blob: f869e544161f39ba88e7daf80926849f3720ba68 [file] [log] [blame] [raw]
/*
* Copyright (C) 1995-2003 by Darren Reed.
*
* See the IPFILTER.LICENCE file for details on licencing.
*/
#if defined(KERNEL) || defined(_KERNEL)
# undef KERNEL
# undef ipf_nat_KERNEL
# define KERNEL 1
# define ipf_nat_KERNEL 1
#endif
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/file.h>
#if defined(_KERNEL) && defined(__NetBSD_Version__) && \
(__NetBSD_Version__ >= 399002000)
# include <sys/kauth.h>
#endif
#if defined(__NetBSD__) && (NetBSD >= 199905) && !defined(IPFILTER_LKM) && \
defined(_KERNEL)
#if defined(__NetBSD_Version__) && (__NetBSD_Version__ < 399001400)
# include "opt_ipfilter_log.h"
# else
# include "opt_ipfilter.h"
# endif
#endif
#if !defined(_KERNEL)
# include <stdio.h>
# include <string.h>
# include <stdlib.h>
# define ipf_nat_KERNEL
# ifdef ipf_nat__OpenBSD__
struct file;
# endif
# include <sys/uio.h>
# undef ipf_nat_KERNEL
#endif
#if defined(_KERNEL) && (__FreeBSD_version >= 220000)
# include <sys/filio.h>
# include <sys/fcntl.h>
#else
# include <sys/ioctl.h>
#endif
#if !defined(AIX)
# include <sys/fcntl.h>
#endif
#if !defined(linux)
# include <sys/protosw.h>
#endif
#include <sys/socket.h>
#if defined(_KERNEL)
# include <sys/systm.h>
# if !defined(__SVR4) && !defined(__svr4__)
# include <sys/mbuf.h>
# endif
#endif
#if defined(__SVR4) || defined(__svr4__)
# include <sys/filio.h>
# include <sys/byteorder.h>
# ifdef ipf_nat_KERNEL
# include <sys/dditypes.h>
# endif
# include <sys/stream.h>
# include <sys/kmem.h>
#endif
#if ipf_nat__FreeBSD_version >= 300000
# include <sys/queue.h>
#endif
#include <net/if.h>
#if ipf_nat__FreeBSD_version >= 300000
# include <net/if_var.h>
# if defined(_KERNEL) && !defined(IPFILTER_LKM)
# include "opt_ipfilter.h"
# endif
#endif
#ifdef sun
# include <net/af.h>
#endif
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#ifdef RFC1825
# include <vpn/md5.h>
# include <vpn/ipsec.h>
extern struct ifnet vpnif;
#endif
#if !defined(linux)
# include <netinet/ip_var.h>
#endif
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#include "netinet/ip_compat.h"
#include <netinet/tcpip.h>
#include "netinet/ip_fil.h"
#include "netinet/ip_nat.h"
#include "netinet/ip_frag.h"
#include "netinet/ip_state.h"
#include "netinet/ip_proxy.h"
#ifdef IPFILTER_SYNC
#include "netinet/ip_sync.h"
#endif
#if (__FreeBSD_version >= 300000)
# include <sys/malloc.h>
#endif
#include "md5.h"
/* END OF INCLUDES */
#undef SOCKADDR_IN
#define SOCKADDR_IN struct sockaddr_in
#if !defined(lint)
static const char sccsid[] = "@(#)ip_nat.c 1.11 6/5/96 (C) 1995 Darren Reed";
static const char rcsid[] = "@(#)$Id$";
#endif
/* ======================================================================== */
/* How the NAT is organised and works. */
/* */
/* Inside (interface y) NAT Outside (interface x) */
/* -------------------- -+- ------------------------------------- */
/* Packet going | out, processsed by ipf_nat_checkout() for x */
/* ------------> | ------------> */
/* src=10.1.1.1 | src=192.1.1.1 */
/* | */
/* | in, processed by ipf_nat_checkin() for x */
/* <------------ | <------------ */
/* dst=10.1.1.1 | dst=192.1.1.1 */
/* -------------------- -+- ------------------------------------- */
/* ipf_nat_checkout() - changes ip_src and if required, sport */
/* - creates a new mapping, if required. */
/* ipf_nat_checkin() - changes ip_dst and if required, dport */
/* */
/* In the NAT table, internal source is recorded as "in" and externally */
/* seen as "out". */
/* ======================================================================== */
nat_t **ipf_nat_table[2] = { NULL, NULL },
*ipf_nat_instances = NULL;
ipnat_t *ipf_nat_list = NULL;
u_int ipf_nat_table_max = NAT_TABLE_MAX;
u_int ipf_nat_table_sz = NAT_TABLE_SZ;
u_int ipf_nat_maprules_sz = NAT_SIZE;
u_int ipf_nat_rdrrules_sz = RDR_SIZE;
u_int ipf_nat_hostmap_sz = HOSTMAP_SIZE;
u_int ipf_nat_maxbucket = 0,
ipf_nat_maxbucket_reset = 1;
u_32_t ipf_nat_map_masks = 0;
u_32_t ipf_nat_rdr_masks = 0;
u_int ipf_nat_last_force_flush = 0;
ipnat_t **ipf_nat_map_rules = NULL;
ipnat_t **ipf_nat_rdr_rules = NULL;
hostmap_t **ipf_hm_maptable = NULL;
hostmap_t *ipf_hm_maplist = NULL;
ipftq_t ipf_nat_tqb[IPF_TCP_NSTATES];
ipftq_t ipf_nat_udptq;
ipftq_t ipf_nat_icmptq;
ipftq_t ipf_nat_iptq;
ipftq_t ipf_nat_pending;
ipftq_t *ipf_nat_utqe = NULL;
frentry_t ipfnatblock;
int ipf_nat_doflush = 0;
#ifdef IPFILTER_LOG
int ipf_nat_logging = 1;
#else
int ipf_nat_logging = 0;
#endif
u_int ipf_nat_defage = DEF_NAT_AGE,
ipf_nat_defipage = 120, /* 60 seconds */
ipf_nat_deficmpage = 6; /* 3 seconds */
natstat_t ipf_nat_stats;
int ipf_nat_lock = 0;
int ipf_nat_inited = 0;
int ipf_nat_table_wm_high = 99;
int ipf_nat_table_wm_low = 90;
#if SOLARIS
extern int pfil_delayed_copy;
#endif
static nat_t *ipf_nat_clone __P((fr_info_t *, nat_t *));
static int ipf_nat_flush_entry __P((void *));
static int ipf_nat_getent __P((caddr_t, int));
static int ipf_nat_getsz __P((caddr_t, int));
static int ipf_nat_putent __P((caddr_t, int));
static void ipf_nat_addencap __P((ipnat_t *));
static void ipf_nat_addnat __P((struct ipnat *));
static void ipf_nat_addrdr __P((struct ipnat *));
static int ipf_nat_builddivertmp __P((ipnat_t *));
static int ipf_nat_clearlist __P((void));
static int ipf_nat_decap __P((fr_info_t *, nat_t *));
static void ipf_nat_delnat __P((struct ipnat *));
static void ipf_nat_delrdr __P((struct ipnat *));
static void ipf_nat_delrule __P((struct ipnat *));
static int ipf_nat_encapok __P((fr_info_t *, nat_t *));
static int ipf_nat_extraflush __P((int));
static int ipf_nat_finalise __P((fr_info_t *, nat_t *, natinfo_t *,
nat_t **, int));
static int ipf_nat_flushtable __P((void));
static int ipf_nat_getnext __P((ipftoken_t *, ipfgeniter_t *));
static int ipf_nat_gettable __P((char *));
static hostmap_t *ipf_nat_hostmap __P((ipnat_t *, struct in_addr,
struct in_addr, struct in_addr,
u_32_t));
static int ipf_nat_icmpquerytype4 __P((int));
static int ipf_nat_iterator __P((ipftoken_t *, ipfgeniter_t *));
static int ipf_nat_match_v4 __P((fr_info_t *, ipnat_t *));
static int ipf_nat_matcharray __P((nat_t *, int *));
static int ipf_nat_matchencap __P((fr_info_t *, ipnat_t *));
static int ipf_nat_matchflush __P((caddr_t));
static void ipf_nat_mssclamp __P((tcphdr_t *, u_32_t, fr_info_t *,
u_short *));
static nat_t *ipf_nat_clone __P((fr_info_t *, nat_t *));
static int ipf_nat_newmap __P((fr_info_t *, nat_t *, natinfo_t *));
static int ipf_nat_newdivert __P((fr_info_t *, nat_t *, natinfo_t *));
static int ipf_nat_newrdr __P((fr_info_t *, nat_t *, natinfo_t *));
static int ipf_nat_newrewrite __P((fr_info_t *, nat_t *, natinfo_t *));
static int ipf_nat_nextaddr __P((fr_info_t *, nat_addr_t *, u_32_t *,
u_32_t *));
static int ipf_nat_nextaddrinit __P((nat_addr_t *, int, void *));
static nat_t *ipf_nat_rebuildencapicmp __P((fr_info_t *, nat_t *));
static int ipf_nat_resolverule __P((ipnat_t *));
static int ipf_nat_siocaddnat __P((ipnat_t *, ipnat_t **, int));
static void ipf_nat_siocdelnat __P((ipnat_t *, ipnat_t **, int));
static void ipf_nat_tabmove __P((nat_t *));
static int ipf_nat_wildok __P((nat_t *, int, int, int, int));
#define NATFSUM(n,f) ((n)->nat_v == 4 ? (n)->f.in4.s_addr : (n)->f.i6[0] + \
(n)->f.i6[1] + (n)->f.i6[2] + (n)->f.i6[3])
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_init */
/* Returns: int - 0 == success, -1 == failure */
/* Parameters: Nil */
/* */
/* Initialise all of the NAT locks, tables and other structures. */
/* ------------------------------------------------------------------------ */
int
ipf_nat_init()
{
int i;
KMALLOCS(ipf_nat_table[0], nat_t **, \
sizeof(nat_t *) * ipf_nat_table_sz);
if (ipf_nat_table[0] != NULL) {
bzero((char *)ipf_nat_table[0],
ipf_nat_table_sz * sizeof(nat_t *));
} else {
return -1;
}
KMALLOCS(ipf_nat_table[1], nat_t **, \
sizeof(nat_t *) * ipf_nat_table_sz);
if (ipf_nat_table[1] != NULL) {
bzero((char *)ipf_nat_table[1],
ipf_nat_table_sz * sizeof(nat_t *));
} else {
return -2;
}
KMALLOCS(ipf_nat_map_rules, ipnat_t **, \
sizeof(ipnat_t *) * ipf_nat_maprules_sz);
if (ipf_nat_map_rules != NULL) {
bzero((char *)ipf_nat_map_rules,
ipf_nat_maprules_sz * sizeof(ipnat_t *));
} else {
return -3;
}
KMALLOCS(ipf_nat_rdr_rules, ipnat_t **, \
sizeof(ipnat_t *) * ipf_nat_rdrrules_sz);
if (ipf_nat_rdr_rules != NULL) {
bzero((char *)ipf_nat_rdr_rules,
ipf_nat_rdrrules_sz * sizeof(ipnat_t *));
} else {
return -4;
}
KMALLOCS(ipf_hm_maptable, hostmap_t **, \
sizeof(hostmap_t *) * ipf_nat_hostmap_sz);
if (ipf_hm_maptable != NULL) {
bzero((char *)ipf_hm_maptable,
sizeof(hostmap_t *) * ipf_nat_hostmap_sz);
} else {
return -5;
}
ipf_hm_maplist = NULL;
KMALLOCS(ipf_nat_stats.ns_side[0].ns_bucketlen, u_int *,
ipf_nat_table_sz * sizeof(u_int));
if (ipf_nat_stats.ns_side[0].ns_bucketlen == NULL) {
return -6;
}
bzero((char *)ipf_nat_stats.ns_side[0].ns_bucketlen,
ipf_nat_table_sz * sizeof(u_int));
KMALLOCS(ipf_nat_stats.ns_side[1].ns_bucketlen, u_int *,
ipf_nat_table_sz * sizeof(u_int));
if (ipf_nat_stats.ns_side[1].ns_bucketlen == NULL) {
return -7;
}
bzero((char *)ipf_nat_stats.ns_side[1].ns_bucketlen,
ipf_nat_table_sz * sizeof(u_int));
if (ipf_nat_maxbucket == 0) {
for (i = ipf_nat_table_sz; i > 0; i >>= 1)
ipf_nat_maxbucket++;
ipf_nat_maxbucket *= 2;
}
ipf_sttab_init(ipf_nat_tqb);
/*
* Increase this because we may have "keep state" following this too
* and packet storms can occur if this is removed too quickly.
*/
ipf_nat_tqb[IPF_TCPS_CLOSED].ifq_ttl = ipf_tcplastack;
ipf_nat_tqb[IPF_TCP_NSTATES - 1].ifq_next = &ipf_nat_udptq;
IPFTQ_INIT(&ipf_nat_udptq, ipf_nat_defage, "nat ipftq udp tab");
ipf_nat_udptq.ifq_next = &ipf_nat_icmptq;
IPFTQ_INIT(&ipf_nat_icmptq, ipf_nat_deficmpage, "nat icmp ipftq tab");
ipf_nat_icmptq.ifq_next = &ipf_nat_iptq;
IPFTQ_INIT(&ipf_nat_iptq, ipf_nat_defipage, "nat ip ipftq tab");
ipf_nat_iptq.ifq_next = &ipf_nat_pending;
IPFTQ_INIT(&ipf_nat_pending, 1, "nat pending ipftq tab");
ipf_nat_pending.ifq_next = NULL;
for (i = 0; i < IPF_TCP_NSTATES; i++) {
if (ipf_nat_tqb[i].ifq_ttl < ipf_nat_deficmpage)
ipf_nat_tqb[i].ifq_ttl = ipf_nat_deficmpage;
#ifdef LARGE_NAT
else if (ipf_nat_tqb[i].ifq_ttl > ipf_nat_defage)
ipf_nat_tqb[i].ifq_ttl = ipf_nat_defage;
#endif
}
/*
* Increase this because we may have "keep state" following
* this too and packet storms can occur if this is removed
* too quickly.
*/
ipf_nat_tqb[IPF_TCPS_CLOSED].ifq_ttl = ipf_nat_tqb[IPF_TCPS_LAST_ACK].ifq_ttl;
RWLOCK_INIT(&ipf_nat, "ipf IP NAT rwlock");
RWLOCK_INIT(&ipf_natfrag, "ipf IP NAT-Frag rwlock");
MUTEX_INIT(&ipf_nat_new, "ipf nat new mutex");
MUTEX_INIT(&ipf_natio, "ipf nat io mutex");
bzero((char *)&ipfnatblock, sizeof(ipfnatblock));
ipfnatblock.fr_flags = FR_BLOCK|FR_QUICK;
ipfnatblock.fr_ref = 1;
ipf_nat_inited = 1;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_addrdr */
/* Returns: Nil */
/* Parameters: n(I) - pointer to NAT rule to add */
/* */
/* Adds a redirect rule to the hash table of redirect rules and the list of */
/* loaded NAT rules. Updates the bitmask indicating which netmasks are in */
/* use by redirect rules. */
/* ------------------------------------------------------------------------ */
static void
ipf_nat_addrdr(n)
ipnat_t *n;
{
ipnat_t **np;
u_32_t j;
u_int hv;
int k;
if (n->in_odstatype == FRI_NORMAL) {
k = count4bits(n->in_odstmsk);
if ((k >= 0) && (k != 32))
ipf_nat_rdr_masks |= 1 << k;
j = (n->in_odstaddr & n->in_odstmsk);
hv = NAT_HASH_FN(j, 0, ipf_nat_rdrrules_sz);
} else {
ipf_nat_rdr_masks |= 1;
j = 0;
hv = 0;
}
np = ipf_nat_rdr_rules + hv;
while (*np != NULL)
np = &(*np)->in_rnext;
n->in_rnext = NULL;
n->in_prnext = np;
n->in_hv[0] = hv;
*np = n;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_addnat */
/* Returns: Nil */
/* Parameters: n(I) - pointer to NAT rule to add */
/* */
/* Adds a NAT map rule to the hash table of rules and the list of loaded */
/* NAT rules. Updates the bitmask indicating which netmasks are in use by */
/* redirect rules. */
/* ------------------------------------------------------------------------ */
static void
ipf_nat_addnat(n)
ipnat_t *n;
{
ipnat_t **np;
u_32_t j;
u_int hv;
int k;
if (n->in_osrcatype == FRI_NORMAL) {
k = count4bits(n->in_osrcmsk);
if ((k >= 0) && (k != 32))
ipf_nat_map_masks |= 1 << k;
j = (n->in_osrcaddr & n->in_osrcmsk);
hv = NAT_HASH_FN(j, 0, ipf_nat_maprules_sz);
} else {
ipf_nat_map_masks |= 1;
j = 0;
hv = 0;
}
np = ipf_nat_map_rules + hv;
while (*np != NULL)
np = &(*np)->in_mnext;
n->in_mnext = NULL;
n->in_pmnext = np;
n->in_hv[1] = hv;
*np = n;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_addencap */
/* Returns: Nil */
/* Parameters: n(I) - pointer to NAT rule to add */
/* */
/* Here we add in a pointer in the NAT rules hash table to match reply */
/* packets that are encapsulated. For encap rules that are "out", what we */
/* will want to match upon will be the source address in the encap rule as */
/* this is what will become the destination in packets coming back to us. */
/* For encaps pointing in, it is still the same because it is still the */
/* reply packet we want to match. */
/* ------------------------------------------------------------------------ */
static void
ipf_nat_addencap(n)
ipnat_t *n;
{
ipnat_t **np;
u_32_t j;
u_int hv;
int k;
k = -1;
/*
* It is the new source address we're after...
