blob: 50994e67d732f926d0adb4c5d49a1943b9fb7dc4 [file] [log] [blame] [raw]
/*
* Copyright (C) 1993-2003 by Darren Reed.
*
* See the IPFILTER.LICENCE file for details on licencing.
*/
#if defined(KERNEL) || defined(_KERNEL)
# undef KERNEL
# undef _KERNEL
# define KERNEL 1
# define _KERNEL 1
#endif
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#if defined(__NetBSD__)
# if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL)
# if (__NetBSD_Version__ < 399001400)
# include "opt_ipfilter_log.h"
# else
# include "opt_ipfilter.h"
# endif
# endif
#endif
#if defined(_KERNEL) && defined(__FreeBSD_version) && \
(__FreeBSD_version >= 220000)
# if (__FreeBSD_version >= 400000)
# if !defined(IPFILTER_LKM)
# include "opt_inet6.h"
# endif
# if (__FreeBSD_version == 400019)
# define CSUM_DELAY_DATA
# endif
# endif
# include <sys/filio.h>
#else
# include <sys/ioctl.h>
#endif
#if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
# include <sys/filio.h>
#endif
#if !defined(_AIX51)
# include <sys/fcntl.h>
#endif
#if defined(_KERNEL)
# include <sys/systm.h>
# include <sys/file.h>
#else
# include <stdio.h>
# include <string.h>
# include <stdlib.h>
# include <stddef.h>
# include <sys/file.h>
# define _KERNEL
# ifdef __OpenBSD__
struct file;
# endif
# include <sys/uio.h>
# undef _KERNEL
#endif
#if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
!defined(linux)
# include <sys/mbuf.h>
#else
# if !defined(linux)
# include <sys/byteorder.h>
# endif
# if (SOLARIS2 < 5) && defined(sun)
# include <sys/dditypes.h>
# endif
#endif
#ifdef __hpux
# define _NET_ROUTE_INCLUDED
#endif
#if !defined(linux)
# include <sys/protosw.h>
#endif
#include <sys/socket.h>
#include <net/if.h>
#ifdef sun
# include <net/af.h>
#endif
#if !defined(_KERNEL) && defined(__FreeBSD__)
# if (__FreeBSD_version >= 504000)
# undef _RADIX_H_
# endif
# include "radix_ipf.h"
#endif
#ifdef __osf__
# include "radix_ipf.h"
#else
# include <net/route.h>
#endif
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#if !defined(linux)
# include <netinet/ip_var.h>
#endif
#if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
# include <sys/hashing.h>
# include <netinet/in_var.h>
#endif
#include <netinet/tcp.h>
#if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
# include <netinet/udp.h>
# include <netinet/ip_icmp.h>
#endif
#ifdef __hpux
# undef _NET_ROUTE_INCLUDED
#endif
#ifdef __osf__
# undef _RADIX_H_
#endif
#include "netinet/ip_compat.h"
#ifdef USE_INET6
# include <netinet/icmp6.h>
# if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
# include <netinet6/in6_var.h>
# endif
#endif
#include <netinet/tcpip.h>
#include "netinet/ip_fil.h"
#include "netinet/ip_nat.h"
#include "netinet/ip_frag.h"
#include "netinet/ip_state.h"
#include "netinet/ip_proxy.h"
#include "netinet/ip_auth.h"
#ifdef IPFILTER_SCAN
# include "netinet/ip_scan.h"
#endif
#ifdef IPFILTER_SYNC
# include "netinet/ip_sync.h"
#endif
#include "netinet/ip_pool.h"
#include "netinet/ip_htable.h"
#ifdef IPFILTER_COMPILED
# include "netinet/ip_rules.h"
#endif
#if defined(IPFILTER_BPF) && defined(_KERNEL)
# include <net/bpf.h>
#endif
#if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
# include <sys/malloc.h>
# if defined(_KERNEL) && !defined(IPFILTER_LKM)
# include "opt_ipfilter.h"
# endif
#endif
#include "netinet/ipl.h"
/* END OF INCLUDES */
#if !defined(lint)
static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed";
static const char rcsid[] = "@(#)$Id$";
#endif
#ifndef _KERNEL
# include "ipf.h"
# include "ipt.h"
# include "bpf-ipf.h"
extern int opts;
extern int blockreason;
#endif /* _KERNEL */
fr_info_t ipf_cache[2][8];
ipf_statistics_t ipf_stats[2];
frentry_t *ipf_rules[2][2] = { { NULL, NULL }, { NULL, NULL } },
*ipf_acct[2][2] = { { NULL, NULL }, { NULL, NULL } };
struct frgroup *ipf_groups[IPL_LOGSIZE][2];
char ipfilter_version[] = IPL_VERSION;
int ipf_refcnt = 0;
/*
* For ipf_running:
* 0 == loading, 1 = running, -1 = disabled, -2 = unloading
*/
int ipf_running = 0;
int ipf_flags = IPF_LOGGING;
int ipf_active = 0;
int ipf_control_forwarding = 0;
int ipf_update_ipid = 0;
u_short ipf_ip_id = 0;
int ipf_chksrc = 0; /* causes a system crash if enabled */
int ipf_minttl = 4;
int ipf_icmpminfragmtu = 68;
u_long ipf_frouteok[2] = {0, 0};
u_long ipf_userifqs = 0;
u_long ipf_badcoalesces[2] = {0, 0};
u_char ipf_iss_secret[32];
int ipf_specfuncref[3][2] = {{0,0}, {0,0}, {0,0}};
#if defined(IPFILTER_DEFAULT_BLOCK)
int ipf_pass = FR_BLOCK|FR_NOMATCH;
#else
int ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
#endif
int ipf_interror = 0;
int ipf_features = 0
#ifdef IPFILTER_LKM
| IPF_FEAT_LKM
#endif
#ifdef IPFILTER_LOG
| IPF_FEAT_LOG
#endif
#ifdef IPFILTER_LOOKUP
| IPF_FEAT_LOOKUP
#endif
#ifdef IPFILTER_BPF
| IPF_FEAT_BPF
#endif
#ifdef IPFILTER_COMPILED
| IPF_FEAT_COMPILED
#endif
#ifdef IPFILTER_CKSUM
| IPF_FEAT_CKSUM
#endif
#ifdef IPFILTER_SYNC
| IPF_FEAT_SYNC
#endif
#ifdef IPFILTER_SCAN
| IPF_FEAT_SCAN
#endif
#ifdef USE_INET6
| IPF_FEAT_IPV6
#endif
;
static INLINE int ipf_check_ipf __P((fr_info_t *, frentry_t *, int));
static u_32_t ipf_checkcipso __P((fr_info_t *, u_char *, int));
static u_32_t ipf_checkripso __P((u_char *));
static void ipf_checkrulefunc __P((void *, int, int));
static u_32_t ipf_decaps __P((fr_info_t *, u_32_t, int));
static int ipf_deliverlocal __P((int, void *, void *));
static frentry_t *ipf_dolog __P((fr_info_t *, u_32_t *));
static int ipf_flushlist __P((int, minor_t, int *, frentry_t **));
static ipfunc_t ipf_findfunc __P((ipfunc_t));
static frentry_t *ipf_firewall __P((fr_info_t *, u_32_t *));
static int ipf_fr_matcharray __P((fr_info_t *, int *));
static int ipf_frruleiter __P((void *, int, void *));
static int ipf_funcinit __P((frentry_t *fr));
static int ipf_geniter __P((ipftoken_t *, ipfgeniter_t *));
#ifdef IPFILTER_LOOKUP
static int ipf_grpmapinit __P((frentry_t *fr));
#endif
static int ipf_portcheck __P((frpcmp_t *, u_32_t));
static INLINE int ipf_pr_ah __P((fr_info_t *));
static INLINE void ipf_pr_esp __P((fr_info_t *));
static INLINE void ipf_pr_gre __P((fr_info_t *));
static INLINE void ipf_pr_udp __P((fr_info_t *));
static INLINE void ipf_pr_tcp __P((fr_info_t *));
static INLINE void ipf_pr_icmp __P((fr_info_t *));
static INLINE void ipf_pr_ipv4hdr __P((fr_info_t *));
static INLINE void ipf_pr_short __P((fr_info_t *, int));
static INLINE int ipf_pr_tcpcommon __P((fr_info_t *));
static INLINE int ipf_pr_udpcommon __P((fr_info_t *));
static void ipf_synclist __P((frentry_t *, void *));
static ipftuneable_t *ipf_tune_findbyname __P((const char *));
static ipftuneable_t *ipf_tune_findbycookie __P((void *, void **));
static void ipf_unlinktoken __P((ipftoken_t *));
static int ipf_updateipid __P((fr_info_t *));
/*
* bit values for identifying presence of individual IP options
* All of these tables should be ordered by increasing key value on the left
* hand side to allow for binary searching of the array and include a trailer
* with a 0 for the bitmask for linear searches to easily find the end with.
*/
static const struct optlist ipopts[20] = {
{ IPOPT_NOP, 0x000001 },
{ IPOPT_RR, 0x000002 },
{ IPOPT_ZSU, 0x000004 },
{ IPOPT_MTUP, 0x000008 },
{ IPOPT_MTUR, 0x000010 },
{ IPOPT_ENCODE, 0x000020 },
{ IPOPT_TS, 0x000040 },
{ IPOPT_TR, 0x000080 },
{ IPOPT_SECURITY, 0x000100 },
{ IPOPT_LSRR, 0x000200 },
{ IPOPT_E_SEC, 0x000400 },
{ IPOPT_CIPSO, 0x000800 },
{ IPOPT_SATID, 0x001000 },
{ IPOPT_SSRR, 0x002000 },
{ IPOPT_ADDEXT, 0x004000 },
{ IPOPT_VISA, 0x008000 },
{ IPOPT_IMITD, 0x010000 },
{ IPOPT_EIP, 0x020000 },
{ IPOPT_FINN, 0x040000 },
{ 0, 0x000000 }
};
#ifdef USE_INET6
static struct optlist ip6exthdr[] = {
{ IPPROTO_HOPOPTS, 0x000001 },
{ IPPROTO_IPV6, 0x000002 },
{ IPPROTO_ROUTING, 0x000004 },
{ IPPROTO_FRAGMENT, 0x000008 },
{ IPPROTO_ESP, 0x000010 },
{ IPPROTO_AH, 0x000020 },
{ IPPROTO_NONE, 0x000040 },
{ IPPROTO_DSTOPTS, 0x000080 },
{ IPPROTO_MOBILITY, 0x000100 },
{ 0, 0 }
};
#endif
/*
* bit values for identifying presence of individual IP security options
*/
static const struct optlist secopt[8] = {
{ IPSO_CLASS_RES4, 0x01 },
{ IPSO_CLASS_TOPS, 0x02 },
{ IPSO_CLASS_SECR, 0x04 },
{ IPSO_CLASS_RES3, 0x08 },
{ IPSO_CLASS_CONF, 0x10 },
{ IPSO_CLASS_UNCL, 0x20 },
{ IPSO_CLASS_RES2, 0x40 },
{ IPSO_CLASS_RES1, 0x80 }
};
/*
* Table of functions available for use with call rules.
*/
static ipfunc_resolve_t ipf_availfuncs[] = {
#ifdef IPFILTER_LOOKUP
{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, NULL },
{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, NULL },
#endif
{ "checkstate", ipf_state_check, NULL, ipf_specfuncref[0] },
{ "natin", ipf_nat_ipfin, NULL, ipf_specfuncref[1] },
{ "natout", ipf_nat_ipfout, NULL, ipf_specfuncref[2] },
{ "", NULL }
};
/*
* The next section of code is a a collection of small routines that set
* fields in the fr_info_t structure passed based on properties of the
* current packet. There are different routines for the same protocol
* for each of IPv4 and IPv6. Adding a new protocol, for which there
* will "special" inspection for setup, is now more easily done by adding
* a new routine and expanding the ipf_pr_ipinit*() function rather than by
* adding more code to a growing switch statement.
*/
#ifdef USE_INET6
static INLINE int ipf_pr_ah6 __P((fr_info_t *));
static INLINE void ipf_pr_esp6 __P((fr_info_t *));
static INLINE void ipf_pr_gre6 __P((fr_info_t *));
static INLINE void ipf_pr_udp6 __P((fr_info_t *));
static INLINE void ipf_pr_tcp6 __P((fr_info_t *));
static INLINE void ipf_pr_icmp6 __P((fr_info_t *));
static INLINE int ipf_pr_ipv6hdr __P((fr_info_t *));
static INLINE void ipf_pr_short6 __P((fr_info_t *, int));
static INLINE int ipf_pr_hopopts6 __P((fr_info_t *));
static INLINE int ipf_pr_mobility6 __P((fr_info_t *));
static INLINE int ipf_pr_routing6 __P((fr_info_t *));
static INLINE int ipf_pr_dstopts6 __P((fr_info_t *));
static INLINE int ipf_pr_fragment6 __P((fr_info_t *));
static INLINE struct ip6_ext *ipf_pr_ipv6exthdr __P((fr_info_t *, int, int));
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_short6 */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* xmin(I) - minimum header size */
/* */
/* IPv6 Only */
/* This is function enforces the 'is a packet too short to be legit' rule */
/* for IPv6 and marks the packet with FI_SHORT if so. See function comment */
/* for ipf_pr_short() for more details. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_short6(fin, xmin)
fr_info_t *fin;
int xmin;
{
if (fin->fin_dlen < xmin)
fin->fin_flx |= FI_SHORT;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_ipv6hdr */
/* Returns: int - 0 == packet ok, -1 = bad packet, drop it */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* Copy values from the IPv6 header into the fr_info_t struct and call the */
/* per-protocol analyzer if it exists. In validating the packet, a protocol*/
/* analyzer may pullup or free the packet itself so we need to be vigiliant */
/* of that possibility arising. */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_pr_ipv6hdr(fin)
fr_info_t *fin;
{
ip6_t *ip6 = (ip6_t *)fin->fin_ip;
int p, go = 1, i, hdrcount;
fr_ip_t *fi = &fin->fin_fi;
fin->fin_off = 0;
fi->fi_tos = 0;
fi->fi_optmsk = 0;
fi->fi_secmsk = 0;
fi->fi_auth = 0;
p = ip6->ip6_nxt;
fi->fi_ttl = ip6->ip6_hlim;
fi->fi_src.in6 = ip6->ip6_src;
fi->fi_dst.in6 = ip6->ip6_dst;
fin->fin_id = 0;
hdrcount = 0;
while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) {
switch (p)
{
case IPPROTO_UDP :
ipf_pr_udp6(fin);
go = 0;
break;
case IPPROTO_TCP :
ipf_pr_tcp6(fin);
go = 0;
break;
case IPPROTO_ICMPV6 :
ipf_pr_icmp6(fin);
go = 0;
break;
case IPPROTO_GRE :
ipf_pr_gre6(fin);
go = 0;
break;
case IPPROTO_HOPOPTS :
p = ipf_pr_hopopts6(fin);
break;
case IPPROTO_MOBILITY :
p = ipf_pr_mobility6(fin);
break;
case IPPROTO_DSTOPTS :
p = ipf_pr_dstopts6(fin);
break;
case IPPROTO_ROUTING :
p = ipf_pr_routing6(fin);
break;
case IPPROTO_AH :
p = ipf_pr_ah6(fin);
break;
case IPPROTO_ESP :
ipf_pr_esp6(fin);
go = 0;
break;
case IPPROTO_IPV6 :
for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
if (ip6exthdr[i].ol_val == p) {
fin->fin_flx |= ip6exthdr[i].ol_bit;
break;
}
go = 0;
break;
case IPPROTO_NONE :
go = 0;
break;
case IPPROTO_FRAGMENT :
p = ipf_pr_fragment6(fin);
/*
* Given that the only fragments we want to let through
* (where fin_off != 0) are those where the non-first
* fragments only have data, we can safely stop looking
* at headers if this is a non-leading fragment.
*/
if (fin->fin_off != 0)
go = 0;
break;
default :
go = 0;
break;
}
hdrcount++;
/*
* It is important to note that at this point, for the
* extension headers (go != 0), the entire header may not have
* been pulled up when the code gets to this point. This is
* only done for "go != 0" because the other header handlers
* will all pullup their complete header. The other indicator
* of an incomplete packet is that this was just an extension
* header.
*/
if ((go != 0) && (p != IPPROTO_NONE) &&
(ipf_pr_pullup(fin, 0) == -1)) {
p = IPPROTO_NONE;
break;
}
}
/*
* Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
* and destroy whatever packet was here. The caller of this function
* expects us to return -1 if there is a problem with ipf_pullup.
*/
if (fin->fin_m == NULL)
return -1;
fi->fi_p = p;
/*
* IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
* "go != 0" imples the above loop hasn't arrived at a layer 4 header.
*/
if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
fin->fin_flx |= FI_BAD;
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_badfrag);
return -1;
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_ipv6exthdr */
/* Returns: struct ip6_ext * - pointer to the start of the next header */
/* or NULL if there is a prolblem. */
/* Parameters: fin(I) - pointer to packet information */
/* multiple(I) - flag indicating yes/no if multiple occurances */
/* of this extension header are allowed. */
/* proto(I) - protocol number for this extension header */
/* */
/* IPv6 Only */
/* This function embodies a number of common checks that all IPv6 extension */
/* headers must be subjected to. For example, making sure the packet is */
/* big enough for it to be in, checking if it is repeated and setting a */
/* flag to indicate its presence. */
/* ------------------------------------------------------------------------ */
static INLINE struct ip6_ext *
ipf_pr_ipv6exthdr(fin, multiple, proto)
fr_info_t *fin;
int multiple, proto;
{
struct ip6_ext *hdr;
u_short shift;
int i;
fin->fin_flx |= FI_V6EXTHDR;
/* 8 is default length of extension hdr */
if ((fin->fin_dlen - 8) < 0) {
fin->fin_flx |= FI_SHORT;
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_ext_short);
return NULL;
}
if (ipf_pr_pullup(fin, 8) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_ext_pullup);
return NULL;
}
hdr = fin->fin_dp;
switch (proto)
{
case IPPROTO_FRAGMENT :
shift = 8;
break;
default :
shift = 8 + (hdr->ip6e_len << 3);
break;
}
if (shift > fin->fin_dlen) { /* Nasty extension header length? */
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_ext_hlen);
fin->fin_flx |= FI_BAD;
return NULL;
}
fin->fin_dp = (char *)fin->fin_dp + shift;
fin->fin_dlen -= shift;
/*
* If we have seen a fragment header, do not set any flags to indicate
* the presence of this extension header as it has no impact on the
* end result until after it has been defragmented.
*/
if (fin->fin_flx & FI_FRAG)
return hdr;
for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
if (ip6exthdr[i].ol_val == proto) {
/*
* Most IPv6 extension headers are only allowed once.
*/
if ((multiple == 0) &&
((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
fin->fin_flx |= FI_BAD;
else
fin->fin_optmsk |= ip6exthdr[i].ol_bit;
break;
}
return hdr;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_hopopts6 */
/* Returns: int - value of the next header or IPPROTO_NONE if error */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* This is function checks pending hop by hop options extension header */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_pr_hopopts6(fin)
fr_info_t *fin;
{
struct ip6_ext *hdr;
hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
if (hdr == NULL)
return IPPROTO_NONE;
return hdr->ip6e_nxt;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_mobility6 */
/* Returns: int - value of the next header or IPPROTO_NONE if error */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* This is function checks the IPv6 mobility extension header */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_pr_mobility6(fin)
fr_info_t *fin;
{
struct ip6_ext *hdr;
hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
if (hdr == NULL)
return IPPROTO_NONE;
return hdr->ip6e_nxt;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_routing6 */
/* Returns: int - value of the next header or IPPROTO_NONE if error */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* This is function checks pending routing extension header */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_pr_routing6(fin)
fr_info_t *fin;
{
struct ip6_routing *hdr;
hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
if (hdr == NULL)
return IPPROTO_NONE;
switch (hdr->ip6r_type)
{
case 0 :
/*
* Nasty extension header length?
*/
if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
(hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
fin->fin_flx |= FI_BAD;
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_rh_bad);
return IPPROTO_NONE;
}
break;
default :
break;
}
return hdr->ip6r_nxt;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_fragment6 */
/* Returns: int - value of the next header or IPPROTO_NONE if error */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* Examine the IPv6 fragment header and extract fragment offset information.*/
/* */
/* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
/* so than in IPv4. There are 5 cases of fragments with IPv6 that all */
/* packets with a fragment header can fit into. They are as follows: */
/* */
/* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */
/* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */
/* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */
/* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */
/* 5. [IPV6][0-n EH][FH][data] */
/* */
/* IPV6 = IPv6 header, FH = Fragment Header, */
/* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
/* */
/* Packets that match 1, 2, 3 will be dropped as the only reasonable */
/* scenario in which they happen is in extreme circumstances that are most */
/* likely to be an indication of an attack rather than normal traffic. */
/* A type 3 packet may be sent by an attacked after a type 4 packet. There */
/* are two rules that can be used to guard against type 3 packets: L4 */
/* headers must always be in a packet that has the offset field set to 0 */
/* and no packet is allowed to overlay that where offset = 0. */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_pr_fragment6(fin)
fr_info_t *fin;
{
struct ip6_frag *frag;
fin->fin_flx |= FI_FRAG;
frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
if (frag == NULL) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_frag_bad);
return IPPROTO_NONE;
}
if (ipf_pr_pullup(fin, sizeof(*frag)) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_frag_pullup);
return IPPROTO_NONE;
}
if ((int)(fin->fin_dlen - sizeof(*frag)) < 0) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_frag_size);
fin->fin_flx |= FI_SHORT;
return IPPROTO_NONE;
}
if ((fin->fin_plen & 7) != 0) {
/*
* Any fragment that isn't the last fragment must have its
* length as a multiple of 8.
*/
if (ntohs(frag->ip6f_offlg) & 1)
fin->fin_flx |= FI_BAD;
}
fin->fin_fraghdr = frag;
fin->fin_id = frag->ip6f_ident;
fin->fin_off = ntohs(frag->ip6f_offlg) & 0xfff8;
if (fin->fin_off != 0)
fin->fin_flx |= FI_FRAGBODY;
/*
* We don't know where the transport layer header (or whatever is next
* is), as it could be behind destination options (amongst others) so
* return the fragment header as the type of packet this is. Note that
* this effectively disables the fragment cache for > 1 protocol at a
* time.
*/
return frag->ip6f_nxt;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_dstopts6 */
/* Returns: int - value of the next header or IPPROTO_NONE if error */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* This is function checks pending destination options extension header */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_pr_dstopts6(fin)
fr_info_t *fin;
{
struct ip6_ext *hdr;
hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
if (hdr == NULL) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_dst_bad);
return IPPROTO_NONE;
}
return hdr->ip6e_nxt;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_icmp6 */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* This routine is mainly concerned with determining the minimum valid size */
/* for an ICMPv6 packet. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_icmp6(fin)
fr_info_t *fin;
{
int minicmpsz = sizeof(struct icmp6_hdr);
struct icmp6_hdr *icmp6;
if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_icmp6_pullup);
return;
}
if (fin->fin_dlen > 1) {
ip6_t *ip6;
icmp6 = fin->fin_dp;
fin->fin_data[0] = *(u_short *)icmp6;
if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
fin->fin_flx |= FI_ICMPQUERY;
switch (icmp6->icmp6_type)
{
case ICMP6_ECHO_REPLY :
case ICMP6_ECHO_REQUEST :
minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
break;
case ICMP6_DST_UNREACH :
case ICMP6_PACKET_TOO_BIG :
case ICMP6_TIME_EXCEEDED :
case ICMP6_PARAM_PROB :
fin->fin_flx |= FI_ICMPERR;
if ((fin->fin_m != NULL) &&
(M_LEN(fin->fin_m) < fin->fin_plen)) {
if (ipf_coalesce(fin) != 1)
return;
}
if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
return;
/*
* If the destination of this packet doesn't match the
* source of the original packet then this packet is
* not correct.
*/
icmp6 = fin->fin_dp;
ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
if (IP6_NEQ(&fin->fin_fi.fi_dst,
(i6addr_t *)&ip6->ip6_src))
fin->fin_flx |= FI_BAD;
minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
break;
default :
break;
}
}
ipf_pr_short6(fin, minicmpsz);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_udp6 */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* Analyse the packet for IPv6/UDP properties. */
/* Is not expected to be called for fragmented packets. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_udp6(fin)
fr_info_t *fin;
{
if (ipf_pr_udpcommon(fin) == 0) {
u_char p = fin->fin_p;
fin->fin_p = IPPROTO_UDP;
ipf_checkv6sum(fin);
fin->fin_p = p;
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_tcp6 */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* Analyse the packet for IPv6/TCP properties. */
/* Is not expected to be called for fragmented packets. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_tcp6(fin)
fr_info_t *fin;
{
if (ipf_pr_tcpcommon(fin) == 0) {
u_char p = fin->fin_p;
fin->fin_p = IPPROTO_UDP;
ipf_checkv6sum(fin);
fin->fin_p = p;
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_esp6 */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* Analyse the packet for ESP properties. */
/* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
/* even though the newer ESP packets must also have a sequence number that */
/* is 32bits as well, it is not possible(?) to determine the version from a */
/* simple packet header. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_esp6(fin)
fr_info_t *fin;
{
if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_esp_pullup);
return;
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_ah6 */
/* Returns: int - value of the next header or IPPROTO_NONE if error */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv6 Only */
/* Analyse the packet for AH properties. */
/* The minimum length is taken to be the combination of all fields in the */
/* header being present and no authentication data (null algorithm used.) */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_pr_ah6(fin)
fr_info_t *fin;
{
authhdr_t *ah;
fin->fin_flx |= FI_AH;
ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
if (ah == NULL) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_ah_bad);
return IPPROTO_NONE;
}
ipf_pr_short6(fin, sizeof(*ah));
/*
* No need for another pullup, ipf_pr_ipv6exthdr() will pullup
* enough data to satisfy ah_next (the very first one.)
*/
return ah->ah_next;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_gre6 */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* Analyse the packet for GRE properties. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_gre6(fin)
fr_info_t *fin;
{
grehdr_t *gre;
if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_gre_pullup);
return;
}
gre = fin->fin_dp;
if (GRE_REV(gre->gr_flags) == 1)
fin->fin_data[0] = gre->gr_call;
}
#endif /* USE_INET6 */
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_pullup */
/* Returns: int - 0 == pullup succeeded, -1 == failure */
/* Parameters: fin(I) - pointer to packet information */
/* plen(I) - length (excluding L3 header) to pullup */
/* */
/* Short inline function to cut down on code duplication to perform a call */
/* to ipf_pullup to ensure there is the required amount of data, */
/* consecutively in the packet buffer. */
/* ------------------------------------------------------------------------ */
int
ipf_pr_pullup(fin, plen)
fr_info_t *fin;
int plen;
{
if (fin->fin_m != NULL) {
if (fin->fin_dp != NULL)
plen += (char *)fin->fin_dp -
((char *)fin->fin_ip + fin->fin_hlen);
plen += fin->fin_hlen;
if (M_LEN(fin->fin_m) < plen) {
#if defined(_KERNEL)
if (ipf_pullup(fin->fin_m, fin, plen) == NULL)
return -1;
#else
/*
* Fake ipf_pullup failing
*/
*fin->fin_mp = NULL;
fin->fin_m = NULL;
fin->fin_ip = NULL;
return -1;
#endif
}
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_short */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* xmin(I) - minimum header size */
/* */
/* Check if a packet is "short" as defined by xmin. The rule we are */
/* applying here is that the packet must not be fragmented within the layer */
/* 4 header. That is, it must not be a fragment that has its offset set to */
/* start within the layer 4 header (hdrmin) or if it is at offset 0, the */
/* entire layer 4 header must be present (min). */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_short(fin, xmin)
fr_info_t *fin;
int xmin;
{
if (fin->fin_off == 0) {
if (fin->fin_dlen < xmin)
fin->fin_flx |= FI_SHORT;
} else if (fin->fin_off < xmin) {
fin->fin_flx |= FI_SHORT;
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_icmp */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv4 Only */
/* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */
/* except extrememly bad packets, both type and code will be present. */
/* The expected minimum size of an ICMP packet is very much dependent on */
/* the type of it. */
/* */
/* XXX - other ICMP sanity checks? */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_icmp(fin)
fr_info_t *fin;
{
int minicmpsz = sizeof(struct icmp);
icmphdr_t *icmp;
ip_t *oip;
ipf_pr_short(fin, ICMPERR_ICMPHLEN);
if (fin->fin_off != 0) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v4_icmp_frag);
return;
}
if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v4_icmp_pullup);
return;
}
if (fin->fin_dlen > 1) {
icmp = fin->fin_dp;
fin->fin_data[0] = *(u_short *)icmp;
if (fin->fin_dlen >= 6) /* ID field */
fin->fin_data[1] = icmp->icmp_id;
switch (icmp->icmp_type)
{
case ICMP_ECHOREPLY :
case ICMP_ECHO :
/* Router discovery messaes - RFC 1256 */
case ICMP_ROUTERADVERT :
case ICMP_ROUTERSOLICIT :
fin->fin_flx |= FI_ICMPQUERY;
minicmpsz = ICMP_MINLEN;
break;
/*
* type(1) + code(1) + cksum(2) + id(2) seq(2) +
* 3 * timestamp(3 * 4)
*/
case ICMP_TSTAMP :
case ICMP_TSTAMPREPLY :
fin->fin_flx |= FI_ICMPQUERY;
minicmpsz = 20;
break;
/*
* type(1) + code(1) + cksum(2) + id(2) seq(2) +
* mask(4)
*/
case ICMP_MASKREQ :
case ICMP_MASKREPLY :
fin->fin_flx |= FI_ICMPQUERY;
minicmpsz = 12;
break;
/*
* type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
*/
case ICMP_UNREACH :
#ifdef icmp_nextmtu
if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
if (icmp->icmp_nextmtu < ipf_icmpminfragmtu)
fin->fin_flx |= FI_BAD;
}
#endif
case ICMP_SOURCEQUENCH :
case ICMP_REDIRECT :
case ICMP_TIMXCEED :
case ICMP_PARAMPROB :
fin->fin_flx |= FI_ICMPERR;
if (ipf_coalesce(fin) != 1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].
fr_icmp_coalesce);
return;
}
/*
* ICMP error packets should not be generated for IP
* packets that are a fragment that isn't the first
* fragment.
