIC);
sl->sl_v = fin->fin_v;
sl->sl_p = fin->fin_p;
sl->sl_cmd = SMC_CREATE;
sl->sl_idx = -1;
sl->sl_table = tab;
sl->sl_rev = fin->fin_rev;
if (tab == SMC_STATE) {
sl->sl_ips = ptr;
sz = sizeof(*sl->sl_ips);
} else {
sl->sl_ipn = ptr;
sz = sizeof(*sl->sl_ipn);
}
sl->sl_len = sz;
/*
* Create the log entry to be read by a user daemon. When it has been
* finished and put on the queue, send a signal to wakeup any waiters.
*/
MUTEX_ENTER(&ipf_syncadd);
sle = synclog + sl_idx++;
bcopy((char *)&sl->sl_hdr, (char *)&sle->sle_hdr,
sizeof(sle->sle_hdr));
sle->sle_hdr.sm_num = htonl(sle->sle_hdr.sm_num);
sle->sle_hdr.sm_len = htonl(sle->sle_hdr.sm_len);
if (ptr != NULL) {
bcopy((char *)ptr, (char *)&sle->sle_un, sz);
if (tab == SMC_STATE) {
ipfsync_storder(1, &sle->sle_un.sleu_ips);
} else if (tab == SMC_NAT) {
ipfsync_natorder(1, &sle->sle_un.sleu_ipn);
}
}
MUTEX_EXIT(&ipf_syncadd);
MUTEX_ENTER(&ipsl_mutex);
# if SOLARIS
# ifdef _KERNEL
cv_signal(&ipslwait);
pollwakeup(&iplpollhead[IPL_LOGSYNC], POLLIN|POLLRDNORM);
# endif
MUTEX_EXIT(&ipsl_mutex);
# else
MUTEX_EXIT(&ipsl_mutex);
# ifdef _KERNEL
WAKEUP(&sl_tail, 0);
POLLWAKEUP(IPL_LOGSYNC);
# endif
# endif
return sl;
}
/* ------------------------------------------------------------------------ */
/* Function: ipfsync_update */
/* Returns: Nil */
/* Parameters: tab(I) - type of synclist_t to create */
/* fin(I) - pointer to packet information */
/* sl(I) - pointer to synchronisation object */
/* */
/* For outbound packets, only, create an sync update record for the user */
/* process to read. */
/* ------------------------------------------------------------------------ */
void ipfsync_update(tab, fin, sl)
int tab;
fr_info_t *fin;
synclist_t *sl;
{
synctcp_update_t *st;
syncupdent_t *slu;
ipstate_t *ips;
nat_t *nat;
if (fin->fin_out == 0 || sl == NULL)
return;
WRITE_ENTER(&ipf_syncstate);
MUTEX_ENTER(&ipf_syncadd);
if (sl->sl_idx == -1) {
slu = syncupd + su_idx;
sl->sl_idx = su_idx++;
bcopy((char *)&sl->sl_hdr, (char *)&slu->sup_hdr,
sizeof(slu->sup_hdr));
slu->sup_hdr.sm_magic = htonl(SYNHDRMAGIC);
slu->sup_hdr.sm_sl = sl;
slu->sup_hdr.sm_cmd = SMC_UPDATE;
slu->sup_hdr.sm_table = tab;
slu->sup_hdr.sm_num = htonl(sl->sl_num);
slu->sup_hdr.sm_len = htonl(sizeof(struct synctcp_update));
slu->sup_hdr.sm_rev = fin->fin_rev;
# if 0
if (fin->fin_p == IPPROTO_TCP) {
st->stu_len[0] = 0;
st->stu_len[1] = 0;
}
# endif
} else
slu = syncupd + sl->sl_idx;
MUTEX_EXIT(&ipf_syncadd);
MUTEX_DOWNGRADE(&ipf_syncstate);
/*
* Only TCP has complex timeouts, others just use default timeouts.
* For TCP, we only need to track the connection state and window.
*/
if (fin->fin_p == IPPROTO_TCP) {
st = &slu->sup_tcp;
if (tab == SMC_STATE) {
ips = sl->sl_ips;
st->stu_age = htonl(ips->is_die);
st->stu_data[0].td_end = ips->is_send;
st->stu_data[0].td_maxend = ips->is_maxsend;
st->stu_data[0].td_maxwin = ips->is_maxswin;
st->stu_state[0] = ips->is_state[0];
st->stu_data[1].td_end = ips->is_dend;
st->stu_data[1].td_maxend = ips->is_maxdend;
st->stu_data[1].td_maxwin = ips->is_maxdwin;
st->stu_state[1] = ips->is_state[1];
} else if (tab == SMC_NAT) {
nat = sl->sl_ipn;
st->stu_age = htonl(nat->nat_age);
}
}
RWLOCK_EXIT(&ipf_syncstate);
MUTEX_ENTER(&ipsl_mutex);
# if SOLARIS
# ifdef _KERNEL
cv_signal(&ipslwait);
pollwakeup(&iplpollhead[IPL_LOGSYNC], POLLIN|POLLRDNORM);
# endif
MUTEX_EXIT(&ipsl_mutex);
# else
MUTEX_EXIT(&ipsl_mutex);
# ifdef _KERNEL
WAKEUP(&sl_tail, 0);
POLLWAKEUP(IPL_LOGSYNC);
# endif
# endif
}
/* ------------------------------------------------------------------------ */
/* Function: fr_sync_ioctl */
/* Returns: int - 0 == success, != 0 == failure */
/* Parameters: data(I) - pointer to ioctl data */
/* cmd(I) - ioctl command integer */
/* mode(I) - file mode bits used with open */
/* */
/* This function currently does not handle any ioctls and so just returns */
/* EINVAL on all occasions. */
/* ------------------------------------------------------------------------ */
int fr_sync_ioctl(data, cmd, mode, uid, ctx)
caddr_t data;
ioctlcmd_t cmd;
int mode, uid;
void *ctx;
{
return EINVAL;
}
int ipfsync_canread()
{
return !((sl_tail == sl_idx) && (su_tail == su_idx));
}
int ipfsync_canwrite()
{
return 1;
}
#endif /* IPFILTER_SYNC */