*/
if (n->in_nsrcatype == FRI_NORMAL) {
k = count4bits(n->in_nsrcmsk);
j = (n->in_nsrcaddr & n->in_nsrcmsk);
hv = NAT_HASH_FN(j, 0, ipf_nat_maprules_sz);
} else {
j = 0;
hv = 0;
}
/*
* And place the rules table entry in the reverse spot, so for out
* we use the rdr-links and for rdr, we use the map-links/
*/
if (n->in_redir & NAT_MAP) {
if ((k >= 0) && (k != 32))
ipf_nat_rdr_masks |= 1 << k;
else
ipf_nat_rdr_masks |= 1;
np = ipf_nat_rdr_rules + hv;
while (*np != NULL)
np = &(*np)->in_rnext;
n->in_rnext = NULL;
n->in_prnext = np;
n->in_hv[0] = hv;
*np = n;
} else if (n->in_redir & NAT_REDIRECT) {
if ((k >= 0) && (k != 32))
ipf_nat_map_masks |= 1 << k;
else
ipf_nat_map_masks |= 1;
np = ipf_nat_map_rules + hv;
while (*np != NULL)
np = &(*np)->in_mnext;
n->in_mnext = NULL;
n->in_pmnext = np;
n->in_hv[1] = hv;
*np = n;
}
/* TRACE(n, hv, k) */
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_delrdr */
/* Returns: Nil */
/* Parameters: n(I) - pointer to NAT rule to delete */
/* */
/* Removes a redirect rule from the hash table of redirect rules. */
/* ------------------------------------------------------------------------ */
static void
ipf_nat_delrdr(n)
ipnat_t *n;
{
if (n->in_rnext)
n->in_rnext->in_prnext = n->in_prnext;
*n->in_prnext = n->in_rnext;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_delnat */
/* Returns: Nil */
/* Parameters: n(I) - pointer to NAT rule to delete */
/* */
/* Removes a NAT map rule from the hash table of NAT map rules. */
/* ------------------------------------------------------------------------ */
static void
ipf_nat_delnat(n)
ipnat_t *n;
{
if (n->in_mnext != NULL)
n->in_mnext->in_pmnext = n->in_pmnext;
*n->in_pmnext = n->in_mnext;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_hostmap */
/* Returns: struct hostmap* - NULL if no hostmap could be created, */
/* else a pointer to the hostmapping to use */
/* Parameters: np(I) - pointer to NAT rule */
/* real(I) - real IP address */
/* map(I) - mapped IP address */
/* port(I) - destination port number */
/* Write Locks: ipf_nat */
/* */
/* Check if an ip address has already been allocated for a given mapping */
/* that is not doing port based translation. If is not yet allocated, then */
/* create a new entry if a non-NULL NAT rule pointer has been supplied. */
/* ------------------------------------------------------------------------ */
static struct hostmap *
ipf_nat_hostmap(np, src, dst, map, port)
ipnat_t *np;
struct in_addr src;
struct in_addr dst;
struct in_addr map;
u_32_t port;
{
hostmap_t *hm;
u_int hv;
hv = (src.s_addr ^ dst.s_addr);
hv += src.s_addr;
hv += dst.s_addr;
hv %= HOSTMAP_SIZE;
for (hm = ipf_hm_maptable[hv]; hm; hm = hm->hm_next)
if ((hm->hm_osrcip.s_addr == src.s_addr) &&
(hm->hm_odstip.s_addr == dst.s_addr) &&
((np == NULL) || (np == hm->hm_ipnat)) &&
((port == 0) || (port == hm->hm_port))) {
ipf_nat_stats.ns_hm_addref++;
hm->hm_ref++;
return hm;
}
if (np == NULL) {
ipf_nat_stats.ns_hm_nullnp++;
return NULL;
}
KMALLOC(hm, hostmap_t *);
if (hm) {
hm->hm_next = ipf_hm_maplist;
hm->hm_pnext = &ipf_hm_maplist;
if (ipf_hm_maplist != NULL)
ipf_hm_maplist->hm_pnext = &hm->hm_next;
ipf_hm_maplist = hm;
hm->hm_hnext = ipf_hm_maptable[hv];
hm->hm_phnext = ipf_hm_maptable + hv;
if (ipf_hm_maptable[hv] != NULL)
ipf_hm_maptable[hv]->hm_phnext = &hm->hm_hnext;
ipf_hm_maptable[hv] = hm;
hm->hm_ipnat = np;
hm->hm_osrcip = src;
hm->hm_odstip = dst;
hm->hm_nsrcip = map;
hm->hm_ndstip.s_addr = 0;
hm->hm_ref = 1;
hm->hm_port = port;
hm->hm_hv = hv;
ipf_nat_stats.ns_hm_new++;
} else {
ipf_nat_stats.ns_hm_newfail++;
}
return hm;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_hostmapdel */
/* Returns: Nil */
/* Parameters: hmp(I) - pointer to hostmap structure pointer */
/* Write Locks: ipf_nat */
/* */
/* Decrement the references to this hostmap structure by one. If this */
/* reaches zero then remove it and free it. */
/* ------------------------------------------------------------------------ */
void
ipf_nat_hostmapdel(hmp)
struct hostmap **hmp;
{
struct hostmap *hm;
hm = *hmp;
*hmp = NULL;
hm->hm_ref--;
if (hm->hm_ref == 0) {
if (hm->hm_hnext)
hm->hm_hnext->hm_phnext = hm->hm_phnext;
*hm->hm_phnext = hm->hm_hnext;
if (hm->hm_next)
hm->hm_next->hm_pnext = hm->hm_pnext;
*hm->hm_pnext = hm->hm_next;
KFREE(hm);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_fix_outcksum */
/* Returns: Nil */
/* Parameters: fin(I) - pointer to packet information */
/* sp(I) - location of 16bit checksum to update */
/* n((I) - amount to adjust checksum by */
/* */
/* Adjusts the 16bit checksum by "n" for packets going out. */
/* ------------------------------------------------------------------------ */
void
ipf_fix_outcksum(fin, sp, n)
fr_info_t *fin;
u_short *sp;
u_32_t n;
{
u_short sumshort;
u_32_t sum1;
if (n == 0)
return;
if (n & NAT_HW_CKSUM) {
n &= 0xffff;
n += fin->fin_dlen;
n = (n & 0xffff) + (n >> 16);
*sp = n & 0xffff;
return;
}
sum1 = (~ntohs(*sp)) & 0xffff;
sum1 += (n);
sum1 = (sum1 >> 16) + (sum1 & 0xffff);
/* Again */
sum1 = (sum1 >> 16) + (sum1 & 0xffff);
sumshort = ~(u_short)sum1;
*(sp) = htons(sumshort);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_fix_incksum */
/* Returns: Nil */
/* Parameters: fin(I) - pointer to packet information */
/* sp(I) - location of 16bit checksum to update */
/* n((I) - amount to adjust checksum by */
/* */
/* Adjusts the 16bit checksum by "n" for packets going in. */
/* ------------------------------------------------------------------------ */
void
ipf_fix_incksum(fin, sp, n)
fr_info_t *fin;
u_short *sp;
u_32_t n;
{
u_short sumshort;
u_32_t sum1;
if (n == 0)
return;
if (n & NAT_HW_CKSUM) {
n &= 0xffff;
n += fin->fin_dlen;
n = (n & 0xffff) + (n >> 16);
*sp = n & 0xffff;
return;
}
sum1 = (~ntohs(*sp)) & 0xffff;
sum1 += ~(n) & 0xffff;
sum1 = (sum1 >> 16) + (sum1 & 0xffff);
/* Again */
sum1 = (sum1 >> 16) + (sum1 & 0xffff);
sumshort = ~(u_short)sum1;
*(sp) = htons(sumshort);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_fix_datacksum */
/* Returns: Nil */
/* Parameters: sp(I) - location of 16bit checksum to update */
/* n((I) - amount to adjust checksum by */
/* */
/* Fix_datacksum is used *only* for the adjustments of checksums in the */
/* data section of an IP packet. */
/* */
/* The only situation in which you need to do this is when NAT'ing an */
/* ICMP error message. Such a message, contains in its body the IP header */
/* of the original IP packet, that causes the error. */
/* */
/* You can't use fix_incksum or fix_outcksum in that case, because for the */
/* kernel the data section of the ICMP error is just data, and no special */
/* processing like hardware cksum or ntohs processing have been done by the */
/* kernel on the data section. */
/* ------------------------------------------------------------------------ */
void
ipf_fix_datacksum(sp, n)
u_short *sp;
u_32_t n;
{
u_short sumshort;
u_32_t sum1;
if (n == 0)
return;
sum1 = (~ntohs(*sp)) & 0xffff;
sum1 += (n);
sum1 = (sum1 >> 16) + (sum1 & 0xffff);
/* Again */
sum1 = (sum1 >> 16) + (sum1 & 0xffff);
sumshort = ~(u_short)sum1;
*(sp) = htons(sumshort);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_ioctl */
/* Returns: int - 0 == success, != 0 == failure */
/* Parameters: data(I) - pointer to ioctl data */
/* cmd(I) - ioctl command integer */
/* mode(I) - file mode bits used with open */
/* */
/* Processes an ioctl call made to operate on the IP Filter NAT device. */
/* ------------------------------------------------------------------------ */
int
ipf_nat_ioctl(data, cmd, mode, uid, ctx)
ioctlcmd_t cmd;
caddr_t data;
int mode, uid;
void *ctx;
{
ipnat_t *nat, *nt, *n = NULL, **np = NULL;
int error = 0, ret, arg, getlock;
ipnat_t natd;
SPL_INT(s);
#if (BSD >= 199306) && defined(_KERNEL)
# if defined(__NetBSD_Version__) && (__NetBSD_Version__ >= 399002000)
if ((mode & FWRITE) &&
kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_FIREWALL,
KAUTH_REQ_NETWORK_FIREWALL_FW,
NULL, NULL, NULL))
# else
if ((securelevel >= 2) && (mode & FWRITE))
# endif
{
ipf_interror = 60001;
return EPERM;
}
#endif
#if defined(__osf__) && defined(_KERNEL)
getlock = 0;
#else
getlock = (mode & NAT_LOCKHELD) ? 0 : 1;
#endif
nat = NULL; /* XXX gcc -Wuninitialized */
if (cmd == (ioctlcmd_t)SIOCADNAT) {
KMALLOC(nt, ipnat_t *);
} else {
nt = NULL;
}
if ((cmd == (ioctlcmd_t)SIOCADNAT) || (cmd == (ioctlcmd_t)SIOCRMNAT)) {
if (mode & NAT_SYSSPACE) {
bcopy(data, (char *)&natd, sizeof(natd));
error = 0;
} else {
error = ipf_inobj(data, &natd, IPFOBJ_IPNAT);
}
}
if (error != 0)
goto done;
/*
* For add/delete, look to see if the NAT entry is already present
*/
if ((cmd == (ioctlcmd_t)SIOCADNAT) || (cmd == (ioctlcmd_t)SIOCRMNAT)) {
nat = &natd;
nat->in_flags &= IPN_USERFLAGS;
if ((nat->in_redir & NAT_MAPBLK) == 0) {
if (nat->in_osrcatype == FRI_NORMAL ||
nat->in_osrcatype == FRI_NONE)
nat->in_osrcaddr &= nat->in_osrcmsk;
if (nat->in_odstatype == FRI_NORMAL ||
nat->in_odstatype == FRI_NONE)
nat->in_odstaddr &= nat->in_odstmsk;
if ((nat->in_flags & (IPN_SPLIT|IPN_SIPRANGE)) == 0) {
if (nat->in_nsrcatype == FRI_NORMAL)
nat->in_nsrcaddr &= nat->in_nsrcmsk;
if (nat->in_ndstatype == FRI_NORMAL)
nat->in_ndstaddr &= nat->in_ndstmsk;
}
}
MUTEX_ENTER(&ipf_natio);
for (np = &ipf_nat_list; ((n = *np) != NULL); np = &n->in_next)
if (!bcmp((char *)&nat->in_v, (char *)&n->in_v,
IPN_CMPSIZ))
break;
}
switch (cmd)
{
#ifdef IPFILTER_LOG
case SIOCIPFFB :
{
int tmp;
if (!(mode & FWRITE)) {
ipf_interror = 60002;
error = EPERM;
} else {
tmp = ipf_log_clear(IPL_LOGNAT);
error = BCOPYOUT(&tmp, data, sizeof(tmp));
if (error != 0) {
ipf_interror = 60057;
error = EFAULT;
}
}
break;
}
case SIOCSETLG :
if (!(mode & FWRITE)) {
ipf_interror = 60003;
error = EPERM;
} else {
error = BCOPYIN(data, &ipf_nat_logging,
sizeof(ipf_nat_logging));
if (error != 0)
error = EFAULT;
}
break;
case SIOCGETLG :
error = BCOPYOUT(&ipf_nat_logging, data,
sizeof(ipf_nat_logging));
if (error != 0) {
ipf_interror = 60004;
error = EFAULT;
}
break;
case FIONREAD :
arg = iplused[IPL_LOGNAT];
error = BCOPYOUT(&arg, data, sizeof(arg));
if (error != 0) {
ipf_interror = 60005;
error = EFAULT;
}
break;
#endif
case SIOCADNAT :
if (!(mode & FWRITE)) {
ipf_interror = 60006;
error = EPERM;
} else if (n != NULL) {
ipf_interror = 60007;
error = EEXIST;
} else if (nt == NULL) {
ipf_interror = 60008;
error = ENOMEM;
}
if (error != 0) {
MUTEX_EXIT(&ipf_natio);
break;
}
bcopy((char *)nat, (char *)nt, sizeof(*n));
error = ipf_nat_siocaddnat(nt, np, getlock);
MUTEX_EXIT(&ipf_natio);
if (error == 0)
nt = NULL;
break;
case SIOCRMNAT :
if (!(mode & FWRITE)) {
ipf_interror = 60009;
error = EPERM;
n = NULL;
} else if (n == NULL) {
ipf_interror = 60010;
error = ESRCH;
}
if (error != 0) {
MUTEX_EXIT(&ipf_natio);
break;
}
ipf_nat_siocdelnat(n, np, getlock);
MUTEX_EXIT(&ipf_natio);
n = NULL;
break;
case SIOCGNATS :
ipf_nat_stats.ns_side[0].ns_table = ipf_nat_table[0];
ipf_nat_stats.ns_side[1].ns_table = ipf_nat_table[1];
ipf_nat_stats.ns_list = ipf_nat_list;
ipf_nat_stats.ns_maptable = ipf_hm_maptable;
ipf_nat_stats.ns_maplist = ipf_hm_maplist;
ipf_nat_stats.ns_nattab_sz = ipf_nat_table_sz;
ipf_nat_stats.ns_nattab_max = ipf_nat_table_max;
ipf_nat_stats.ns_rultab_sz = ipf_nat_maprules_sz;
ipf_nat_stats.ns_rdrtab_sz = ipf_nat_rdrrules_sz;
ipf_nat_stats.ns_hostmap_sz = ipf_nat_hostmap_sz;
ipf_nat_stats.ns_instances = ipf_nat_instances;
ipf_nat_stats.ns_apslist = ap_sess_list;
ipf_nat_stats.ns_ticks = ipf_ticks;
error = ipf_outobj(data, &ipf_nat_stats, IPFOBJ_NATSTAT);
break;
case SIOCGNATL :
{
natlookup_t nl;
error = ipf_inobj(data, &nl, IPFOBJ_NATLOOKUP);
if (error == 0) {
void *ptr;
if (getlock) {
READ_ENTER(&ipf_nat);
}
ptr = ipf_nat_lookupredir(&nl);
if (getlock) {
RWLOCK_EXIT(&ipf_nat);
}
if (ptr != NULL) {
error = ipf_outobj(data, &nl, IPFOBJ_NATLOOKUP);
} else {
ipf_interror = 60011;
error = ESRCH;
}
}
break;
}
case SIOCIPFFL : /* old SIOCFLNAT & SIOCCNATL */
if (!(mode & FWRITE)) {
ipf_interror = 60012;
error = EPERM;
break;
}
if (getlock) {
WRITE_ENTER(&ipf_nat);
}
error = BCOPYIN(data, &arg, sizeof(arg));
if (error != 0) {
ipf_interror = 60013;
error = EFAULT;
} else {
if (arg == 0)
ret = ipf_nat_flushtable();
else if (arg == 1)
ret = ipf_nat_clearlist();
else
ret = ipf_nat_extraflush(arg);
appr_flush(arg);
}
if (getlock) {
RWLOCK_EXIT(&ipf_nat);
}
if (error == 0) {
error = BCOPYOUT(&ret, data, sizeof(ret));
}
break;
case SIOCMATCHFLUSH :
if (!(mode & FWRITE)) {
ipf_interror = 60014;
error = EPERM;
break;
}
if (getlock) {
WRITE_ENTER(&ipf_nat);
}
error = ipf_nat_matchflush(data);
if (getlock) {
RWLOCK_EXIT(&ipf_nat);
}
break;
case SIOCPROXY :
error = appr_ioctl(data, cmd, mode, ctx);
break;
case SIOCSTLCK :
if (!(mode & FWRITE)) {
ipf_interror = 60015;
error = EPERM;
} else {
error = ipf_lock(data, &ipf_nat_lock);
}
break;
case SIOCSTPUT :
if ((mode & FWRITE) != 0) {
error = ipf_nat_putent(data, getlock);
} else {
ipf_interror = 60016;
error = EACCES;
}
break;
case SIOCSTGSZ :
if (ipf_nat_lock) {
error = ipf_nat_getsz(data, getlock);
} else {
ipf_interror = 60017;
error = EACCES;
}
break;
case SIOCSTGET :
if (ipf_nat_lock) {
error = ipf_nat_getent(data, getlock);
} else {
ipf_interror = 60018;
error = EACCES;
}
break;
case SIOCGENITER :
{
ipfgeniter_t iter;
ipftoken_t *token;
error = ipf_inobj(data, &iter, IPFOBJ_GENITER);
if (error != 0)
break;
SPL_SCHED(s);
token = ipf_findtoken(iter.igi_type, uid, ctx);
if (token != NULL) {
error = ipf_nat_iterator(token, &iter);
}
RWLOCK_EXIT(&ipf_tokens);
SPL_X(s);
break;
}
case SIOCIPFDELTOK :
error = BCOPYIN(data, &arg, sizeof(arg));
if (error == 0) {
SPL_SCHED(s);
error = ipf_deltoken(arg, uid, ctx);
SPL_X(s);
} else {
ipf_interror = 60019;
error = EFAULT;
}
break;
case SIOCGTQTAB :
error = ipf_outobj(data, ipf_nat_tqb, IPFOBJ_STATETQTAB);
break;
case SIOCGTABL :
error = ipf_nat_gettable(data);
break;
default :
ipf_interror = 60020;
error = EINVAL;
break;
}
done:
if (nt != NULL)
KFREE(nt);
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_siocaddnat */
/* Returns: int - 0 == success, != 0 == failure */
/* Parameters: n(I) - pointer to new NAT rule */
/* np(I) - pointer to where to insert new NAT rule */
/* getlock(I) - flag indicating if lock on is held */
/* Mutex Locks: ipf_natio */
/* */
/* Handle SIOCADNAT. Resolve and calculate details inside the NAT rule */
/* from information passed to the kernel, then add it to the appropriate */
/* NAT rule table(s). */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_siocaddnat(n, np, getlock)
ipnat_t *n, **np;
int getlock;
{
int error = 0;
int idx;
/*
* This combination of flags is incompatible because in_flags will
* be checked for packets coming back in too.