*/
oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
fin->fin_flx |= FI_BAD;
/*
* If the destination of this packet doesn't match the
* source of the original packet then this packet is
* not correct.
*/
if (oip->ip_src.s_addr != fin->fin_daddr)
fin->fin_flx |= FI_BAD;
break;
default :
break;
}
}
ipf_pr_short(fin, minicmpsz);
ipf_checkv4sum(fin);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_tcpcommon */
/* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* TCP header sanity checking. Look for bad combinations of TCP flags, */
/* and make some checks with how they interact with other fields. */
/* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */
/* valid and mark the packet as bad if not. */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_pr_tcpcommon(fin)
fr_info_t *fin;
{
int flags, tlen;
tcphdr_t *tcp;
fin->fin_flx |= FI_TCPUDP;
if (fin->fin_off != 0) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_tcp_frag);
return 0;
}
if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_tcp_pullup);
return -1;
}
tcp = fin->fin_dp;
tcp = fin->fin_dp;
if (fin->fin_dlen > 3) {
fin->fin_sport = ntohs(tcp->th_sport);
fin->fin_dport = ntohs(tcp->th_dport);
}
if ((fin->fin_flx & FI_SHORT) != 0) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_tcp_short);
return 1;
}
/*
* Use of the TCP data offset *must* result in a value that is at
* least the same size as the TCP header.
*/
tlen = TCP_OFF(tcp) << 2;
if (tlen < sizeof(tcphdr_t)) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_tcp_small);
fin->fin_flx |= FI_BAD;
return 1;
}
flags = tcp->th_flags;
fin->fin_tcpf = tcp->th_flags;
/*
* If the urgent flag is set, then the urgent pointer must
* also be set and vice versa. Good TCP packets do not have
* just one of these set.
*/
if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
fin->fin_flx |= FI_BAD;
#if 0
} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
/*
* Ignore this case (#if 0) as it shows up in "real"
* traffic with bogus values in the urgent pointer field.
*/
fin->fin_flx |= FI_BAD;
#endif
} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
((flags & (TH_RST|TH_ACK)) == TH_RST)) {
/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
fin->fin_flx |= FI_BAD;
#if 1
} else if (((flags & TH_SYN) != 0) &&
((flags & (TH_URG|TH_PUSH)) != 0)) {
/*
* SYN with URG and PUSH set is not for normal TCP but it is
* possible(?) with T/TCP...but who uses T/TCP?
*/
fin->fin_flx |= FI_BAD;
#endif
} else if (!(flags & TH_ACK)) {
/*
* If the ack bit isn't set, then either the SYN or
* RST bit must be set. If the SYN bit is set, then
* we expect the ACK field to be 0. If the ACK is
* not set and if URG, PSH or FIN are set, consdier
* that to indicate a bad TCP packet.
*/
if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
/*
* Cisco PIX sets the ACK field to a random value.
* In light of this, do not set FI_BAD until a patch
* is available from Cisco to ensure that
* interoperability between existing systems is
* achieved.
*/
/*fin->fin_flx |= FI_BAD*/;
} else if (!(flags & (TH_RST|TH_SYN))) {
fin->fin_flx |= FI_BAD;
} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
fin->fin_flx |= FI_BAD;
}
}
if (fin->fin_flx & FI_BAD) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_tcp_bad_flags);
return 1;
}
/*
* At this point, it's not exactly clear what is to be gained by
* marking up which TCP options are and are not present. The one we
* are most interested in is the TCP window scale. This is only in
* a SYN packet [RFC1323] so we don't need this here...?
* Now if we were to analyse the header for passive fingerprinting,
* then that might add some weight to adding this...
*/
if (tlen == sizeof(tcphdr_t)) {
return 0;
}
if (ipf_pr_pullup(fin, tlen) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_tcp_pullup);
return -1;
}
#if 0
tcp = fin->fin_dp;
ip = fin->fin_ip;
s = (u_char *)(tcp + 1);
off = IP_HL(ip) << 2;
# ifdef _KERNEL
if (fin->fin_mp != NULL) {
mb_t *m = *fin->fin_mp;
if (off + tlen > M_LEN(m))
return;
}
# endif
for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
opt = *s;
if (opt == '\0')
break;
else if (opt == TCPOPT_NOP)
ol = 1;
else {
if (tlen < 2)
break;
ol = (int)*(s + 1);
if (ol < 2 || ol > tlen)
break;
}
for (i = 9, mv = 4; mv >= 0; ) {
op = ipopts + i;
if (opt == (u_char)op->ol_val) {
optmsk |= op->ol_bit;
break;
}
}
tlen -= ol;
s += ol;
}
#endif /* 0 */
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_udpcommon */
/* Returns: int - 0 = header ok, 1 = bad packet */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* Extract the UDP source and destination ports, if present. If compiled */
/* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_pr_udpcommon(fin)
fr_info_t *fin;
{
udphdr_t *udp;
fin->fin_flx |= FI_TCPUDP;
if (!fin->fin_off && (fin->fin_dlen > 3)) {
if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
fin->fin_flx |= FI_SHORT;
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_udp_pullup);
return 1;
}
udp = fin->fin_dp;
fin->fin_sport = ntohs(udp->uh_sport);
fin->fin_dport = ntohs(udp->uh_dport);
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_tcp */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv4 Only */
/* Analyse the packet for IPv4/TCP properties. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_tcp(fin)
fr_info_t *fin;
{
ipf_pr_short(fin, sizeof(tcphdr_t));
if (ipf_pr_tcpcommon(fin) == 0)
ipf_checkv4sum(fin);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_udp */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv4 Only */
/* Analyse the packet for IPv4/UDP properties. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_udp(fin)
fr_info_t *fin;
{
ipf_pr_short(fin, sizeof(udphdr_t));
if (ipf_pr_udpcommon(fin) == 0)
ipf_checkv4sum(fin);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_esp */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* Analyse the packet for ESP properties. */
/* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
/* even though the newer ESP packets must also have a sequence number that */
/* is 32bits as well, it is not possible(?) to determine the version from a */
/* simple packet header. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_esp(fin)
fr_info_t *fin;
{
if (fin->fin_off == 0) {
ipf_pr_short(fin, 8);
if (ipf_pr_pullup(fin, 8) == -1)
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v4_esp_pullup);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_ah */
/* Returns: int - value of the next header or IPPROTO_NONE if error */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* Analyse the packet for AH properties. */
/* The minimum length is taken to be the combination of all fields in the */
/* header being present and no authentication data (null algorithm used.) */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_pr_ah(fin)
fr_info_t *fin;
{
authhdr_t *ah;
int len;
fin->fin_flx |= FI_AH;
ipf_pr_short(fin, sizeof(*ah));
if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v4_ah_bad);
return IPPROTO_NONE;
}
if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
return IPPROTO_NONE;
}
ah = (authhdr_t *)fin->fin_dp;
len = (ah->ah_plen + 2) << 2;
ipf_pr_short(fin, len);
if (ipf_pr_pullup(fin, len) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
return IPPROTO_NONE;
}
/*
* Adjust fin_dp and fin_dlen for skipping over the authentication
* header.
*/
fin->fin_dp = (char *)fin->fin_dp + len;
fin->fin_dlen -= len;
return ah->ah_next;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_gre */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* Analyse the packet for GRE properties. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_gre(fin)
fr_info_t *fin;
{
grehdr_t *gre;
ipf_pr_short(fin, sizeof(grehdr_t));
if (fin->fin_off != 0) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v4_gre_frag);
return;
}
if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v4_gre_pullup);
return;
}
gre = fin->fin_dp;
if (GRE_REV(gre->gr_flags) == 1)
fin->fin_data[0] = gre->gr_call;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_pr_ipv4hdr */
/* Returns: void */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* IPv4 Only */
/* Analyze the IPv4 header and set fields in the fr_info_t structure. */
/* Check all options present and flag their presence if any exist. */
/* ------------------------------------------------------------------------ */
static INLINE void
ipf_pr_ipv4hdr(fin)
fr_info_t *fin;
{
u_short optmsk = 0, secmsk = 0, auth = 0;
int hlen, ol, mv, p, i;
const struct optlist *op;
u_char *s, opt;
u_short off;
fr_ip_t *fi;
ip_t *ip;
fi = &fin->fin_fi;
hlen = fin->fin_hlen;
ip = fin->fin_ip;
p = ip->ip_p;
fi->fi_p = p;
fi->fi_tos = ip->ip_tos;
fin->fin_id = ip->ip_id;
off = ntohs(ip->ip_off);
/* Get both TTL and protocol */
fi->fi_p = ip->ip_p;
fi->fi_ttl = ip->ip_ttl;
#if 0
(*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4));
#endif
/* Zero out bits not used in IPv6 address */
fi->fi_src.i6[1] = 0;
fi->fi_src.i6[2] = 0;
fi->fi_src.i6[3] = 0;
fi->fi_dst.i6[1] = 0;
fi->fi_dst.i6[2] = 0;
fi->fi_dst.i6[3] = 0;
fi->fi_saddr = ip->ip_src.s_addr;
fi->fi_daddr = ip->ip_dst.s_addr;
/*
* set packet attribute flags based on the offset and
* calculate the byte offset that it represents.
*/
off &= IP_MF|IP_OFFMASK;
if (off != 0) {
int morefrag = off & IP_MF;
fi->fi_flx |= FI_FRAG;
off &= IP_OFFMASK;
if (off != 0) {
fin->fin_flx |= FI_FRAGBODY;
off <<= 3;
if ((off + fin->fin_dlen > 65535) ||
(fin->fin_dlen == 0) ||
((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
/*
* The length of the packet, starting at its
* offset cannot exceed 65535 (0xffff) as the
* length of an IP packet is only 16 bits.
*
* Any fragment that isn't the last fragment
* must have a length greater than 0 and it
* must be an even multiple of 8.
*/
fi->fi_flx |= FI_BAD;
}
}
}
fin->fin_off = off;
/*
* Call per-protocol setup and checking
*/
if (p == IPPROTO_AH) {
/*
* Treat AH differently because we expect there to be another
* layer 4 header after it.
*/
p = ipf_pr_ah(fin);
}
switch (p)
{
case IPPROTO_UDP :
ipf_pr_udp(fin);
break;
case IPPROTO_TCP :
ipf_pr_tcp(fin);
break;
case IPPROTO_ICMP :
ipf_pr_icmp(fin);
break;
case IPPROTO_ESP :
ipf_pr_esp(fin);
break;
case IPPROTO_GRE :
ipf_pr_gre(fin);
break;
}
ip = fin->fin_ip;
if (ip == NULL)
return;
/*
* If it is a standard IP header (no options), set the flag fields
* which relate to options to 0.
*/
if (hlen == sizeof(*ip)) {
fi->fi_optmsk = 0;
fi->fi_secmsk = 0;
fi->fi_auth = 0;
return;
}
/*
* So the IP header has some IP options attached. Walk the entire
* list of options present with this packet and set flags to indicate
* which ones are here and which ones are not. For the somewhat out
* of date and obscure security classification options, set a flag to
* represent which classification is present.
*/
fi->fi_flx |= FI_OPTIONS;
for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
opt = *s;
if (opt == '\0')
break;
else if (opt == IPOPT_NOP)
ol = 1;
else {
if (hlen < 2)
break;
ol = (int)*(s + 1);
if (ol < 2 || ol > hlen)
break;
}
for (i = 9, mv = 4; mv >= 0; ) {
op = ipopts + i;
if ((opt == (u_char)op->ol_val) && (ol > 4)) {
u_32_t doi;
switch (opt)
{
case IPOPT_SECURITY :
if (optmsk & op->ol_bit) {
fin->fin_flx |= FI_BAD;
} else {
doi = ipf_checkripso(s);
secmsk = doi >> 16;
auth = doi & 0xffff;
}
break;
case IPOPT_CIPSO :
if (optmsk & op->ol_bit) {
fin->fin_flx |= FI_BAD;
} else {
doi = ipf_checkcipso(fin,
s, ol);
secmsk = doi >> 16;
auth = doi & 0xffff;
}
break;
}
optmsk |= op->ol_bit;
}
if (opt < op->ol_val)
i -= mv;
else
i += mv;
mv--;
}
hlen -= ol;
s += ol;
}
/*
*
*/
if (auth && !(auth & 0x0100))
auth &= 0xff00;
fi->fi_optmsk = optmsk;
fi->fi_secmsk = secmsk;
fi->fi_auth = auth;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_checkripso */
/* Returns: void */
/* Parameters: s(I) - pointer to start of RIPSO option */
/* */
/* ------------------------------------------------------------------------ */
static u_32_t
ipf_checkripso(s)
u_char *s;
{
const struct optlist *sp;
u_short secmsk = 0, auth = 0;
u_char sec;
int j, m;
sec = *(s + 2); /* classification */
for (j = 3, m = 2; m >= 0; ) {
sp = secopt + j;
if (sec == sp->ol_val) {
secmsk |= sp->ol_bit;
auth = *(s + 3);
auth *= 256;
auth += *(s + 4);
break;
}
if (sec < sp->ol_val)
j -= m;
else
j += m;
m--;
}
return (secmsk << 16) | auth;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_checkcipso */
/* Returns: void */
/* Parameters: fin(IO) - pointer to packet information */
/* s(I) - pointer to start of CIPSO option */
/* ol(I) - length of CIPSO option field */
/* */
/* ------------------------------------------------------------------------ */
static u_32_t
ipf_checkcipso(fin, s, ol)
fr_info_t *fin;
u_char *s;
int ol;
{
fr_ip_t *fi;
u_32_t doi;
u_char *t, tag, tlen, sensitivity;
int len;
if (ol < 6 || ol > 40) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v4_cipso_bad);
fin->fin_flx |= FI_BAD;
return 0;
}
fi = &fin->fin_fi;
fi->fi_sensitivity = 0;
/*
* The DOI field MUST be there.
*/
bcopy(s + 2, &doi, sizeof(doi));
t = (u_char *)s + 6;
for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
tag = *t;
tlen = *(t + 1);
if (tlen > len || tlen < 4 || tlen > 34) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v4_cipso_tlen);
fin->fin_flx |= FI_BAD;
return 0;
}
sensitivity = 0;
/*
* Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
* draft (16 July 1992) that has expired.
*/
if (tag == 0) {
fin->fin_flx |= FI_BAD;
continue;
} else if (tag == 1) {
if (*(t + 2) != 0) {
fin->fin_flx |= FI_BAD;
continue;
}
sensitivity = *(t + 3);
/* Category bitmap for categories 0-239 */
} else if (tag == 4) {
if (*(t + 2) != 0) {
fin->fin_flx |= FI_BAD;
continue;
}
sensitivity = *(t + 3);
/* Enumerated categories, 16bits each, upto 15 */
} else if (tag == 5) {
if (*(t + 2) != 0) {
fin->fin_flx |= FI_BAD;
continue;
}
sensitivity = *(t + 3);
/* Range of categories (2*16bits), up to 7 pairs */
} else if (tag > 127) {
/* Custom defined DOI */
;
} else {
fin->fin_flx |= FI_BAD;
continue;
}
if (sensitivity > fi->fi_sensitivity)
fi->fi_sensitivity = sensitivity;
}
return doi;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_makefrip */
/* Returns: void */
/* Parameters: hlen(I) - length of IP packet header */
/* ip(I) - pointer to the IP header */
/* fin(IO) - pointer to packet information */
/* */
/* Compact the IP header into a structure which contains just the info. */
/* which is useful for comparing IP headers with and store this information */
/* in the fr_info_t structure pointer to by fin. At present, it is assumed */
/* this function will be called with either an IPv4 or IPv6 packet. */
/* ------------------------------------------------------------------------ */
int
ipf_makefrip(hlen, ip, fin)
int hlen;
ip_t *ip;
fr_info_t *fin;
{
int v;
fin->fin_nat = NULL;
fin->fin_state = NULL;
fin->fin_depth = 0;
fin->fin_hlen = (u_short)hlen;
fin->fin_ip = ip;
fin->fin_rule = 0xffffffff;
fin->fin_group[0] = -1;
fin->fin_group[1] = '\0';
fin->fin_dp = (char *)ip + hlen;
v = fin->fin_v;
if (v == 4) {
fin->fin_plen = ntohs(ip->ip_len);
fin->fin_dlen = fin->fin_plen - hlen;
ipf_pr_ipv4hdr(fin);
#ifdef USE_INET6
} else if (v == 6) {
fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
fin->fin_dlen = fin->fin_plen;
fin->fin_plen += hlen;
if (ipf_pr_ipv6hdr(fin) == -1) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_v6_bad);
return -1;
}
#endif
}
if (fin->fin_ip == NULL) {
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_ip_freed);
return -1;
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_portcheck */
/* Returns: int - 1 == port matched, 0 == port match failed */
/* Parameters: frp(I) - pointer to port check `expression' */
/* pop(I) - port number to evaluate */
/* */
/* Perform a comparison of a port number against some other(s), using a */
/* structure with compare information stored in it. */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_portcheck(frp, pop)
frpcmp_t *frp;
u_32_t pop;
{
int err = 1;
u_32_t po;
po = frp->frp_port;
/*
* Do opposite test to that required and continue if that succeeds.
*/
switch (frp->frp_cmp)
{
case FR_EQUAL :
if (pop != po) /* EQUAL */
err = 0;
break;
case FR_NEQUAL :
if (pop == po) /* NOTEQUAL */
err = 0;
break;
case FR_LESST :
if (pop >= po) /* LESSTHAN */
err = 0;
break;
case FR_GREATERT :
if (pop <= po) /* GREATERTHAN */
err = 0;
break;
case FR_LESSTE :
if (pop > po) /* LT or EQ */
err = 0;
break;
case FR_GREATERTE :
if (pop < po) /* GT or EQ */
err = 0;
break;
case FR_OUTRANGE :
if (pop >= po && pop <= frp->frp_top) /* Out of range */
err = 0;
break;
case FR_INRANGE :
if (pop <= po || pop >= frp->frp_top) /* In range */
err = 0;
break;
case FR_INCRANGE :
if (pop < po || pop > frp->frp_top) /* Inclusive range */
err = 0;
break;
default :
break;
}
return err;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_tcpudpchk */
/* Returns: int - 1 == protocol matched, 0 == check failed */
/* Parameters: fda(I) - pointer to packet information */
/* ft(I) - pointer to structure with comparison data */
/* */
/* Compares the current pcket (assuming it is TCP/UDP) information with a */
/* structure containing information that we want to match against. */
/* ------------------------------------------------------------------------ */
int
ipf_tcpudpchk(fi, ft)
fr_ip_t *fi;
frtuc_t *ft;
{
int err = 1;
/*
* Both ports should *always* be in the first fragment.
* So far, I cannot find any cases where they can not be.
*
* compare destination ports
*/
if (ft->ftu_dcmp)
err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
/*
* compare source ports
*/
if (err && ft->ftu_scmp)
err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
/*
* If we don't have all the TCP/UDP header, then how can we
* expect to do any sort of match on it ? If we were looking for
* TCP flags, then NO match. If not, then match (which should
* satisfy the "short" class too).
*/
if (err && (fi->fi_p == IPPROTO_TCP)) {
if (fi->fi_flx & FI_SHORT)
return !(ft->ftu_tcpf | ft->ftu_tcpfm);
/*
* Match the flags ? If not, abort this match.
*/
if (ft->ftu_tcpfm &&
ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
ft->ftu_tcpfm, ft->ftu_tcpf));
err = 0;
}
}
return err;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_check_ipf */
/* Returns: int - 0 == match, else no match */
/* Parameters: fin(I) - pointer to packet information */
/* fr(I) - pointer to filter rule */
/* portcmp(I) - flag indicating whether to attempt matching on */
/* TCP/UDP port data. */
/* */
/* Check to see if a packet matches an IPFilter rule. Checks of addresses, */
/* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
/* this function. */
/* ------------------------------------------------------------------------ */
static INLINE int
ipf_check_ipf(fin, fr, portcmp)
fr_info_t *fin;
frentry_t *fr;
int portcmp;
{
u_32_t *ld, *lm, *lip;
fripf_t *fri;
fr_ip_t *fi;
int i;
fi = &fin->fin_fi;
fri = fr->fr_ipf;
lip = (u_32_t *)fi;
lm = (u_32_t *)&fri->fri_mip;
ld = (u_32_t *)&fri->fri_ip;
/*
* first 32 bits to check coversion:
* IP version, TOS, TTL, protocol
*/
i = ((*lip & *lm) != *ld);
FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
ntohl(*lip), ntohl(*lm), ntohl(*ld)));
if (i)
return 1;
/*
* Next 32 bits is a constructed bitmask indicating which IP options
* are present (if any) in this packet.
*/
lip++, lm++, ld++;
i = ((*lip & *lm) != *ld);
FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
ntohl(*lip), ntohl(*lm), ntohl(*ld)));
if (i != 0)
return 1;
lip++, lm++, ld++;
/*
* Unrolled loops (4 each, for 32 bits) for address checks.
*/
/*
* Check the source address.
*/
#ifdef IPFILTER_LOOKUP
if (fr->fr_satype == FRI_LOOKUP) {
i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip);
if (i == -1)
return 1;
lip += 3;
lm += 3;
ld += 3;
} else {
#endif
i = ((*lip & *lm) != *ld);
FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
ntohl(*lip), ntohl(*lm), ntohl(*ld)));
if (fi->fi_v == 6) {
lip++, lm++, ld++;
i |= ((*lip & *lm) != *ld);
FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
ntohl(*lip), ntohl(*lm), ntohl(*ld)));
lip++, lm++, ld++;
i |= ((*lip & *lm) != *ld);
FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
ntohl(*lip), ntohl(*lm), ntohl(*ld)));
lip++, lm++, ld++;
i |= ((*lip & *lm) != *ld);
FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
ntohl(*lip), ntohl(*lm), ntohl(*ld)));
} else {
lip += 3;
lm += 3;
ld += 3;
}
#ifdef IPFILTER_LOOKUP
}
#endif
i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
if (i != 0)
return 1;
/*
* Check the destination address.
*/
lip++, lm++, ld++;
#ifdef IPFILTER_LOOKUP
if (fr->fr_datype == FRI_LOOKUP) {
i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip);
if (i == -1)
return 1;
lip += 3;
lm += 3;
ld += 3;
} else {
#endif
i = ((*lip & *lm) != *ld);
FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
ntohl(*lip), ntohl(*lm), ntohl(*ld)));
if (fi->fi_v == 6) {
lip++, lm++, ld++;
i |= ((*lip & *lm) != *ld);
FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
ntohl(*lip), ntohl(*lm), ntohl(*ld)));
lip++, lm++, ld++;
i |= ((*lip & *lm) != *ld);
FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
ntohl(*lip), ntohl(*lm), ntohl(*ld)));
lip++, lm++, ld++;
i |= ((*lip & *lm) != *ld);
FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
ntohl(*lip), ntohl(*lm), ntohl(*ld)));
} else {
lip += 3;
lm += 3;
ld += 3;
}
#ifdef IPFILTER_LOOKUP
}
#endif
i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
if (i != 0)
return 1;
/*
* IP addresses matched. The next 32bits contains:
* mast of old IP header security & authentication bits.
*/
lip++, lm++, ld++;
i = (*ld - (*lip & *lm));
FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
/*
* Next we have 32 bits of packet flags.
*/
lip++, lm++, ld++;
i |= (*ld - (*lip & *lm));
FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
if (i == 0) {
/*
* If a fragment, then only the first has what we're
* looking for here...
*/
if (portcmp) {
if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
i = 1;
} else {
if (fr->fr_dcmp || fr->fr_scmp ||
fr->fr_tcpf || fr->fr_tcpfm)
i = 1;
if (fr->fr_icmpm || fr->fr_icmp) {
if (((fi->fi_p != IPPROTO_ICMP) &&
(fi->fi_p != IPPROTO_ICMPV6)) ||
fin->fin_off || (fin->fin_dlen < 2))
i = 1;
else if ((fin->fin_data[0] & fr->fr_icmpm) !=
fr->fr_icmp) {
FR_DEBUG(("i. %#x & %#x != %#x\n",
fin->fin_data[0],
fr->fr_icmpm, fr->fr_icmp));
i = 1;
}
}
}
}
return i;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_scanlist */
/* Returns: int - result flags of scanning filter list */
/* Parameters: fin(I) - pointer to packet information */
/* pass(I) - default result to return for filtering */
/* */
/* Check the input/output list of rules for a match to the current packet. */
/* If a match is found, the value of fr_flags from the rule becomes the */
/* return value and fin->fin_fr points to the matched rule. */
/* */
/* This function may be called recusively upto 16 times (limit inbuilt.) */
/* When unwinding, it should finish up with fin_depth as 0. */
/* */
/* Could be per interface, but this gets real nasty when you don't have, */
/* or can't easily change, the kernel source code to . */
/* ------------------------------------------------------------------------ */
int
ipf_scanlist(fin, pass)
fr_info_t *fin;
u_32_t pass;
{
int rulen, portcmp, off, skip;
struct frentry *fr, *fnext;
u_32_t passt, passo;
/*
* Do not allow nesting deeper than 16 levels.
*/
if (fin->fin_depth >= 16)
return pass;
fr = fin->fin_fr;
/*
* If there are no rules in this list, return now.
*/
if (fr == NULL)
return pass;
skip = 0;
portcmp = 0;
fin->fin_depth++;
fin->fin_fr = NULL;
off = fin->fin_off;
if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
portcmp = 1;
for (rulen = 0; fr; fr = fnext, rulen++) {
fnext = fr->fr_next;
if (skip != 0) {
FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
skip--;
continue;
}
/*
* In all checks below, a null (zero) value in the
* filter struture is taken to mean a wildcard.