*/
if ((n->in_flags & IPN_TCPUDP) && (n->in_redir & NAT_ENCAP)) {
ipf_interror = 60021;
return EINVAL;
}
if (ipf_nat_resolverule(n) != 0) {
ipf_interror = 60022;
return ENOENT;
}
if ((n->in_age[0] == 0) && (n->in_age[1] != 0)) {
ipf_interror = 60023;
return EINVAL;
}
n->in_use = 0;
if ((n->in_flags & IPN_SIPRANGE) != 0)
n->in_nsrcatype = FRI_RANGE;
if ((n->in_flags & IPN_DIPRANGE) != 0)
n->in_ndstatype = FRI_RANGE;
if ((n->in_flags & IPN_SPLIT) != 0)
n->in_ndstatype = FRI_SPLIT;
if (n->in_redir == NAT_BIMAP) {
n->in_ndstaddr = n->in_osrcaddr;
n->in_ndstmsk = n->in_osrcmsk;
n->in_odstaddr = n->in_nsrcaddr;
n->in_odstmsk = n->in_nsrcmsk;
}
if ((n->in_redir & (NAT_MAP|NAT_REWRITE|NAT_DIVERTUDP)) != 0)
n->in_spnext = n->in_spmin;
if ((n->in_redir & (NAT_REWRITE|NAT_DIVERTUDP)) != 0) {
n->in_dpnext = n->in_dpmin;
} else if (n->in_redir == NAT_REDIRECT) {
n->in_dpnext = n->in_dpmin;
}
n->in_stepnext = 0;
if (n->in_redir & NAT_REDIRECT)
idx = 1;
else
idx = 0;
/*
* Initialise all of the address fields.
*/
error = ipf_nat_nextaddrinit(&n->in_osrc, 1, n->in_ifps[idx]);
if (error != 0)
return error;
error = ipf_nat_nextaddrinit(&n->in_odst, 1, n->in_ifps[idx]);
if (error != 0)
return error;
error = ipf_nat_nextaddrinit(&n->in_nsrc, 1, n->in_ifps[idx]);
if (error != 0)
return error;
error = ipf_nat_nextaddrinit(&n->in_ndst, 1, n->in_ifps[idx]);
if (error != 0)
return error;
if (getlock) {
WRITE_ENTER(&ipf_nat);
}
n->in_next = NULL;
*np = n;
if (n->in_age[0] != 0)
n->in_tqehead[0] = ipf_addtimeoutqueue(&ipf_nat_utqe,
n->in_age[0]);
if (n->in_age[1] != 0)
n->in_tqehead[1] = ipf_addtimeoutqueue(&ipf_nat_utqe,
n->in_age[1]);
if (n->in_redir & NAT_REDIRECT) {
n->in_flags &= ~IPN_NOTDST;
ipf_nat_addrdr(n);
if (n->in_redir & NAT_ENCAP)
ipf_nat_addencap(n);
}
if (n->in_redir & (NAT_MAP|NAT_MAPBLK)) {
n->in_flags &= ~IPN_NOTSRC;
ipf_nat_addnat(n);
if (n->in_redir & NAT_ENCAP)
ipf_nat_addencap(n);
}
if (n->in_redir & (NAT_ENCAP|NAT_DIVERTUDP))
ipf_nat_builddivertmp(n);
MUTEX_INIT(&n->in_lock, "ipnat rule lock");
n = NULL;
ATOMIC_INC(ipf_nat_stats.ns_rules);
#if SOLARIS
pfil_delayed_copy = 0;
#endif
if (getlock) {
RWLOCK_EXIT(&ipf_nat); /* WRITE */
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: nat_resolvrule */
/* Returns: Nil */
/* Parameters: n(I) - pointer to NAT rule */
/* */
/* Handle SIOCADNAT. Resolve and calculate details inside the NAT rule */
/* from information passed to the kernel, then add it to the appropriate */
/* NAT rule table(s). */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_resolverule(n)
ipnat_t *n;
{
n->in_ifnames[0][LIFNAMSIZ - 1] = '\0';
n->in_ifps[0] = ipf_resolvenic(n->in_ifnames[0], n->in_v);
n->in_ifnames[1][LIFNAMSIZ - 1] = '\0';
if (n->in_ifnames[1][0] == '\0') {
(void) strncpy(n->in_ifnames[1], n->in_ifnames[0], LIFNAMSIZ);
n->in_ifps[1] = n->in_ifps[0];
} else {
n->in_ifps[1] = ipf_resolvenic(n->in_ifnames[1], n->in_v);
}
if (n->in_plabel[0] != '\0') {
if (n->in_redir & NAT_REDIRECT)
n->in_apr = appr_lookup(n->in_pr[0], n->in_plabel);
else
n->in_apr = appr_lookup(n->in_pr[1], n->in_plabel);
if (n->in_apr == NULL)
return -1;
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: nat_siocdelnat */
/* Returns: int - 0 == success, != 0 == failure */
/* Parameters: n(I) - pointer to new NAT rule */
/* np(I) - pointer to where to insert new NAT rule */
/* getlock(I) - flag indicating if lock on is held */
/* Mutex Locks: ipf_natio */
/* */
/* Handle SIOCADNAT. Resolve and calculate details inside the NAT rule */
/* from information passed to the kernel, then add it to the appropriate */
/* NAT rule table(s). */
/* ------------------------------------------------------------------------ */
static void
ipf_nat_siocdelnat(n, np, getlock)
ipnat_t *n, **np;
int getlock;
{
if (getlock) {
WRITE_ENTER(&ipf_nat);
}
if (n->in_redir & NAT_REDIRECT)
ipf_nat_delrdr(n);
if (n->in_redir & (NAT_MAPBLK|NAT_MAP))
ipf_nat_delnat(n);
if (ipf_nat_list == NULL) {
ipf_nat_map_masks = 0;
ipf_nat_rdr_masks = 0;
}
if (n->in_tqehead[0] != NULL) {
if (ipf_deletetimeoutqueue(n->in_tqehead[0]) == 0) {
ipf_freetimeoutqueue(n->in_tqehead[1]);
}
}
if (n->in_tqehead[1] != NULL) {
if (ipf_deletetimeoutqueue(n->in_tqehead[1]) == 0) {
ipf_freetimeoutqueue(n->in_tqehead[1]);
}
}
*np = n->in_next;
if (n->in_use == 0) {
if (n->in_apr)
appr_free(n->in_apr);
KFREE(n);
ATOMIC_DEC(ipf_nat_stats.ns_rules);
#if SOLARIS
if (ipf_nat_stats.ns_rules == 0)
pfil_delayed_copy = 1;
#endif
} else {
n->in_flags |= IPN_DELETE;
n->in_next = NULL;
}
if (getlock) {
RWLOCK_EXIT(&ipf_nat); /* READ/WRITE */
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_getsz */
/* Returns: int - 0 == success, != 0 is the error value. */
/* Parameters: data(I) - pointer to natget structure with kernel */
/* pointer get the size of. */
/* getlock(I) - flag indicating whether or not the caller */
/* holds a lock on ipf_nat */
/* */
/* Handle SIOCSTGSZ. */
/* Return the size of the nat list entry to be copied back to user space. */
/* The size of the entry is stored in the ng_sz field and the enture natget */
/* structure is copied back to the user. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_getsz(data, getlock)
caddr_t data;
int getlock;
{
ap_session_t *aps;
nat_t *nat, *n;
natget_t ng;
int error;
error = BCOPYIN(data, &ng, sizeof(ng));
if (error != 0) {
ipf_interror = 60024;
return EFAULT;
}
if (getlock) {
READ_ENTER(&ipf_nat);
}
nat = ng.ng_ptr;
if (!nat) {
nat = ipf_nat_instances;
ng.ng_sz = 0;
/*
* Empty list so the size returned is 0. Simple.
*/
if (nat == NULL) {
if (getlock) {
RWLOCK_EXIT(&ipf_nat);
}
error = BCOPYOUT(&ng, data, sizeof(ng));
if (error != 0) {
ipf_interror = 60025;
return EFAULT;
}
return 0;
}
} else {
/*
* Make sure the pointer we're copying from exists in the
* current list of entries. Security precaution to prevent
* copying of random kernel data.
*/
for (n = ipf_nat_instances; n; n = n->nat_next)
if (n == nat)
break;
if (n == NULL) {
if (getlock) {
RWLOCK_EXIT(&ipf_nat);
}
ipf_interror = 60026;
return ESRCH;
}
}
/*
* Incluse any space required for proxy data structures.
*/
ng.ng_sz = sizeof(nat_save_t);
aps = nat->nat_aps;
if (aps != NULL) {
ng.ng_sz += sizeof(ap_session_t) - 4;
if (aps->aps_data != 0)
ng.ng_sz += aps->aps_psiz;
}
if (getlock) {
RWLOCK_EXIT(&ipf_nat);
}
error = BCOPYOUT(&ng, data, sizeof(ng));
if (error != 0) {
ipf_interror = 60027;
return EFAULT;
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_getent */
/* Returns: int - 0 == success, != 0 is the error value. */
/* Parameters: data(I) - pointer to natget structure with kernel pointer*/
/* to NAT structure to copy out. */
/* getlock(I) - flag indicating whether or not the caller */
/* holds a lock on ipf_nat */
/* */
/* Handle SIOCSTGET. */
/* Copies out NAT entry to user space. Any additional data held for a */
/* proxy is also copied, as to is the NAT rule which was responsible for it */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_getent(data, getlock)
caddr_t data;
int getlock;
{
int error, outsize;
ap_session_t *aps;
nat_save_t *ipn, ipns;
nat_t *n, *nat;
error = ipf_inobj(data, &ipns, IPFOBJ_NATSAVE);
if (error != 0)
return error;
if ((ipns.ipn_dsize < sizeof(ipns)) || (ipns.ipn_dsize > 81920)) {
ipf_interror = 60028;
return EINVAL;
}
KMALLOCS(ipn, nat_save_t *, ipns.ipn_dsize);
if (ipn == NULL) {
ipf_interror = 60029;
return ENOMEM;
}
if (getlock) {
READ_ENTER(&ipf_nat);
}
ipn->ipn_dsize = ipns.ipn_dsize;
nat = ipns.ipn_next;
if (nat == NULL) {
nat = ipf_nat_instances;
if (nat == NULL) {
if (ipf_nat_instances == NULL) {
ipf_interror = 60030;
error = ENOENT;
}
goto finished;
}
} else {
/*
* Make sure the pointer we're copying from exists in the
* current list of entries. Security precaution to prevent
* copying of random kernel data.
*/
for (n = ipf_nat_instances; n; n = n->nat_next)
if (n == nat)
break;
if (n == NULL) {
ipf_interror = 60031;
error = ESRCH;
goto finished;
}
}
ipn->ipn_next = nat->nat_next;
/*
* Copy the NAT structure.
*/
bcopy((char *)nat, &ipn->ipn_nat, sizeof(*nat));
/*
* If we have a pointer to the NAT rule it belongs to, save that too.
*/
if (nat->nat_ptr != NULL)
bcopy((char *)nat->nat_ptr, (char *)&ipn->ipn_ipnat,
sizeof(ipn->ipn_ipnat));
/*
* If we also know the NAT entry has an associated filter rule,
* save that too.
*/
if (nat->nat_fr != NULL)
bcopy((char *)nat->nat_fr, (char *)&ipn->ipn_fr,
sizeof(ipn->ipn_fr));
/*
* Last but not least, if there is an application proxy session set
* up for this NAT entry, then copy that out too, including any
* private data saved along side it by the proxy.
*/
aps = nat->nat_aps;
outsize = ipn->ipn_dsize - sizeof(*ipn) + sizeof(ipn->ipn_data);
if (aps != NULL) {
char *s;
if (outsize < sizeof(*aps)) {
ipf_interror = 60032;
error = ENOBUFS;
goto finished;
}
s = ipn->ipn_data;
bcopy((char *)aps, s, sizeof(*aps));
s += sizeof(*aps);
outsize -= sizeof(*aps);
if ((aps->aps_data != NULL) && (outsize >= aps->aps_psiz))
bcopy(aps->aps_data, s, aps->aps_psiz);
else {
ipf_interror = 60033;
error = ENOBUFS;
}
}
if (error == 0) {
if (getlock) {
READ_ENTER(&ipf_nat);
getlock = 0;
}
error = ipf_outobjsz(data, ipn, IPFOBJ_NATSAVE, ipns.ipn_dsize);
}
finished:
if (getlock) {
READ_ENTER(&ipf_nat);
}
if (ipn != NULL) {
KFREES(ipn, ipns.ipn_dsize);
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_putent */
/* Returns: int - 0 == success, != 0 is the error value. */
/* Parameters: data(I) - pointer to natget structure with NAT */
/* structure information to load into the kernel */
/* getlock(I) - flag indicating whether or not a write lock */
/* on is already held. */
/* */
/* Handle SIOCSTPUT. */
/* Loads a NAT table entry from user space, including a NAT rule, proxy and */
/* firewall rule data structures, if pointers to them indicate so. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_putent(data, getlock)
caddr_t data;
int getlock;
{
nat_save_t ipn, *ipnn;
ap_session_t *aps;
nat_t *n, *nat;
frentry_t *fr;
fr_info_t fin;
ipnat_t *in;
int error;
error = ipf_inobj(data, &ipn, IPFOBJ_NATSAVE);
if (error != 0)
return error;
/*
* Initialise early because of code at junkput label.
*/
in = NULL;
aps = NULL;
nat = NULL;
ipnn = NULL;
fr = NULL;
/*
* New entry, copy in the rest of the NAT entry if it's size is more
* than just the nat_t structure.
*/
if (ipn.ipn_dsize > sizeof(ipn)) {
if (ipn.ipn_dsize > 81920) {
ipf_interror = 60034;
error = ENOMEM;
goto junkput;
}
KMALLOCS(ipnn, nat_save_t *, ipn.ipn_dsize);
if (ipnn == NULL) {
ipf_interror = 60035;
return ENOMEM;
}
error = ipf_inobjsz(data, ipnn, IPFOBJ_NATSAVE, ipn.ipn_dsize);
if (error != 0) {
goto junkput;
}
} else
ipnn = &ipn;
KMALLOC(nat, nat_t *);
if (nat == NULL) {
ipf_interror = 60037;
error = ENOMEM;
goto junkput;
}
bcopy((char *)&ipnn->ipn_nat, (char *)nat, sizeof(*nat));
/*
* Initialize all these so that ipf_nat_delete() doesn't cause a crash.
*/
bzero((char *)nat, offsetof(struct nat, nat_tqe));
nat->nat_tqe.tqe_pnext = NULL;
nat->nat_tqe.tqe_next = NULL;
nat->nat_tqe.tqe_ifq = NULL;
nat->nat_tqe.tqe_parent = nat;
/*
* Restore the rule associated with this nat session
*/
in = ipnn->ipn_nat.nat_ptr;
if (in != NULL) {
KMALLOC(in, ipnat_t *);
nat->nat_ptr = in;
if (in == NULL) {
ipf_interror = 60038;
error = ENOMEM;
goto junkput;
}
bzero((char *)in, offsetof(struct ipnat, in_space));
bcopy((char *)&ipnn->ipn_ipnat, (char *)in, sizeof(*in));
in->in_use = 1;
in->in_flags |= IPN_DELETE;
ATOMIC_INC(ipf_nat_stats.ns_rules);
if (ipf_nat_resolverule(in) != 0) {
ipf_interror = 60039;
error = ESRCH;
goto junkput;
}
}
/*
* Check that the NAT entry doesn't already exist in the kernel.
*
* For NAT_OUTBOUND, we're lookup for a duplicate MAP entry. To do
* this, we check to see if the inbound combination of addresses and
* ports is already known. Similar logic is applied for NAT_INBOUND.
*
*/
bzero((char *)&fin, sizeof(fin));
fin.fin_p = nat->nat_pr[0];
fin.fin_ifp = nat->nat_ifps[0];
fin.fin_data[0] = ntohs(nat->nat_ndport);
fin.fin_data[1] = ntohs(nat->nat_nsport);
if (nat->nat_dir == NAT_OUTBOUND) {
if (getlock) {
READ_ENTER(&ipf_nat);
}
n = ipf_nat_inlookup(&fin, nat->nat_flags, fin.fin_p,
nat->nat_ndstip, nat->nat_nsrcip);
if (getlock) {
RWLOCK_EXIT(&ipf_nat);
}
if (n != NULL) {
ipf_interror = 60040;
error = EEXIST;
goto junkput;
}
} else if (nat->nat_dir == NAT_INBOUND) {
if (getlock) {
READ_ENTER(&ipf_nat);
}
n = ipf_nat_outlookup(&fin, nat->nat_flags, fin.fin_p,
nat->nat_ndstip, nat->nat_nsrcip);
if (getlock) {
RWLOCK_EXIT(&ipf_nat);
}
if (n != NULL) {
ipf_interror = 60041;
error = EEXIST;
goto junkput;
}
} else {
ipf_interror = 60042;
error = EINVAL;
goto junkput;
}
/*
* Restore ap_session_t structure. Include the private data allocated
* if it was there.
*/
aps = nat->nat_aps;
if (aps != NULL) {
KMALLOC(aps, ap_session_t *);
nat->nat_aps = aps;
if (aps == NULL) {
ipf_interror = 60043;
error = ENOMEM;
goto junkput;
}
bcopy(ipnn->ipn_data, (char *)aps, sizeof(*aps));
if (in != NULL)
aps->aps_apr = in->in_apr;
else
aps->aps_apr = NULL;
if (aps->aps_psiz != 0) {
if (aps->aps_psiz > 81920) {
ipf_interror = 60044;
error = ENOMEM;
goto junkput;
}
KMALLOCS(aps->aps_data, void *, aps->aps_psiz);
if (aps->aps_data == NULL) {
ipf_interror = 60045;
error = ENOMEM;
goto junkput;
}
bcopy(ipnn->ipn_data + sizeof(*aps), aps->aps_data,
aps->aps_psiz);
} else {
aps->aps_psiz = 0;
aps->aps_data = NULL;
}
}
/*
* If there was a filtering rule associated with this entry then
* build up a new one.
*/
fr = nat->nat_fr;
if (fr != NULL) {
if ((nat->nat_flags & SI_NEWFR) != 0) {
KMALLOC(fr, frentry_t *);
nat->nat_fr = fr;
if (fr == NULL) {
ipf_interror = 60046;
error = ENOMEM;
goto junkput;
}
ipnn->ipn_nat.nat_fr = fr;
fr->fr_ref = 1;
(void) ipf_outobj(data, ipnn, IPFOBJ_NATSAVE);
bcopy((char *)&ipnn->ipn_fr, (char *)fr, sizeof(*fr));
fr->fr_ref = 1;
fr->fr_dsize = 0;
fr->fr_data = NULL;
fr->fr_type = FR_T_NONE;
MUTEX_NUKE(&fr->fr_lock);
MUTEX_INIT(&fr->fr_lock, "nat-filter rule lock");
} else {
if (getlock) {
READ_ENTER(&ipf_nat);
}
for (n = ipf_nat_instances; n; n = n->nat_next)
if (n->nat_fr == fr)
break;
if (n != NULL) {
MUTEX_ENTER(&fr->fr_lock);
fr->fr_ref++;
MUTEX_EXIT(&fr->fr_lock);
}
if (getlock) {
RWLOCK_EXIT(&ipf_nat);
}
if (n == NULL) {
ipf_interror = 60047;
error = ESRCH;
goto junkput;
}
}
}
if (ipnn != &ipn) {
KFREES(ipnn, ipn.ipn_dsize);
ipnn = NULL;
}
if (getlock) {
WRITE_ENTER(&ipf_nat);
}
error = ipf_nat_insert(nat, nat->nat_rev);
if ((error == 0) && (aps != NULL)) {
aps->aps_next = ap_sess_list;
ap_sess_list = aps;
}
if (getlock) {
RWLOCK_EXIT(&ipf_nat);
}
if (error == 0)
return 0;
ipf_interror = 60048;
error = ENOMEM;
junkput:
if (fr != NULL) {
(void) ipf_derefrule(&fr);
}
if ((ipnn != NULL) && (ipnn != &ipn)) {
KFREES(ipnn, ipn.ipn_dsize);
}
if (nat != NULL) {
if (aps != NULL) {
if (aps->aps_data != NULL) {
KFREES(aps->aps_data, aps->aps_psiz);
}
KFREE(aps);
}
if (in != NULL) {
if (in->in_apr)
appr_free(in->in_apr);
KFREE(in);
}
KFREE(nat);
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_delete */
/* Returns: Nil */
/* Parameters: natd(I) - pointer to NAT structure to delete */
/* logtype(I) - type of LOG record to create before deleting */
/* Write Lock: ipf_nat */
/* */
/* Delete a nat entry from the various lists and table. If NAT logging is */
/* enabled then generate a NAT log record for this event. */
/* ------------------------------------------------------------------------ */
void
ipf_nat_delete(nat, logtype)
struct nat *nat;
int logtype;
{
int madeorphan = 0, bkt, removed = 0;
struct ipnat *ipn;
if (logtype != 0 && ipf_nat_logging != 0)
ipf_nat_log(nat, logtype);
/*
* Take it as a general indication that all the pointers are set if
* nat_pnext is set.
*/
if (nat->nat_pnext != NULL) {
removed = 1;
bkt = nat->nat_hv[0];
ipf_nat_stats.ns_side[0].ns_bucketlen[bkt]--;
if (ipf_nat_stats.ns_side[0].ns_bucketlen[bkt] == 0) {
ipf_nat_stats.ns_side[0].ns_inuse--;
}
bkt = nat->nat_hv[1];
ipf_nat_stats.ns_side[1].ns_bucketlen[bkt]--;
if (ipf_nat_stats.ns_side[1].ns_bucketlen[bkt] == 0) {
ipf_nat_stats.ns_side[1].ns_inuse--;
}
*nat->nat_pnext = nat->nat_next;
if (nat->nat_next != NULL) {
nat->nat_next->nat_pnext = nat->nat_pnext;
nat->nat_next = NULL;
}
nat->nat_pnext = NULL;
*nat->nat_phnext[0] = nat->nat_hnext[0];
if (nat->nat_hnext[0] != NULL) {
nat->nat_hnext[0]->nat_phnext[0] = nat->nat_phnext[0];
nat->nat_hnext[0] = NULL;
}
nat->nat_phnext[0] = NULL;
*nat->nat_phnext[1] = nat->nat_hnext[1];
if (nat->nat_hnext[1] != NULL) {
nat->nat_hnext[1]->nat_phnext[1] = nat->nat_phnext[1];
nat->nat_hnext[1] = NULL;
}
nat->nat_phnext[1] = NULL;
if ((nat->nat_flags & SI_WILDP) != 0) {
ATOMIC_DEC(ipf_nat_stats.ns_wilds);
}
madeorphan = 1;
}
if (nat->nat_me != NULL) {
*nat->nat_me = NULL;
nat->nat_me = NULL;
}
if (nat->nat_tqe.tqe_ifq != NULL)
ipf_deletequeueentry(&nat->nat_tqe);
if (logtype == NL_EXPIRE)
ipf_nat_stats.ns_expire++;
MUTEX_ENTER(&nat->nat_lock);
/*
* NL_DESTROY should only be passed in when we've got nat_ref >= 2.
* This happens when a nat'd packet is blocked and we want to throw
* away the NAT session.
*/
if (logtype == NL_DESTROY) {
if (nat->nat_ref > 2) {
nat->nat_ref -= 2;
MUTEX_EXIT(&nat->nat_lock);
if (removed)
ipf_nat_stats.ns_orphans++;
return;
}
} else if (nat->nat_ref > 1) {
nat->nat_ref--;
MUTEX_EXIT(&nat->nat_lock);
if (madeorphan == 1)
ipf_nat_stats.ns_orphans++;
return;
}
MUTEX_EXIT(&nat->nat_lock);
nat->nat_ref = 0;
if (madeorphan == 0)
ipf_nat_stats.ns_orphans--;
/*
* At this point, nat_ref can be either 0 or -1
*/
if (nat->nat_flags & SI_WILDP)
ipf_nat_stats.ns_wilds--;
ipf_nat_stats.ns_proto[nat->nat_pr[0]]--;
#ifdef IPFILTER_SYNC
if (nat->nat_sync)
ipf_sync_del(nat->nat_sync);
#endif
if (nat->nat_fr != NULL) {
(void) ipf_derefrule(&nat->nat_fr);
}
if (nat->nat_hm != NULL) {
ipf_nat_hostmapdel(&nat->nat_hm);
}
/*
* If there is an active reference from the nat entry to its parent
* rule, decrement the rule's reference count and free it too if no
* longer being used.
*/
ipn = nat->nat_ptr;
nat->nat_ptr = NULL;
if (ipn != NULL) {
ipf_nat_rulederef(&ipn);
}
MUTEX_DESTROY(&nat->nat_lock);
aps_free(nat->nat_aps);
ipf_nat_stats.ns_active--;
/*
* If there's a fragment table entry too for this nat entry, then
* dereference that as well. This is after nat_lock is released
* because of Tru64.
*/
ipf_frag_natforget((void *)nat);
KFREE(nat);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_flushtable */
/* Returns: int - number of NAT rules deleted */
/* Parameters: Nil */
/* Write Lock: ipf_nat */
/* */
/* Deletes all currently active NAT sessions. In deleting each NAT entry a */
/* log record should be emitted in ipf_nat_delete() if NAT logging is */
/* enabled. */
/* ------------------------------------------------------------------------ */
/*
* nat_flushtable - clear the NAT table of all mapping entries.
*/
static int
ipf_nat_flushtable()
{
nat_t *nat;
int j = 0;
/*
* ALL NAT mappings deleted, so lets just make the deletions
* quicker.
*/
if (ipf_nat_table[0] != NULL)
bzero((char *)ipf_nat_table[0],
sizeof(ipf_nat_table[0]) * ipf_nat_table_sz);
if (ipf_nat_table[1] != NULL)
bzero((char *)ipf_nat_table[1],
sizeof(ipf_nat_table[1]) * ipf_nat_table_sz);
while ((nat = ipf_nat_instances) != NULL) {
ipf_nat_delete(nat, NL_FLUSH);
j++;
}
ipf_nat_stats.ns_active = 0;
return j;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_clearlist */
/* Returns: int - number of NAT/RDR rules deleted */
/* Parameters: Nil */
/* */
/* Delete all rules in the current list of rules. There is nothing elegant */
/* about this cleanup: simply free all entries on the list of rules and */
/* clear out the tables used for hashed NAT rule lookups. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_clearlist()
{
ipnat_t *n, **np = &ipf_nat_list;
int i = 0;
if (ipf_nat_map_rules != NULL) {
bzero((char *)ipf_nat_map_rules,
sizeof(*ipf_nat_map_rules) * ipf_nat_maprules_sz);
}
if (ipf_nat_rdr_rules != NULL) {
bzero((char *)ipf_nat_rdr_rules,
sizeof(*ipf_nat_rdr_rules) * ipf_nat_rdrrules_sz);
}
while ((n = *np) != NULL) {
*np = n->in_next;
ipf_nat_delrule(n);
i++;
}
#if SOLARIS
pfil_delayed_copy = 1;
#endif
ipf_nat_map_masks = 0;
ipf_nat_rdr_masks = 0;
return i;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_delrule */
/* Returns: Nil */
/* Parameters: np(I) - pointer to NAT rule to delete */
/* */
/* ------------------------------------------------------------------------ */
static void
ipf_nat_delrule(np)
ipnat_t *np;
{
if (np->in_use == 0) {
if (np->in_apr != NULL)
appr_free(np->in_apr);
if (np->in_divmp != NULL) {
FREE_MB_T(np->in_divmp);
}
KFREE(np);
ipf_nat_stats.ns_rules--;
} else {
np->in_flags |= IPN_DELETE;
np->in_next = NULL;
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_newmap */
/* Returns: int - -1 == error, 0 == success */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to NAT entry */
/* ni(I) - pointer to structure with misc. information needed */
/* to create new NAT entry. */
/* */
/* Given an empty NAT structure, populate it with new information about a */
/* new NAT session, as defined by the matching NAT rule. */
/* ni.nai_ip is passed in uninitialised and must be set, in host byte order,*/
/* to the new IP address for the translation. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_newmap(fin, nat, ni)
fr_info_t *fin;
nat_t *nat;
natinfo_t *ni;
{
u_short st_port, dport, sport, port, sp, dp;
struct in_addr in, inb;
hostmap_t *hm;
u_32_t flags;
u_32_t st_ip;
ipnat_t *np;
nat_t *natl;
int l;
/*
* If it's an outbound packet which doesn't match any existing
* record, then create a new port
*/
l = 0;
hm = NULL;
np = ni->nai_np;
st_ip = np->in_snip;
st_port = np->in_spnext;
flags = ni->nai_flags;
if (flags & IPN_ICMPQUERY) {
sport = fin->fin_data[1];
dport = 0;
} else {
sport = htons(fin->fin_data[0]);
dport = htons(fin->fin_data[1]);
}
/*
* Do a loop until we either run out of entries to try or we find
* a NAT mapping that isn't currently being used. This is done
* because the change to the source is not (usually) being fixed.