*
* check that we are working for the right interface
*/
#ifdef _KERNEL
if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
continue;
#else
if (opts & (OPT_VERBOSE|OPT_DEBUG))
printf("\n");
FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
FR_ISPASS(pass) ? 'p' :
FR_ISACCOUNT(pass) ? 'A' :
FR_ISAUTH(pass) ? 'a' :
(pass & FR_NOMATCH) ? 'n' :'b'));
if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
continue;
FR_VERBOSE((":i"));
#endif
switch (fr->fr_type)
{
case FR_T_IPF :
case FR_T_IPF|FR_T_BUILTIN :
if (ipf_check_ipf(fin, fr, portcmp))
continue;
break;
#if defined(IPFILTER_BPF)
case FR_T_BPFOPC :
case FR_T_BPFOPC|FR_T_BUILTIN :
{
u_char *mc;
int wlen;
if (*fin->fin_mp == NULL)
continue;
if (fin->fin_v != fr->fr_v)
continue;
mc = (u_char *)fin->fin_m;
wlen = fin->fin_dlen + fin->fin_hlen;
if (!bpf_filter(fr->fr_data, mc, wlen, 0))
continue;
break;
}
#endif
case FR_T_CALLFUNC|FR_T_BUILTIN :
{
frentry_t *f;
f = (*fr->fr_func)(fin, &pass);
if (f != NULL)
fr = f;
else
continue;
break;
}
case FR_T_IPFEXPR :
case FR_T_IPFEXPR|FR_T_BUILTIN :
if (fin->fin_v != fr->fr_v)
continue;
if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
continue;
break;
default :
break;
}
if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
if (fin->fin_nattag == NULL)
continue;
if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
continue;
}
FR_VERBOSE(("=%s/%s.%d *", fr->fr_grhead,fr->fr_group, rulen));
passt = fr->fr_flags;
/*
* If the rule is a "call now" rule, then call the function
* in the rule, if it exists and use the results from that.
* If the function pointer is bad, just make like we ignore
* it, except for increasing the hit counter.
*/
if ((passt & FR_CALLNOW) != 0) {
frentry_t *frs;
ATOMIC_INC64(fr->fr_hits);
if ((fr->fr_func != NULL) &&
(fr->fr_func == (ipfunc_t)-1))
continue;
frs = fin->fin_fr;
fin->fin_fr = fr;
fr = (*fr->fr_func)(fin, &passt);
if (fr == NULL) {
fin->fin_fr = frs;
continue;
}
passt = fr->fr_flags;
}
fin->fin_fr = fr;
#ifdef IPFILTER_LOG
/*
* Just log this packet...
*/
if ((passt & FR_LOGMASK) == FR_LOG) {
if (ipf_log_pkt(fin, passt) == -1) {
if (passt & FR_LOGORBLOCK) {
passt &= ~FR_CMDMASK;
passt |= FR_BLOCK|FR_QUICK;
fin->fin_reason = 1;
}
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_skip);
}
ATOMIC_INCL(ipf_stats[fin->fin_out].fr_pkl);
fin->fin_flx |= FI_DONTCACHE;
}
#endif /* IPFILTER_LOG */
MUTEX_ENTER(&fr->fr_lock);
fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
fr->fr_hits++;
MUTEX_EXIT(&fr->fr_lock);
fin->fin_rule = rulen;
passo = pass;
if (FR_ISSKIP(passt)) {
skip = fr->fr_arg;
continue;
} else if ((passt & FR_LOGMASK) != FR_LOG) {
pass = passt;
}
if (passt & (FR_RETICMP|FR_FAKEICMP))
fin->fin_icode = fr->fr_icode;
(void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN);
FR_DEBUG(("pass %#x\n", pass));
if (fr->fr_grp != NULL) {
fin->fin_fr = *fr->fr_grp;
FR_VERBOSE(("group %s\n", fr->fr_grhead));
if (FR_ISDECAPS(pass))
passt = ipf_decaps(fin, pass, fr->fr_icode);
else
passt = ipf_scanlist(fin, pass);
if (fin->fin_fr == NULL) {
fin->fin_rule = rulen;
(void) strncpy(fin->fin_group, fr->fr_group,
FR_GROUPLEN);
fin->fin_fr = fr;
passt = pass;
}
pass = passt;
}
if (pass & FR_QUICK) {
/*
* Finally, if we've asked to track state for this
* packet, set it up. Add state for "quick" rules
* here so that if the action fails we can consider
* the rule to "not match" and keep on processing
* filter rules.
*/
if ((pass & FR_KEEPSTATE) &&
!(fin->fin_flx & FI_STATE)) {
int out = fin->fin_out;
fin->fin_fr = fr;
if (ipf_state_add(fin, NULL, 0) != NULL) {
ATOMIC_INCL(ipf_stats[out].fr_ads);
} else {
ATOMIC_INCL(ipf_stats[out].fr_bads);
pass = passo;
continue;
}
}
break;
}
}
fin->fin_depth--;
return pass;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_acctpkt */
/* Returns: frentry_t* - always returns NULL */
/* Parameters: fin(I) - pointer to packet information */
/* passp(IO) - pointer to current/new filter decision (unused) */
/* */
/* Checks a packet against accounting rules, if there are any for the given */
/* IP protocol version. */
/* */
/* N.B.: this function returns NULL to match the prototype used by other */
/* functions called from the IPFilter "mainline" in fr_check(). */
/* ------------------------------------------------------------------------ */
frentry_t *
ipf_acctpkt(fin, passp)
fr_info_t *fin;
u_32_t *passp;
{
char group[FR_GROUPLEN];
frentry_t *fr, *frsave;
u_32_t pass, rulen;
passp = passp;
fr = ipf_acct[fin->fin_out][ipf_active];
if (fr != NULL) {
frsave = fin->fin_fr;
bcopy(fin->fin_group, group, FR_GROUPLEN);
rulen = fin->fin_rule;
fin->fin_fr = fr;
pass = ipf_scanlist(fin, FR_NOMATCH);
if (FR_ISACCOUNT(pass)) {
ATOMIC_INCL(ipf_stats[0].fr_acct);
}
fin->fin_fr = frsave;
bcopy(group, fin->fin_group, FR_GROUPLEN);
fin->fin_rule = rulen;
}
return NULL;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_firewall */
/* Returns: frentry_t* - returns pointer to matched rule, if no matches */
/* were found, returns NULL. */
/* Parameters: fin(I) - pointer to packet information */
/* passp(IO) - pointer to current/new filter decision (unused) */
/* */
/* Applies an appropriate set of firewall rules to the packet, to see if */
/* there are any matches. The first check is to see if a match can be seen */
/* in the cache. If not, then search an appropriate list of rules. Once a */
/* matching rule is found, take any appropriate actions as defined by the */
/* rule - except logging. */
/* ------------------------------------------------------------------------ */
static frentry_t *
ipf_firewall(fin, passp)
fr_info_t *fin;
u_32_t *passp;
{
frentry_t *fr;
fr_info_t *fc;
u_32_t pass;
int out;
out = fin->fin_out;
pass = *passp;
/*
* This rule cache will only affect packets that are not being
* statefully filtered.
*/
fc = &ipf_cache[out][CACHE_HASH(fin)];
READ_ENTER(&ipf_frcache);
if (!bcmp((char *)fin, (char *)fc, FI_CSIZE)) {
/*
* copy cached data so we can unlock the mutexes earlier.
*/
bcopy((char *)fc, (char *)fin, FI_COPYSIZE);
RWLOCK_EXIT(&ipf_frcache);
ATOMIC_INCL(ipf_stats[out].fr_chit);
if ((fr = fin->fin_fr) != NULL) {
ATOMIC_INC64(fr->fr_hits);
pass = fr->fr_flags;
}
} else {
RWLOCK_EXIT(&ipf_frcache);
ATOMIC_INCL(ipf_stats[out].fr_cmiss);
fin->fin_fr = ipf_rules[out][ipf_active];
if (fin->fin_fr != NULL)
pass = ipf_scanlist(fin, ipf_pass);
if (((pass & FR_KEEPSTATE) == 0) &&
((fin->fin_flx & FI_DONTCACHE) == 0)) {
WRITE_ENTER(&ipf_frcache);
bcopy((char *)fin, (char *)fc, FI_COPYSIZE);
RWLOCK_EXIT(&ipf_frcache);
}
if ((pass & FR_NOMATCH)) {
ATOMIC_INCL(ipf_stats[out].fr_nom);
}
fr = fin->fin_fr;
}
/*
* Apply packets per second rate-limiting to a rule as required.
*/
if ((fr != NULL) && (fr->fr_pps != 0) &&
!ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST);
pass |= FR_BLOCK;
ATOMIC_INCL(ipf_stats[out].fr_ppshit);
fin->fin_reason = 2;
}
/*
* If we fail to add a packet to the authorization queue, then we
* drop the packet later. However, if it was added then pretend
* we've dropped it already.
*/
if (FR_ISAUTH(pass)) {
if (ipf_auth_new(fin->fin_m, fin) != 0) {
#ifdef _KERNEL
if ((pass & FR_RETMASK) == 0)
fin->fin_m = *fin->fin_mp = NULL;
#else
;
#endif
fin->fin_error = 0;
} else {
ipf_interror = 1;
fin->fin_error = ENOSPC;
}
}
if ((fr != NULL) && (fr->fr_func != NULL) &&
(fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
(void) (*fr->fr_func)(fin, &pass);
/*
* If a rule is a pre-auth rule, check again in the list of rules
* loaded for authenticated use. It does not particulary matter
* if this search fails because a "preauth" result, from a rule,
* is treated as "not a pass", hence the packet is blocked.
*/
if (FR_ISPREAUTH(pass)) {
if ((fin->fin_fr = ipf_auth_ip) != NULL)
pass = ipf_scanlist(fin, ipf_pass);
}
/*
* If the rule has "keep frag" and the packet is actually a fragment,
* then create a fragment state entry.
*/
if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
if (fin->fin_flx & FI_FRAG) {
if (ipf_frag_new(fin, pass) == -1) {
ATOMIC_INCL(ipf_stats[out].fr_bnfr);
} else {
ATOMIC_INCL(ipf_stats[out].fr_nfr);
}
} else {
ATOMIC_INCL(ipf_stats[out].fr_cfr);
}
}
fr = fin->fin_fr;
if (passp != NULL)
*passp = pass;
return fr;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_check */
/* Returns: int - 0 == packet allowed through, */
/* User space: */
/* -1 == packet blocked */
/* 1 == packet not matched */
/* -2 == requires authentication */
/* Kernel: */
/* > 0 == filter error # for packet */
/* Parameters: ip(I) - pointer to start of IPv4/6 packet */
/* hlen(I) - length of header */
/* ifp(I) - pointer to interface this packet is on */
/* out(I) - 0 == packet going in, 1 == packet going out */
/* mp(IO) - pointer to caller's buffer pointer that holds this */
/* IP packet. */
/* Solaris & HP-UX ONLY : */
/* qpi(I) - pointer to STREAMS queue information for this */
/* interface & direction. */
/* */
/* ipf_check() is the master function for all IPFilter packet processing. */
/* It orchestrates: Network Address Translation (NAT), checking for packet */
/* authorisation (or pre-authorisation), presence of related state info., */
/* generating log entries, IP packet accounting, routing of packets as */
/* directed by firewall rules and of course whether or not to allow the */
/* packet to be further processed by the kernel. */
/* */
/* For packets blocked, the contents of "mp" will be NULL'd and the buffer */
/* freed. Packets passed may be returned with the pointer pointed to by */
/* by "mp" changed to a new buffer. */
/* ------------------------------------------------------------------------ */
int
ipf_check(ip, hlen, ifp, out
#if defined(_KERNEL) && defined(MENTAT)
, qif, mp)
void *qif;
#else
, mp)
#endif
mb_t **mp;
ip_t *ip;
int hlen;
void *ifp;
int out;
{
/*
* The above really sucks, but short of writing a diff
*/
fr_info_t frinfo;
fr_info_t *fin = &frinfo;
u_32_t pass = ipf_pass;
frentry_t *fr = NULL;
int v = IP_V(ip);
mb_t *mc = NULL;
mb_t *m;
/*
* The first part of fr_check() deals with making sure that what goes
* into the filtering engine makes some sense. Information about the
* the packet is distilled, collected into a fr_info_t structure and
* the an attempt to ensure the buffer the packet is in is big enough
* to hold all the required packet headers.
*/
#ifdef _KERNEL
# ifdef MENTAT
qpktinfo_t *qpi = qif;
if ((u_int)ip & 0x3)
return 2;
# else
SPL_INT(s);
# endif
READ_ENTER(&ipf_global);
if (ipf_running <= 0) {
RWLOCK_EXIT(&ipf_global);
return 0;
}
bzero((char *)fin, sizeof(*fin));
# ifdef MENTAT
if (qpi->qpi_flags & QF_GROUP)
fin->fin_flx |= FI_MBCAST;
m = qpi->qpi_m;
fin->fin_qfm = m;
fin->fin_qpi = qpi;
# else /* MENTAT */
m = *mp;
# if defined(M_MCAST)
if ((m->m_flags & M_MCAST) != 0)
fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
# endif
# if defined(M_MLOOP)
if ((m->m_flags & M_MLOOP) != 0)
fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
# endif
# if defined(M_BCAST)
if ((m->m_flags & M_BCAST) != 0)
fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
# endif
# ifdef M_CANFASTFWD
/*
* XXX For now, IP Filter and fast-forwarding of cached flows
* XXX are mutually exclusive. Eventually, IP Filter should
* XXX get a "can-fast-forward" filter rule.
*/
m->m_flags &= ~M_CANFASTFWD;
# endif /* M_CANFASTFWD */
# ifdef CSUM_DELAY_DATA
/*
* disable delayed checksums.
*/
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
}
# endif /* CSUM_DELAY_DATA */
# endif /* MENTAT */
#else
READ_ENTER(&ipf_global);
bzero((char *)fin, sizeof(*fin));
m = *mp;
#endif /* _KERNEL */
fin->fin_v = v;
fin->fin_m = m;
fin->fin_ip = ip;
fin->fin_mp = mp;
fin->fin_out = out;
fin->fin_ifp = ifp;
fin->fin_error = ENETUNREACH;
fin->fin_hlen = (u_short)hlen;
fin->fin_dp = (char *)ip + hlen;
fin->fin_ipoff = (char *)ip - MTOD(m, char *);
SPL_NET(s);
#ifdef USE_INET6
if (v == 6) {
ATOMIC_INCL(ipf_stats[out].fr_ipv6);
/*
* Jumbo grams are quite likely too big for internal buffer
* structures to handle comfortably, for now, so just drop
* them.
*/
if (((ip6_t *)ip)->ip6_plen == 0) {
pass = FR_BLOCK|FR_NOMATCH;
fin->fin_reason = 3;
goto finished;
}
}
#endif
if (ipf_makefrip(hlen, ip, fin) == -1) {
pass = FR_BLOCK|FR_NOMATCH;
fin->fin_reason = 4;
goto finished;
}
/*
* For at least IPv6 packets, if a m_pullup() fails then this pointer
* becomes NULL and so we have no packet to free.
*/
if (*fin->fin_mp == NULL)
goto finished;
if (!out) {
if (v == 4) {
#ifdef _KERNEL
if (ipf_chksrc && !ipf_verifysrc(fin)) {
ATOMIC_INCL(ipf_stats[0].fr_badsrc);
fin->fin_flx |= FI_BADSRC;
}
#endif
if (fin->fin_ip->ip_ttl < ipf_minttl) {
ATOMIC_INCL(ipf_stats[0].fr_badttl);
fin->fin_flx |= FI_LOWTTL;
}
}
#ifdef USE_INET6
else if (v == 6) {
if (((ip6_t *)ip)->ip6_hlim < ipf_minttl) {
ATOMIC_INCL(ipf_stats[0].fr_badttl);
fin->fin_flx |= FI_LOWTTL;
}
}
#endif
}
if (fin->fin_flx & FI_SHORT) {
ATOMIC_INCL(ipf_stats[out].fr_short);
}
READ_ENTER(&ipf_mutex);
/*
* Check auth now. This, combined with the check below to see if apass
* is 0 is to ensure that we don't count the packet twice, which can
* otherwise occur when we reprocess it. As it is, we only count it
* after it has no auth. table matchup. This also stops NAT from
* occuring until after the packet has been auth'd.
*
* If a packet is found in the auth table, then skip checking
* the access lists for permission but we do need to consider
* the result as if it were from the ACL's.
*/
fr = ipf_auth_check(fin, &pass);
if (!out && (ipf_specfuncref[1][ipf_active] == 0)) {
if (ipf_nat_checkin(fin, &pass) == -1) {
goto filterdone;
}
}
if (!out)
(void) ipf_acctpkt(fin, NULL);
if (fr == NULL) {
if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG) {
fr = ipf_frag_known(fin, &pass);
/*
* Reset the keep state flag here so that we don't
* try and add a new state entry because of it, leading
* to a blocked packet because the add will fail.
*/
if (fr != NULL)
pass &= ~FR_KEEPSTATE;
}
if ((fr == NULL) && (ipf_specfuncref[0][ipf_active] == 0))
fr = ipf_state_check(fin, &pass);
}
if ((pass & FR_NOMATCH) || (fr == NULL))
fr = ipf_firewall(fin, &pass);
/*
* If we've asked to track state for this packet, set it up.
* Here rather than ipf_firewall because ipf_checkauth may decide
* to return a packet for "keep state"
*/
if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) {
if (ipf_state_add(fin, NULL, 0) != NULL) {
ATOMIC_INCL(ipf_stats[out].fr_ads);
} else {
ATOMIC_INCL(ipf_stats[out].fr_bads);
if (FR_ISPASS(pass)) {
pass &= ~FR_CMDMASK;
pass |= FR_BLOCK;
fin->fin_reason = 5;
}
}
}
fin->fin_fr = fr;
/*
* Only count/translate packets which will be passed on, out the
* interface.
*/
if (out && FR_ISPASS(pass)) {
(void) ipf_acctpkt(fin, NULL);
if ((ipf_specfuncref[2][ipf_active] == 0) &&
(ipf_nat_checkout(fin, &pass) == -1)) {
;
} else if ((ipf_update_ipid != 0) && (v == 4)) {
if (ipf_updateipid(fin) == -1) {
ATOMIC_INCL(ipf_stats[1].fr_ipud);
pass &= ~FR_CMDMASK;
pass |= FR_BLOCK;
fin->fin_reason = 6;
} else {
ATOMIC_INCL(ipf_stats[0].fr_ipud);
}
}
}
filterdone:
#ifdef IPFILTER_LOG
if ((ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
(void) ipf_dolog(fin, &pass);
}
#endif
/*
* The FI_STATE flag is cleared here so that calling fr_checkstate
* will work when called from inside of fr_fastroute. Although
* there is a similar flag, FI_NATED, for NAT, it does have the same
* impact on code execution.
*/
if (fin->fin_state != NULL) {
ipf_state_deref((ipstate_t **)&fin->fin_state);
fin->fin_flx ^= FI_STATE;
}
if (fin->fin_nat != NULL) {
ipf_nat_deref((nat_t **)&fin->fin_nat);
}
/*
* Up the reference on fr_lock and exit ipf_mutex. fr_fastroute
* only frees up the lock on ipf_global and the generation of a
* packet below could cause a recursive call into IPFilter.
* Hang onto the filter rule just in case someone decides to remove
* or flush it in the meantime.
*/
if (fr != NULL) {
MUTEX_ENTER(&fr->fr_lock);
fr->fr_ref++;
MUTEX_EXIT(&fr->fr_lock);
}
RWLOCK_EXIT(&ipf_mutex);
if ((pass & FR_RETMASK) != 0) {
/*
* Should we return an ICMP packet to indicate error
* status passing through the packet filter ?
* WARNING: ICMP error packets AND TCP RST packets should
* ONLY be sent in repsonse to incoming packets. Sending them
* in response to outbound packets can result in a panic on
* some operating systems.
*/
if (!out) {
if (pass & FR_RETICMP) {
int dst;
if ((pass & FR_RETMASK) == FR_FAKEICMP)
dst = 1;
else
dst = 0;
(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
dst);
ATOMIC_INCL(ipf_stats[0].fr_ret);
} else if (((pass & FR_RETMASK) == FR_RETRST) &&
!(fin->fin_flx & FI_SHORT)) {
if (((fin->fin_flx & FI_OOW) != 0) ||
(ipf_send_reset(fin) == 0)) {
ATOMIC_INCL(ipf_stats[1].fr_ret);
}
}
/*
* When using return-* with auth rules, the auth code
* takes over disposing of this packet.
*/
if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
fin->fin_m = *fin->fin_mp = NULL;
}
} else {
if (pass & FR_RETRST) {
fin->fin_error = ECONNRESET;
}
}
}
/*
* If we didn't drop off the bottom of the list of rules (and thus
* the 'current' rule fr is not NULL), then we may have some extra
* instructions about what to do with a packet.
* Once we're finished return to our caller, freeing the packet if
* we are dropping it (* BSD ONLY *).
*/
if (fr != NULL) {
frdest_t *fdp;
fdp = &fr->fr_tifs[fin->fin_rev];
if (!out && (pass & FR_FASTROUTE)) {
/*
* For fastroute rule, no destination interface defined
* so pass NULL as the frdest_t parameter
*/
(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
m = *mp = NULL;
} else if ((fdp->fd_ifp != NULL) &&
(fdp->fd_ifp != (struct ifnet *)-1)) {
/* this is for to rules: */
(void) ipf_fastroute(fin->fin_m, mp, fin, fdp);
m = *mp = NULL;
}
/*
* Generate a duplicated packet.
*/
if ((pass & FR_DUP) != 0) {
mc = M_DUPLICATE(fin->fin_m);
if (mc != NULL)
(void) ipf_fastroute(mc, &mc, fin,
&fr->fr_dif);
}
(void) ipf_derefrule(&fr);
}
finished:
if (!FR_ISPASS(pass)) {
ATOMIC_INCL(ipf_stats[out].fr_block);
if (*mp != NULL) {
FREE_MB_T(*mp);
m = *mp = NULL;
}
} else {
ATOMIC_INCL(ipf_stats[out].fr_pass);
#if defined(_KERNEL) && defined(__sgi)
if ((fin->fin_hbuf != NULL) &&
(mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
}
#endif
}
SPL_X(s);
RWLOCK_EXIT(&ipf_global);
#ifdef _KERNEL
return (FR_ISPASS(pass)) ? 0 : fin->fin_error;
#else /* _KERNEL */
blockreason = fin->fin_reason;
FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
/*if ((pass & FR_CMDMASK) == (ipf_pass & FR_CMDMASK))*/
if ((pass & FR_NOMATCH) != 0)
return 1;
if ((pass & FR_RETMASK) != 0)
switch (pass & FR_RETMASK)
{
case FR_RETRST :
return 3;
case FR_RETICMP :
return 4;
case FR_FAKEICMP :
return 5;
}
switch (pass & FR_CMDMASK)
{
case FR_PASS :
return 0;
case FR_BLOCK :
return -1;
case FR_AUTH :
return -2;
case FR_ACCOUNT :
return -3;
case FR_PREAUTH :
return -4;
}
return 2;
#endif /* _KERNEL */
}
#ifdef IPFILTER_LOG
/* ------------------------------------------------------------------------ */
/* Function: ipf_dolog */
/* Returns: frentry_t* - returns contents of fin_fr (no change made) */
/* Parameters: fin(I) - pointer to packet information */
/* passp(IO) - pointer to current/new filter decision (unused) */
/* */
/* Checks flags set to see how a packet should be logged, if it is to be */
/* logged. Adjust statistics based on its success or not. */
/* ------------------------------------------------------------------------ */
frentry_t *
ipf_dolog(fin, passp)
fr_info_t *fin;
u_32_t *passp;
{
u_32_t pass;
int out;
out = fin->fin_out;
pass = *passp;
if ((ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
pass |= FF_LOGNOMATCH;
ATOMIC_INCL(ipf_stats[out].fr_npkl);
goto logit;
} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
(FR_ISPASS(pass) && (ipf_flags & FF_LOGPASS))) {
if ((pass & FR_LOGMASK) != FR_LOGP)
pass |= FF_LOGPASS;
ATOMIC_INCL(ipf_stats[out].fr_ppkl);
goto logit;
} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
(FR_ISBLOCK(pass) && (ipf_flags & FF_LOGBLOCK))) {
if ((pass & FR_LOGMASK) != FR_LOGB)
pass |= FF_LOGBLOCK;
ATOMIC_INCL(ipf_stats[out].fr_bpkl);
logit:
if (ipf_log_pkt(fin, pass) == -1) {
ATOMIC_INCL(ipf_stats[out].fr_skip);
/*
* If the "or-block" option has been used then
* block the packet if we failed to log it.
*/
if ((pass & FR_LOGORBLOCK) &&
FR_ISPASS(pass)) {
pass &= ~FR_CMDMASK;
pass |= FR_BLOCK;
fin->fin_reason = 7;
}
}
*passp = pass;
}
return fin->fin_fr;
}
#endif /* IPFILTER_LOG */
/* ------------------------------------------------------------------------ */
/* Function: ipf_cksum */
/* Returns: u_short - IP header checksum */
/* Parameters: addr(I) - pointer to start of buffer to checksum */
/* len(I) - length of buffer in bytes */
/* */
/* Calculate the two's complement 16 bit checksum of the buffer passed. */
/* */
/* N.B.: addr should be 16bit aligned. */
/* ------------------------------------------------------------------------ */
u_short
ipf_cksum(addr, len)
u_short *addr;
int len;
{
u_32_t sum = 0;
for (sum = 0; len > 1; len -= 2)
sum += *addr++;
/* mop up an odd byte, if necessary */
if (len == 1)
sum += *(u_char *)addr;
/*
* add back carry outs from top 16 bits to low 16 bits
*/
sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
sum += (sum >> 16); /* add carry */
return (u_short)(~sum);
}
/* ------------------------------------------------------------------------ */
/* Function: fr_cksum */
/* Returns: u_short - layer 4 checksum */
/* Parameters: m(I ) - pointer to buffer holding packet */
/* ip(I) - pointer to IP header */
/* l4proto(I) - protocol to caclulate checksum for */
/* l4hdr(I) - pointer to layer 4 header */
/* l3len(I) - length of layer 4 data plus layer 3 header */
/* */
/* Calculates the TCP checksum for the packet held in "m", using the data */
/* in the IP header "ip" to seed it. */
/* */
/* NB: This function assumes we've pullup'd enough for all of the IP header */
/* and the TCP header. We also assume that data blocks aren't allocated in */
/* odd sizes. */
/* */
/* For IPv6, l3len excludes extension header size. */
/* */
/* Expects ip_len and ip_off to be in network byte order when called. */
/* ------------------------------------------------------------------------ */
u_short
fr_cksum(m, ip, l4proto, l4hdr, l3len)
mb_t *m;
ip_t *ip;
int l4proto, l3len;
void *l4hdr;
{
u_short *sp, slen, sumsave, l4hlen, *csump;
u_int sum, sum2;
int hlen;
#ifdef USE_INET6
ip6_t *ip6;
#endif
csump = NULL;
sumsave = 0;
l4hlen = 0;
sp = NULL;
slen = 0;
hlen = 0;
sum = 0;
sum = htons((u_short)l4proto);
/*
* Add up IP Header portion
*/
#ifdef USE_INET6
if (IP_V(ip) == 4) {
#endif
hlen = IP_HL(ip) << 2;
slen = l3len - hlen;
sum += htons(slen);
sp = (u_short *)&ip->ip_src;
sum += *sp++; /* ip_src */
sum += *sp++;
sum += *sp++; /* ip_dst */
sum += *sp++;
#ifdef USE_INET6
} else if (IP_V(ip) == 6) {
ip6 = (ip6_t *)ip;
hlen = sizeof(*ip6);
slen = l3len - hlen;
sum += htons(slen);
sp = (u_short *)&ip6->ip6_src;
sum += *sp++; /* ip6_src */
sum += *sp++;
sum += *sp++;
sum += *sp++;
sum += *sp++;
sum += *sp++;
sum += *sp++;
sum += *sp++;
sum += *sp++; /* ip6_dst */
sum += *sp++;
sum += *sp++;
sum += *sp++;
sum += *sp++;
sum += *sp++;
sum += *sp++;
sum += *sp++;
}
#endif
switch (l4proto)
{
case IPPROTO_UDP :
csump = &((udphdr_t *)l4hdr)->uh_sum;
l4hlen = sizeof(udphdr_t);
break;
case IPPROTO_TCP :
csump = &((tcphdr_t *)l4hdr)->th_sum;
l4hlen = sizeof(tcphdr_t);
break;
case IPPROTO_ICMP :
csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
l4hlen = 4;
sum = 0;
break;
default :
break;
}
if (csump != NULL) {
sumsave = *csump;
*csump = 0;
}
l4hlen = l4hlen; /* LINT */
#ifdef _KERNEL
# ifdef MENTAT
{
void *rp = m->b_rptr;
if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr)
m->b_rptr = (u_char *)ip;
sum2 = ip_cksum(m, hlen, sum); /* hlen == offset */
m->b_rptr = rp;
sum2 = (u_short)(~sum2 & 0xffff);
}
# else /* MENTAT */
# if defined(BSD) || defined(sun)
# if BSD >= 199103
m->m_data += hlen;
# else
m->m_off += hlen;
# endif
m->m_len -= hlen;
sum2 = in_cksum(m, slen);
m->m_len += hlen;
# if BSD >= 199103
m->m_data -= hlen;
# else
m->m_off -= hlen;
# endif
/*
* Both sum and sum2 are partial sums, so combine them together.