*/
do {
port = 0;
in.s_addr = htonl(np->in_snip);
if (l == 0) {
/*
* Check to see if there is an existing NAT
* setup for this IP address pair.
*/
hm = ipf_nat_hostmap(np, fin->fin_src, fin->fin_dst,
in, 0);
if (hm != NULL)
in.s_addr = hm->hm_nsrcip.s_addr;
} else if ((l == 1) && (hm != NULL)) {
ipf_nat_hostmapdel(&hm);
}
in.s_addr = ntohl(in.s_addr);
nat->nat_hm = hm;
if ((np->in_nsrcmsk == 0xffffffff) && (np->in_spnext == 0)) {
if (l > 0) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].
ns_exhausted);
return -1;
}
}
if (np->in_redir == NAT_BIMAP &&
np->in_osrcmsk == np->in_nsrcmsk) {
/*
* map the address block in a 1:1 fashion
*/
in.s_addr = np->in_nsrcaddr;
in.s_addr |= fin->fin_saddr & ~np->in_osrcmsk;
in.s_addr = ntohl(in.s_addr);
} else if (np->in_redir & NAT_MAPBLK) {
if ((l >= np->in_ppip) || ((l > 0) &&
!(flags & IPN_TCPUDP))) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].
ns_exhausted);
return -1;
}
/*
* map-block - Calculate destination address.
*/
in.s_addr = ntohl(fin->fin_saddr);
in.s_addr &= ntohl(~np->in_osrcmsk);
inb.s_addr = in.s_addr;
in.s_addr /= np->in_ippip;
in.s_addr &= ntohl(~np->in_nsrcmsk);
in.s_addr += ntohl(np->in_nsrcaddr);
/*
* Calculate destination port.
*/
if ((flags & IPN_TCPUDP) &&
(np->in_ppip != 0)) {
port = ntohs(sport) + l;
port %= np->in_ppip;
port += np->in_ppip *
(inb.s_addr % np->in_ippip);
port += MAPBLK_MINPORT;
port = htons(port);
}
} else if ((np->in_nsrcaddr == 0) &&
(np->in_nsrcmsk == 0xffffffff)) {
i6addr_t in6;
/*
* 0/32 - use the interface's IP address.
*/
if ((l > 0) ||
ipf_ifpaddr(fin->fin_v, FRI_NORMAL, fin->fin_ifp,
&in6, NULL) == -1) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].
ns_new_ifpaddr);
return -1;
}
if (fin->fin_v == 4)
in.s_addr = ntohl(in6.in4.s_addr);
} else if ((np->in_nsrcaddr == 0) && (np->in_nsrcmsk == 0)) {
/*
* 0/0 - use the original source address/port.
*/
if (l > 0) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].
ns_exhausted);
return -1;
}
in.s_addr = ntohl(fin->fin_saddr);
} else if ((np->in_nsrcmsk != 0xffffffff) &&
(np->in_spnext == 0) && ((l > 0) || (hm == NULL)))
np->in_snip++;
natl = NULL;
if ((flags & IPN_TCPUDP) &&
((np->in_redir & NAT_MAPBLK) == 0) &&
(np->in_flags & IPN_AUTOPORTMAP)) {
/*
* "ports auto" (without map-block)
*/
if ((l > 0) && (l % np->in_ppip == 0)) {
if ((l > np->in_ppip) &&
np->in_nsrcmsk != 0xffffffff)
np->in_snip++;
}
if (np->in_ppip != 0) {
port = ntohs(sport);
port += (l % np->in_ppip);
port %= np->in_ppip;
port += np->in_ppip *
(ntohl(fin->fin_saddr) %
np->in_ippip);
port += MAPBLK_MINPORT;
port = htons(port);
}
} else if (((np->in_redir & NAT_MAPBLK) == 0) &&
(flags & IPN_TCPUDPICMP) && (np->in_spnext != 0)) {
/*
* Standard port translation. Select next port.
*/
port = htons(np->in_spnext++);
if (np->in_spnext > np->in_spmax) {
np->in_spnext = np->in_spmin;
if (np->in_nsrcmsk != 0xffffffff)
np->in_snip++;
}
}
if (np->in_flags & IPN_SIPRANGE) {
if (np->in_snip > ntohl(np->in_nsrcmsk))
np->in_snip = ntohl(np->in_nsrcaddr);
} else {
if ((np->in_nsrcmsk != 0xffffffff) &&
((np->in_snip + 1) & ntohl(np->in_nsrcmsk)) >
ntohl(np->in_nsrcaddr))
np->in_snip = ntohl(np->in_nsrcaddr) + 1;
}
if ((port == 0) && (flags & (IPN_TCPUDPICMP|IPN_ICMPQUERY)))
port = sport;
/*
* Here we do a lookup of the connection as seen from
* the outside. If an IP# pair already exists, try
* again. So if you have A->B becomes C->B, you can
* also have D->E become C->E but not D->B causing
* another C->B. Also take protocol and ports into
* account when determining whether a pre-existing
* NAT setup will cause an external conflict where
* this is appropriate.
*/
inb.s_addr = htonl(in.s_addr);
sp = fin->fin_data[0];
dp = fin->fin_data[1];
fin->fin_data[0] = fin->fin_data[1];
fin->fin_data[1] = ntohs(port);
natl = ipf_nat_inlookup(fin, flags & ~(SI_WILDP|NAT_SEARCH),
(u_int)fin->fin_p, fin->fin_dst, inb);
fin->fin_data[0] = sp;
fin->fin_data[1] = dp;
/*
* Has the search wrapped around and come back to the
* start ?
*/
if ((natl != NULL) &&
(np->in_spnext != 0) && (st_port == np->in_spnext) &&
(np->in_snip != 0) && (st_ip == np->in_snip)) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_wrap);
return -1;
}
l++;
} while (natl != NULL);
/* Setup the NAT table */
nat->nat_osrcip = fin->fin_src;
nat->nat_nsrcaddr = htonl(in.s_addr);
nat->nat_odstip = fin->fin_dst;
nat->nat_ndstip = fin->fin_dst;
if (nat->nat_hm == NULL)
nat->nat_hm = ipf_nat_hostmap(np, fin->fin_src, fin->fin_dst,
nat->nat_nsrcip, 0);
if (flags & IPN_TCPUDP) {
nat->nat_osport = sport;
nat->nat_nsport = port; /* sport */
nat->nat_odport = dport;
nat->nat_ndport = dport;
((tcphdr_t *)fin->fin_dp)->th_sport = port;
} else if (flags & IPN_ICMPQUERY) {
nat->nat_oicmpid = fin->fin_data[1];
((icmphdr_t *)fin->fin_dp)->icmp_id = port;
nat->nat_nicmpid = port;
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_newrdr */
/* Returns: int - -1 == error, 0 == success (no move), 1 == success and */
/* allow rule to be moved if IPN_ROUNDR is set. */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to NAT entry */
/* ni(I) - pointer to structure with misc. information needed */
/* to create new NAT entry. */
/* */
/* ni.nai_ip is passed in uninitialised and must be set, in host byte order,*/
/* to the new IP address for the translation. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_newrdr(fin, nat, ni)
fr_info_t *fin;
nat_t *nat;
natinfo_t *ni;
{
u_short nport, dport, sport;
struct in_addr in, inb;
u_short sp, dp;
hostmap_t *hm;
u_32_t flags;
ipnat_t *np;
nat_t *natl;
int move;
move = 1;
hm = NULL;
in.s_addr = 0;
np = ni->nai_np;
flags = ni->nai_flags;
if (flags & IPN_ICMPQUERY) {
dport = fin->fin_data[1];
sport = 0;
} else {
sport = htons(fin->fin_data[0]);
dport = htons(fin->fin_data[1]);
}
/* TRACE sport, dport */
/*
* If the matching rule has IPN_STICKY set, then we want to have the
* same rule kick in as before. Why would this happen? If you have
* a collection of rdr rules with "round-robin sticky", the current
* packet might match a different one to the previous connection but
* we want the same destination to be used.
*/
if (((np->in_flags & (IPN_ROUNDR|IPN_SPLIT)) != 0) &&
((np->in_flags & IPN_STICKY) != 0)) {
hm = ipf_nat_hostmap(NULL, fin->fin_src, fin->fin_dst, in,
(u_32_t)dport);
if (hm != NULL) {
in.s_addr = ntohl(hm->hm_ndstip.s_addr);
np = hm->hm_ipnat;
ni->nai_np = np;
move = 0;
}
}
/*
* Otherwise, it's an inbound packet. Most likely, we don't
* want to rewrite source ports and source addresses. Instead,
* we want to rewrite to a fixed internal address and fixed
* internal port.
*/
if (np->in_flags & IPN_SPLIT) {
in.s_addr = np->in_dnip;
if ((np->in_flags & (IPN_ROUNDR|IPN_STICKY)) == IPN_STICKY) {
hm = ipf_nat_hostmap(NULL, fin->fin_src, fin->fin_dst,
in, (u_32_t)dport);
if (hm != NULL) {
in.s_addr = hm->hm_ndstip.s_addr;
move = 0;
}
}
if (hm == NULL || hm->hm_ref == 1) {
if (np->in_ndstaddr == htonl(in.s_addr)) {
np->in_dnip = ntohl(np->in_ndstmsk);
move = 0;
} else {
np->in_dnip = ntohl(np->in_ndstaddr);
}
}
} else if ((np->in_ndstaddr == 0) && (np->in_ndstmsk == 0xffffffff)) {
i6addr_t in6;
/*
* 0/32 - use the interface's IP address.
*/
if (ipf_ifpaddr(fin->fin_v, FRI_NORMAL, fin->fin_ifp,
&in6, NULL) == -1) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_new_ifpaddr);
return -1;
}
if (fin->fin_v == 4)
in.s_addr = ntohl(in6.in4.s_addr);
} else if ((np->in_ndstaddr == 0) && (np->in_ndstmsk== 0)) {
/*
* 0/0 - use the original destination address/port.
*/
in.s_addr = ntohl(fin->fin_daddr);
} else if (np->in_redir == NAT_BIMAP &&
np->in_ndstmsk == np->in_odstmsk) {
/*
* map the address block in a 1:1 fashion
*/
in.s_addr = np->in_ndstaddr;
in.s_addr |= fin->fin_daddr & ~np->in_ndstmsk;
in.s_addr = ntohl(in.s_addr);
} else {
in.s_addr = ntohl(np->in_ndstaddr);
}
if ((np->in_dpnext == 0) || ((flags & NAT_NOTRULEPORT) != 0))
nport = dport;
else {
/*
* Whilst not optimized for the case where
* pmin == pmax, the gain is not significant.
*/
if (((np->in_flags & IPN_FIXEDDPORT) == 0) &&
(np->in_odport != np->in_dtop)) {
nport = ntohs(dport) - np->in_odport + np->in_dpmax;
nport = htons(nport);
} else {
nport = htons(np->in_dpnext);
np->in_dpnext++;
if (np->in_dpnext > np->in_dpmax)
np->in_dpnext = np->in_dpmin;
}
}
/*
* When the redirect-to address is set to 0.0.0.0, just
* assume a blank `forwarding' of the packet. We don't
* setup any translation for this either.
*/
if (in.s_addr == 0) {
if (nport == dport) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_xlate_null);
return -1;
}
in.s_addr = ntohl(fin->fin_daddr);
}
/*
* Check to see if this redirect mapping already exists and if
* it does, return "failure" (allowing it to be created will just
* cause one or both of these "connections" to stop working.)
*/
inb.s_addr = htonl(in.s_addr);
sp = fin->fin_data[0];
dp = fin->fin_data[1];
fin->fin_data[1] = fin->fin_data[0];
fin->fin_data[0] = ntohs(nport);
natl = ipf_nat_outlookup(fin, flags & ~(SI_WILDP|NAT_SEARCH),
(u_int)fin->fin_p, inb, fin->fin_src);
fin->fin_data[0] = sp;
fin->fin_data[1] = dp;
if (natl != NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_xlate_exists);
return -1;
}
nat->nat_ndstaddr = htonl(in.s_addr);
nat->nat_odstip = fin->fin_dst;
nat->nat_nsrcip = fin->fin_src;
nat->nat_osrcip = fin->fin_src;
if ((nat->nat_hm == NULL) && ((np->in_flags & IPN_STICKY) != 0))
nat->nat_hm = ipf_nat_hostmap(np, fin->fin_src, fin->fin_dst,
in, (u_32_t)dport);
if (flags & IPN_TCPUDP) {
nat->nat_odport = dport;
nat->nat_ndport = nport;
nat->nat_osport = sport;
nat->nat_nsport = sport;
((tcphdr_t *)fin->fin_dp)->th_dport = nport;
} else if (flags & IPN_ICMPQUERY) {
nat->nat_oicmpid = fin->fin_data[1];
((icmphdr_t *)fin->fin_dp)->icmp_id = nport;
nat->nat_nicmpid = nport;
}
return move;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_add */
/* Returns: nat_t* - NULL == failure to create new NAT structure, */
/* else pointer to new NAT structure */
/* Parameters: fin(I) - pointer to packet information */
/* np(I) - pointer to NAT rule */
/* natsave(I) - pointer to where to store NAT struct pointer */
/* flags(I) - flags describing the current packet */
/* direction(I) - direction of packet (in/out) */
/* Write Lock: ipf_nat */
/* */
/* Attempts to create a new NAT entry. Does not actually change the packet */
/* in any way. */
/* */
/* This fucntion is in three main parts: (1) deal with creating a new NAT */
/* structure for a "MAP" rule (outgoing NAT translation); (2) deal with */
/* creating a new NAT structure for a "RDR" rule (incoming NAT translation) */
/* and (3) building that structure and putting it into the NAT table(s). */
/* */
/* NOTE: natsave should NOT be used top point back to an ipstate_t struct */
/* as it can result in memory being corrupted. */
/* ------------------------------------------------------------------------ */
nat_t *
ipf_nat_add(fin, np, natsave, flags, direction)
fr_info_t *fin;
ipnat_t *np;
nat_t **natsave;
u_int flags;
int direction;
{
hostmap_t *hm = NULL;
nat_t *nat, *natl;
u_int nflags;
natinfo_t ni;
int move;
#if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) && defined(ICK_M_CTL_MAGIC)
qpktinfo_t *qpi = fin->fin_qpi;
#endif
if ((ipf_nat_stats.ns_active * 100 / ipf_nat_table_max) >
ipf_nat_table_wm_high) {
ipf_nat_doflush = 1;
}
if (ipf_nat_stats.ns_active >= ipf_nat_table_max) {
ipf_nat_stats.ns_side[fin->fin_out].ns_table_max++;
return NULL;
}
move = 1;
nflags = np->in_flags & flags;
nflags &= NAT_FROMRULE;
ni.nai_np = np;
ni.nai_nflags = nflags;
ni.nai_flags = flags;
ni.nai_dport = 0;
ni.nai_sport = 0;
/* Give me a new nat */
KMALLOC(nat, nat_t *);
if (nat == NULL) {
ipf_nat_stats.ns_side[fin->fin_out].ns_memfail++;
/*
* Try to automatically tune the max # of entries in the
* table allowed to be less than what will cause kmem_alloc()
* to fail and try to eliminate panics due to out of memory
* conditions arising.
*/
if ((ipf_nat_table_max > ipf_nat_table_sz) &&
(ipf_nat_stats.ns_active > 100)) {
ipf_nat_table_max = ipf_nat_stats.ns_active - 100;
printf("table_max reduced to %d\n",
ipf_nat_table_max);
}
return NULL;
}
if (flags & IPN_ICMPQUERY) {
/*
* In the ICMP query NAT code, we translate the ICMP id fields
* to make them unique. This is indepedent of the ICMP type
* (e.g. in the unlikely event that a host sends an echo and
* an tstamp request with the same id, both packets will have
* their ip address/id field changed in the same way).
*/
/* The icmp_id field is used by the sender to identify the
* process making the icmp request. (the receiver justs
* copies it back in its response). So, it closely matches
* the concept of source port. We overlay sport, so we can
* maximally reuse the existing code.
*/
ni.nai_sport = fin->fin_data[1];
ni.nai_dport = 0;
}
bzero((char *)nat, sizeof(*nat));
nat->nat_flags = flags;
nat->nat_redir = np->in_redir;
nat->nat_dir = direction;
nat->nat_pr[0] = fin->fin_p;
nat->nat_pr[1] = fin->fin_p;
if ((flags & NAT_SLAVE) == 0) {
MUTEX_ENTER(&ipf_nat_new);
}
/*
* Search the current table for a match and create a new mapping
* if there is none found.
*/
if (np->in_redir & (NAT_ENCAP|NAT_DIVERTUDP)) {
move = ipf_nat_newdivert(fin, nat, &ni);
} else if (np->in_redir & NAT_REWRITE) {
move = ipf_nat_newrewrite(fin, nat, &ni);
} else if (direction == NAT_OUTBOUND) {
/*
* We can now arrange to call this for the same connection
* because ipf_nat_new doesn't protect the code path into
* this function.
*/
natl = ipf_nat_outlookup(fin, nflags, (u_int)fin->fin_p,
fin->fin_src, fin->fin_dst);
if (natl != NULL) {
KFREE(nat);
nat = natl;
goto done;
}
move = ipf_nat_newmap(fin, nat, &ni);
} else {
/*
* NAT_INBOUND is used for redirects rules
*/
natl = ipf_nat_inlookup(fin, nflags, (u_int)fin->fin_p,
fin->fin_src, fin->fin_dst);
if (natl != NULL) {
KFREE(nat);
nat = natl;
goto done;
}
move = ipf_nat_newrdr(fin, nat, &ni);
}
if (move == -1)
goto badnat;
np = ni.nai_np;
if ((move == 1) && (np->in_flags & IPN_ROUNDR)) {
if ((np->in_redir & (NAT_REDIRECT|NAT_MAP)) == NAT_REDIRECT) {
ipf_nat_delrdr(np);
ipf_nat_addrdr(np);
} else if ((np->in_redir & (NAT_REDIRECT|NAT_MAP)) == NAT_MAP) {
ipf_nat_delnat(np);
ipf_nat_addnat(np);
}
}
if (ipf_nat_finalise(fin, nat, &ni, natsave, direction) == -1) {
goto badnat;
}
if (flags & SI_WILDP)
ipf_nat_stats.ns_wilds++;
ipf_nat_stats.ns_proto[nat->nat_pr[0]]++;
goto done;
badnat:
ipf_nat_stats.ns_side[fin->fin_out].ns_badnatnew++;
if ((hm = nat->nat_hm) != NULL)
ipf_nat_hostmapdel(&hm);
KFREE(nat);
nat = NULL;
done:
if ((flags & NAT_SLAVE) == 0) {
MUTEX_EXIT(&ipf_nat_new);
}
return nat;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_finalise */
/* Returns: int - 0 == sucess, -1 == failure */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to NAT entry */
/* ni(I) - pointer to structure with misc. information needed */
/* to create new NAT entry. */
/* Write Lock: */
/* */
/* This is the tail end of constructing a new NAT entry and is the same */
/* for both IPv4 and IPv6. */
/* ------------------------------------------------------------------------ */
/*ARGSUSED*/
static int
ipf_nat_finalise(fin, nat, ni, natsave, direction)
fr_info_t *fin;
nat_t *nat;
natinfo_t *ni;
nat_t **natsave;
int direction;
{
u_32_t sum1, sum2, sumd;
frentry_t *fr;
ipnat_t *np;
u_32_t flags;
np = ni->nai_np;
flags = ni->nai_flags;
switch (fin->fin_p)
{
case IPPROTO_ICMP :
sum1 = LONG_SUM(ntohs(nat->nat_osport));
sum2 = LONG_SUM(ntohs(nat->nat_nsport));
CALC_SUMD(sum1, sum2, sumd);
nat->nat_sumd[0] = (sumd & 0xffff) + (sumd >> 16);
break;
default :
sum1 = LONG_SUM(ntohl(nat->nat_osrcaddr) + \
ntohs(nat->nat_osport));
sum2 = LONG_SUM(ntohl(nat->nat_nsrcaddr) + \
ntohs(nat->nat_nsport));
CALC_SUMD(sum1, sum2, sumd);
nat->nat_sumd[0] = (sumd & 0xffff) + (sumd >> 16);
sum1 = LONG_SUM(ntohl(nat->nat_odstaddr) + \
ntohs(nat->nat_odport));
sum2 = LONG_SUM(ntohl(nat->nat_ndstaddr) + \
ntohs(nat->nat_ndport));
CALC_SUMD(sum1, sum2, sumd);
nat->nat_sumd[0] += (sumd & 0xffff) + (sumd >> 16);
break;
}
#if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) && defined(ICK_M_CTL_MAGIC)
if ((flags & IPN_TCP) && dohwcksum &&
(((ill_t *)qpi->qpi_ill)->ill_ick.ick_magic == ICK_M_CTL_MAGIC)) {
if (direction == NAT_OUTBOUND)
ni.nai_sum1 = LONG_SUM(in.s_addr);
else
ni.nai_sum1 = LONG_SUM(ntohl(fin->fin_saddr));
ni.nai_sum1 += LONG_SUM(ntohl(fin->fin_daddr));
ni.nai_sum1 += 30;
ni.nai_sum1 = (ni.nai_sum1 & 0xffff) + (ni.nai_sum1 >> 16);
nat->nat_sumd[1] = NAT_HW_CKSUM|(ni.nai_sum1 & 0xffff);
} else
#endif
nat->nat_sumd[1] = nat->nat_sumd[0];
sum1 = LONG_SUM(ntohl(nat->nat_osrcaddr));
sum2 = LONG_SUM(ntohl(nat->nat_nsrcaddr));
CALC_SUMD(sum1, sum2, sumd);
nat->nat_ipsumd = (sumd & 0xffff) + (sumd >> 16);
sum1 = LONG_SUM(ntohl(nat->nat_odstaddr));
sum2 = LONG_SUM(ntohl(nat->nat_ndstaddr));
CALC_SUMD(sum1, sum2, sumd);
nat->nat_ipsumd += (sumd & 0xffff) + (sumd >> 16);
if (np->in_ifps[0] != NULL) {
COPYIFNAME(np->in_ifps[0], nat->nat_ifnames[0]);
}
if (np->in_ifps[1] != NULL) {
COPYIFNAME(np->in_ifps[1], nat->nat_ifnames[1]);
}
#ifdef IPFILTER_SYNC
if ((nat->nat_flags & SI_CLONE) == 0)
nat->nat_sync = ipf_sync_new(SMC_NAT, fin, nat);
#endif
nat->nat_me = natsave;
nat->nat_ifps[0] = np->in_ifps[0];
if ((nat->nat_ifps[0] != NULL) && (nat->nat_ifps[0] != (void *)-1)) {
nat->nat_mtu[0] = GETIFMTU(nat->nat_ifps[0]);
}
nat->nat_ifps[1] = np->in_ifps[1];
if ((nat->nat_ifps[1] != NULL) && (nat->nat_ifps[1] != (void *)-1)) {
nat->nat_mtu[1] = GETIFMTU(nat->nat_ifps[1]);
}
nat->nat_ptr = np;
nat->nat_mssclamp = np->in_mssclamp;
nat->nat_v = fin->fin_v;
if ((np->in_apr != NULL) && ((ni->nai_flags & NAT_SLAVE) == 0))
if (appr_new(fin, nat) == -1)
return -1;
if (ipf_nat_insert(nat, fin->fin_rev) == 0) {
if (ipf_nat_logging)
ipf_nat_log(nat, NL_NEW);
np->in_use++;
fr = fin->fin_fr;
nat->nat_fr = fr;
if (fr != NULL) {
MUTEX_ENTER(&fr->fr_lock);
fr->fr_ref++;
MUTEX_EXIT(&fr->fr_lock);
}
return 0;
}
ATOMIC_INCL(ipf_nat_stats.ns_side[fin->fin_out].ns_unfinalised);
/*
* nat_insert failed, so cleanup time...
*/
return -1;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_insert */
/* Returns: int - 0 == sucess, -1 == failure */
/* Parameters: nat(I) - pointer to NAT structure */
/* rev(I) - flag indicating forward/reverse direction of packet */
/* Write Lock: ipf_nat */
/* */
/* Insert a NAT entry into the hash tables for searching and add it to the */
/* list of active NAT entries. Adjust global counters when complete. */
/* ------------------------------------------------------------------------ */
int
ipf_nat_insert(nat, rev)
nat_t *nat;
int rev;
{
u_int hv1, hv2;
nat_t **natp;
/*
* Try and return an error as early as possible, so calculate the hash
* entry numbers first and then proceed.
*/
if ((nat->nat_flags & (SI_W_SPORT|SI_W_DPORT)) == 0) {
hv1 = NAT_HASH_FN(nat->nat_osrcaddr, nat->nat_osport,
0xffffffff);
hv1 = NAT_HASH_FN(nat->nat_odstaddr, hv1 + nat->nat_odport,
ipf_nat_table_sz);
/*
* TRACE nat_osrcaddr, nat_osport, nat_odstaddr,
* nat_odport, hv1
*/
hv2 = NAT_HASH_FN(nat->nat_nsrcaddr, nat->nat_nsport,
0xffffffff);
hv2 = NAT_HASH_FN(nat->nat_ndstaddr, hv2 + nat->nat_ndport,
ipf_nat_table_sz);
/*
* TRACE nat_nsrcaddr, nat_nsport, nat_ndstaddr,
* nat_ndport, hv1
*/
} else {
hv1 = NAT_HASH_FN(nat->nat_osrcaddr, 0, 0xffffffff);
hv1 = NAT_HASH_FN(nat->nat_odstaddr, hv1, ipf_nat_table_sz);
/* TRACE nat_osrcaddr, nat_odstaddr, hv1 */
hv2 = NAT_HASH_FN(nat->nat_nsrcaddr, 0, 0xffffffff);
hv2 = NAT_HASH_FN(nat->nat_ndstaddr, hv2, ipf_nat_table_sz);
/* TRACE nat_nsrcaddr, nat_ndstaddr, hv2 */
}
if (ipf_nat_stats.ns_side[0].ns_bucketlen[hv1] >= ipf_nat_maxbucket) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_bucket_max);
return -1;
}
if (ipf_nat_stats.ns_side[1].ns_bucketlen[hv2] >= ipf_nat_maxbucket) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_bucket_max);
return -1;
}
if (nat->nat_dir == NAT_INBOUND || nat->nat_dir == NAT_ENCAPIN ||
nat->nat_dir == NAT_DIVERTIN) {
u_int swap;
swap = hv2;
hv2 = hv1;
hv1 = swap;
}
nat->nat_hv[0] = hv1;
nat->nat_hv[1] = hv2;
MUTEX_INIT(&nat->nat_lock, "nat entry lock");
nat->nat_rev = rev;
nat->nat_ref = 1;
nat->nat_bytes[0] = 0;
nat->nat_pkts[0] = 0;
nat->nat_bytes[1] = 0;
nat->nat_pkts[1] = 0;
nat->nat_ifnames[0][LIFNAMSIZ - 1] = '\0';
nat->nat_ifps[0] = ipf_resolvenic(nat->nat_ifnames[0], nat->nat_v);
if (nat->nat_ifnames[1][0] != '\0') {
nat->nat_ifnames[1][LIFNAMSIZ - 1] = '\0';
nat->nat_ifps[1] = ipf_resolvenic(nat->nat_ifnames[1],
nat->nat_v);
} else {
ipnat_t *in = nat->nat_ptr;
if (in->in_ifnames[1][1] != '\0' &&
in->in_ifnames[1][0] != '-' &&
in->in_ifnames[1][0] != '*') {
(void) strncpy(nat->nat_ifnames[1],
nat->nat_ifnames[0], LIFNAMSIZ);
nat->nat_ifnames[1][LIFNAMSIZ - 1] = '\0';
nat->nat_ifps[1] = nat->nat_ifps[0];
}
}
if ((nat->nat_ifps[0] != NULL) && (nat->nat_ifps[0] != (void *)-1)) {
nat->nat_mtu[0] = GETIFMTU(nat->nat_ifps[0]);
}
if ((nat->nat_ifps[1] != NULL) && (nat->nat_ifps[1] != (void *)-1)) {
nat->nat_mtu[1] = GETIFMTU(nat->nat_ifps[1]);
}
nat->nat_next = ipf_nat_instances;
nat->nat_pnext = &ipf_nat_instances;
if (ipf_nat_instances)
ipf_nat_instances->nat_pnext = &nat->nat_next;
ipf_nat_instances = nat;
natp = &ipf_nat_table[0][hv1];
if (*natp)
(*natp)->nat_phnext[0] = &nat->nat_hnext[0];
else
ipf_nat_stats.ns_side[0].ns_inuse++;
nat->nat_phnext[0] = natp;
nat->nat_hnext[0] = *natp;
*natp = nat;
ipf_nat_stats.ns_side[0].ns_bucketlen[hv1]++;
natp = &ipf_nat_table[1][hv2];
if (*natp)
(*natp)->nat_phnext[1] = &nat->nat_hnext[1];
else
ipf_nat_stats.ns_side[1].ns_inuse++;
nat->nat_phnext[1] = natp;
nat->nat_hnext[1] = *natp;
*natp = nat;
ipf_nat_stats.ns_side[1].ns_bucketlen[hv2]++;
ipf_nat_setqueue(nat, rev);
ipf_nat_stats.ns_added++;
ipf_nat_stats.ns_active++;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_icmperrorlookup */
/* Returns: nat_t* - point to matching NAT structure */
/* Parameters: fin(I) - pointer to packet information */
/* dir(I) - direction of packet (in/out) */
/* */
/* Check if the ICMP error message is related to an existing TCP, UDP or */
/* ICMP query nat entry. It is assumed that the packet is already of the */
/* the required length. */
/* ------------------------------------------------------------------------ */
nat_t *
ipf_nat_icmperrorlookup(fin, dir)
fr_info_t *fin;
int dir;
{
int flags = 0, type, minlen;
icmphdr_t *icmp, *orgicmp;
nat_stat_side_t *nside;
tcphdr_t *tcp = NULL;
u_short data[2];
nat_t *nat;
ip_t *oip;
u_int p;
icmp = fin->fin_dp;
type = icmp->icmp_type;
nside = &ipf_nat_stats.ns_side[fin->fin_out];
/*
* Does it at least have the return (basic) IP header ?
* Only a basic IP header (no options) should be with an ICMP error
* header. Also, if it's not an error type, then return.
*/
if ((fin->fin_hlen != sizeof(ip_t)) || !(fin->fin_flx & FI_ICMPERR)) {
ATOMIC_INCL(nside->ns_icmp_basic);
return NULL;
}
/*
* Check packet size
*/
oip = (ip_t *)((char *)fin->fin_dp + 8);
minlen = IP_HL(oip) << 2;
if ((minlen < sizeof(ip_t)) ||
(fin->fin_plen < ICMPERR_IPICMPHLEN + minlen)) {
ATOMIC_INCL(nside->ns_icmp_size);
return NULL;
}
/*
* Is the buffer big enough for all of it ? It's the size of the IP
* header claimed in the encapsulated part which is of concern. It
* may be too big to be in this buffer but not so big that it's
* outside the ICMP packet, leading to TCP deref's causing problems.
* This is possible because we don't know how big oip_hl is when we
* do the pullup early in ipf_check() and thus can't gaurantee it is
* all here now.