*/
sum += ~sum2 & 0xffff;
while (sum > 0xffff)
sum = (sum & 0xffff) + (sum >> 16);
sum2 = ~sum & 0xffff;
# else /* defined(BSD) || defined(sun) */
{
union {
u_char c[2];
u_short s;
} bytes;
u_short len = ntohs(ip->ip_len);
# if defined(__sgi)
int add;
# endif
/*
* Add up IP Header portion
*/
if (sp != (u_short *)l4hdr)
sp = (u_short *)l4hdr;
switch (l4proto)
{
case IPPROTO_UDP :
sum += *sp++; /* sport */
sum += *sp++; /* dport */
sum += *sp++; /* udp length */
sum += *sp++; /* checksum */
break;
case IPPROTO_TCP :
sum += *sp++; /* sport */
sum += *sp++; /* dport */
sum += *sp++; /* seq */
sum += *sp++;
sum += *sp++; /* ack */
sum += *sp++;
sum += *sp++; /* off */
sum += *sp++; /* win */
sum += *sp++; /* checksum */
sum += *sp++; /* urp */
break;
case IPPROTO_ICMP :
sum = *sp++; /* type/code */
sum += *sp++; /* checksum */
break;
}
# ifdef __sgi
/*
* In case we had to copy the IP & TCP header out of mbufs,
* skip over the mbuf bits which are the header
*/
if ((char *)ip != mtod(m, char *)) {
hlen = (char *)sp - (char *)ip;
while (hlen) {
add = MIN(hlen, m->m_len);
sp = (u_short *)(mtod(m, char *) + add);
hlen -= add;
if (add == m->m_len) {
m = m->m_next;
if (!hlen) {
if (!m)
break;
sp = mtod(m, u_short *);
}
PANIC((!m),("fr_cksum(1): not enough data"));
}
}
}
# endif
len -= (l4hlen + hlen);
if (len <= 0)
goto nodata;
while (len > 1) {
if (((char *)sp - mtod(m, char *)) >= m->m_len) {
m = m->m_next;
PANIC((!m),("fr_cksum(2): not enough data"));
sp = mtod(m, u_short *);
}
if (((char *)(sp + 1) - mtod(m, char *)) > m->m_len) {
bytes.c[0] = *(u_char *)sp;
m = m->m_next;
PANIC((!m),("fr_cksum(3): not enough data"));
sp = mtod(m, u_short *);
bytes.c[1] = *(u_char *)sp;
sum += bytes.s;
sp = (u_short *)((u_char *)sp + 1);
}
if ((u_long)sp & 1) {
bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s));
sum += bytes.s;
} else
sum += *sp++;
len -= 2;
}
if (len != 0)
sum += ntohs(*(u_char *)sp << 8);
nodata:
while (sum > 0xffff)
sum = (sum & 0xffff) + (sum >> 16);
sum2 = (u_short)(~sum & 0xffff);
}
# endif /* defined(BSD) || defined(sun) */
# endif /* MENTAT */
#else /* _KERNEL */
/*
* Add up IP Header portion
*/
if (sp != (u_short *)l4hdr)
sp = (u_short *)l4hdr;
for (; slen > 1; slen -= 2)
sum += *sp++;
if (slen)
sum += ntohs(*(u_char *)sp << 8);
while (sum > 0xffff)
sum = (sum & 0xffff) + (sum >> 16);
sum2 = (u_short)(~sum & 0xffff);
#endif /* _KERNEL */
if (csump != NULL)
*csump = sumsave;
return sum2;
}
#if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \
defined(__sgi) ) && !defined(linux) && !defined(_AIX51)
/*
* Copyright (c) 1982, 1986, 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
* $Id$";
*/
/*
* Copy data from an mbuf chain starting "off" bytes from the beginning,
* continuing for "len" bytes, into the indicated buffer.
*/
void
m_copydata(m, off, len, cp)
mb_t *m;
int off;
int len;
caddr_t cp;
{
unsigned count;
if (off < 0 || len < 0)
panic("m_copydata");
while (off > 0) {
if (m == 0)
panic("m_copydata");
if (off < m->m_len)
break;
off -= m->m_len;
m = m->m_next;
}
while (len > 0) {
if (m == 0)
panic("m_copydata");
count = MIN(m->m_len - off, len);
bcopy(mtod(m, caddr_t) + off, cp, count);
len -= count;
cp += count;
off = 0;
m = m->m_next;
}
}
/*
* Copy data from a buffer back into the indicated mbuf chain,
* starting "off" bytes from the beginning, extending the mbuf
* chain if necessary.
*/
void
m_copyback(m0, off, len, cp)
struct mbuf *m0;
int off;
int len;
caddr_t cp;
{
int mlen;
struct mbuf *m = m0, *n;
int totlen = 0;
if (m0 == 0)
return;
while (off > (mlen = m->m_len)) {
off -= mlen;
totlen += mlen;
if (m->m_next == 0) {
n = m_getclr(M_DONTWAIT, m->m_type);
if (n == 0)
goto out;
n->m_len = min(MLEN, len + off);
m->m_next = n;
}
m = m->m_next;
}
while (len > 0) {
mlen = min(m->m_len - off, len);
bcopy(cp, off + mtod(m, char *), (unsigned)mlen);
cp += mlen;
len -= mlen;
mlen += off;
off = 0;
totlen += mlen;
if (len == 0)
break;
if (m->m_next == 0) {
n = m_get(M_DONTWAIT, m->m_type);
if (n == 0)
break;
n->m_len = min(MLEN, len);
m->m_next = n;
}
m = m->m_next;
}
out:
#if 0
if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
m->m_pkthdr.len = totlen;
#endif
return;
}
#endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */
/* ------------------------------------------------------------------------ */
/* Function: ipf_findgroup */
/* Returns: frgroup_t * - NULL = group not found, else pointer to group */
/* Parameters: group(I) - group name to search for */
/* unit(I) - device to which this group belongs */
/* set(I) - which set of rules (inactive/inactive) this is */
/* fgpp(O) - pointer to place to store pointer to the pointer */
/* to where to add the next (last) group or where */
/* to delete group from. */
/* */
/* Search amongst the defined groups for a particular group number. */
/* ------------------------------------------------------------------------ */
frgroup_t *
ipf_findgroup(group, unit, set, fgpp)
char *group;
minor_t unit;
int set;
frgroup_t ***fgpp;
{
frgroup_t *fg, **fgp;
/*
* Which list of groups to search in is dependent on which list of
* rules are being operated on.
*/
fgp = &ipf_groups[unit][set];
while ((fg = *fgp) != NULL) {
if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
break;
else
fgp = &fg->fg_next;
}
if (fgpp != NULL)
*fgpp = fgp;
return fg;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_group_add */
/* Returns: frgroup_t * - NULL == did not create group, */
/* != NULL == pointer to the group */
/* Parameters: num(I) - group number to add */
/* head(I) - rule pointer that is using this as the head */
/* flags(I) - rule flags which describe the type of rule it is */
/* unit(I) - device to which this group will belong to */
/* set(I) - which set of rules (inactive/inactive) this is */
/* Write Locks: ipf_mutex */
/* */
/* Add a new group head, or if it already exists, increase the reference */
/* count to it. */
/* ------------------------------------------------------------------------ */
frgroup_t *
ipf_group_add(group, head, flags, unit, set)
char *group;
void *head;
u_32_t flags;
minor_t unit;
int set;
{
frgroup_t *fg, **fgp;
u_32_t gflags;
if (group == NULL)
return NULL;
if (unit == IPL_LOGIPF && *group == '\0')
return NULL;
fgp = NULL;
gflags = flags & FR_INOUT;
fg = ipf_findgroup(group, unit, set, &fgp);
if (fg != NULL) {
if (fg->fg_flags == 0)
fg->fg_flags = gflags;
else if (gflags != fg->fg_flags)
return NULL;
fg->fg_ref++;
return fg;
}
KMALLOC(fg, frgroup_t *);
if (fg != NULL) {
fg->fg_head = head;
fg->fg_start = NULL;
fg->fg_next = *fgp;
bcopy(group, fg->fg_name, FR_GROUPLEN);
fg->fg_flags = gflags;
fg->fg_ref = 1;
*fgp = fg;
}
return fg;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_group_del */
/* Returns: Nil */
/* Parameters: group(I) - group name to delete */
/* unit(I) - device to which this group belongs */
/* set(I) - which set of rules (inactive/inactive) this is */
/* Write Locks: ipf_mutex */
/* */
/* Attempt to delete a group head. */
/* Only do this when its reference count reaches 0. */
/* ------------------------------------------------------------------------ */
void
ipf_group_del(group, unit, set)
char *group;
minor_t unit;
int set;
{
frgroup_t *fg, **fgp;
fg = ipf_findgroup(group, unit, set, &fgp);
if (fg == NULL)
return;
fg->fg_ref--;
if (fg->fg_ref == 0) {
*fgp = fg->fg_next;
KFREE(fg);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_getrulen */
/* Returns: frentry_t * - NULL == not found, else pointer to rule n */
/* Parameters: unit(I) - device for which to count the rule's number */
/* flags(I) - which set of rules to find the rule in */
/* group(I) - group name */
/* n(I) - rule number to find */
/* */
/* Find rule # n in group # g and return a pointer to it. Return NULl if */
/* group # g doesn't exist or there are less than n rules in the group. */
/* ------------------------------------------------------------------------ */
frentry_t *
ipf_getrulen(unit, group, n)
int unit;
char *group;
u_32_t n;
{
frentry_t *fr;
frgroup_t *fg;
fg = ipf_findgroup(group, unit, ipf_active, NULL);
if (fg == NULL)
return NULL;
for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--)
;
if (n != 0)
return NULL;
return fr;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_rulen */
/* Returns: int - >= 0 - rule number, -1 == search failed */
/* Parameters: unit(I) - device for which to count the rule's number */
/* fr(I) - pointer to rule to match */
/* */
/* Return the number for a rule on a specific filtering device. */
/* ------------------------------------------------------------------------ */
int
ipf_rulen(unit, fr)
int unit;
frentry_t *fr;
{
frentry_t *fh;
frgroup_t *fg;
u_32_t n = 0;
if (fr == NULL)
return -1;
fg = ipf_findgroup(fr->fr_group, unit, ipf_active, NULL);
if (fg == NULL)
return -1;
for (fh = fg->fg_head; fh; n++, fh = fh->fr_next)
if (fh == fr)
break;
if (fh == NULL)
return -1;
return n;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_flushlist */
/* Returns: int - >= 0 - number of flushed rules */
/* Parameters: set(I) - which set of rules (inactive/inactive) this is */
/* unit(I) - device for which to flush rules */
/* flags(I) - which set of rules to flush */
/* nfreedp(O) - pointer to int where flush count is stored */
/* listp(I) - pointer to list to flush pointer */
/* Write Locks: ipf_mutex */
/* */
/* Recursively flush rules from the list, descending groups as they are */
/* encountered. if a rule is the head of a group and it has lost all its */
/* group members, then also delete the group reference. nfreedp is needed */
/* to store the accumulating count of rules removed, whereas the returned */
/* value is just the number removed from the current list. The latter is */
/* needed to correctly adjust reference counts on rules that define groups. */
/* */
/* NOTE: Rules not loaded from user space cannot be flushed. */
/* ------------------------------------------------------------------------ */
static int
ipf_flushlist(set, unit, nfreedp, listp)
int set;
minor_t unit;
int *nfreedp;
frentry_t **listp;
{
int freed = 0;
frentry_t *fp;
while ((fp = *listp) != NULL) {
if ((fp->fr_type & FR_T_BUILTIN) ||
!(fp->fr_flags & FR_COPIED)) {
listp = &fp->fr_next;
continue;
}
*listp = fp->fr_next;
if (fp->fr_grp != NULL) {
(void) ipf_flushlist(set, unit, nfreedp, fp->fr_grp);
}
if (fp->fr_grhead != NULL) {
ipf_group_del(fp->fr_grhead, unit, set);
*fp->fr_grhead = '\0';
}
if (fp->fr_icmphead != NULL) {
ipf_group_del(fp->fr_icmphead, unit, set);
*fp->fr_icmphead = '\0';
}
ASSERT(fp->fr_ref > 0);
fp->fr_next = NULL;
if (ipf_derefrule(&fp) == 0)
freed++;
}
*nfreedp += freed;
return freed;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_flush */
/* Returns: int - >= 0 - number of flushed rules */
/* Parameters: unit(I) - device for which to flush rules */
/* flags(I) - which set of rules to flush */
/* */
/* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
/* and IPv6) as defined by the value of flags. */
/* ------------------------------------------------------------------------ */
int
ipf_flush(unit, flags)
minor_t unit;
int flags;
{
int flushed = 0, set;
WRITE_ENTER(&ipf_mutex);
bzero((char *)ipf_cache, sizeof(ipf_cache));
set = ipf_active;
if ((flags & FR_INACTIVE) == FR_INACTIVE)
set = 1 - set;
if (flags & FR_OUTQUE) {
(void) ipf_flushlist(set, unit, &flushed, &ipf_rules[1][set]);
(void) ipf_flushlist(set, unit, &flushed, &ipf_acct[1][set]);
}
if (flags & FR_INQUE) {
(void) ipf_flushlist(set, unit, &flushed, &ipf_rules[0][set]);
(void) ipf_flushlist(set, unit, &flushed, &ipf_acct[0][set]);
}
RWLOCK_EXIT(&ipf_mutex);
if (unit == IPL_LOGIPF) {
int tmp;
tmp = ipf_flush(IPL_LOGCOUNT, flags);
if (tmp >= 0)
flushed += tmp;
}
return flushed;
}
/* ------------------------------------------------------------------------ */
/* Function: memstr */
/* Returns: char * - NULL if failed, != NULL pointer to matching bytes */
/* Parameters: src(I) - pointer to byte sequence to match */
/* dst(I) - pointer to byte sequence to search */
/* slen(I) - match length */
/* dlen(I) - length available to search in */
/* */
/* Search dst for a sequence of bytes matching those at src and extend for */
/* slen bytes. */
/* ------------------------------------------------------------------------ */
char *
memstr(src, dst, slen, dlen)
const char *src;
char *dst;
size_t slen, dlen;
{
char *s = NULL;
while (dlen >= slen) {
if (bcmp(src, dst, slen) == 0) {
s = dst;
break;
}
dst++;
dlen--;
}
return s;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_fixskip */
/* Returns: Nil */
/* Parameters: listp(IO) - pointer to start of list with skip rule */
/* rp(I) - rule added/removed with skip in it. */
/* addremove(I) - adjustment (-1/+1) to make to skip count, */
/* depending on whether a rule was just added */
/* or removed. */
/* */
/* Adjust all the rules in a list which would have skip'd past the position */
/* where we are inserting to skip to the right place given the change. */
/* ------------------------------------------------------------------------ */
void
ipf_fixskip(listp, rp, addremove)
frentry_t **listp, *rp;
int addremove;
{
int rules, rn;
frentry_t *fp;
rules = 0;
for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
rules++;
if (!fp)
return;
for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
fp->fr_arg += addremove;
}
#ifdef _KERNEL
/* ------------------------------------------------------------------------ */
/* Function: count4bits */
/* Returns: int - >= 0 - number of consecutive bits in input */
/* Parameters: ip(I) - 32bit IP address */
/* */
/* IPv4 ONLY */
/* count consecutive 1's in bit mask. If the mask generated by counting */
/* consecutive 1's is different to that passed, return -1, else return # */
/* of bits. */
/* ------------------------------------------------------------------------ */
int
count4bits(ip)
u_32_t ip;
{
u_32_t ipn;
int cnt = 0, i, j;
ip = ipn = ntohl(ip);
for (i = 32; i; i--, ipn *= 2)
if (ipn & 0x80000000)
cnt++;
else
break;
ipn = 0;
for (i = 32, j = cnt; i; i--, j--) {
ipn *= 2;
if (j > 0)
ipn++;
}
if (ipn == ip)
return cnt;
return -1;
}
/* ------------------------------------------------------------------------ */
/* Function: count6bits */
/* Returns: int - >= 0 - number of consecutive bits in input */
/* Parameters: msk(I) - pointer to start of IPv6 bitmask */
/* */
/* IPv6 ONLY */
/* count consecutive 1's in bit mask. */
/* ------------------------------------------------------------------------ */
# ifdef USE_INET6
int
count6bits(msk)
u_32_t *msk;
{
int i = 0, k;
u_32_t j;
for (k = 3; k >= 0; k--)
if (msk[k] == 0xffffffff)
i += 32;
else {
for (j = msk[k]; j; j <<= 1)
if (j & 0x80000000)
i++;
}
return i;
}
# endif
#endif /* _KERNEL */
/* ------------------------------------------------------------------------ */
/* Function: ipf_synclist */
/* Returns: void */
/* Parameters: fr(I) - start of filter list to sync interface names for */
/* ifp(I) - interface pointer for limiting sync lookups */
/* Write Locks: ipf_mutex */
/* */
/* Walk through a list of filter rules and resolve any interface names into */
/* pointers. Where dynamic addresses are used, also update the IP address */
/* used in the rule. The interface pointer is used to limit the lookups to */
/* a specific set of matching names if it is non-NULL. */
/* ------------------------------------------------------------------------ */
static void
ipf_synclist(fr, ifp)
frentry_t *fr;
void *ifp;
{
frdest_t *fdp;
int v, i;
for (; fr; fr = fr->fr_next) {
v = fr->fr_v;
/*
* Lookup all the interface names that are part of the rule.
*/
for (i = 0; i < 4; i++) {
if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
continue;
fr->fr_ifas[i] = ipf_resolvenic(fr->fr_ifnames[i], v);
}
if (fr->fr_type == FR_T_IPF) {
if (fr->fr_satype != FRI_NORMAL &&
fr->fr_satype != FRI_LOOKUP) {
ipf_ifpaddr(v, fr->fr_satype,
fr->fr_ifas[fr->fr_sifpidx],
&fr->fr_src6, &fr->fr_smsk6);
}
if (fr->fr_datype != FRI_NORMAL &&
fr->fr_datype != FRI_LOOKUP) {
ipf_ifpaddr(v, fr->fr_datype,
fr->fr_ifas[fr->fr_difpidx],
&fr->fr_dst6, &fr->fr_dmsk6);
}
}
fdp = &fr->fr_tifs[0];
if ((ifp == NULL) || (fdp->fd_ifp == ifp))
ipf_resolvedest(fdp, v);
fdp = &fr->fr_tifs[1];
if ((ifp == NULL) || (fdp->fd_ifp == ifp))
ipf_resolvedest(fdp, v);
fdp = &fr->fr_dif;
if ((ifp == NULL) || (fdp->fd_ifp == ifp)) {
ipf_resolvedest(fdp, v);
fr->fr_flags &= ~FR_DUP;
if ((fdp->fd_ifp != (void *)-1) &&
(fdp->fd_ifp != NULL))
fr->fr_flags |= FR_DUP;
}
#ifdef IPFILTER_LOOKUP
if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP &&
fr->fr_srcptr == NULL) {
fr->fr_srcptr = ipf_resolvelookup(IPL_LOGIPF,
fr->fr_srctype,
fr->fr_srcnum,
&fr->fr_srcfunc);
}
if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP &&
fr->fr_dstptr == NULL) {
fr->fr_dstptr = ipf_resolvelookup(IPL_LOGIPF,
fr->fr_dsttype,
fr->fr_dstnum,
&fr->fr_dstfunc);
}
#endif
}
}
#ifdef _KERNEL
/* ------------------------------------------------------------------------ */
/* Function: frsync */
/* Returns: void */
/* Parameters: Nil */
/* */
/* frsync() is called when we suspect that the interface list or */
/* information about interfaces (like IP#) has changed. Go through all */
/* filter rules, NAT entries and the state table and check if anything */
/* needs to be changed/updated. */
/* ------------------------------------------------------------------------ */
int
ipf_sync(ifp)
void *ifp;
{
int i;
# if !SOLARIS
ipf_nat_sync(ifp);
ipf_state_sync(ifp);
# endif
WRITE_ENTER(&ipf_mutex);
ipf_synclist(ipf_acct[0][ipf_active], ifp);
ipf_synclist(ipf_acct[1][ipf_active], ifp);
ipf_synclist(ipf_rules[0][ipf_active], ifp);
ipf_synclist(ipf_rules[1][ipf_active], ifp);
for (i = 0; i < IPL_LOGSIZE; i++) {
frgroup_t *g;
for (g = ipf_groups[i][0]; g != NULL; g = g->fg_next)
ipf_synclist(g->fg_start, ifp);
for (g = ipf_groups[i][1]; g != NULL; g = g->fg_next)
ipf_synclist(g->fg_start, ifp);
}
RWLOCK_EXIT(&ipf_mutex);
return 0;
}
/*
* In the functions below, bcopy() is called because the pointer being
* copied _from_ in this instance is a pointer to a char buf (which could
* end up being unaligned) and on the kernel's local stack.
*/
/* ------------------------------------------------------------------------ */
/* Function: copyinptr */
/* Returns: int - 0 = success, else failure */
/* Parameters: src(I) - pointer to the source address */
/* dst(I) - destination address */
/* size(I) - number of bytes to copy */
/* */
/* Copy a block of data in from user space, given a pointer to the pointer */
/* to start copying from (src) and a pointer to where to store it (dst). */
/* NB: src - pointer to user space pointer, dst - kernel space pointer */
/* ------------------------------------------------------------------------ */
int
copyinptr(src, dst, size)
void *src, *dst;
size_t size;
{
caddr_t ca;
int error;
# if SOLARIS
error = COPYIN(src, &ca, sizeof(ca));
if (error != 0)
return error;
# else
bcopy(src, (caddr_t)&ca, sizeof(ca));
# endif
error = COPYIN(ca, dst, size);
if (error != 0) {
ipf_interror = 3;
error = EFAULT;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: copyoutptr */
/* Returns: int - 0 = success, else failure */
/* Parameters: src(I) - pointer to the source address */
/* dst(I) - destination address */
/* size(I) - number of bytes to copy */
/* */
/* Copy a block of data out to user space, given a pointer to the pointer */
/* to start copying from (src) and a pointer to where to store it (dst). */
/* NB: src - kernel space pointer, dst - pointer to user space pointer. */
/* ------------------------------------------------------------------------ */
int
copyoutptr(src, dst, size)
void *src, *dst;
size_t size;
{
caddr_t ca;
int error;
bcopy(dst, (caddr_t)&ca, sizeof(ca));
error = COPYOUT(src, ca, size);
if (error != 0) {
ipf_interror = 4;
error = EFAULT;
}
return error;
}
#endif
/* ------------------------------------------------------------------------ */
/* Function: ipf_lock */
/* Returns: int - 0 = success, else error */
/* Parameters: data(I) - pointer to lock value to set */
/* lockp(O) - pointer to location to store old lock value */
/* */
/* Get the new value for the lock integer, set it and return the old value */
/* in *lockp. */
/* ------------------------------------------------------------------------ */
int
ipf_lock(data, lockp)
caddr_t data;
int *lockp;
{
int arg, err;
err = BCOPYIN(data, &arg, sizeof(arg));
if (err != 0)
return EFAULT;
err = BCOPYOUT(lockp, data, sizeof(*lockp));
if (err != 0)
return EFAULT;
*lockp = arg;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_getstat */
/* Returns: Nil */
/* Parameters: fiop(I) - pointer to ipfilter stats structure */
/* */
/* Stores a copy of current pointers, counters, etc, in the friostat */
/* structure. */
/* ------------------------------------------------------------------------ */
void
ipf_getstat(fiop)
friostat_t *fiop;
{
int i;
bcopy((char *)ipf_stats, (char *)fiop->f_st,
sizeof(ipf_statistics_t) * 2);
fiop->f_locks[IPL_LOGSTATE] = ipf_state_lock;
fiop->f_locks[IPL_LOGNAT] = ipf_nat_lock;
fiop->f_locks[IPL_LOGIPF] = ipf_frag_lock;
fiop->f_locks[IPL_LOGAUTH] = ipf_auth_lock;
fiop->f_ipf[0][0] = ipf_rules[0][0];
fiop->f_acct[0][0] = ipf_acct[0][0];
fiop->f_ipf[0][1] = ipf_rules[0][1];
fiop->f_acct[0][1] = ipf_acct[0][1];
fiop->f_ipf[1][0] = ipf_rules[1][0];
fiop->f_acct[1][0] = ipf_acct[1][0];
fiop->f_ipf[1][1] = ipf_rules[1][1];
fiop->f_acct[1][1] = ipf_acct[1][1];
fiop->f_ticks = ipf_ticks;
fiop->f_active = ipf_active;
fiop->f_froute[0] = ipf_frouteok[0];
fiop->f_froute[1] = ipf_frouteok[1];
fiop->f_running = ipf_running;
for (i = 0; i < IPL_LOGSIZE; i++) {
fiop->f_groups[i][0] = ipf_groups[i][0];
fiop->f_groups[i][1] = ipf_groups[i][1];
}
#ifdef IPFILTER_LOG
fiop->f_logging = 1;
#else
fiop->f_logging = 0;
#endif
fiop->f_defpass = ipf_pass;
fiop->f_features = ipf_features;
(void) strncpy(fiop->f_version, ipfilter_version,
sizeof(fiop->f_version));
}
#ifdef USE_INET6
int icmptoicmp6types[ICMP_MAXTYPE+1] = {
ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */
-1, /* 1: UNUSED */
-1, /* 2: UNUSED */
ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */
-1, /* 4: ICMP_SOURCEQUENCH */
ND_REDIRECT, /* 5: ICMP_REDIRECT */
-1, /* 6: UNUSED */
-1, /* 7: UNUSED */
ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */
-1, /* 9: UNUSED */
-1, /* 10: UNUSED */
ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */
ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */
-1, /* 13: ICMP_TSTAMP */
-1, /* 14: ICMP_TSTAMPREPLY */
-1, /* 15: ICMP_IREQ */
-1, /* 16: ICMP_IREQREPLY */
-1, /* 17: ICMP_MASKREQ */
-1, /* 18: ICMP_MASKREPLY */
};
int icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */
ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */
-1, /* 2: ICMP_UNREACH_PROTOCOL */
ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */
-1, /* 4: ICMP_UNREACH_NEEDFRAG */
ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */
ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */
ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */
-1, /* 8: ICMP_UNREACH_ISOLATED */
ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */
ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */
-1, /* 11: ICMP_UNREACH_TOSNET */
-1, /* 12: ICMP_UNREACH_TOSHOST */
ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
};
int icmpreplytype6[ICMP6_MAXTYPE + 1];
#endif
int icmpreplytype4[ICMP_MAXTYPE + 1];
/* ------------------------------------------------------------------------ */
/* Function: ipf_matchicmpqueryreply */
/* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */
/* Parameters: v(I) - IP protocol version (4 or 6) */
/* ic(I) - ICMP information */
/* icmp(I) - ICMP packet header */
/* rev(I) - direction (0 = forward/1 = reverse) of packet */
/* */
/* Check if the ICMP packet defined by the header pointed to by icmp is a */
/* reply to one as described by what's in ic. If it is a match, return 1, */
/* else return 0 for no match. */
/* ------------------------------------------------------------------------ */
int
ipf_matchicmpqueryreply(v, ic, icmp, rev)
int v;
icmpinfo_t *ic;
icmphdr_t *icmp;
int rev;
{
int ictype;
ictype = ic->ici_type;
if (v == 4) {
/*
* If we matched its type on the way in, then when going out
* it will still be the same type.