*/
#ifdef ipf_nat_KERNEL
{
mb_t *m;
m = fin->fin_m;
# if defined(MENTAT)
if ((char *)oip + fin->fin_dlen - ICMPERR_ICMPHLEN >
(char *)m->b_wptr) {
ATOMIC_INCL(nside->ns_icmp_mbuf);
return NULL;
}
# else
if ((char *)oip + fin->fin_dlen - ICMPERR_ICMPHLEN >
(char *)fin->fin_ip + M_LEN(m)) {
ATOMIC_INCL(nside->ns_icmp_mbuf);
return NULL;
}
# endif
}
#endif
if (fin->fin_daddr != oip->ip_src.s_addr) {
ATOMIC_INCL(nside->ns_icmp_address);
return NULL;
}
p = oip->ip_p;
if (p == IPPROTO_TCP)
flags = IPN_TCP;
else if (p == IPPROTO_UDP)
flags = IPN_UDP;
else if (p == IPPROTO_ICMP) {
orgicmp = (icmphdr_t *)((char *)oip + (IP_HL(oip) << 2));
/* see if this is related to an ICMP query */
if (ipf_nat_icmpquerytype4(orgicmp->icmp_type)) {
data[0] = fin->fin_data[0];
data[1] = fin->fin_data[1];
fin->fin_data[0] = 0;
fin->fin_data[1] = orgicmp->icmp_id;
flags = IPN_ICMPERR|IPN_ICMPQUERY;
/*
* NOTE : dir refers to the direction of the original
* ip packet. By definition the icmp error
* message flows in the opposite direction.
*/
if (dir == NAT_INBOUND)
nat = ipf_nat_inlookup(fin, flags, p,
oip->ip_dst,
oip->ip_src);
else
nat = ipf_nat_outlookup(fin, flags, p,
oip->ip_dst,
oip->ip_src);
fin->fin_data[0] = data[0];
fin->fin_data[1] = data[1];
return nat;
}
}
if (flags & IPN_TCPUDP) {
minlen += 8; /* + 64bits of data to get ports */
/* TRACE (fin,minlen) */
if (fin->fin_plen < ICMPERR_IPICMPHLEN + minlen) {
ATOMIC_INCL(nside->ns_icmp_short);
return NULL;
}
data[0] = fin->fin_data[0];
data[1] = fin->fin_data[1];
tcp = (tcphdr_t *)((char *)oip + (IP_HL(oip) << 2));
fin->fin_data[0] = ntohs(tcp->th_dport);
fin->fin_data[1] = ntohs(tcp->th_sport);
if (dir == NAT_INBOUND) {
nat = ipf_nat_inlookup(fin, flags, p, oip->ip_dst,
oip->ip_src);
} else {
nat = ipf_nat_outlookup(fin, flags, p, oip->ip_dst,
oip->ip_src);
}
fin->fin_data[0] = data[0];
fin->fin_data[1] = data[1];
return nat;
}
if (dir == NAT_INBOUND)
nat = ipf_nat_inlookup(fin, 0, p, oip->ip_dst, oip->ip_src);
else
nat = ipf_nat_outlookup(fin, 0, p, oip->ip_dst, oip->ip_src);
return nat;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_icmperror */
/* Returns: nat_t* - point to matching NAT structure */
/* Parameters: fin(I) - pointer to packet information */
/* nflags(I) - NAT flags for this packet */
/* dir(I) - direction of packet (in/out) */
/* */
/* Fix up an ICMP packet which is an error message for an existing NAT */
/* session. This will correct both packet header data and checksums. */
/* */
/* This should *ONLY* be used for incoming ICMP error packets to make sure */
/* a NAT'd ICMP packet gets correctly recognised. */
/* ------------------------------------------------------------------------ */
nat_t *
ipf_nat_icmperror(fin, nflags, dir)
fr_info_t *fin;
u_int *nflags;
int dir;
{
u_32_t sum1, sum2, sumd, sumd2;
struct in_addr a1, a2, a3, a4;
int flags, dlen, odst;
icmphdr_t *icmp;
u_short *csump;
tcphdr_t *tcp;
nat_t *nat;
ip_t *oip;
void *dp;
if ((fin->fin_flx & (FI_SHORT|FI_FRAGBODY))) {
ATOMIC_INCL(ipf_nat_stats.ns_side[fin->fin_out].ns_icmp_short);
return NULL;
}
/*
* ipf_nat_icmperrorlookup() will return NULL for `defective' packets.
*/
if ((fin->fin_v != 4) || !(nat = ipf_nat_icmperrorlookup(fin, dir))) {
ATOMIC_INCL(ipf_nat_stats.ns_side[fin->fin_out].
ns_icmp_notfound);
return NULL;
}
if (nat->nat_dir == NAT_ENCAPIN || nat->nat_dir == NAT_ENCAPOUT) {
/*
* For ICMP replies to encapsulated packets, we need to
* rebuild the ICMP reply completely to match the original
* packet...
*/
if (ipf_nat_rebuildencapicmp(fin, nat) == 0)
return nat;
ATOMIC_INCL(ipf_nat_stats.ns_side[fin->fin_out].
ns_icmp_rebuild);
return NULL;
}
tcp = NULL;
csump = NULL;
flags = 0;
sumd2 = 0;
*nflags = IPN_ICMPERR;
icmp = fin->fin_dp;
oip = (ip_t *)&icmp->icmp_ip;
dp = (((char *)oip) + (IP_HL(oip) << 2));
if (oip->ip_p == IPPROTO_TCP) {
tcp = (tcphdr_t *)dp;
csump = (u_short *)&tcp->th_sum;
flags = IPN_TCP;
} else if (oip->ip_p == IPPROTO_UDP) {
udphdr_t *udp;
udp = (udphdr_t *)dp;
tcp = (tcphdr_t *)dp;
csump = (u_short *)&udp->uh_sum;
flags = IPN_UDP;
} else if (oip->ip_p == IPPROTO_ICMP)
flags = IPN_ICMPQUERY;
dlen = fin->fin_plen - ((char *)dp - (char *)fin->fin_ip);
/*
* Need to adjust ICMP header to include the real IP#'s and
* port #'s. Only apply a checksum change relative to the
* IP address change as it will be modified again in ipf_nat_checkout
* for both address and port. Two checksum changes are
* necessary for the two header address changes. Be careful
* to only modify the checksum once for the port # and twice
* for the IP#.
*/
/*
* Step 1
* Fix the IP addresses in the offending IP packet. You also need
* to adjust the IP header checksum of that offending IP packet.
*
* Normally, you would expect that the ICMP checksum of the
* ICMP error message needs to be adjusted as well for the
* IP address change in oip.
* However, this is a NOP, because the ICMP checksum is
* calculated over the complete ICMP packet, which includes the
* changed oip IP addresses and oip->ip_sum. However, these
* two changes cancel each other out (if the delta for
* the IP address is x, then the delta for ip_sum is minus x),
* so no change in the icmp_cksum is necessary.
*
* Inbound ICMP
* ------------
* MAP rule, SRC=a,DST=b -> SRC=c,DST=b
* - response to outgoing packet (a,b)=>(c,b) (OIP_SRC=c,OIP_DST=b)
* - OIP_SRC(c)=nat_newsrcip, OIP_DST(b)=nat_newdstip
*=> OIP_SRC(c)=nat_oldsrcip, OIP_DST(b)=nat_olddstip
*
* RDR rule, SRC=a,DST=b -> SRC=a,DST=c
* - response to outgoing packet (c,a)=>(b,a) (OIP_SRC=b,OIP_DST=a)
* - OIP_SRC(b)=nat_olddstip, OIP_DST(a)=nat_oldsrcip
*=> OIP_SRC(b)=nat_newdstip, OIP_DST(a)=nat_newsrcip
*
* REWRITE out rule, SRC=a,DST=b -> SRC=c,DST=d
* - response to outgoing packet (a,b)=>(c,d) (OIP_SRC=c,OIP_DST=d)
* - OIP_SRC(c)=nat_newsrcip, OIP_DST(d)=nat_newdstip
*=> OIP_SRC(c)=nat_oldsrcip, OIP_DST(d)=nat_olddstip
*
* REWRITE in rule, SRC=a,DST=b -> SRC=c,DST=d
* - response to outgoing packet (d,c)=>(b,a) (OIP_SRC=b,OIP_DST=a)
* - OIP_SRC(b)=nat_olddstip, OIP_DST(a)=nat_oldsrcip
*=> OIP_SRC(b)=nat_newdstip, OIP_DST(a)=nat_newsrcip
*
* Outbound ICMP
* -------------
* MAP rule, SRC=a,DST=b -> SRC=c,DST=b
* - response to incoming packet (b,c)=>(b,a) (OIP_SRC=b,OIP_DST=a)
* - OIP_SRC(b)=nat_olddstip, OIP_DST(a)=nat_oldsrcip
*=> OIP_SRC(b)=nat_newdstip, OIP_DST(a)=nat_newsrcip
*
* RDR rule, SRC=a,DST=b -> SRC=a,DST=c
* - response to incoming packet (a,b)=>(a,c) (OIP_SRC=a,OIP_DST=c)
* - OIP_SRC(a)=nat_newsrcip, OIP_DST(c)=nat_newdstip
*=> OIP_SRC(a)=nat_oldsrcip, OIP_DST(c)=nat_olddstip
*
* REWRITE out rule, SRC=a,DST=b -> SRC=c,DST=d
* - response to incoming packet (d,c)=>(b,a) (OIP_SRC=c,OIP_DST=d)
* - OIP_SRC(c)=nat_olddstip, OIP_DST(d)=nat_oldsrcip
*=> OIP_SRC(b)=nat_newdstip, OIP_DST(a)=nat_newsrcip
*
* REWRITE in rule, SRC=a,DST=b -> SRC=c,DST=d
* - response to incoming packet (a,b)=>(c,d) (OIP_SRC=b,OIP_DST=a)
* - OIP_SRC(b)=nat_newsrcip, OIP_DST(a)=nat_newdstip
*=> OIP_SRC(a)=nat_oldsrcip, OIP_DST(c)=nat_olddstip
*/
if (((fin->fin_out == 0) && ((nat->nat_redir & NAT_MAP) != 0)) ||
((fin->fin_out == 1) && ((nat->nat_redir & NAT_REDIRECT) != 0))) {
a1.s_addr = ntohl(nat->nat_osrcaddr);
a4.s_addr = ntohl(oip->ip_src.s_addr);
a3.s_addr = ntohl(nat->nat_odstaddr);
a2.s_addr = ntohl(oip->ip_dst.s_addr);
oip->ip_src.s_addr = htonl(a1.s_addr);
oip->ip_dst.s_addr = htonl(a3.s_addr);
odst = 1;
} else {
a1.s_addr = ntohl(nat->nat_ndstaddr);
a2.s_addr = ntohl(oip->ip_dst.s_addr);
a3.s_addr = ntohl(nat->nat_nsrcaddr);
a4.s_addr = ntohl(oip->ip_src.s_addr);
oip->ip_dst.s_addr = htonl(a3.s_addr);
oip->ip_src.s_addr = htonl(a1.s_addr);
odst = 0;
}
sumd = 0;
if ((a3.s_addr != a2.s_addr) || (a1.s_addr != a4.s_addr)) {
if (a3.s_addr > a2.s_addr)
sumd = a2.s_addr - a3.s_addr - 1;
else
sumd = a2.s_addr - a3.s_addr;
if (a1.s_addr > a4.s_addr)
sumd += a4.s_addr - a1.s_addr - 1;
else
sumd += a4.s_addr - a1.s_addr;
sumd = ~sumd;
ipf_fix_datacksum(&oip->ip_sum, sumd);
}
sumd2 = sumd;
sum1 = 0;
sum2 = 0;
/*
* Fix UDP pseudo header checksum to compensate for the
* IP address change.
*/
if (((flags & IPN_TCPUDP) != 0) && (dlen >= 4)) {
u_32_t sum3, sum4;
/*
* Step 2 :
* For offending TCP/UDP IP packets, translate the ports as
* well, based on the NAT specification. Of course such
* a change may be reflected in the ICMP checksum as well.
*
* Since the port fields are part of the TCP/UDP checksum
* of the offending IP packet, you need to adjust that checksum
* as well... except that the change in the port numbers should
* be offset by the checksum change. However, the TCP/UDP
* checksum will also need to change if there has been an
* IP address change.
*/
if (odst == 1) {
sum1 = ntohs(nat->nat_osport);
sum4 = ntohs(tcp->th_sport);
sum3 = ntohs(nat->nat_odport);
sum2 = ntohs(tcp->th_dport);
tcp->th_sport = htons(sum1);
tcp->th_dport = htons(sum3);
} else {
sum1 = ntohs(nat->nat_ndport);
sum2 = ntohs(tcp->th_dport);
sum3 = ntohs(nat->nat_nsport);
sum4 = ntohs(tcp->th_sport);
tcp->th_dport = htons(sum3);
tcp->th_sport = htons(sum1);
}
sumd += sum1 - sum4;
sumd += sum3 - sum2;
if (sumd != 0 || sumd2 != 0) {
/*
* At this point, sumd is the delta to apply to the
* TCP/UDP header, given the changes in both the IP
* address and the ports and sumd2 is the delta to
* apply to the ICMP header, given the IP address
* change delta that may need to be applied to the
* TCP/UDP checksum instead.
*
* If we will both the IP and TCP/UDP checksums
* then the ICMP checksum changes by the address
* delta applied to the TCP/UDP checksum. If we
* do not change the TCP/UDP checksum them we
* apply the delta in ports to the ICMP checksum.
*/
if (oip->ip_p == IPPROTO_UDP) {
if ((dlen >= 8) && (*csump != 0)) {
ipf_fix_datacksum(csump, sumd);
} else {
sumd2 = sum4 - sum1;
if (sum1 > sum4)
sumd2--;
sumd2 += sum2 - sum3;
if (sum3 > sum2)
sumd2--;
}
} else if (oip->ip_p == IPPROTO_TCP) {
if (dlen >= 18) {
ipf_fix_datacksum(csump, sumd);
} else {
sumd2 = sum4 - sum1;
if (sum1 > sum4)
sumd2--;
sumd2 += sum2 - sum3;
if (sum3 > sum2)
sumd2--;
}
}
if (sumd2 != 0) {
sumd2 = (sumd2 & 0xffff) + (sumd2 >> 16);
sumd2 = (sumd2 & 0xffff) + (sumd2 >> 16);
sumd2 = (sumd2 & 0xffff) + (sumd2 >> 16);
ipf_fix_incksum(fin, &icmp->icmp_cksum, sumd2);
}
}
} else if (((flags & IPN_ICMPQUERY) != 0) && (dlen >= 8)) {
icmphdr_t *orgicmp;
/*
* XXX - what if this is bogus hl and we go off the end ?
* In this case, ipf_nat_icmperrorlookup() will have
* returned NULL.
*/
orgicmp = (icmphdr_t *)dp;
if (odst == 1) {
if (orgicmp->icmp_id != nat->nat_osport) {
/*
* Fix ICMP checksum (of the offening ICMP
* query packet) to compensate the change
* in the ICMP id of the offending ICMP
* packet.
*
* Since you modify orgicmp->icmp_id with
* a delta (say x) and you compensate that
* in origicmp->icmp_cksum with a delta
* minus x, you don't have to adjust the
* overall icmp->icmp_cksum
*/
sum1 = ntohs(orgicmp->icmp_id);
sum2 = ntohs(nat->nat_osport);
CALC_SUMD(sum1, sum2, sumd);
orgicmp->icmp_id = nat->nat_oicmpid;
ipf_fix_datacksum(&orgicmp->icmp_cksum, sumd);
}
} /* nat_dir == NAT_INBOUND is impossible for icmp queries */
}
return nat;
}
/*
* MAP-IN MAP-OUT RDR-IN RDR-OUT
* osrc X == src == src X
* odst X == dst == dst X
* nsrc == dst X X == dst
* ndst == src X X == src
* MAP = NAT_OUTBOUND, RDR = NAT_INBOUND
*/
/*
* NB: these lookups don't lock access to the list, it assumed that it has
* already been done!