*/
if ((!rev && (icmp->icmp_type == ictype)) ||
(rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
if (icmp->icmp_type != ICMP_ECHOREPLY)
return 1;
if (icmp->icmp_id == ic->ici_id)
return 1;
}
}
#ifdef USE_INET6
else if (v == 6) {
if ((!rev && (icmp->icmp_type == ictype)) ||
(rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
if (icmp->icmp_type != ICMP6_ECHO_REPLY)
return 1;
if (icmp->icmp_id == ic->ici_id)
return 1;
}
}
#endif
return 0;
}
#ifdef IPFILTER_LOOKUP
/* ------------------------------------------------------------------------ */
/* Function: ipf_resolvelookup */
/* Returns: void * - NULL = failure, else success. */
/* Parameters: unit(I) - device for which this is for */
/* type(I) - type of lookup these parameters are for. */
/* number(I) - table number to use when searching */
/* funcptr(IO) - pointer to pointer for storing IP address */
/* searching function. */
/* */
/* Search for the "table" number passed in amongst those configured for */
/* that particular type. If the type is recognised then the function to */
/* call to do the IP address search will be change, regardless of whether */
/* or not the "table" number exists. */
/* ------------------------------------------------------------------------ */
void *
ipf_resolvelookup(unit, type, number, funcptr)
int unit;
u_int type, number;
lookupfunc_t *funcptr;
{
char name[FR_GROUPLEN];
iphtable_t *iph;
ip_pool_t *ipo;
void *ptr;
#if defined(SNPRINTF) && defined(_KERNEL)
SNPRINTF(name, sizeof(name), "%u", number);
#else
(void) sprintf(name, "%u", number);
#endif
READ_ENTER(&ipf_poolrw);
switch (type)
{
case IPLT_POOL :
# if (defined(__osf__) && defined(_KERNEL))
ptr = NULL;
*funcptr = NULL;
# else
ipo = ipf_pool_find(unit, name);
ptr = ipo;
if (ipo != NULL) {
ATOMIC_INC32(ipo->ipo_ref);
}
*funcptr = ipf_pool_search;
# endif
break;
case IPLT_HASH :
iph = ipf_htable_find(unit, name);
ptr = iph;
if (iph != NULL) {
ATOMIC_INC32(iph->iph_ref);
}
*funcptr = ipf_iphmfindip;
break;
default:
ptr = NULL;
*funcptr = NULL;
break;
}
RWLOCK_EXIT(&ipf_poolrw);
return ptr;
}
#endif
/* ------------------------------------------------------------------------ */
/* Function: frrequest */
/* Returns: int - 0 == success, > 0 == errno value */
/* Parameters: unit(I) - device for which this is for */
/* req(I) - ioctl command (SIOC*) */
/* data(I) - pointr to ioctl data */
/* set(I) - 1 or 0 (filter set) */
/* makecopy(I) - flag indicating whether data points to a rule */
/* in kernel space & hence doesn't need copying. */
/* */
/* This function handles all the requests which operate on the list of */
/* filter rules. This includes adding, deleting, insertion. It is also */
/* responsible for creating groups when a "head" rule is loaded. Interface */
/* names are resolved here and other sanity checks are made on the content */
/* of the rule structure being loaded. If a rule has user defined timeouts */
/* then make sure they are created and initialised before exiting. */
/* ------------------------------------------------------------------------ */
int
frrequest(unit, req, data, set, makecopy)
int unit;
ioctlcmd_t req;
int set, makecopy;
caddr_t data;
{
frentry_t frd, *fp, *f, **fprev, **ftail;
int error = 0, in, v, addrem;
void *ptr, *uptr;
u_int *p, *pp;
frgroup_t *fg;
char *group;
fg = NULL;
fp = &frd;
if (makecopy != 0) {
error = ipf_inobj(data, fp, IPFOBJ_FRENTRY);
if (error) {
return error;
}
if ((fp->fr_flags & FR_T_BUILTIN) != 0) {
ipf_interror = 6;
return EINVAL;
}
fp->fr_ref = 0;
fp->fr_flags |= FR_COPIED;
} else {
fp = (frentry_t *)data;
if ((fp->fr_type & FR_T_BUILTIN) == 0) {
ipf_interror = 7;
return EINVAL;
}
fp->fr_flags &= ~FR_COPIED;
}
if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
ipf_interror = 8;
return EINVAL;
}
v = fp->fr_v;
uptr = fp->fr_data;
if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
addrem = 0;
else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
addrem = 1;
else if (req == (ioctlcmd_t)SIOCZRLST)
addrem = 2;
else {
ipf_interror = 9;
return EINVAL;
}
/*
* Only filter rules for IPv4 or IPv6 are accepted.
*/
if (v == 4) {
/*EMPTY*/;
#ifdef USE_INET6
} else if (v == 6) {
/*EMPTY*/;
#endif
} else if (v != 0) {
ipf_interror = 10;
return EINVAL;
}
/*
* If the rule is being loaded from user space, i.e. we had to copy it
* into kernel space, then do not trust the function pointer in the
* rule.
*/
if ((makecopy == 1) && (fp->fr_func != NULL)) {
if (ipf_findfunc(fp->fr_func) == NULL) {
ipf_interror = 11;
return ESRCH;
}
error = ipf_funcinit(fp);
if (error != 0)
return error;
}
ptr = NULL;
if (FR_ISACCOUNT(fp->fr_flags))
unit = IPL_LOGCOUNT;
/*
* Check that the group number does exist and that its use (in/out)
* matches what the rule is.
*/
if (!strncmp(fp->fr_icmphead, "0", FR_GROUPLEN))
*fp->fr_icmphead = '\0';
if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN))
*fp->fr_grhead = '\0';
group = fp->fr_group;
if ((req != (int)SIOCZRLST) && (*group != '\0')) {
fg = ipf_findgroup(group, unit, set, NULL);
if (fg == NULL) {
ipf_interror = 12;
return ESRCH;
}
if (fg->fg_flags == 0)
fg->fg_flags = fp->fr_flags & FR_INOUT;
else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
ipf_interror = 13;
return ESRCH;
}
}
/*
* If a rule is going to be part of a group then it does not matter
* whether it is an in or out rule.
*/
if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
if (*group == '\0') {
ipf_interror = 14;
return EINVAL;
}
}
in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
/*
* Work out which rule list this change is being applied to.
*/
ftail = NULL;
fprev = NULL;
if (unit == IPL_LOGAUTH)
fprev = &ipf_auth_ip;
else {
if (FR_ISACCOUNT(fp->fr_flags))
fprev = &ipf_acct[in][set];
else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
fprev = &ipf_rules[in][set];
}
if (fprev == NULL) {
ipf_interror = 15;
return ESRCH;
}
if (fg != NULL)
fprev = &fg->fg_start;
/*
* Copy in extra data for the rule.
*/
if (fp->fr_dsize != 0) {
if (makecopy != 0) {
KMALLOCS(ptr, void *, fp->fr_dsize);
if (ptr == NULL) {
ipf_interror = 16;
return ENOMEM;
}
error = COPYIN(uptr, ptr, fp->fr_dsize);
if (error != 0) {
ipf_interror = 17;
KFREES(ptr, fp->fr_dsize);
return EFAULT;
}
} else {
ptr = uptr;
}
fp->fr_data = ptr;
} else {
fp->fr_data = NULL;
}
/*
* Perform per-rule type sanity checks of their members.
*/
switch (fp->fr_type & ~FR_T_BUILTIN)
{
#if defined(IPFILTER_BPF)
case FR_T_BPFOPC :
if (fp->fr_dsize == 0) {
ipf_interror = 19;
return EINVAL;
}
if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
if (makecopy && fp->fr_data != NULL) {
KFREES(fp->fr_data, fp->fr_dsize);
}
ipf_interror = 20;
return EINVAL;
}
break;
#endif
case FR_T_IPF :
if (fp->fr_dsize != sizeof(fripf_t)) {
ipf_interror = 21;
return EINVAL;
}
/*
* Allowing a rule with both "keep state" and "with oow" is
* pointless because adding a state entry to the table will
* fail with the out of window (oow) flag set.
*/
if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
ipf_interror = 22;
return EINVAL;
}
switch (fp->fr_satype)
{
case FRI_BROADCAST :
case FRI_DYNAMIC :
case FRI_NETWORK :
case FRI_NETMASKED :
case FRI_PEERADDR :
if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) {
if (makecopy && fp->fr_data != NULL) {
KFREES(fp->fr_data, fp->fr_dsize);
}
ipf_interror = 23;
return EINVAL;
}
break;
#ifdef IPFILTER_LOOKUP
case FRI_LOOKUP :
fp->fr_srcptr = ipf_resolvelookup(IPL_LOGIPF,
fp->fr_srctype,
fp->fr_srcnum,
&fp->fr_srcfunc);
break;
#endif
default :
break;
}
switch (fp->fr_datype)
{
case FRI_BROADCAST :
case FRI_DYNAMIC :
case FRI_NETWORK :
case FRI_NETMASKED :
case FRI_PEERADDR :
if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) {
if (makecopy && fp->fr_data != NULL) {
KFREES(fp->fr_data, fp->fr_dsize);
}
ipf_interror = 24;
return EINVAL;
}
break;
#ifdef IPFILTER_LOOKUP
case FRI_LOOKUP :
fp->fr_dstptr = ipf_resolvelookup(IPL_LOGIPF,
fp->fr_dsttype,
fp->fr_dstnum,
&fp->fr_dstfunc);
break;
#endif
default :
break;
}
break;
case FR_T_NONE :
break;
case FR_T_CALLFUNC :
break;
case FR_T_COMPIPF :
break;
case FR_T_IPFEXPR :
if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
if (makecopy && fp->fr_data != NULL) {
KFREES(fp->fr_data, fp->fr_dsize);
}
ipf_interror = 25;
return EINVAL;
}
break;
default :
if (makecopy && fp->fr_data != NULL) {
KFREES(fp->fr_data, fp->fr_dsize);
}
ipf_interror = 26;
return EINVAL;
}
/*
* Lookup all the interface names that are part of the rule.
*/
ipf_synclist(fp, NULL);
fp->fr_statecnt = 0;
/*
* Look for an existing matching filter rule, but don't include the
* next or interface pointer in the comparison (fr_next, fr_ifa).
* This elminates rules which are indentical being loaded. Checksum
* the constant part of the filter rule to make comparisons quicker
* (this meaning no pointers are included).
*/
for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
p < pp; p++)
fp->fr_cksum += *p;
pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
for (p = (u_int *)fp->fr_data; p < pp; p++)
fp->fr_cksum += *p;
WRITE_ENTER(&ipf_mutex);
/*
* Now that the filter rule lists are locked, we can walk the
* chain of them without fear.
*/
ftail = fprev;
for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
if (fp->fr_collect <= f->fr_collect) {
ftail = fprev;
f = NULL;
break;
}
fprev = ftail;
}
bzero((char *)ipf_cache, sizeof(ipf_cache));
for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
if ((fp->fr_cksum != f->fr_cksum) ||
(f->fr_dsize != fp->fr_dsize))
continue;
if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ))
continue;
if ((!ptr && !f->fr_data) ||
(ptr && f->fr_data &&
!bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
break;
}
/*
* If zero'ing statistics, copy current to caller and zero.
*/
if (addrem == 2) {
if (f == NULL) {
ipf_interror = 27;
error = ESRCH;
} else {
/*
* Copy and reduce lock because of impending copyout.
* Well we should, but if we do then the atomicity of
* this call and the correctness of fr_hits and
* fr_bytes cannot be guaranteed. As it is, this code
* only resets them to 0 if they are successfully
* copied out into user space.
*/
bcopy((char *)f, (char *)fp, sizeof(*f));
/* MUTEX_DOWNGRADE(&ipf_mutex); */
/*
* When we copy this rule back out, set the data
* pointer to be what it was in user space.
*/
fp->fr_data = uptr;
error = ipf_outobj(data, fp, IPFOBJ_FRENTRY);
if (error == 0) {
if ((f->fr_dsize != 0) && (uptr != NULL))
error = COPYOUT(f->fr_data, uptr,
f->fr_dsize);
if (error != 0) {
ipf_interror = 28;
error = EFAULT;
}
if (error == 0) {
f->fr_hits = 0;
f->fr_bytes = 0;
}
}
}
if ((ptr != NULL) && (makecopy != 0)) {
KFREES(ptr, fp->fr_dsize);
}
RWLOCK_EXIT(&ipf_mutex);
return error;
}
if (!f) {
/*
* At the end of this, ftail must point to the place where the
* new rule is to be saved/inserted/added.
* For SIOCAD*FR, this should be the last rule in the group of
* rules that have equal fr_collect fields.
* For SIOCIN*FR, ...
*/
if (req == (ioctlcmd_t)SIOCADAFR ||
req == (ioctlcmd_t)SIOCADIFR) {
for (ftail = fprev; (f = *ftail) != NULL; ) {
if (f->fr_collect > fp->fr_collect)
break;
ftail = &f->fr_next;
}
f = NULL;
ptr = NULL;
error = 0;
} else if (req == (ioctlcmd_t)SIOCINAFR ||
req == (ioctlcmd_t)SIOCINIFR) {
while ((f = *fprev) != NULL) {
if (f->fr_collect >= fp->fr_collect)
break;
fprev = &f->fr_next;
}
ftail = fprev;
if (fp->fr_hits != 0) {
while (fp->fr_hits && (f = *ftail)) {
if (f->fr_collect != fp->fr_collect)
break;
fprev = ftail;
ftail = &f->fr_next;
fp->fr_hits--;
}
}
f = NULL;
ptr = NULL;
error = 0;
}
}
/*
* Request to remove a rule.
*/
if (addrem == 1) {
if (!f) {
ipf_interror = 29;
error = ESRCH;
} else {
/*
* Do not allow activity from user space to interfere
* with rules not loaded that way.
*/
if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
ipf_interror = 30;
error = EPERM;
goto done;
}
/*
* Return EBUSY if the rule is being reference by
* something else (eg state information.)
*/
if (f->fr_ref > 1) {
ipf_interror = 31;
error = EBUSY;
goto done;
}
#ifdef IPFILTER_SCAN
if (f->fr_isctag[0] != '\0' &&
(f->fr_isc != (struct ipscan *)-1))
ipf_scan_detachfr(f);
#endif
if (unit == IPL_LOGAUTH) {
error = ipf_auth_precmd(req, f, ftail);
goto done;
}
if (*f->fr_grhead != '\0')
ipf_group_del(f->fr_grhead, unit, set);
if (*f->fr_icmphead != '\0')
ipf_group_del(f->fr_icmphead, unit, set);
ipf_fixskip(ftail, f, -1);
*ftail = f->fr_next;
f->fr_next = NULL;
ipf_checkrulefunc(f->fr_func, addrem, set);
(void) ipf_derefrule(&f);
}
} else {
/*
* Not removing, so we must be adding/inserting a rule.
*/
if (f != NULL) {
ipf_interror = 32;
error = EEXIST;
} else {
if (unit == IPL_LOGAUTH) {
error = ipf_auth_precmd(req, fp, ftail);
goto done;
}
if (makecopy) {
KMALLOC(f, frentry_t *);
} else
f = fp;
if (f != NULL) {
if (fp != f)
bcopy((char *)fp, (char *)f,
sizeof(*f));
MUTEX_NUKE(&f->fr_lock);
MUTEX_INIT(&f->fr_lock, "filter rule lock");
#ifdef IPFILTER_SCAN
if (f->fr_isctag[0] != '\0' &&
ipf_scan_attachfr(f))
f->fr_isc = (struct ipscan *)-1;
#endif
f->fr_hits = 0;
if (makecopy != 0)
f->fr_ref = 1;
f->fr_next = *ftail;
*ftail = f;
if (addrem == 0)
ipf_fixskip(ftail, f, 1);
f->fr_icmpgrp = NULL;
group = f->fr_icmphead;
if (*group != '\0') {
fg = ipf_group_add(group, f, 0,
unit, set);
if (fg != NULL)
f->fr_icmpgrp = &fg->fg_start;
}
f->fr_grp = NULL;
group = f->fr_grhead;
if (*group != '\0') {
fg = ipf_group_add(group, f,
f->fr_flags, unit,
set);
if (fg != NULL)
f->fr_grp = &fg->fg_start;
}
ipf_checkrulefunc(f->fr_func, addrem, set);
} else {
ipf_interror = 33;
error = ENOMEM;
}
}
}
done:
RWLOCK_EXIT(&ipf_mutex);
if ((ptr != NULL) && (error != 0) && (makecopy != 0)) {
KFREES(ptr, fp->fr_dsize);
}
return (error);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_funcinit */
/* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */
/* Parameters: fr(I) - pointer to filter rule */
/* */
/* If a rule is a call rule, then check if the function it points to needs */
/* an init function to be called now the rule has been loaded. */
/* ------------------------------------------------------------------------ */
static int
ipf_funcinit(fr)
frentry_t *fr;
{
ipfunc_resolve_t *ft;
int err;
ipf_interror = 34;
err = ESRCH;
for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
if (ft->ipfu_addr == fr->fr_func) {
err = 0;
if (ft->ipfu_init != NULL)
err = (*ft->ipfu_init)(fr);
break;
}
return err;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_findfunc */
/* Returns: ipfunc_t - pointer to function if found, else NULL */
/* Parameters: funcptr(I) - function pointer to lookup */
/* */
/* Look for a function in the table of known functions. */
/* ------------------------------------------------------------------------ */
static ipfunc_t
ipf_findfunc(funcptr)
ipfunc_t funcptr;
{
ipfunc_resolve_t *ft;
for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
if (ft->ipfu_addr == funcptr)
return funcptr;
return NULL;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_resolvefunc */
/* Returns: int - 0 == success, else error */
/* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */
/* */
/* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
/* This will either be the function name (if the pointer is set) or the */
/* function pointer if the name is set. When found, fill in the other one */
/* so that the entire, complete, structure can be copied back to user space.*/
/* ------------------------------------------------------------------------ */
int
ipf_resolvefunc(data)
void *data;
{
ipfunc_resolve_t res, *ft;
int error;
error = BCOPYIN(data, &res, sizeof(res));
if (error != 0) {
ipf_interror = 123;
return EFAULT;
}
if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
if (strncmp(res.ipfu_name, ft->ipfu_name,
sizeof(res.ipfu_name)) == 0) {
res.ipfu_addr = ft->ipfu_addr;
res.ipfu_init = ft->ipfu_init;
if (COPYOUT(&res, data, sizeof(res)) != 0) {
ipf_interror = 35;
return EFAULT;
}
return 0;
}
}
if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
if (ft->ipfu_addr == res.ipfu_addr) {
(void) strncpy(res.ipfu_name, ft->ipfu_name,
sizeof(res.ipfu_name));
res.ipfu_init = ft->ipfu_init;
if (COPYOUT(&res, data, sizeof(res)) != 0) {
ipf_interror = 36;
return EFAULT;
}
return 0;
}
}
ipf_interror = 37;
return ESRCH;
}
#if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \
(defined(__FreeBSD__) && (__FreeBSD_version < 501000)) || \
(defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \
(defined(__OpenBSD__) && (OpenBSD < 200006))
/*
* From: NetBSD
* ppsratecheck(): packets (or events) per second limitation.
*/
int
ppsratecheck(lasttime, curpps, maxpps)
struct timeval *lasttime;
int *curpps;
int maxpps; /* maximum pps allowed */
{
struct timeval tv, delta;
int rv;
GETKTIME(&tv);
delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
if (delta.tv_usec < 0) {
delta.tv_sec--;
delta.tv_usec += 1000000;
}
/*
* check for 0,0 is so that the message will be seen at least once.
* if more than one second have passed since the last update of
* lasttime, reset the counter.
*
* we do increment *curpps even in *curpps < maxpps case, as some may
* try to use *curpps for stat purposes as well.
*/
if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
delta.tv_sec >= 1) {
*lasttime = tv;
*curpps = 0;
rv = 1;
} else if (maxpps < 0)
rv = 1;
else if (*curpps < maxpps)
rv = 1;
else
rv = 0;
*curpps = *curpps + 1;
return (rv);
}
#endif
/* ------------------------------------------------------------------------ */
/* Function: ipf_derefrule */
/* Returns: int - 0 == rule freed up, else rule not freed */
/* Parameters: fr(I) - pointer to filter rule */
/* */
/* Decrement the reference counter to a rule by one. If it reaches zero, */
/* free it and any associated storage space being used by it. */
/* ------------------------------------------------------------------------ */
int
ipf_derefrule(frp)
frentry_t **frp;
{
frentry_t *fr;
fr = *frp;
*frp = NULL;
MUTEX_ENTER(&fr->fr_lock);
fr->fr_ref--;
if (fr->fr_ref == 0) {
MUTEX_EXIT(&fr->fr_lock);
MUTEX_DESTROY(&fr->fr_lock);
#ifdef IPFILTER_LOOKUP
if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP)
ipf_lookup_deref(fr->fr_srctype, fr->fr_srcptr);
if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP)
ipf_lookup_deref(fr->fr_dsttype, fr->fr_dstptr);
#endif
if (fr->fr_dsize) {
KFREES(fr->fr_data, fr->fr_dsize);
}
if ((fr->fr_flags & FR_COPIED) != 0) {
KFREE(fr);
return 0;
}
return 1;
} else {
MUTEX_EXIT(&fr->fr_lock);
}
return -1;
}
#ifdef IPFILTER_LOOKUP
/* ------------------------------------------------------------------------ */
/* Function: ipf_grpmapinit */
/* Returns: int - 0 == success, else ESRCH because table entry not found*/
/* Parameters: fr(I) - pointer to rule to find hash table for */
/* */
/* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */
/* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */
/* ------------------------------------------------------------------------ */
static int
ipf_grpmapinit(fr)
frentry_t *fr;
{
char name[FR_GROUPLEN];
iphtable_t *iph;
#if defined(SNPRINTF) && defined(_KERNEL)
SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
#else
(void) sprintf(name, "%d", fr->fr_arg);
#endif
iph = ipf_htable_find(IPL_LOGIPF, name);
if (iph == NULL) {
ipf_interror = 38;
return ESRCH;
}
if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
ipf_interror = 39;
return ESRCH;
}
fr->fr_ptr = iph;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_srcgrpmap */
/* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
/* Parameters: fin(I) - pointer to packet information */
/* passp(IO) - pointer to current/new filter decision (unused) */
/* */
/* Look for a rule group head in a hash table, using the source address as */
/* the key, and descend into that group and continue matching rules against */
/* the packet. */
/* ------------------------------------------------------------------------ */
frentry_t *
ipf_srcgrpmap(fin, passp)
fr_info_t *fin;
u_32_t *passp;
{
frgroup_t *fg;
void *rval;
rval = ipf_iphmfindgroup(fin->fin_fr->fr_ptr, &fin->fin_src);
if (rval == NULL)
return NULL;
fg = rval;
fin->fin_fr = fg->fg_start;
(void) ipf_scanlist(fin, *passp);
return fin->fin_fr;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_dstgrpmap */
/* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
/* Parameters: fin(I) - pointer to packet information */
/* passp(IO) - pointer to current/new filter decision (unused) */
/* */
/* Look for a rule group head in a hash table, using the destination */
/* address as the key, and descend into that group and continue matching */
/* rules against the packet. */
/* ------------------------------------------------------------------------ */
frentry_t *
ipf_dstgrpmap(fin, passp)
fr_info_t *fin;
u_32_t *passp;
{
frgroup_t *fg;
void *rval;
rval = ipf_iphmfindgroup(fin->fin_fr->fr_ptr, &fin->fin_dst);
if (rval == NULL)
return NULL;
fg = rval;
fin->fin_fr = fg->fg_start;
(void) ipf_scanlist(fin, *passp);
return fin->fin_fr;
}
#endif /* IPFILTER_LOOKUP */
/*
* Queue functions
* ===============
* These functions manage objects on queues for efficient timeouts. There are
* a number of system defined queues as well as user defined timeouts. It is
* expected that a lock is held in the domain in which the queue belongs
* (i.e. either state or NAT) when calling any of these functions that prevents
* ipf_freetimeoutqueue() from being called at the same time as any other.
*/
/* ------------------------------------------------------------------------ */
/* Function: ipf_addtimeoutqueue */
/* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */
/* timeout queue with given interval. */
/* Parameters: parent(I) - pointer to pointer to parent node of this list */
/* of interface queues. */
/* seconds(I) - timeout value in seconds for this queue. */
/* */
/* This routine first looks for a timeout queue that matches the interval */
/* being requested. If it finds one, increments the reference counter and */
/* returns a pointer to it. If none are found, it allocates a new one and */
/* inserts it at the top of the list. */
/* */
/* Locking. */
/* It is assumed that the caller of this function has an appropriate lock */
/* held (exclusively) in the domain that encompases 'parent'. */
/* ------------------------------------------------------------------------ */
ipftq_t *
ipf_addtimeoutqueue(parent, seconds)
ipftq_t **parent;
u_int seconds;
{
ipftq_t *ifq;
u_int period;
period = seconds * IPF_HZ_DIVIDE;
MUTEX_ENTER(&ipf_timeoutlock);
for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
if (ifq->ifq_ttl == period) {
/*
* Reset the delete flag, if set, so the structure
* gets reused rather than freed and reallocated.
*/
MUTEX_ENTER(&ifq->ifq_lock);
ifq->ifq_flags &= ~IFQF_DELETE;
ifq->ifq_ref++;
MUTEX_EXIT(&ifq->ifq_lock);
MUTEX_EXIT(&ipf_timeoutlock);
return ifq;
}
}
KMALLOC(ifq, ipftq_t *);
if (ifq != NULL) {
MUTEX_NUKE(&ifq->ifq_lock);
IPFTQ_INIT(ifq, period, "ipftq mutex");
ifq->ifq_next = *parent;
ifq->ifq_pnext = parent;
ifq->ifq_flags = IFQF_USER;
*parent = ifq;
ipf_userifqs++;
}
MUTEX_EXIT(&ipf_timeoutlock);
return ifq;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_deletetimeoutqueue */
/* Returns: int - new reference count value of the timeout queue */
/* Parameters: ifq(I) - timeout queue which is losing a reference. */
/* Locks: ifq->ifq_lock */
/* */
/* This routine must be called when we're discarding a pointer to a timeout */
/* queue object, taking care of the reference counter. */
/* */
/* Now that this just sets a DELETE flag, it requires the expire code to */
/* check the list of user defined timeout queues and call the free function */
/* below (currently commented out) to stop memory leaking. It is done this */
/* way because the locking may not be sufficient to safely do a free when */
/* this function is called. */
/* ------------------------------------------------------------------------ */
int
ipf_deletetimeoutqueue(ifq)
ipftq_t *ifq;
{
ifq->ifq_ref--;
if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
ifq->ifq_flags |= IFQF_DELETE;
}
return ifq->ifq_ref;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_freetimeoutqueue */
/* Parameters: ifq(I) - timeout queue which is losing a reference. */
/* Returns: Nil */
/* */
/* Locking: */
/* It is assumed that the caller of this function has an appropriate lock */
/* held (exclusively) in the domain that encompases the callers "domain". */
/* The ifq_lock for this structure should not be held. */
/* */
/* Remove a user definde timeout queue from the list of queues it is in and */
/* tidy up after this is done. */
/* ------------------------------------------------------------------------ */
void
ipf_freetimeoutqueue(ifq)
ipftq_t *ifq;
{
if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
((ifq->ifq_flags & IFQF_USER) == 0)) {
printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
(u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
ifq->ifq_ref);
return;
}
/*
* Remove from its position in the list.
*/
*ifq->ifq_pnext = ifq->ifq_next;
if (ifq->ifq_next != NULL)
ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
MUTEX_DESTROY(&ifq->ifq_lock);
ATOMIC_DEC(ipf_userifqs);
KFREE(ifq);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_deletequeueentry */
/* Returns: Nil */
/* Parameters: tqe(I) - timeout queue entry to delete */
/* ifq(I) - timeout queue to remove entry from */
/* */
/* Remove a tail queue entry from its queue and make it an orphan. */
/* ipf_deletetimeoutqueue is called to make sure the reference count on the */
/* queue is correct. We can't, however, call ipf_freetimeoutqueue because */
/* the correct lock(s) may not be held that would make it safe to do so. */
/* ------------------------------------------------------------------------ */
void
ipf_deletequeueentry(tqe)
ipftqent_t *tqe;
{
ipftq_t *ifq;
ifq = tqe->tqe_ifq;
MUTEX_ENTER(&ifq->ifq_lock);
if (tqe->tqe_pnext != NULL) {
*tqe->tqe_pnext = tqe->tqe_next;
if (tqe->tqe_next != NULL)
tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
else /* we must be the tail anyway */
ifq->ifq_tail = tqe->tqe_pnext;
tqe->tqe_pnext = NULL;
tqe->tqe_ifq = NULL;
}
(void) ipf_deletetimeoutqueue(ifq);
MUTEX_EXIT(&ifq->ifq_lock);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_queuefront */
/* Returns: Nil */
/* Parameters: tqe(I) - pointer to timeout queue entry */
/* */
/* Move a queue entry to the front of the queue, if it isn't already there. */
/* ------------------------------------------------------------------------ */
void
ipf_queuefront(tqe)
ipftqent_t *tqe;
{
ipftq_t *ifq;
ifq = tqe->tqe_ifq;
if (ifq == NULL)
return;
MUTEX_ENTER(&ifq->ifq_lock);
if (ifq->ifq_head != tqe) {
*tqe->tqe_pnext = tqe->tqe_next;
if (tqe->tqe_next)
tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
else
ifq->ifq_tail = tqe->tqe_pnext;
tqe->tqe_next = ifq->ifq_head;
ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
ifq->ifq_head = tqe;
tqe->tqe_pnext = &ifq->ifq_head;
}
MUTEX_EXIT(&ifq->ifq_lock);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_queueback */
/* Returns: Nil */
/* Parameters: tqe(I) - pointer to timeout queue entry */
/* */
/* Move a queue entry to the back of the queue, if it isn't already there. */
/* ------------------------------------------------------------------------ */
void
ipf_queueback(tqe)
ipftqent_t *tqe;
{
ipftq_t *ifq;
ifq = tqe->tqe_ifq;
if (ifq == NULL)
return;
tqe->tqe_die = ipf_ticks + ifq->ifq_ttl;
MUTEX_ENTER(&ifq->ifq_lock);
if (tqe->tqe_next != NULL) { /* at the end already ? */
/*
* Remove from list
*/
*tqe->tqe_pnext = tqe->tqe_next;
tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
/*
* Make it the last entry.
*/
tqe->tqe_next = NULL;
tqe->tqe_pnext = ifq->ifq_tail;
*ifq->ifq_tail = tqe;
ifq->ifq_tail = &tqe->tqe_next;
}
MUTEX_EXIT(&ifq->ifq_lock);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_queueappend */
/* Returns: Nil */
/* Parameters: tqe(I) - pointer to timeout queue entry */
/* ifq(I) - pointer to timeout queue */
/* parent(I) - owing object pointer */
/* */
/* Add a new item to this queue and put it on the very end. */
/* ------------------------------------------------------------------------ */
void
ipf_queueappend(tqe, ifq, parent)
ipftqent_t *tqe;
ipftq_t *ifq;
void *parent;
{
MUTEX_ENTER(&ifq->ifq_lock);
tqe->tqe_parent = parent;
tqe->tqe_pnext = ifq->ifq_tail;
*ifq->ifq_tail = tqe;
ifq->ifq_tail = &tqe->tqe_next;
tqe->tqe_next = NULL;
tqe->tqe_ifq = ifq;
tqe->tqe_die = ipf_ticks + ifq->ifq_ttl;
ifq->ifq_ref++;
MUTEX_EXIT(&ifq->ifq_lock);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_movequeue */
/* Returns: Nil */
/* Parameters: tq(I) - pointer to timeout queue information */
/* oifp(I) - old timeout queue entry was on */
/* nifp(I) - new timeout queue to put entry on */
/* */
/* Move a queue entry from one timeout queue to another timeout queue. */
/* If it notices that the current entry is already last and does not need */
/* to move queue, the return. */
/* ------------------------------------------------------------------------ */
void
ipf_movequeue(tqe, oifq, nifq)
ipftqent_t *tqe;
ipftq_t *oifq, *nifq;
{
/*
* Is the operation here going to be a no-op ?
*/
MUTEX_ENTER(&oifq->ifq_lock);
if ((oifq != nifq) || (*oifq->ifq_tail != tqe)) {
/*
* Remove from the old queue
*/
*tqe->tqe_pnext = tqe->tqe_next;
if (tqe->tqe_next)
tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
else
oifq->ifq_tail = tqe->tqe_pnext;
tqe->tqe_next = NULL;
/*
* If we're moving from one queue to another, release the
* lock on the old queue and get a lock on the new queue.
* For user defined queues, if we're moving off it, call
* delete in case it can now be freed.
*/
if (oifq != nifq) {
tqe->tqe_ifq = NULL;
(void) ipf_deletetimeoutqueue(oifq);
MUTEX_EXIT(&oifq->ifq_lock);
MUTEX_ENTER(&nifq->ifq_lock);
tqe->tqe_ifq = nifq;
nifq->ifq_ref++;
}
/*
* Add to the bottom of the new queue
*/
tqe->tqe_die = ipf_ticks + nifq->ifq_ttl;
tqe->tqe_pnext = nifq->ifq_tail;
*nifq->ifq_tail = tqe;
nifq->ifq_tail = &tqe->tqe_next;
}
MUTEX_EXIT(&nifq->ifq_lock);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_updateipid */
/* Returns: int - 0 == success, -1 == error (packet should be droppped) */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* When we are doing NAT, change the IP of every packet to represent a */
/* single sequence of packets coming from the host, hiding any host */
/* specific sequencing that might otherwise be revealed. If the packet is */
/* a fragment, then store the 'new' IPid in the fragment cache and look up */
/* the fragment cache for non-leading fragments. If a non-leading fragment */
/* has no match in the cache, return an error. */
/* ------------------------------------------------------------------------ */
static int
ipf_updateipid(fin)
fr_info_t *fin;
{
u_short id, ido, sums;
u_32_t sumd, sum;
ip_t *ip;
if (fin->fin_off != 0) {
sum = ipf_frag_ipidknown(fin);
if (sum == 0xffffffff)
return -1;
sum &= 0xffff;
id = (u_short)sum;
} else {
id = ipf_nextipid(fin);
if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
(void) ipf_frag_ipidnew(fin, (u_32_t)id);
}
ip = fin->fin_ip;
ido = ntohs(ip->ip_id);
if (id == ido)
return 0;
ip->ip_id = htons(id);
CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */
sum = (~ntohs(ip->ip_sum)) & 0xffff;
sum += sumd;
sum = (sum >> 16) + (sum & 0xffff);
sum = (sum >> 16) + (sum & 0xffff);
sums = ~(u_short)sum;
ip->ip_sum = htons(sums);
return 0;
}
#ifdef NEED_FRGETIFNAME
/* ------------------------------------------------------------------------ */
/* Function: ipf_getifname */
/* Returns: char * - pointer to interface name */
/* Parameters: ifp(I) - pointer to network interface */
/* buffer(O) - pointer to where to store interface name */
/* */
/* Constructs an interface name in the buffer passed. The buffer passed is */
/* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */
/* as a NULL pointer then return a pointer to a static array. */
/* ------------------------------------------------------------------------ */
char *
ipf_getifname(ifp, buffer)
struct ifnet *ifp;
char *buffer;
{
static char namebuf[LIFNAMSIZ];
# if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
defined(__sgi) || defined(linux) || defined(_AIX51) || \
(defined(sun) && !defined(__SVR4) && !defined(__svr4__))
int unit, space;
char temp[20];
char *s;
# endif
if (buffer == NULL)
buffer = namebuf;
(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
buffer[LIFNAMSIZ - 1] = '\0';
# if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
defined(__sgi) || defined(_AIX51) || \
(defined(sun) && !defined(__SVR4) && !defined(__svr4__))
for (s = buffer; *s; s++)
;
unit = ifp->if_unit;
space = LIFNAMSIZ - (s - buffer);
if (space > 0) {
# if defined(SNPRINTF) && defined(_KERNEL)
SNPRINTF(temp, sizeof(temp), "%d", unit);
# else
(void) sprintf(temp, "%d", unit);
# endif
(void) strncpy(s, temp, space);
}
# endif
return buffer;
}
#endif
/* ------------------------------------------------------------------------ */
/* Function: ipf_ioctlswitch */
/* Returns: int - -1 continue processing, else ioctl return value */
/* Parameters: unit(I) - device unit opened */
/* data(I) - pointer to ioctl data */
/* cmd(I) - ioctl command */
/* mode(I) - mode value */
/* uid(I) - uid making the ioctl call */
/* ctx(I) - pointer to context data */
/* */
/* Based on the value of unit, call the appropriate ioctl handler or return */
/* EIO if ipfilter is not running. Also checks if write perms are req'd */
/* for the device in order to execute the ioctl. A special case is made */
/* SIOCIPFINTERROR so that the same code isn't required in every handler. */
/* ------------------------------------------------------------------------ */
int
ipf_ioctlswitch(unit, data, cmd, mode, uid, ctx)
int unit, mode, uid;
ioctlcmd_t cmd;
void *data, *ctx;
{
int error = 0;
switch (cmd)
{
case SIOCIPFINTERROR :
error = BCOPYOUT(&ipf_interror, data, sizeof(ipf_flags));
if (error != 0) {
ipf_interror = 40;
error = EFAULT;
}
return error;
default :
break;
}
switch (unit)
{
case IPL_LOGIPF :
error = ipf_ipf_ioctl(data, cmd, mode, uid, ctx);
break;
case IPL_LOGNAT :
if (ipf_running > 0)
error = ipf_nat_ioctl(data, cmd, mode, uid, ctx);
else {
ipf_interror = 42;
error = EIO;
}
break;
case IPL_LOGSTATE :
if (ipf_running > 0)
error = ipf_state_ioctl(data, cmd, mode, uid, ctx);
else {
ipf_interror = 43;
error = EIO;
}
break;
case IPL_LOGAUTH :
if (ipf_running > 0)
error = ipf_auth_ioctl(data, cmd, mode, uid, ctx);
else {
ipf_interror = 44;
error = EIO;
}
break;
case IPL_LOGSYNC :
#ifdef IPFILTER_SYNC
if (ipf_running > 0)
error = ipf_sync_ioctl(data, cmd, mode, uid, ctx);
else
#endif
{
error = EIO;
ipf_interror = 45;
}
break;
case IPL_LOGSCAN :
#ifdef IPFILTER_SCAN
if (ipf_running > 0)
error = ipf_scan_ioctl(data, cmd, mode, uid, ctx);
else
#endif
{
error = EIO;
ipf_interror = 46;
}
break;
case IPL_LOGLOOKUP :
#ifdef IPFILTER_LOOKUP
if (ipf_running > 0)
error = ipf_lookup_ioctl(data, cmd, mode, uid, ctx);
else
#endif
{
error = EIO;
ipf_interror = 47;
}
break;
default :
ipf_interror = 48;
error = EIO;
break;
}
return error;
}
/*
* This array defines the expected size of objects coming into the kernel
* for the various recognised object types.
*/
static int ipf_objbytes[IPFOBJ_COUNT][2] = {
{ 1, sizeof(struct frentry) }, /* frentry */
{ 0, sizeof(struct friostat) },
{ 0, sizeof(struct fr_info) },
{ 0, sizeof(struct ipf_authstat) },
{ 0, sizeof(struct ipfrstat) },
{ 0, sizeof(struct ipnat) },
{ 0, sizeof(struct natstat) },
{ 0, sizeof(struct ipstate_save) },
{ 1, sizeof(struct nat_save) }, /* nat_save */
{ 0, sizeof(struct natlookup) },
{ 1, sizeof(struct ipstate) }, /* ipstate */
{ 0, sizeof(struct ips_stat) },
{ 0, sizeof(struct frauth) },
{ 0, sizeof(struct ipftune) },
{ 0, sizeof(struct nat) }, /* nat_t */
{ 0, sizeof(struct ipfruleiter) },
{ 0, sizeof(struct ipfgeniter) },
{ 0, sizeof(struct ipftable) },
{ 0, sizeof(struct ipflookupiter) },
{ 0, sizeof(struct ipftq) * IPF_TCP_NSTATES },
};
/* ------------------------------------------------------------------------ */
/* Function: ipf_inobj */
/* Returns: int - 0 = success, else failure */
/* Parameters: data(I) - pointer to ioctl data */
/* ptr(I) - pointer to store real data in */
/* type(I) - type of structure being moved */
/* */
/* Copy in the contents of what the ipfobj_t points to. In future, we */
/* add things to check for version numbers, sizes, etc, to make it backward */
/* compatible at the ABI for user land. */
/* ------------------------------------------------------------------------ */
int
ipf_inobj(data, ptr, type)
void *data;
void *ptr;
int type;
{
ipfobj_t obj;
int error = 0;
if ((type < 0) || (type >= IPFOBJ_COUNT)) {
ipf_interror = 49;
return EINVAL;
}
error = BCOPYIN(data, &obj, sizeof(obj));
if (error != 0) {
ipf_interror = 124;
return EFAULT;
}
if (obj.ipfo_type != type) {
ipf_interror = 50;
return EINVAL;
}
#ifndef IPFILTER_COMPAT
if ((ipf_objbytes[type][0] & 1) != 0) {
if (obj.ipfo_size < ipf_objbytes[type][1]) {
ipf_interror = 51;
return EINVAL;
}
} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
ipf_interror = 52;
return EINVAL;
}
#else
if (obj.ipfo_rev != IPFILTER_VERSION)
/* XXX compatibility hook here */
;
if ((ipf_objbytes[type][0] & 1) != 0) {
if (obj.ipfo_size < ipf_objbytes[type][1]) {
/* XXX compatibility hook here */
ipf_interror = 53;
return EINVAL;
}
} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
/* XXX compatibility hook here */
ipf_interror = 54;
return EINVAL;
}
#endif
if ((ipf_objbytes[type][0] & 1) != 0) {
error = COPYIN(obj.ipfo_ptr, ptr, ipf_objbytes[type][1]);
} else {
error = COPYIN(obj.ipfo_ptr, ptr, obj.ipfo_size);
}
if (error != 0) {
ipf_interror = 55;
error = EFAULT;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_inobjsz */
/* Returns: int - 0 = success, else failure */
/* Parameters: data(I) - pointer to ioctl data */
/* ptr(I) - pointer to store real data in */
/* type(I) - type of structure being moved */
/* sz(I) - size of data to copy */
/* */
/* As per ipf_inobj, except the size of the object to copy in is passed in */
/* but it must not be smaller than the size defined for the type and the */
/* type must allow for varied sized objects. The extra requirement here is */
/* that sz must match the size of the object being passed in - this is not */
/* not possible nor required in ipf_inobj(). */
/* ------------------------------------------------------------------------ */
int
ipf_inobjsz(data, ptr, type, sz)
void *data;
void *ptr;
int type, sz;
{
ipfobj_t obj;
int error;
if ((type < 0) || (type >= IPFOBJ_COUNT)) {
ipf_interror = 56;
return EINVAL;
}
if (((ipf_objbytes[type][0] & 1) == 0) ||
(sz < ipf_objbytes[type][1])) {
ipf_interror = 57;
return EINVAL;
}
error = BCOPYIN(data, &obj, sizeof(obj));
if (error != 0) {
ipf_interror = 125;
return EFAULT;
}
if (obj.ipfo_type != type) {
ipf_interror = 58;
return EINVAL;
}
#ifndef IPFILTER_COMPAT
if (obj.ipfo_size != sz) {
ipf_interror = 59;
return EINVAL;
}
#else
if (obj.ipfo_rev != IPFILTER_VERSION)
/* XXX compatibility hook here */
;
if (obj.ipfo_size != sz) {
/* XXX compatibility hook here */
ipf_interror = 60;
return EINVAL;
}
#endif
error = COPYIN(obj.ipfo_ptr, ptr, sz);
if (error != 0) {
ipf_interror = 61;
error = EFAULT;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_outobjsz */
/* Returns: int - 0 = success, else failure */
/* Parameters: data(I) - pointer to ioctl data */
/* ptr(I) - pointer to store real data in */
/* type(I) - type of structure being moved */
/* sz(I) - size of data to copy */
/* */
/* As per ipf_outobj, except the size of the object to copy out is passed in*/
/* but it must not be smaller than the size defined for the type and the */
/* type must allow for varied sized objects. The extra requirement here is */
/* that sz must match the size of the object being passed in - this is not */
/* not possible nor required in ipf_outobj(). */
/* ------------------------------------------------------------------------ */
int
ipf_outobjsz(data, ptr, type, sz)
void *data;
void *ptr;
int type, sz;
{
ipfobj_t obj;
int error;
if ((type < 0) || (type >= IPFOBJ_COUNT) ||
((ipf_objbytes[type][0] & 1) == 0) ||
(sz < ipf_objbytes[type][1])) {
ipf_interror = 62;
return EINVAL;
}
error = BCOPYIN(data, &obj, sizeof(obj));
if (error != 0) {
ipf_interror = 127;
return EFAULT;
}
if (obj.ipfo_type != type) {
ipf_interror = 63;
return EINVAL;
}
#ifndef IPFILTER_COMPAT
if (obj.ipfo_size != sz) {
ipf_interror = 64;
return EINVAL;
}
#else
if (obj.ipfo_rev != IPFILTER_VERSION)
/* XXX compatibility hook here */
;
if (obj.ipfo_size != sz) {
/* XXX compatibility hook here */
ipf_interror = 65;
return EINVAL;
}
#endif
error = COPYOUT(ptr, obj.ipfo_ptr, sz);
if (error != 0) {
ipf_interror = 66;
error = EFAULT;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_outobj */
/* Returns: int - 0 = success, else failure */
/* Parameters: data(I) - pointer to ioctl data */
/* ptr(I) - pointer to store real data in */
/* type(I) - type of structure being moved */
/* */
/* Copy out the contents of what ptr is to where ipfobj points to. In */
/* future, we add things to check for version numbers, sizes, etc, to make */
/* it backward compatible at the ABI for user land. */
/* ------------------------------------------------------------------------ */
int
ipf_outobj(data, ptr, type)
void *data;
void *ptr;
int type;
{
ipfobj_t obj;
int error;
if ((type < 0) || (type >= IPFOBJ_COUNT)) {
ipf_interror = 67;
return EINVAL;
}
error = BCOPYIN(data, &obj, sizeof(obj));
if (error != 0) {
ipf_interror = 126;
return EFAULT;
}
if (obj.ipfo_type != type) {
ipf_interror = 68;
return EINVAL;
}
#ifndef IPFILTER_COMPAT
if ((ipf_objbytes[type][0] & 1) != 0) {
if (obj.ipfo_size < ipf_objbytes[type][1]) {
ipf_interror = 69;
return EINVAL;
}
} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
ipf_interror = 70;
return EINVAL;
}
#else
if (obj.ipfo_rev != IPFILTER_VERSION)
/* XXX compatibility hook here */
;
if ((ipf_objbytes[type][0] & 1) != 0) {
if (obj.ipfo_size < ipf_objbytes[type][1]) {
/* XXX compatibility hook here */
ipf_interror = 71;
return EINVAL;
}
} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
/* XXX compatibility hook here */
ipf_interror = 72;
return EINVAL;
}
#endif
error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
if (error != 0) {
ipf_interror = 73;
error = EFAULT;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_checkl4sum */
/* Returns: int - 0 = good, -1 = bad, 1 = cannot check */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* If possible, calculate the layer 4 checksum for the packet. If this is */
/* not possible, return without indicating a failure or success but in a */
/* way that is ditinguishable. */
/* ------------------------------------------------------------------------ */
int
ipf_checkl4sum(fin)
fr_info_t *fin;
{
u_short sum, hdrsum, *csump;
udphdr_t *udp;
int dosum;
if ((fin->fin_flx & FI_NOCKSUM) != 0)
return 0;
if (fin->fin_cksum == -1)
return -1;
if (fin->fin_cksum == 1)
return 0;
/*
* If the TCP packet isn't a fragment, isn't too short and otherwise
* isn't already considered "bad", then validate the checksum. If
* this check fails then considered the packet to be "bad".
*/
if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
return 1;
csump = NULL;
hdrsum = 0;
dosum = 0;
sum = 0;
#if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) && defined(ICK_VALID)
if (dohwcksum && ((*fin->fin_mp)->b_ick_flag == ICK_VALID)) {
hdrsum = 0;
sum = 0;
} else {
#endif
switch (fin->fin_p)
{
case IPPROTO_TCP :
csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
dosum = 1;
break;
case IPPROTO_UDP :
udp = fin->fin_dp;
if (udp->uh_sum != 0) {
csump = &udp->uh_sum;
dosum = 1;
}
break;
case IPPROTO_ICMP :
csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
dosum = 1;
break;
default :
return 1;
/*NOTREACHED*/
}
if (csump != NULL)
hdrsum = *csump;
if (dosum) {
sum = fr_cksum(fin->fin_m, fin->fin_ip,
fin->fin_p, fin->fin_dp,
fin->fin_dlen + fin->fin_hlen);
}
#if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) && defined(ICK_VALID)
}
#endif
#if !defined(_KERNEL)
if (sum == hdrsum) {
FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
} else {
FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
}
#endif
if (hdrsum == sum) {
fin->fin_cksum = 1;
return 0;
}
fin->fin_cksum = -1;
return -1;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_ifpfillv4addr */
/* Returns: int - 0 = address update, -1 = address not updated */
/* Parameters: atype(I) - type of network address update to perform */
/* sin(I) - pointer to source of address information */
/* mask(I) - pointer to source of netmask information */
/* inp(I) - pointer to destination address store */
/* inpmask(I) - pointer to destination netmask store */
/* */
/* Given a type of network address update (atype) to perform, copy */
/* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
/* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
/* which case the operation fails. For all values of atype other than */
/* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
/* value. */
/* ------------------------------------------------------------------------ */
int
ipf_ifpfillv4addr(atype, sin, mask, inp, inpmask)
int atype;
struct sockaddr_in *sin, *mask;
struct in_addr *inp, *inpmask;
{
if (inpmask != NULL && atype != FRI_NETMASKED)
inpmask->s_addr = 0xffffffff;
if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
if (atype == FRI_NETMASKED) {
if (inpmask == NULL)
return -1;
inpmask->s_addr = mask->sin_addr.s_addr;
}
inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
} else {
inp->s_addr = sin->sin_addr.s_addr;
}
return 0;
}
#ifdef USE_INET6
/* ------------------------------------------------------------------------ */
/* Function: ipf_ifpfillv6addr */
/* Returns: int - 0 = address update, -1 = address not updated */
/* Parameters: atype(I) - type of network address update to perform */
/* sin(I) - pointer to source of address information */
/* mask(I) - pointer to source of netmask information */
/* inp(I) - pointer to destination address store */
/* inpmask(I) - pointer to destination netmask store */
/* */
/* Given a type of network address update (atype) to perform, copy */
/* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
/* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
/* which case the operation fails. For all values of atype other than */
/* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
/* value. */
/* ------------------------------------------------------------------------ */
int
ipf_ifpfillv6addr(atype, sin, mask, inp, inpmask)
int atype;
struct sockaddr_in6 *sin, *mask;
i6addr_t *inp, *inpmask;
{
i6addr_t *src, *and;
src = (i6addr_t *)&sin->sin6_addr;
and = (i6addr_t *)&mask->sin6_addr;
if (inpmask != NULL && atype != FRI_NETMASKED) {
inpmask->i6[0] = 0xffffffff;
inpmask->i6[1] = 0xffffffff;
inpmask->i6[2] = 0xffffffff;
inpmask->i6[3] = 0xffffffff;
}
if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
if (atype == FRI_NETMASKED) {
if (inpmask == NULL)
return -1;
inpmask->i6[0] = and->i6[0];
inpmask->i6[1] = and->i6[1];
inpmask->i6[2] = and->i6[2];
inpmask->i6[3] = and->i6[3];
}
inp->i6[0] = src->i6[0] & and->i6[0];
inp->i6[1] = src->i6[1] & and->i6[1];
inp->i6[2] = src->i6[2] & and->i6[2];
inp->i6[3] = src->i6[3] & and->i6[3];
} else {
inp->i6[0] = src->i6[0];
inp->i6[1] = src->i6[1];
inp->i6[2] = src->i6[2];
inp->i6[3] = src->i6[3];
}
return 0;
}
#endif
/* ------------------------------------------------------------------------ */
/* Function: ipf_matchtag */
/* Returns: 0 == mismatch, 1 == match. */
/* Parameters: tag1(I) - pointer to first tag to compare */
/* tag2(I) - pointer to second tag to compare */
/* */
/* Returns true (non-zero) or false(0) if the two tag structures can be */
/* considered to be a match or not match, respectively. The tag is 16 */
/* bytes long (16 characters) but that is overlayed with 4 32bit ints so */
/* compare the ints instead, for speed. tag1 is the master of the */
/* comparison. This function should only be called with both tag1 and tag2 */
/* as non-NULL pointers. */
/* ------------------------------------------------------------------------ */
int
ipf_matchtag(tag1, tag2)
ipftag_t *tag1, *tag2;
{
if (tag1 == tag2)
return 1;
if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
return 1;
if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
(tag1->ipt_num[1] == tag2->ipt_num[1]) &&
(tag1->ipt_num[2] == tag2->ipt_num[2]) &&
(tag1->ipt_num[3] == tag2->ipt_num[3]))
return 1;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_coalesce */
/* Returns: 1 == success, -1 == failure, 0 == no change */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* Attempt to get all of the packet data into a single, contiguous buffer. */
/* If this call returns a failure then the buffers have also been freed. */
/* ------------------------------------------------------------------------ */
int
ipf_coalesce(fin)
fr_info_t *fin;
{
if ((fin->fin_flx & FI_COALESCE) != 0)
return 1;
/*
* If the mbuf pointers indicate that there is no mbuf to work with,
* return but do not indicate success or failure.
*/
if (fin->fin_m == NULL || fin->fin_mp == NULL)
return 0;
#if defined(_KERNEL)
if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
ATOMIC_INC(ipf_badcoalesces[fin->fin_out]);
# ifdef MENTAT
FREE_MB_T(*fin->fin_mp);
# endif
*fin->fin_mp = NULL;
fin->fin_m = NULL;
return -1;
}
#else
fin = fin; /* LINT */
#endif
return 1;
}
/*
* The following table lists all of the tunable variables that can be
* accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row
* in the table below is as follows:
*
* pointer to value, name of value, minimum, maximum, size of the value's
* container, value attribute flags
*
* For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
* means the value can only be written to when IPFilter is loaded but disabled.
* The obvious implication is if neither of these are set then the value can be
* changed at any time without harm.
*/
ipftuneable_t ipf_tuneables[] = {
/* filtering */
{ { &ipf_flags }, "ipf_flags", 0, 0xffffffff,
sizeof(ipf_flags), 0, NULL },
{ { &ipf_active }, "active", 0, 0,
sizeof(ipf_active), IPFT_RDONLY, NULL },
{ { &ipf_control_forwarding }, "control_forwarding", 0, 1,
sizeof(ipf_control_forwarding), 0 , NULL },
{ { &ipf_update_ipid }, "update_ipid", 0, 1,
sizeof(ipf_update_ipid), 0, NULL },
{ { &ipf_chksrc }, "chksrc", 0, 1,
sizeof(ipf_chksrc), 0, NULL },
{ { &ipf_minttl }, "min_ttl", 0, 1,
sizeof(ipf_minttl), 0, NULL },
{ { &ipf_icmpminfragmtu }, "icmp_minfragmtu", 0, 1,
sizeof(ipf_icmpminfragmtu), 0, NULL },
{ { &ipf_pass }, "default_pass", 0, 0xffffffff,
sizeof(ipf_pass), 0, NULL },
/* state */
{ { &ipf_tcpidletimeout }, "tcp_idletimeout", 1, 0x7fffffff,
sizeof(ipf_tcpidletimeout), IPFT_WRDISABLED, NULL },
{ { &ipf_tcpclosewait }, "tcp_closewait", 1, 0x7fffffff,
sizeof(ipf_tcpclosewait), IPFT_WRDISABLED, NULL },
{ { &ipf_tcplastack }, "tcp_lastack", 1, 0x7fffffff,
sizeof(ipf_tcplastack), IPFT_WRDISABLED, NULL },
{ { &ipf_tcptimeout }, "tcp_timeout", 1, 0x7fffffff,
sizeof(ipf_tcptimeout), IPFT_WRDISABLED, NULL },
{ { &ipf_tcpclosed }, "tcp_closed", 1, 0x7fffffff,
sizeof(ipf_tcpclosed), IPFT_WRDISABLED, NULL },
{ { &ipf_tcphalfclosed }, "tcp_half_closed", 1, 0x7fffffff,
sizeof(ipf_tcphalfclosed), IPFT_WRDISABLED, NULL },
{ { &ipf_udptimeout }, "udp_timeout", 1, 0x7fffffff,
sizeof(ipf_udptimeout), IPFT_WRDISABLED, NULL },
{ { &ipf_udpacktimeout }, "udp_ack_timeout", 1, 0x7fffffff,
sizeof(ipf_udpacktimeout), IPFT_WRDISABLED, NULL },
{ { &ipf_icmptimeout }, "icmp_timeout", 1, 0x7fffffff,
sizeof(ipf_icmptimeout), IPFT_WRDISABLED, NULL },
{ { &ipf_icmpacktimeout }, "icmp_ack_timeout", 1, 0x7fffffff,
sizeof(ipf_icmpacktimeout), IPFT_WRDISABLED, NULL },
{ { &ipf_iptimeout }, "ip_timeout", 1, 0x7fffffff,
sizeof(ipf_iptimeout), IPFT_WRDISABLED, NULL },
{ { &ipf_state_max }, "state_max", 1, 0x7fffffff,
sizeof(ipf_state_max), 0, NULL },
{ { &ipf_state_size }, "state_size", 1, 0x7fffffff,
sizeof(ipf_state_size), IPFT_WRDISABLED, NULL },
{ { &ipf_state_lock }, "state_lock", 0, 1,
sizeof(ipf_state_lock), IPFT_RDONLY, NULL },
{ { &ipf_state_maxbucket }, "state_maxbucket", 1, 0x7fffffff,
sizeof(ipf_state_maxbucket), IPFT_WRDISABLED, NULL },
{ { &ipf_state_maxbucket_reset }, "state_maxbucket_reset", 0, 1,
sizeof(ipf_state_maxbucket_reset), IPFT_WRDISABLED, NULL },
{ { &ipf_state_logging }, "state_logging",0, 1,
sizeof(ipf_state_logging), 0, NULL },
{ { &ipf_state_wm_high }, "state_wm_high",2, 100,
sizeof(ipf_state_wm_high), 0, NULL },
{ { &ipf_state_wm_low }, "state_wm_low", 1, 99,
sizeof(ipf_state_wm_low), 0, NULL },
{ { &ipf_state_wm_freq }, "state_wm_freq",2, 999999,
sizeof(ipf_state_wm_freq), 0, NULL },
/* nat */
{ { &ipf_nat_lock }, "nat_lock", 0, 1,
sizeof(ipf_nat_lock), IPFT_RDONLY, NULL },
{ { &ipf_nat_table_sz }, "nat_table_size", 1, 0x7fffffff,
sizeof(ipf_nat_table_sz), IPFT_WRDISABLED, NULL },
{ { &ipf_nat_table_max }, "nat_table_max", 1, 0x7fffffff,
sizeof(ipf_nat_table_max), 0, NULL },
{ { &ipf_nat_maprules_sz }, "nat_rules_size", 1, 0x7fffffff,
sizeof(ipf_nat_maprules_sz), IPFT_WRDISABLED, NULL },
{ { &ipf_nat_rdrrules_sz }, "rdr_rules_size", 1, 0x7fffffff,
sizeof(ipf_nat_rdrrules_sz), IPFT_WRDISABLED, NULL },
{ { &ipf_nat_hostmap_sz }, "hostmap_size", 1, 0x7fffffff,
sizeof(ipf_nat_hostmap_sz), IPFT_WRDISABLED, NULL },
{ { &ipf_nat_maxbucket }, "nat_maxbucket", 1, 0x7fffffff,
sizeof(ipf_nat_maxbucket), IPFT_WRDISABLED, NULL },
{ { &ipf_nat_maxbucket_reset }, "nat_maxbucket_reset", 0, 1,
sizeof(ipf_nat_maxbucket_reset), IPFT_WRDISABLED, NULL },
{ { &ipf_nat_logging }, "nat_logging", 0, 1,
sizeof(ipf_nat_logging), 0, NULL },
{ { &ipf_nat_defage }, "nat_defage", 1, 0x7fffffff,
sizeof(ipf_nat_defage), IPFT_WRDISABLED, NULL },
{ { &ipf_nat_defipage }, "nat_defipage", 1, 0x7fffffff,
sizeof(ipf_nat_defipage), IPFT_WRDISABLED, NULL },
{ { &ipf_nat_deficmpage }, "nat_deficmpage", 1, 0x7fffffff,
sizeof(ipf_nat_deficmpage), IPFT_WRDISABLED, NULL },
{ { &ipf_nat_doflush }, "nat_doflush", 0, 1,
sizeof(ipf_nat_doflush), 0, NULL },
{ { &ipf_nat_table_wm_low }, "nat_table_wm_low", 1, 99,
sizeof(ipf_nat_table_wm_low), 0, NULL },
{ { &ipf_nat_table_wm_high }, "nat_table_wm_high", 2, 100,
sizeof(ipf_nat_table_wm_high), 0, NULL },
/* proxy */
{ { &ipf_proxy_debug }, "ipf_proxy_debug", 0, 10,
sizeof(ipf_proxy_debug), 0, NULL },
/* frag */
{ { &ipfr_size }, "ipfr_size", 1, 0x7fffffff,
sizeof(ipfr_size), IPFT_WRDISABLED, NULL },
/* frag */
{ { &ipfr_size }, "ipfr_size", 1, 0x7fffffff,
sizeof(ipfr_size), IPFT_WRDISABLED, NULL },
{ { &ipf_ipfrttl }, "ipfrttl", 1, 0x7fffffff,
sizeof(ipf_ipfrttl), IPFT_WRDISABLED, NULL },
#ifdef IPFILTER_LOG
/* log */
{ { &ipl_suppress }, "log_suppress", 0, 1,
sizeof(ipl_suppress), 0, NULL },
{ { &ipl_logmax }, "log_max", 0, 0x7fffffff,
sizeof(ipl_logmax), IPFT_WRDISABLED, NULL },
{ { &ipl_logall }, "log_all", 0, 1,
sizeof(ipl_logall), 0, NULL },
{ { &ipl_logsize }, "log_size", 0, 0x80000,
sizeof(ipl_logsize), 0, NULL },
#endif
{ { NULL }, NULL, 0, 0,
0, 0, NULL }
};
static ipftuneable_t *ipf_tunelist = NULL;
/* ------------------------------------------------------------------------ */
/* Function: ipf_tune_findbycookie */
/* Returns: NULL = search failed, else pointer to tune struct */
/* Parameters: cookie(I) - cookie value to search for amongst tuneables */
/* next(O) - pointer to place to store the cookie for the */
/* "next" tuneable, if it is desired. */
/* */
/* This function is used to walk through all of the existing tunables with */
/* successive calls. It searches the known tunables for the one which has */
/* a matching value for "cookie" - ie its address. When returning a match, */
/* the next one to be found may be returned inside next. */
/* ------------------------------------------------------------------------ */
static ipftuneable_t *
ipf_tune_findbycookie(cookie, next)
void *cookie, **next;
{
ipftuneable_t *ta, **tap;
for (ta = ipf_tuneables; ta->ipft_name != NULL; ta++)
if (ta == cookie) {
if (next != NULL) {
/*
* If the next entry in the array has a name
* present, then return a pointer to it for
* where to go next, else return a pointer to
* the dynaminc list as a key to search there
* next. This facilitates a weak linking of
* the two "lists" together.
*/
if ((ta + 1)->ipft_name != NULL)
*next = ta + 1;
else
*next = &ipf_tunelist;
}
return ta;
}
for (tap = &ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
if (tap == cookie) {
if (next != NULL)
*next = &ta->ipft_next;
return ta;
}
if (next != NULL)
*next = NULL;
return NULL;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_tune_findbyname */
/* Returns: NULL = search failed, else pointer to tune struct */
/* Parameters: name(I) - name of the tuneable entry to find. */
/* */
/* Search the static array of tuneables and the list of dynamic tuneables */
/* for an entry with a matching name. If we can find one, return a pointer */
/* to the matching structure. */
/* ------------------------------------------------------------------------ */
static ipftuneable_t *
ipf_tune_findbyname(name)
const char *name;
{
ipftuneable_t *ta;
for (ta = ipf_tuneables; ta->ipft_name != NULL; ta++)
if (!strcmp(ta->ipft_name, name)) {
return ta;
}
for (ta = ipf_tunelist; ta != NULL; ta = ta->ipft_next)
if (!strcmp(ta->ipft_name, name)) {
return ta;
}
return NULL;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_tune_add_array */
/* Returns: int - 0 == success, else failure */
/* Parameters: newtune - pointer to new tune array to add to tuneables */
/* */
/* Appends tune structures from the array passed in (newtune) to the end of */
/* the current list of "dynamic" tuneable parameters. */
/* If any entry to be added is already present (by name) then the operation */
/* is aborted - entries that have been added are removed before returning. */
/* An entry with no name (NULL) is used as the indication that the end of */
/* the array has been reached. */
/* ------------------------------------------------------------------------ */
int
ipf_tune_add_array(newtune)
ipftuneable_t *newtune;
{
ipftuneable_t *nt, *dt;
int error = 0;
for (nt = newtune; nt->ipft_name != NULL; nt++) {
error = ipf_tune_add(nt);
if (error != 0) {
for (dt = newtune; dt != nt; dt++) {
(void) ipf_tune_del(dt);
}
}
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_tune_add */
/* Returns: int - 0 == success, else failure */
/* Parameters: newtune - pointer to new tune entry to add to tuneables */
/* */
/* Appends tune structures from the array passed in (newtune) to the end of */
/* the current list of "dynamic" tuneable parameters. Once added, the */
/* owner of the object is not expected to ever change "ipft_next". */
/* ------------------------------------------------------------------------ */
int
ipf_tune_add(newtune)
ipftuneable_t *newtune;
{
ipftuneable_t *ta, **tap;
ta = ipf_tune_findbyname(newtune->ipft_name);
if (ta != NULL) {
ipf_interror = 74;
return EEXIST;
}
for (tap = &ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next)
;
newtune->ipft_next = NULL;
*tap = newtune;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_tune_del */
/* Returns: int - 0 == success, else failure */
/* Parameters: oldtune - pointer to tune entry to remove from the list of */
/* current dynamic tuneables */
/* */
/* Search for the tune structure, by pointer, in the list of those that are */
/* dynamically added at run time. If found, adjust the list so that this */
/* structure is no longer part of it. */
/* ------------------------------------------------------------------------ */
int
ipf_tune_del(oldtune)
ipftuneable_t *oldtune;
{
ipftuneable_t *ta, **tap;
int error = 0;
for (tap = &ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) {
if (ta == oldtune) {
*tap = oldtune->ipft_next;
oldtune->ipft_next = NULL;
break;
}
}
if (ta == NULL) {
error = ESRCH;
ipf_interror = 75;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_tune_del_array */
/* Returns: int - 0 == success, else failure */
/* Parameters: oldtune - pointer to tuneables array */
/* */
/* Remove each tuneable entry in the array from the list of "dynamic" */
/* tunables. If one entry should fail to be found, an error will be */
/* returned and no further ones removed. */
/* An entry with a NULL name is used as the indicator of the last entry in */
/* the array. */
/* ------------------------------------------------------------------------ */
int
ipf_tune_del_array(oldtune)
ipftuneable_t *oldtune;
{
ipftuneable_t *ot;
int error = 0;
for (ot = oldtune; ot->ipft_name != NULL; ot++) {
error = ipf_tune_del(ot);
if (error != 0)
break;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_tune */
/* Returns: int - 0 == success, else failure */
/* Parameters: cmd(I) - ioctl command number */
/* data(I) - pointer to ioctl data structure */
/* */
/* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */
/* three ioctls provide the means to access and control global variables */
/* within IPFilter, allowing (for example) timeouts and table sizes to be */
/* changed without rebooting, reloading or recompiling. The initialisation */
/* and 'destruction' routines of the various components of ipfilter are all */
/* each responsible for handling their own values being too big. */
/* ------------------------------------------------------------------------ */
int
ipf_ipftune(cmd, data)
ioctlcmd_t cmd;
void *data;
{
ipftuneable_t *ta;
ipftune_t tu;
void *cookie;
int error;
error = ipf_inobj(data, &tu, IPFOBJ_TUNEABLE);
if (error != 0)
return error;
tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
cookie = tu.ipft_cookie;
ta = NULL;
switch (cmd)
{
case SIOCIPFGETNEXT :
/*
* If cookie is non-NULL, assume it to be a pointer to the last
* entry we looked at, so find it (if possible) and return a
* pointer to the next one after it. The last entry in the
* the table is a NULL entry, so when we get to it, set cookie
* to NULL and return that, indicating end of list, erstwhile
* if we come in with cookie set to NULL, we are starting anew
* at the front of the list.
*/
if (cookie != NULL) {
ta = ipf_tune_findbycookie(cookie, &tu.ipft_cookie);
} else {
ta = ipf_tuneables;
tu.ipft_cookie = ta + 1;
}
if (ta != NULL) {
/*
* Entry found, but does the data pointed to by that
* row fit in what we can return?
*/
if (ta->ipft_sz > sizeof(tu.ipft_un)) {
ipf_interror = 76;
return EINVAL;
}
tu.ipft_vlong = 0;
if (ta->ipft_sz == sizeof(u_long))
tu.ipft_vlong = *ta->ipft_plong;
else if (ta->ipft_sz == sizeof(u_int))
tu.ipft_vint = *ta->ipft_pint;
else if (ta->ipft_sz == sizeof(u_short))
tu.ipft_vshort = *ta->ipft_pshort;
else if (ta->ipft_sz == sizeof(u_char))
tu.ipft_vchar = *ta->ipft_pchar;
tu.ipft_sz = ta->ipft_sz;
tu.ipft_min = ta->ipft_min;
tu.ipft_max = ta->ipft_max;
tu.ipft_flags = ta->ipft_flags;
bcopy(ta->ipft_name, tu.ipft_name,
MIN(sizeof(tu.ipft_name),
strlen(ta->ipft_name) + 1));
}
error = ipf_outobj(data, &tu, IPFOBJ_TUNEABLE);
break;
case SIOCIPFGET :
case SIOCIPFSET :
/*
* Search by name or by cookie value for a particular entry
* in the tuning paramter table.
*/
ipf_interror = 77;
error = ESRCH;
if (cookie != NULL) {
ta = ipf_tune_findbycookie(cookie, NULL);
if (ta != NULL)
error = 0;
} else if (tu.ipft_name[0] != '\0') {
ta = ipf_tune_findbyname(tu.ipft_name);
if (ta != NULL)
error = 0;
}
if (error != 0)
break;
if (cmd == (ioctlcmd_t)SIOCIPFGET) {
/*
* Fetch the tuning parameters for a particular value
*/
tu.ipft_vlong = 0;
if (ta->ipft_sz == sizeof(u_long))
tu.ipft_vlong = *ta->ipft_plong;
else if (ta->ipft_sz == sizeof(u_int))
tu.ipft_vint = *ta->ipft_pint;
else if (ta->ipft_sz == sizeof(u_short))
tu.ipft_vshort = *ta->ipft_pshort;
else if (ta->ipft_sz == sizeof(u_char))
tu.ipft_vchar = *ta->ipft_pchar;
tu.ipft_cookie = ta;
tu.ipft_sz = ta->ipft_sz;
tu.ipft_min = ta->ipft_min;
tu.ipft_max = ta->ipft_max;
tu.ipft_flags = ta->ipft_flags;
error = ipf_outobj(data, &tu, IPFOBJ_TUNEABLE);
} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
/*
* Set an internal parameter. The hard part here is
* getting the new value safely and correctly out of
* the kernel (given we only know its size, not type.)
*/
u_long in;
if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
(ipf_running > 0)) {
ipf_interror = 78;
error = EBUSY;
break;
}
in = tu.ipft_vlong;
if (in < ta->ipft_min || in > ta->ipft_max) {
ipf_interror = 79;
error = EINVAL;
break;
}
if (ta->ipft_sz == sizeof(u_long)) {
tu.ipft_vlong = *ta->ipft_plong;
*ta->ipft_plong = in;
} else if (ta->ipft_sz == sizeof(u_int)) {
tu.ipft_vint = *ta->ipft_pint;
*ta->ipft_pint = (u_int)(in & 0xffffffff);
} else if (ta->ipft_sz == sizeof(u_short)) {
tu.ipft_vshort = *ta->ipft_pshort;
*ta->ipft_pshort = (u_short)(in & 0xffff);
} else if (ta->ipft_sz == sizeof(u_char)) {
tu.ipft_vchar = *ta->ipft_pchar;
*ta->ipft_pchar = (u_char)(in & 0xff);
}
error = ipf_outobj(data, &tu, IPFOBJ_TUNEABLE);
}
break;
default :
ipf_interror = 80;
error = EINVAL;
break;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_initialise */
/* Returns: int - 0 == success, < 0 == failure */
/* Parameters: None. */
/* */
/* Call of the initialise functions for all the various subsystems inside */
/* of IPFilter. If any of them should fail, return immeadiately a failure */
/* BUT do not try to recover from the error here. */
/* ------------------------------------------------------------------------ */
int
ipf_initialise()
{
int i;
bzero(&ipf_stats, sizeof(ipf_stats));
#ifdef IPFILTER_LOG
i = ipf_log_init();
if (i < 0)
return -10 + i;
#endif
i = ipf_nat_init();
if (i < 0)
return -20 + i;
i = ipf_state_init();
if (i < 0)
return -30 + i;
i = ipf_auth_init();
if (i < 0)
return -40 + i;
i = ipf_frag_init();
if (i < 0)
return -50 + i;
i = appr_init();
if (i < 0)
return -60 + i;
#ifdef IPFILTER_SYNC
i = ipf_sync_init();
if (i < 0)
return -70 + i;
#endif
#ifdef IPFILTER_SCAN
i = ipf_scan_init();
if (i < 0)
return -80 + i;
#endif
#ifdef IPFILTER_LOOKUP
i = ipf_lookup_init();
if (i < 0)
return -90 + i;
#endif
#ifdef IPFILTER_COMPILED
ipfrule_add();
#endif
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_deinitialise */
/* Returns: None. */
/* Parameters: None. */
/* */
/* Call all the various subsystem cleanup routines to deallocate memory or */
/* destroy locks or whatever they've done that they need to now undo. */
/* The order here IS important as there are some cross references of */
/* internal data structures. */
/* ------------------------------------------------------------------------ */
void
ipf_deinitialise()
{
ipf_frag_unload();
ipf_auth_unload();
ipf_nat_unload();
ipf_state_unload();
#ifdef IPFILTER_SCAN
ipf_scan_unload();
#endif
appr_unload();
#ifdef IPFILTER_COMPILED
ipfrule_remove();
#endif
(void) ipf_flush(IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
(void) ipf_flush(IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
(void) ipf_flush(IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
(void) ipf_flush(IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
#ifdef IPFILTER_LOOKUP
ipf_lookup_unload();
#endif
#ifdef IPFILTER_LOG
ipf_log_unload();
#endif
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_zerostats */
/* Returns: int - 0 = success, else failure */
/* Parameters: data(O) - pointer to pointer for copying data back to */
/* */
/* Copies the current statistics out to userspace and then zero's the */
/* current ones in the kernel. The lock is only held across the bzero() as */
/* the copyout may result in paging (ie network activity.) */
/* ------------------------------------------------------------------------ */
int
ipf_zerostats(data)
caddr_t data;
{
friostat_t fio;
int error;
ipf_getstat(&fio);
error = ipf_outobj(data, &fio, IPFOBJ_IPFSTAT);
if (error != 0)
return error;
WRITE_ENTER(&ipf_mutex);
bzero(&ipf_stats, sizeof(ipf_stats));
RWLOCK_EXIT(&ipf_mutex);
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_resolvedest */
/* Returns: Nil */
/* Parameters: fdp(IO) - pointer to destination information to resolve */
/* v(I) - IP protocol version to match */
/* */
/* Looks up an interface name in the frdest structure pointed to by fdp and */
/* if a matching name can be found for the particular IP protocol version */
/* then store the interface pointer in the frdest struct. If no match is */
/* found, then set the interface pointer to be -1 as NULL is considered to */
/* indicate there is no information at all in the structure. */
/* ------------------------------------------------------------------------ */
void
ipf_resolvedest(fdp, v)
frdest_t *fdp;
int v;
{
void *ifp;
ifp = NULL;
if (*fdp->fd_ifname != '\0') {
ifp = GETIFP(fdp->fd_ifname, v);
if (ifp == NULL)
ifp = (void *)-1;
}
fdp->fd_ifp = ifp;
if ((ifp != NULL) && (ifp != (void *)-1)) {
fdp->fd_local = ipf_deliverlocal(v, ifp, &fdp->fd_ip);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_resolvenic */
/* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */
/* pointer to interface structure for NIC */
/* Parameters: name(I) - complete interface name */
/* v(I) - IP protocol version */
/* */
/* Look for a network interface structure that firstly has a matching name */
/* to that passed in and that is also being used for that IP protocol */
/* version (necessary on some platforms where there are separate listings */
/* for both IPv4 and IPv6 on the same physical NIC. */
/* */
/* One might wonder why name gets terminated with a \0 byte in here. The */
/* reason is an interface name could get into the kernel structures of ipf */
/* in any number of ways and so long as they all use the same sized array */
/* to put the name in, it makes sense to ensure it gets null terminated */
/* before it is used for its intended purpose - finding its match in the */
/* kernel's list of configured interfaces. */
/* */
/* NOTE: This SHOULD ONLY be used with IPFilter structures that have an */
/* array for the name that is LIFNAMSIZ bytes (at least) in length. */
/* ------------------------------------------------------------------------ */
void *
ipf_resolvenic(name, v)
char *name;
int v;
{
void *nic;
if (name[0] == '\0')
return NULL;
if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
return NULL;
}
name[LIFNAMSIZ - 1] = '\0';
nic = GETIFP(name, v);
if (nic == NULL)
nic = (void *)-1;
return nic;
}
ipftoken_t *ipftokenhead = NULL, **ipftokentail = &ipftokenhead;
/* ------------------------------------------------------------------------ */
/* Function: ipf_expiretokens */
/* Returns: None. */
/* Parameters: None. */
/* */
/* This function is run every ipf tick to see if there are any tokens that */
/* have been held for too long and need to be freed up. */
/* ------------------------------------------------------------------------ */
void
ipf_expiretokens()
{
ipftoken_t *it;
void *data;
WRITE_ENTER(&ipf_tokens);
while ((it = ipftokenhead) != NULL) {
if (it->ipt_die > ipf_ticks)
break;
data = it->ipt_data;
ipf_freetoken(it);
}
RWLOCK_EXIT(&ipf_tokens);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_deltoken */
/* Returns: int - 0 = success, else error */
/* Parameters: type(I) - the token type to match */
/* uid(I) - uid owning the token */
/* ptr(I) - context pointer for the token */
/* */
/* This function looks for a a token in the current list that matches up */
/* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */
/* call ipf_freetoken() to remove it from the list. */
/* ------------------------------------------------------------------------ */
int
ipf_deltoken(type, uid, ptr)
int type, uid;
void *ptr;
{
ipftoken_t *it;
int error;
ipf_interror = 82;
error = ESRCH;
WRITE_ENTER(&ipf_tokens);
for (it = ipftokenhead; it != NULL; it = it->ipt_next)
if (ptr == it->ipt_ctx && type == it->ipt_type &&
uid == it->ipt_uid) {
ipf_freetoken(it);
ipf_interror = 83;
error = 0;
break;
}
RWLOCK_EXIT(&ipf_tokens);
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_findtoken */
/* Returns: ipftoken_t * - NULL if no memory, else pointer to token */
/* Parameters: type(I) - the token type to match */
/* uid(I) - uid owning the token */
/* ptr(I) - context pointer for the token */
/* */
/* This function looks for a live token in the list of current tokens that */
/* matches the tuple (type, uid, ptr). If one cannot be found then one is */
/* allocated. If one is found then it is moved to the top of the list of */
/* currently active tokens. */
/* */
/* NOTE: It is by design that this function returns holding a read lock on */
/* ipf_tokens. Callers must make sure they release it! */
/* ------------------------------------------------------------------------ */
ipftoken_t *
ipf_findtoken(type, uid, ptr)
int type, uid;
void *ptr;
{
ipftoken_t *it, *new;
KMALLOC(new, ipftoken_t *);
WRITE_ENTER(&ipf_tokens);
for (it = ipftokenhead; it != NULL; it = it->ipt_next) {
if (it->ipt_alive == 0)
continue;
if (ptr == it->ipt_ctx && type == it->ipt_type &&
uid == it->ipt_uid)
break;
}
if (it == NULL) {
it = new;
new = NULL;
if (it == NULL)
return NULL;
it->ipt_data = NULL;
it->ipt_ctx = ptr;
it->ipt_uid = uid;
it->ipt_type = type;
it->ipt_next = NULL;
it->ipt_alive = 1;
} else {
if (new != NULL) {
KFREE(new);
new = NULL;
}
ipf_unlinktoken(it);
}
it->ipt_pnext = ipftokentail;
*ipftokentail = it;
ipftokentail = &it->ipt_next;
it->ipt_next = NULL;
it->ipt_die = ipf_ticks + 2;
MUTEX_DOWNGRADE(&ipf_tokens);
return it;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_unlinktoken */
/* Returns: None. */
/* Parameters: token(I) - pointer to token structure */
/* */
/* This function unlinks a token structure from the linked list of tokens */
/* that "own" it. The head pointer never needs to be explicitly adjusted */
/* but the tail does due to the linked list implementation. */
/* ------------------------------------------------------------------------ */
static void
ipf_unlinktoken(token)
ipftoken_t *token;
{
if (ipftokentail == &token->ipt_next)
ipftokentail = token->ipt_pnext;
*token->ipt_pnext = token->ipt_next;
if (token->ipt_next != NULL)
token->ipt_next->ipt_pnext = token->ipt_pnext;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_freetoken */
/* Returns: None. */
/* Parameters: token(I) - pointer to token structure */
/* */
/* This function unlinks a token from the linked list and on the path to */
/* free'ing the data, it calls the dereference function that is associated */
/* with the type of data pointed to by the token as it is considered to */
/* hold a reference to it. */
/* ------------------------------------------------------------------------ */
void
ipf_freetoken(token)
ipftoken_t *token;
{
void *data, **datap;
ipf_unlinktoken(token);
data = token->ipt_data;
datap = &data;
if ((data != NULL) && (data != (void *)-1)) {
switch (token->ipt_type)
{
case IPFGENITER_IPF :
(void) ipf_derefrule((frentry_t **)datap);
break;
case IPFGENITER_IPNAT :
WRITE_ENTER(&ipf_nat);
ipf_nat_rulederef((ipnat_t **)datap);
RWLOCK_EXIT(&ipf_nat);
break;
case IPFGENITER_NAT :
ipf_nat_deref((nat_t **)datap);
break;
case IPFGENITER_STATE :
ipf_state_deref((ipstate_t **)datap);
break;
case IPFGENITER_FRAG :
#ifdef USE_MUTEXES
ipf_frag_deref((ipfr_t **)datap, &ipf_frag);
#else
ipf_frag_deref((ipfr_t **)datap);
#endif
break;
case IPFGENITER_NATFRAG :
#ifdef USE_MUTEXES
ipf_frag_deref((ipfr_t **)datap, &ipf_natfrag);
#else
ipf_frag_deref((ipfr_t **)datap);
#endif
break;
case IPFGENITER_HOSTMAP :
ipf_nat_hostmapdel((hostmap_t **)datap);
break;
default :
#ifdef IPFILTER_LOOKUP
ipf_lookup_iterderef(token->ipt_type, data);
#endif
break;
}
}
KFREE(token);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_getnextrule */
/* Returns: int - 0 = success, else error */
/* Parameters: t(I) - pointer to destination information to resolve */
/* ptr(I) - pointer to ipfobj_t to copyin from user space */
/* */
/* This function's first job is to bring in the ipfruleiter_t structure via */
/* the ipfobj_t structure to determine what should be the next rule to */
/* return. Once the ipfruleiter_t has been brought in, it then tries to */
/* find the 'next rule'. This may include searching rule group lists or */
/* just be as simple as looking at the 'next' field in the rule structure. */
/* When we have found the rule to return, increase its reference count and */
/* if we used an existing rule to get here, decrease its reference count. */
/* ------------------------------------------------------------------------ */
int
ipf_getnextrule(ipftoken_t *t, void *ptr)
{
frentry_t *fr, *next, zero;
int error, count, out;
ipfruleiter_t it;
frgroup_t *fg;
char *dst;
if (t == NULL || ptr == NULL) {
ipf_interror = 84;
return EFAULT;
}
error = ipf_inobj(ptr, &it, IPFOBJ_IPFITER);
if (error != 0)
return error;
if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
ipf_interror = 85;
return EINVAL;
}
if ((it.iri_active != 0) && (it.iri_active != 1)) {
ipf_interror = 86;
return EINVAL;
}
if (it.iri_nrules == 0) {
ipf_interror = 87;
return ENOSPC;
}
if (it.iri_rule == NULL) {
ipf_interror = 88;
return EFAULT;
}
fg = NULL;
out = it.iri_inout & F_OUT;
fr = t->ipt_data;
READ_ENTER(&ipf_mutex);
if (fr == NULL) {
if (*it.iri_group == '\0') {
if ((it.iri_inout & F_ACIN) != 0)
next = ipf_acct[out][it.iri_active];
else
next = ipf_rules[out][it.iri_active];
} else {
fg = ipf_findgroup(it.iri_group, IPL_LOGIPF,
it.iri_active, NULL);
if (fg != NULL)
next = fg->fg_start;
else
next = NULL;
}
} else {
next = fr->fr_next;
}
dst = (char *)it.iri_rule;
/*
* The ipfruleiter may ask for more than 1 rule at a time to be
* copied out, so long as that many exist in the list to start with!
*/
for (count = it.iri_nrules; count > 0; count--) {
if (next != NULL) {
MUTEX_ENTER(&next->fr_lock);
next->fr_ref++;
MUTEX_EXIT(&next->fr_lock);
t->ipt_data = next;
} else {
bzero(&zero, sizeof(zero));
next = &zero;
ipf_freetoken(t);
fr = NULL;
t = NULL;
count = 1;
}
RWLOCK_EXIT(&ipf_mutex);
if (fr != NULL) {
(void) ipf_derefrule(&fr);
}
error = COPYOUT(next, dst, sizeof(*next));
if (error != 0) {
ipf_interror = 89;
return EFAULT;
}
if (next->fr_data != NULL) {
dst += sizeof(*next);
error = COPYOUT(next->fr_data, dst, next->fr_dsize);
if (error != 0) {
ipf_interror = 90;
error = EFAULT;
} else {
dst += next->fr_dsize;
}
}
if ((count == 1) || (next->fr_next == NULL) || (error != 0))
break;
READ_ENTER(&ipf_mutex);
fr = next;
next = fr->fr_next;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_frruleiter */
/* Returns: int - 0 = success, else error */
/* Parameters: data(I) - the token type to match */
/* uid(I) - uid owning the token */
/* ptr(I) - context pointer for the token */
/* */
/* This function serves as a stepping stone between ipf_ipf_ioctl and */
/* ipf_getnextrule. It's role is to find the right token in the kernel for */
/* the process doing the ioctl and use that to ask for the next rule. */
/* ------------------------------------------------------------------------ */
static int
ipf_frruleiter(data, uid, ctx)
void *data, *ctx;
int uid;
{
ipftoken_t *token;
int error;
token = ipf_findtoken(IPFGENITER_IPF, uid, ctx);
if (token != NULL) {
error = ipf_getnextrule(token, data);
} else {
ipf_interror = 91;
error = EFAULT;
}
RWLOCK_EXIT(&ipf_tokens);
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_geniter */
/* Returns: int - 0 = success, else error */
/* Parameters: token(I) - pointer to ipftoken_t structure */
/* itp(I) - */
/* */
/* ------------------------------------------------------------------------ */
static int
ipf_geniter(token, itp)
ipftoken_t *token;
ipfgeniter_t *itp;
{
int error;
switch (itp->igi_type)
{
case IPFGENITER_FRAG :
#ifdef USE_MUTEXES
error = ipf_frag_next(token, itp,
&ipfr_list, &ipfr_tail, &ipf_frag);
#else
error = ipf_frag_next(token, itp, &ipfr_list, &ipfr_tail);
#endif
break;
default :
ipf_interror = 92;
error = EINVAL;
break;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_genericiter */
/* Returns: int - 0 = success, else error */
/* Parameters: data(I) - the token type to match */
/* uid(I) - uid owning the token */
/* ptr(I) - context pointer for the token */
/* */
/* ------------------------------------------------------------------------ */
int
ipf_genericiter(data, uid, ctx)
void *data, *ctx;
int uid;
{
ipftoken_t *token;
ipfgeniter_t iter;
int error;
error = ipf_inobj(data, &iter, IPFOBJ_GENITER);
if (error != 0)
return error;
token = ipf_findtoken(iter.igi_type, uid, ctx);
if (token != NULL) {
token->ipt_subtype = iter.igi_type;
error = ipf_geniter(token, &iter);
} else {
ipf_interror = 93;
error = EFAULT;
}
RWLOCK_EXIT(&ipf_tokens);
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_ipf_ioctl */
/* Returns: int - 0 = success, else error */
/* Parameters: data(I) - the token type to match */
/* cmd(I) - the ioctl command number */
/* mode(I) - mode flags for the ioctl */
/* uid(I) - uid owning the token */
/* ptr(I) - context pointer for the token */
/* */
/* This function handles all of the ioctl command that are actually isssued */
/* to the /dev/ipl device. */
/* ------------------------------------------------------------------------ */
int
ipf_ipf_ioctl(data, cmd, mode, uid, ctx)
caddr_t data;
ioctlcmd_t cmd;
int mode, uid;
void *ctx;
{
friostat_t fio;
int error, tmp;
SPL_INT(s);
switch (cmd)
{
case SIOCFRENB :
if (!(mode & FWRITE)) {
ipf_interror = 94;
error = EPERM;
} else {
error = BCOPYIN(data, &tmp, sizeof(tmp));
if (error != 0) {
ipf_interror = 95;
error = EFAULT;
break;
}
RWLOCK_EXIT(&ipf_global);
WRITE_ENTER(&ipf_global);
if (tmp) {
if (ipf_running > 0)
error = 0;
else
error = ipfattach();
if (error == 0)
ipf_running = 1;
else
(void) ipfdetach();
} else {
error = ipfdetach();
if (error == 0)
ipf_running = -1;
}
}
break;
case SIOCIPFSET :
if (!(mode & FWRITE)) {
ipf_interror = 96;
error = EPERM;
break;
}
/* FALLTHRU */
case SIOCIPFGETNEXT :
case SIOCIPFGET :
error = ipf_ipftune(cmd, (void *)data);
break;
case SIOCSETFF :
if (!(mode & FWRITE)) {
ipf_interror = 97;
error = EPERM;
} else {
error = BCOPYIN(data, &ipf_flags, sizeof(ipf_flags));
if (error != 0) {
ipf_interror = 98;
error = EFAULT;
}
}
break;
case SIOCGETFF :
error = BCOPYOUT(&ipf_flags, data, sizeof(ipf_flags));
if (error != 0) {
ipf_interror = 99;
error = EFAULT;
}
break;
case SIOCFUNCL :
error = ipf_resolvefunc((void *)data);
break;
case SIOCINAFR :
case SIOCRMAFR :
case SIOCADAFR :
case SIOCZRLST :
if (!(mode & FWRITE)) {
ipf_interror = 100;
error = EPERM;
} else {
error = frrequest(IPL_LOGIPF, cmd, (caddr_t)data,
ipf_active, 1);
}
break;
case SIOCINIFR :
case SIOCRMIFR :
case SIOCADIFR :
if (!(mode & FWRITE)) {
ipf_interror = 101;
error = EPERM;
} else {
error = frrequest(IPL_LOGIPF, cmd, (caddr_t)data,
1 - ipf_active, 1);
}
break;
case SIOCSWAPA :
if (!(mode & FWRITE)) {
ipf_interror = 102;
error = EPERM;
} else {
WRITE_ENTER(&ipf_mutex);
bzero((char *)ipf_cache, sizeof(ipf_cache[0]) * 2);
error = BCOPYOUT(&ipf_active, data, sizeof(ipf_active));
if (error != 0) {
ipf_interror = 103;
error = EFAULT;
} else {
ipf_active = 1 - ipf_active;
}
RWLOCK_EXIT(&ipf_mutex);
}
break;
case SIOCGETFS :
ipf_getstat(&fio);
error = ipf_outobj((void *)data, &fio, IPFOBJ_IPFSTAT);
break;
case SIOCFRZST :
if (!(mode & FWRITE)) {
ipf_interror = 104;
error = EPERM;
} else
error = ipf_zerostats((caddr_t)data);
break;
case SIOCIPFFL :
if (!(mode & FWRITE)) {
ipf_interror = 105;
error = EPERM;
} else {
error = BCOPYIN(data, &tmp, sizeof(tmp));
if (!error) {
tmp = ipf_flush(IPL_LOGIPF, tmp);
error = BCOPYOUT(&tmp, data, sizeof(tmp));
if (error != 0) {
ipf_interror = 106;
error = EFAULT;
}
} else {
ipf_interror = 107;
error = EFAULT;
}
}
break;
#ifdef USE_INET6
case SIOCIPFL6 :
if (!(mode & FWRITE)) {
ipf_interror = 108;
error = EPERM;
} else {
error = BCOPYIN(data, &tmp, sizeof(tmp));
if (!error) {
tmp = ipf_flush(IPL_LOGIPF, tmp);
error = BCOPYOUT(&tmp, data, sizeof(tmp));
if (error != 0) {
ipf_interror = 109;
error = EFAULT;
}
} else {
ipf_interror = 110;
error = EFAULT;
}
}
break;
#endif
case SIOCSTLCK :
if (!(mode & FWRITE)) {
ipf_interror = 122;
error = EPERM;
} else {
error = BCOPYIN(data, &tmp, sizeof(tmp));
if (error == 0) {
ipf_state_lock = tmp;
ipf_nat_lock = tmp;
ipf_frag_lock = tmp;
ipf_auth_lock = tmp;
} else {
ipf_interror = 111;
error = EFAULT;
}
}
break;
#ifdef IPFILTER_LOG
case SIOCIPFFB :
if (!(mode & FWRITE)) {
ipf_interror = 112;
error = EPERM;
} else {
tmp = ipf_log_clear(IPL_LOGIPF);
error = BCOPYOUT(&tmp, data, sizeof(tmp));
if (error) {
ipf_interror = 113;
error = EFAULT;
}
}
break;
#endif /* IPFILTER_LOG */
case SIOCFRSYN :
if (!(mode & FWRITE)) {
ipf_interror = 114;
error = EPERM;
} else {
RWLOCK_EXIT(&ipf_global);
WRITE_ENTER(&ipf_global);
#if defined(MENTAT) && defined(_KERNEL)
error = ipfsync();
#else
ipf_sync(NULL);
error = 0;
#endif
}
break;
case SIOCGFRST :
error = ipf_outobj((void *)data, ipf_frag_stats(),
IPFOBJ_FRAGSTAT);
break;
#ifdef IPFILTER_LOG
case FIONREAD :
tmp = (int)iplused[IPL_LOGIPF];
error = BCOPYOUT(&tmp, data, sizeof(tmp));
break;
#endif
case SIOCIPFITER :
SPL_SCHED(s);
error = ipf_frruleiter(data, uid, ctx);
SPL_X(s);
break;
case SIOCGENITER :
SPL_SCHED(s);
error = ipf_genericiter(data, uid, ctx);
SPL_X(s);
break;
case SIOCIPFDELTOK :
error = BCOPYIN(data, &tmp, sizeof(tmp));
if (error == 0) {
SPL_SCHED(s);
error = ipf_deltoken(tmp, uid, ctx);
SPL_X(s);
}
break;
default :
ipf_interror = 115;
error = EINVAL;
break;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_decaps */
/* Returns: int - -1 == decapsulation failed, else bit mask of */
/* flags indicating packet filtering decision. */
/* Parameters: fin(I) - pointer to packet information */
/* pass(I) - IP protocol version to match */
/* l5proto(I) - layer 5 protocol to decode UDP data as. */
/* */
/* This function is called for packets that are wrapt up in other packets, */
/* for example, an IP packet that is the entire data segment for another IP */
/* packet. If the basic constraints for this are satisfied, change the */
/* buffer to point to the start of the inner packet and start processing */
/* rules belonging to the head group this rule specifies. */
/* ------------------------------------------------------------------------ */
u_32_t
ipf_decaps(fin, pass, l5proto)
fr_info_t *fin;
u_32_t pass;
int l5proto;
{
fr_info_t fin2, *fino = NULL;
int elen, hlen, nh;
grehdr_t gre;
ip_t *ip;
mb_t *m;
if ((fin->fin_flx & FI_COALESCE) == 0)
if (ipf_coalesce(fin) == -1)
goto cantdecaps;
m = fin->fin_m;
hlen = fin->fin_hlen;
switch (fin->fin_p)
{
case IPPROTO_UDP :
/*
* In this case, the specific protocol being decapsulated
* inside UDP frames comes from the rule.
*/
nh = fin->fin_fr->fr_icode;
break;
case IPPROTO_GRE : /* 47 */
bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
hlen += sizeof(grehdr_t);
if (gre.gr_R|gre.gr_s)
goto cantdecaps;
if (gre.gr_C)
hlen += 4;
if (gre.gr_K)
hlen += 4;
if (gre.gr_S)
hlen += 4;
nh = IPPROTO_IP;
/*
* If the routing options flag is set, validate that it is
* there and bounce over it.
*/
#if 0
/* This is really heavy weight and lots of room for error, */
/* so for now, put it off and get the simple stuff right. */
if (gre.gr_R) {
u_char off, len, *s;
u_short af;
int end;
end = 0;
s = fin->fin_dp;
s += hlen;
aplen = fin->fin_plen - hlen;
while (aplen > 3) {
af = (s[0] << 8) | s[1];
off = s[2];
len = s[3];
aplen -= 4;
s += 4;
if (af == 0 && len == 0) {
end = 1;
break;
}
if (aplen < len)
break;
s += len;
aplen -= len;
}
if (end != 1)
goto cantdecaps;
hlen = s - (u_char *)fin->fin_dp;
}
#endif
break;
#ifdef IPPROTO_IPIP
case IPPROTO_IPIP : /* 94 */
#endif
#ifdef IPPROTO_IPENCAP
case IPPROTO_IPENCAP : /* 4 */
#endif
nh = IPPROTO_IP;
break;
default : /* Includes ESP, AH is special for IPv4 */
goto cantdecaps;
}
switch (nh)
{
case IPPROTO_IP :
case IPPROTO_IPV6 :
break;
default :
goto cantdecaps;
}
bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
fino = fin;
fin = &fin2;
elen = hlen;
#if defined(MENTAT) && defined(_KERNEL)
m->b_rptr += elen;
#else
m->m_data += elen;
m->m_len -= elen;
#endif
fin->fin_plen -= elen;
fin->fin_ipoff += elen;
ip = (ip_t *)((char *)fin->fin_ip + elen);
/*
* Make sure we have at least enough data for the network layer
* header.
*/
if (IP_V(ip) == 4)
hlen = IP_HL(ip) << 2;
#ifdef USE_INET6
else if (IP_V(ip) == 6)
hlen = sizeof(ip6_t);
#endif
else
goto cantdecaps;
if (fin->fin_plen < hlen)
goto cantdecaps;
fin->fin_dp = (char *)ip + hlen;
if (IP_V(ip) == 4) {
/*
* Perform IPv4 header checksum validation.
*/
if (ipf_cksum((u_short *)ip, hlen))
goto cantdecaps;
}
if (ipf_makefrip(hlen, ip, fin) == -1) {
cantdecaps:
pass &= ~FR_CMDMASK;
pass |= FR_BLOCK|FR_QUICK;
fin->fin_reason = 8;
return -1;
}
/*fin->fin_fr = *fr->fr_grp;*/
pass = ipf_scanlist(fin, pass);
/*
* Copy the packet filter "result" fields out of the fr_info_t struct
* that is local to the decapsulation processing and back into the
* one we were called with.
*/
fino->fin_flx = fin->fin_flx;
fino->fin_rev = fin->fin_rev;
fino->fin_icode = fin->fin_icode;
fino->fin_rule = fin->fin_rule;
(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
fino->fin_fr = fin->fin_fr;
fino->fin_error = fin->fin_error;
fino->fin_state = fin->fin_state;
fino->fin_mp = fin->fin_mp;
fino->fin_m = fin->fin_m;
m = fin->fin_m;
if (m != NULL) {
#if defined(MENTAT) && defined(_KERNEL)
m->b_rptr -= elen;
#else
m->m_data -= elen;
m->m_len += elen;
#endif
}
return pass;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_checkrulefunc */
/* Returns: Nil */
/* Parameters: funcptr(I) - function pointer */
/* addrem(I) - 0 == add, 1 == remove */
/* set(I) - active/inactive set number */
/* */
/* Lookup a function pointer in the table of available functions and modify */
/* its use counter if found, according to the value of addrem. */
/* ------------------------------------------------------------------------ */
static void
ipf_checkrulefunc(funcptr, addrem, set)
void *funcptr;
int addrem, set;
{
ipfunc_resolve_t *ft;
for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
if (ft->ipfu_addr == funcptr)
break;
if (ft->ipfu_addr == NULL || ft->ipfu_ref == NULL)
return;
if (addrem == 0) {
ATOMIC_INC(ft->ipfu_ref[set]);
} else if (addrem == 1) {
ATOMIC_DEC(ft->ipfu_ref[set]);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_matcharray_load */
/* Returns: int - 0 = success, else error */
/* Parameters: data(I) - pointer to ioctl data */
/* objp(I) - ipfobj_t structure to load data into */
/* arrayptr(I) - pointer to location to store array pointer */
/* */
/* This function loads in a mathing array through the ipfobj_t struct that */
/* describes it. Sanity checking and array size limitations are enforced */
/* in this function to prevent userspace from trying to load in something */
/* that is insanely big. Once the size of the array is known, the memory */
/* required is malloc'd and returned through changing *arrayptr. The */
/* contents of the array are verified before returning. Only in the event */
/* of a successful call is the caller required to free up the malloc area. */
/* ------------------------------------------------------------------------ */
int
ipf_matcharray_load(data, objp, arrayptr)
caddr_t data;
ipfobj_t *objp;
int **arrayptr;
{
int arraysize, *array, error;
*arrayptr = NULL;
error = BCOPYIN(data, objp, sizeof(*objp));
if (error != 0) {
ipf_interror = 116;
return EFAULT;
}
if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
ipf_interror = 117;
return EINVAL;
}
if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
(objp->ipfo_size > 1024)) {
ipf_interror = 118;
return EINVAL;
}
arraysize = objp->ipfo_size * sizeof(*array);
KMALLOCS(array, int *, arraysize);
if (array == NULL) {
ipf_interror = 119;
return ENOMEM;
}
error = COPYIN(objp->ipfo_ptr, array, arraysize);
if (error != 0) {
KFREES(array, arraysize);
ipf_interror = 120;
return EFAULT;
}
if (ipf_matcharray_verify(array, arraysize) != 0) {
KFREES(array, arraysize);
ipf_interror = 121;
return EINVAL;
}
*arrayptr = array;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_matcharray_verify */
/* Returns: Nil */
/* Parameters: array(I) - pointer to matching array */
/* arraysize(I) - number of elements in the array */
/* */
/* Verify the contents of a matching array by stepping through each element */
/* in it. The actual commands in the array are not verified for */
/* correctness, only that all of the sizes are correctly within limits. */
/* ------------------------------------------------------------------------ */
int
ipf_matcharray_verify(array, arraysize)
int *array, arraysize;
{
int i, nelem, maxidx, len;
nelem = arraysize / sizeof(*array);
/*
* Currently, it makes no sense to have an array less than 6
* elements long - the initial size at the from, a single operation
* (minimum 4 in length) and a trailer, for a total of 6.
*/
if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
return -1;
}
/*
* Verify the size of data pointed to by array with how long
* the array claims to be itself.
*/
if (array[0] * sizeof(*array) != arraysize) {
return -1;
}
maxidx = nelem - 1;
/*
* The last opcode in this array should be an IPF_EXP_END.
*/
if (array[maxidx] != IPF_EXP_END) {
return -1;
}
for (i = 1; i < maxidx; ) {
len = array[i + 2];
/*
* The length of the bits to check must be at least 1
* (or else there is nothing to comapre with!) and it
* cannot exceed the length of the data present.
*/
if ((len < 1) || (i + 3 + len > maxidx)) {
return -1;
}
i += 3 + len;
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_fr_matcharray */
/* Returns: int - 0 = match failed, else positive match */
/* Parameters: fin(I) - pointer to packet information */
/* array(I) - pointer to matching array */
/* */
/* This function is used to apply a matching array against a packet and */
/* return an indication of whether or not the packet successfully matches */
/* all of the commands in it. */
/* ------------------------------------------------------------------------ */
static int
ipf_fr_matcharray(fin, array)
fr_info_t *fin;
int *array;
{
int i, n, *x, e, p;
e = 0;
n = array[0];
x = array + 1;
for (; n > 0; x += 3 + x[3], e = 0) {
n -= x[3] + 3;
/*
* The upper 16 bits currently store the protocol value.
* This is currently used with TCP and UDP port compares and
* allows "tcp.port = 80" without requiring an explicit
" "ip.pr = tcp" first.
*/
p = x[0] >> 16;
if ((p != 0) && (p != fin->fin_p))
break;
switch (x[0])
{
case IPF_EXP_IP_PR :
for (i = 0; !e && i < x[3]; i++) {
e |= (fin->fin_p == x[i + 3]);
}
break;
case IPF_EXP_IP_SRCADDR :
for (i = 0; !e && i < x[3]; i++) {
e |= ((fin->fin_saddr & x[i + 4]) ==
x[i + 3]);
}
break;
case IPF_EXP_IP_DSTADDR :
for (i = 0; !e && i < x[3]; i++) {
e |= ((fin->fin_daddr & x[i + 4]) ==
x[i + 3]);
}
break;
case IPF_EXP_IP_ADDR :
for (i = 0; !e && i < x[3]; i++) {
e |= ((fin->fin_saddr & x[i + 4]) ==
x[i + 3]) ||
((fin->fin_daddr & x[i + 4]) ==
x[i + 3]);
}
break;
case IPF_EXP_UDP_PORT :
case IPF_EXP_TCP_PORT :
for (i = 0; !e && i < x[3]; i++) {
e |= (fin->fin_sport == x[i + 3]) ||
(fin->fin_dport == x[i + 3]);
}
break;
case IPF_EXP_UDP_SPORT :
case IPF_EXP_TCP_SPORT :
for (i = 0; !e && i < x[3]; i++) {
e |= (fin->fin_sport == x[i + 3]);
}
break;
case IPF_EXP_UDP_DPORT :
case IPF_EXP_TCP_DPORT :
for (i = 0; !e && i < x[3]; i++) {
e |= (fin->fin_dport == x[i + 3]);
}
break;
case IPF_EXP_TCP_FLAGS :
for (i = 0; !e && i < x[3]; i++) {
e |= ((fin->fin_tcpf & x[i + 4]) == x[i + 3]);
}
break;
}
e ^= x[1];
if (!e)
break;
}
return e;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_queueflush */
/* Returns: int - number of entries flushed (0 = none) */
/* Parameters: deletefn(I) - function to call to delete entry */
/* ipfqs(I) - top of the list of ipf internal queues */
/* userqs(I) - top of the list of user defined timeouts */
/* */
/* This fucntion gets called when the state/NAT hash tables fill up and we */
/* need to try a bit harder to free up some space. The algorithm used here */
/* split into two parts but both halves have the same goal: to reduce the */
/* number of connections considered to be "active" to the low watermark. */
/* There are two steps in doing this: */
/* 1) Remove any TCP connections that are already considered to be "closed" */
/* but have not yet been removed from the state table. The two states */
/* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */
/* candidates for this style of removal. If freeing up entries in */
/* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */
/* we do not go on to step 2. */
/* */
/* 2) Look for the oldest entries on each timeout queue and free them if */
/* they are within the given window we are considering. Where the */
/* window starts and the steps taken to increase its size depend upon */
/* how long ipf has been running (fr_ticks.) Anything modified in the */
/* last 30 seconds is not touched. */
/* touched */
/* die fr_ticks 30*1.5 1800*1.5 | 43200*1.5 */
/* | | | | | | */
/* future <--+----------+--------+-----------+-----+-----+-----------> past */
/* now \_int=30s_/ \_int=1hr_/ \_int=12hr */
/* */
/* Points to note: */
/* - tqe_die is the time, in the future, when entries die. */
/* - tqe_die - fr_ticks is how long left the connection has to live in ipf */
/* ticks. */
/* - tqe_touched is when the entry was last used by NAT/state */
/* - the closer tqe_touched is to fr_ticks, the further tqe_die will be for */
/* any given timeout queue and vice versa. */
/* - both tqe_die and tqe_touched increase over time */
/* - timeout queues are sorted with the highest value of tqe_die at the */
/* bottom and therefore the smallest values of each are at the top */
/* - the pointer passed in as ipfqs should point to an array of timeout */
/* queues representing each of the TCP states */
/* */
/* We start by setting up a maximum range to scan for things to move of */
/* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */
/* found in that range, "interval" is adjusted (so long as it isn't 30) and */
/* we start again with a new value for "iend" and "istart". This is */
/* continued until we either finish the scan of 30 second intervals or the */
/* low water mark is reached. */
/* ------------------------------------------------------------------------ */
int
ipf_queueflush(deletefn, ipfqs, userqs, activep, size, low)
ipftq_delete_fn_t deletefn;
ipftq_t *ipfqs, *userqs;
u_int *activep;
int size, low;
{
u_long interval, istart, iend;
ipftq_t *ifq, *ifqnext;
ipftqent_t *tqe, *tqn;
int removed = 0;
for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
tqn = tqe->tqe_next;
if ((*deletefn)(tqe->tqe_parent) == 0)
removed++;
}
if ((*activep * 100 / size) > low) {
for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
((tqe = tqn) != NULL); ) {
tqn = tqe->tqe_next;
if ((*deletefn)(tqe->tqe_parent) == 0)
removed++;
}
}
if ((*activep * 100 / size) <= low) {
return removed;
}
/*
* NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
* used then the operations are upgraded to floating point
* and kernels don't like floating point...
*/
if (ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
istart = IPF_TTLVAL(86400 * 4);
interval = IPF_TTLVAL(43200);
} else if (ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
istart = IPF_TTLVAL(43200);
interval = IPF_TTLVAL(1800);
} else if (ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
istart = IPF_TTLVAL(1800);
interval = IPF_TTLVAL(30);
} else {
return 0;
}
if (istart > ipf_ticks) {
if (ipf_ticks - interval < interval)
istart = interval;
else
istart = (ipf_ticks / interval) * interval;
}
iend = ipf_ticks - interval;
while ((*activep * 100 / size) > low) {
u_long try;
try = ipf_ticks - istart;
for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
if (try < tqe->tqe_touched)
break;
tqn = tqe->tqe_next;
if ((*deletefn)(tqe->tqe_parent) == 0)
removed++;
}
}
for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
ifqnext = ifq->ifq_next;
for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
if (try < tqe->tqe_touched)
break;
tqn = tqe->tqe_next;
if ((*deletefn)(tqe->tqe_parent) == 0)
removed++;
}
}
if (try >= iend) {
if (interval == IPF_TTLVAL(43200)) {
interval = IPF_TTLVAL(1800);
} else if (interval == IPF_TTLVAL(1800)) {
interval = IPF_TTLVAL(30);
} else {
break;
}
if (interval >= ipf_ticks)
break;
iend = ipf_ticks - interval;
}
istart -= interval;
}
return removed;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_deliverlocal */
/* Returns: int - 1 = local address, 0 = non-local address */
/* Parameters: ipversion(I) - IP protocol version (4 or 6) */
/* ifp(I) - network interface pointer */
/* sinaddr(I) - sockaddr structure with original address */
/* */
/* This fucntion is used to determine in the address "sinaddr" belongs to */
/* the network interface represented by ifp. */
/* ------------------------------------------------------------------------ */
static int ipf_deliverlocal(ipversion, ifp, sinaddr)
int ipversion;
void *ifp;
void *sinaddr;
{
i6addr_t addr;
int islocal = 0;
if (ipversion == 4) {
struct sockaddr_in *sin = sinaddr;
if (ipf_ifpaddr(4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
if (addr.in4.s_addr == sin->sin_addr.s_addr)
islocal = 1;
}
#ifdef USE_INET6
} else if (ipversion == 6) {
struct sockaddr_in6 *sin = sinaddr;
if (ipf_ifpaddr(6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
if (IP6_EQ(&addr, &sin->sin6_addr))
islocal = 1;
}
#endif
}
return islocal;
}