*/
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_inlookup */
/* Returns: nat_t* - NULL == no match, */
/* else pointer to matching NAT entry */
/* Parameters: fin(I) - pointer to packet information */
/* flags(I) - NAT flags for this packet */
/* p(I) - protocol for this packet */
/* src(I) - source IP address */
/* mapdst(I) - destination IP address */
/* */
/* Lookup a nat entry based on the mapped destination ip address/port and */
/* real source address/port. We use this lookup when receiving a packet, */
/* we're looking for a table entry, based on the destination address. */
/* */
/* NOTE: THE PACKET BEING CHECKED (IF FOUND) HAS A MAPPING ALREADY. */
/* */
/* NOTE: IT IS ASSUMED THAT IS ONLY HELD WITH A READ LOCK WHEN */
/* THIS FUNCTION IS CALLED WITH NAT_SEARCH SET IN nflags. */
/* */
/* flags -> relevant are IPN_UDP/IPN_TCP/IPN_ICMPQUERY that indicate if */
/* the packet is of said protocol */
/* ------------------------------------------------------------------------ */
nat_t *
ipf_nat_inlookup(fin, flags, p, src, mapdst)
fr_info_t *fin;
u_int flags, p;
struct in_addr src , mapdst;
{
u_short sport, dport;
grehdr_t *gre;
ipnat_t *ipn;
u_int sflags;
nat_t *nat;
int nflags;
u_32_t dst;
void *ifp;
u_int hv;
ifp = fin->fin_ifp;
sport = 0;
dport = 0;
gre = NULL;
dst = mapdst.s_addr;
sflags = flags & NAT_TCPUDPICMP;
switch (p)
{
case IPPROTO_TCP :
case IPPROTO_UDP :
sport = htons(fin->fin_data[0]);
dport = htons(fin->fin_data[1]);
break;
case IPPROTO_ICMP :
if (flags & IPN_ICMPERR)
sport = fin->fin_data[1];
else
dport = fin->fin_data[1];
break;
default :
break;
}
if ((flags & SI_WILDP) != 0)
goto find_in_wild_ports;
hv = NAT_HASH_FN(dst, dport, 0xffffffff);
hv = NAT_HASH_FN(src.s_addr, hv + sport, ipf_nat_table_sz);
nat = ipf_nat_table[1][hv];
/* TRACE dst, dport, src, sport, hv, nat */
for (; nat; nat = nat->nat_hnext[1]) {
if (nat->nat_ifps[0] != NULL) {
if ((ifp != NULL) && (ifp != nat->nat_ifps[0]))
continue;
}
if ((p != 0) && (nat->nat_pr[0] != p))
continue;
switch (nat->nat_dir)
{
case NAT_INBOUND :
if (nat->nat_osrcaddr != src.s_addr ||
nat->nat_odstaddr != dst)
continue;
if ((nat->nat_flags & IPN_TCPUDP) != 0) {
if (nat->nat_osport != sport)
continue;
if (nat->nat_odport != dport)
continue;
} else if (p == IPPROTO_ICMP) {
if (nat->nat_osport != dport) {
continue;
}
}
break;
case NAT_OUTBOUND :
if (nat->nat_ndstaddr != src.s_addr ||
nat->nat_nsrcaddr != dst)
continue;
if ((nat->nat_flags & IPN_TCPUDP) != 0) {
if (nat->nat_ndport != sport)
continue;
if (nat->nat_nsport != dport)
continue;
} else if (p == IPPROTO_ICMP) {
if (nat->nat_osport != dport) {
continue;
}
}
break;
}
if ((nat->nat_flags & IPN_TCPUDP) != 0) {
ipn = nat->nat_ptr;
if ((ipn != NULL) && (nat->nat_aps != NULL))
if (appr_match(fin, nat) != 0)
continue;
}
if (ifp != NULL) {
nat->nat_ifps[0] = ifp;
nat->nat_mtu[0] = GETIFMTU(ifp);
}
return nat;
}
/*
* So if we didn't find it but there are wildcard members in the hash
* table, go back and look for them. We do this search and update here
* because it is modifying the NAT table and we want to do this only
* for the first packet that matches. The exception, of course, is
* for "dummy" (FI_IGNORE) lookups.
*/
find_in_wild_ports:
if (!(flags & NAT_TCPUDP) || !(flags & NAT_SEARCH)) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_lookup_miss);
return NULL;
}
if (ipf_nat_stats.ns_wilds == 0) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_lookup_nowild);
return NULL;
}
RWLOCK_EXIT(&ipf_nat);
hv = NAT_HASH_FN(dst, 0, 0xffffffff);
hv = NAT_HASH_FN(src.s_addr, hv, ipf_nat_table_sz);
WRITE_ENTER(&ipf_nat);
nat = ipf_nat_table[1][hv];
/* TRACE dst, src, hv, nat */
for (; nat; nat = nat->nat_hnext[1]) {
if (nat->nat_ifps[0] != NULL) {
if ((ifp != NULL) && (ifp != nat->nat_ifps[0]))
continue;
}
if (nat->nat_pr[0] != fin->fin_p)
continue;
switch (nat->nat_dir)
{
case NAT_INBOUND :
if (nat->nat_osrcaddr != src.s_addr ||
nat->nat_odstaddr != dst)
continue;
break;
case NAT_OUTBOUND :
if (nat->nat_ndstaddr != src.s_addr ||
nat->nat_nsrcaddr != dst)
continue;
break;
}
nflags = nat->nat_flags;
if (!(nflags & (NAT_TCPUDP|SI_WILDP)))
continue;
if (ipf_nat_wildok(nat, (int)sport, (int)dport, nflags,
NAT_INBOUND) == 1) {
if ((fin->fin_flx & FI_IGNORE) != 0)
break;
if ((nflags & SI_CLONE) != 0) {
nat = ipf_nat_clone(fin, nat);
if (nat == NULL)
break;
} else {
MUTEX_ENTER(&ipf_nat_new);
ipf_nat_stats.ns_wilds--;
MUTEX_EXIT(&ipf_nat_new);
}
if (nat->nat_dir == NAT_INBOUND) {
if (nat->nat_osport == 0) {
nat->nat_osport = sport;
nat->nat_nsport = sport;
}
if (nat->nat_odport == 0) {
nat->nat_odport = dport;
nat->nat_ndport = dport;
}
} else {
if (nat->nat_osport == 0) {
nat->nat_osport = dport;
nat->nat_nsport = dport;
}
if (nat->nat_odport == 0) {
nat->nat_odport = sport;
nat->nat_ndport = sport;
}
}
if (ifp != NULL) {
nat->nat_ifps[0] = ifp;
nat->nat_mtu[0] = GETIFMTU(ifp);
}
nat->nat_flags &= ~(SI_W_DPORT|SI_W_SPORT);
ipf_nat_tabmove(nat);
break;
}
}
MUTEX_DOWNGRADE(&ipf_nat);
if (nat == NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_lookup_miss);
}
return nat;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_tabmove */
/* Returns: Nil */
/* Parameters: nat(I) - pointer to NAT structure */
/* Write Lock: */
/* */
/* This function is only called for TCP/UDP NAT table entries where the */
/* original was placed in the table without hashing on the ports and we now */
/* want to include hashing on port numbers. */
/* ------------------------------------------------------------------------ */
static void
ipf_nat_tabmove(nat)
nat_t *nat;
{
nat_t **natp;
u_int hv0, hv1;
if (nat->nat_flags & SI_CLONE)
return;
/*
* Remove the NAT entry from the old location
*/
if (nat->nat_hnext[0])
nat->nat_hnext[0]->nat_phnext[0] = nat->nat_phnext[0];
*nat->nat_phnext[0] = nat->nat_hnext[0];
ipf_nat_stats.ns_side[0].ns_bucketlen[nat->nat_hv[0]]--;
if (nat->nat_hnext[1])
nat->nat_hnext[1]->nat_phnext[1] = nat->nat_phnext[1];
*nat->nat_phnext[1] = nat->nat_hnext[1];
ipf_nat_stats.ns_side[1].ns_bucketlen[nat->nat_hv[1]]--;
/*
* Add into the NAT table in the new position
*/
hv0 = NAT_HASH_FN(nat->nat_osrcaddr, nat->nat_osport, 0xffffffff);
hv0 = NAT_HASH_FN(nat->nat_odstaddr, hv0 + nat->nat_odport,
ipf_nat_table_sz);
hv1 = NAT_HASH_FN(nat->nat_nsrcaddr, nat->nat_nsport, 0xffffffff);
hv1 = NAT_HASH_FN(nat->nat_ndstaddr, hv1 + nat->nat_ndport,
ipf_nat_table_sz);
if (nat->nat_dir == NAT_INBOUND || nat->nat_dir == NAT_ENCAPIN ||
nat->nat_dir == NAT_DIVERTIN) {
u_int swap;
swap = hv0;
hv0 = hv1;
hv1 = swap;
}
/* TRACE nat_osrcaddr, nat_osport, nat_odstaddr, nat_odport, hv0 */
/* TRACE nat_nsrcaddr, nat_nsport, nat_ndstaddr, nat_ndport, hv1 */
nat->nat_hv[0] = hv0;
natp = &ipf_nat_table[0][hv0];
if (*natp)
(*natp)->nat_phnext[0] = &nat->nat_hnext[0];
nat->nat_phnext[0] = natp;
nat->nat_hnext[0] = *natp;
*natp = nat;
ipf_nat_stats.ns_side[0].ns_bucketlen[hv0]++;
nat->nat_hv[1] = hv1;
natp = &ipf_nat_table[1][hv1];
if (*natp)
(*natp)->nat_phnext[1] = &nat->nat_hnext[1];
nat->nat_phnext[1] = natp;
nat->nat_hnext[1] = *natp;
*natp = nat;
ipf_nat_stats.ns_side[1].ns_bucketlen[hv1]++;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_outlookup */
/* Returns: nat_t* - NULL == no match, */
/* else pointer to matching NAT entry */
/* Parameters: fin(I) - pointer to packet information */
/* flags(I) - NAT flags for this packet */
/* p(I) - protocol for this packet */
/* src(I) - source IP address */
/* dst(I) - destination IP address */
/* rw(I) - 1 == write lock on held, 0 == read lock. */
/* */
/* Lookup a nat entry based on the source 'real' ip address/port and */
/* destination address/port. We use this lookup when sending a packet out, */
/* we're looking for a table entry, based on the source address. */
/* */
/* NOTE: THE PACKET BEING CHECKED (IF FOUND) HAS A MAPPING ALREADY. */
/* */
/* NOTE: IT IS ASSUMED THAT IS ONLY HELD WITH A READ LOCK WHEN */
/* THIS FUNCTION IS CALLED WITH NAT_SEARCH SET IN nflags. */
/* */
/* flags -> relevant are IPN_UDP/IPN_TCP/IPN_ICMPQUERY that indicate if */
/* the packet is of said protocol */
/* ------------------------------------------------------------------------ */
nat_t *
ipf_nat_outlookup(fin, flags, p, src, dst)
fr_info_t *fin;
u_int flags, p;
struct in_addr src , dst;
{
u_short sport, dport;
u_int sflags;
ipnat_t *ipn;
nat_t *nat;
void *ifp;
u_int hv;
ifp = fin->fin_ifp;
sflags = flags & IPN_TCPUDPICMP;
sport = 0;
dport = 0;
switch (p)
{
case IPPROTO_TCP :
case IPPROTO_UDP :
sport = htons(fin->fin_data[0]);
dport = htons(fin->fin_data[1]);
break;
case IPPROTO_ICMP :
if (flags & IPN_ICMPERR)
sport = fin->fin_data[1];
else
dport = fin->fin_data[1];
break;
default :
break;
}
if ((flags & SI_WILDP) != 0)
goto find_out_wild_ports;
hv = NAT_HASH_FN(src.s_addr, sport, 0xffffffff);
hv = NAT_HASH_FN(dst.s_addr, hv + dport, ipf_nat_table_sz);
nat = ipf_nat_table[0][hv];
/* TRACE src, sport, dst, dport, hv, nat */
for (; nat; nat = nat->nat_hnext[0]) {
if (nat->nat_ifps[1] != NULL) {
if ((ifp != NULL) && (ifp != nat->nat_ifps[1]))
continue;
}
if ((p != 0) && (nat->nat_pr[1] != p))
continue;
switch (nat->nat_dir)
{
case NAT_INBOUND :
if (nat->nat_ndstaddr != src.s_addr ||
nat->nat_nsrcaddr != dst.s_addr)
continue;
if ((nat->nat_flags & IPN_TCPUDP) != 0) {
if (nat->nat_ndport != sport)
continue;
if (nat->nat_nsport != dport)
continue;
} else if (p == IPPROTO_ICMP) {
if (nat->nat_osport != dport) {
continue;
}
}
break;
case NAT_OUTBOUND :
if (nat->nat_osrcaddr != src.s_addr ||
nat->nat_odstaddr != dst.s_addr)
continue;
if ((nat->nat_flags & IPN_TCPUDP) != 0) {
if (nat->nat_odport != dport)
continue;
if (nat->nat_osport != sport)
continue;
} else if (p == IPPROTO_ICMP) {
if (nat->nat_osport != dport) {
continue;
}
}
break;
}
ipn = nat->nat_ptr;
if ((ipn != NULL) && (nat->nat_aps != NULL))
if (appr_match(fin, nat) != 0)
continue;
if (ifp != NULL) {
nat->nat_ifps[1] = ifp;
nat->nat_mtu[1] = GETIFMTU(ifp);
}
return nat;
}
/*
* So if we didn't find it but there are wildcard members in the hash
* table, go back and look for them. We do this search and update here
* because it is modifying the NAT table and we want to do this only
* for the first packet that matches. The exception, of course, is
* for "dummy" (FI_IGNORE) lookups.
*/
find_out_wild_ports:
if (!(flags & NAT_TCPUDP) || !(flags & NAT_SEARCH)) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_lookup_miss);
return NULL;
}
if (ipf_nat_stats.ns_wilds == 0) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_lookup_nowild);
return NULL;
}
RWLOCK_EXIT(&ipf_nat);
hv = NAT_HASH_FN(src.s_addr, 0, 0xffffffff);
hv = NAT_HASH_FN(dst.s_addr, hv, ipf_nat_table_sz);
WRITE_ENTER(&ipf_nat);
nat = ipf_nat_table[0][hv];
for (; nat; nat = nat->nat_hnext[0]) {
if (nat->nat_ifps[1] != NULL) {
if ((ifp != NULL) && (ifp != nat->nat_ifps[1]))
continue;
}
if (nat->nat_pr[1] != fin->fin_p)
continue;
switch (nat->nat_dir)
{
case NAT_INBOUND :
if (nat->nat_ndstaddr != src.s_addr ||
nat->nat_nsrcaddr != dst.s_addr)
continue;
break;
case NAT_OUTBOUND :
if (nat->nat_osrcaddr != src.s_addr ||
nat->nat_odstaddr != dst.s_addr)
continue;
break;
}
if (!(nat->nat_flags & (NAT_TCPUDP|SI_WILDP)))
continue;
if (ipf_nat_wildok(nat, (int)sport, (int)dport, nat->nat_flags,
NAT_OUTBOUND) == 1) {
if ((fin->fin_flx & FI_IGNORE) != 0)
break;
if ((nat->nat_flags & SI_CLONE) != 0) {
nat = ipf_nat_clone(fin, nat);
if (nat == NULL)
break;
} else {
MUTEX_ENTER(&ipf_nat_new);
ipf_nat_stats.ns_wilds--;
MUTEX_EXIT(&ipf_nat_new);
}
if (nat->nat_dir == NAT_OUTBOUND) {
if (nat->nat_osport == 0) {
nat->nat_osport = sport;
nat->nat_nsport = sport;
}
if (nat->nat_odport == 0) {
nat->nat_odport = dport;
nat->nat_ndport = dport;
}
} else {
if (nat->nat_osport == 0) {
nat->nat_osport = dport;
nat->nat_nsport = dport;
}
if (nat->nat_odport == 0) {
nat->nat_odport = sport;
nat->nat_ndport = sport;
}
}
if (ifp != NULL) {
nat->nat_ifps[1] = ifp;
nat->nat_mtu[1] = GETIFMTU(ifp);
}
nat->nat_flags &= ~(SI_W_DPORT|SI_W_SPORT);
ipf_nat_tabmove(nat);
break;
}
}
MUTEX_DOWNGRADE(&ipf_nat);
if (nat == NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_lookup_miss);
}
return nat;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_lookupredir */
/* Returns: nat_t* - NULL == no match, */
/* else pointer to matching NAT entry */
/* Parameters: np(I) - pointer to description of packet to find NAT table */
/* entry for. */
/* */
/* Lookup the NAT tables to search for a matching redirect */
/* The contents of natlookup_t should imitate those found in a packet that */
/* would be translated - ie a packet coming in for RDR or going out for MAP.*/
/* We can do the lookup in one of two ways, imitating an inbound or */
/* outbound packet. By default we assume outbound, unless IPN_IN is set. */
/* For IN, the fields are set as follows: */
/* nl_real* = source information */
/* nl_out* = destination information (translated) */
/* For an out packet, the fields are set like this: */
/* nl_in* = source information (untranslated) */
/* nl_out* = destination information (translated) */
/* ------------------------------------------------------------------------ */
nat_t *
ipf_nat_lookupredir(np)
natlookup_t *np;
{
fr_info_t fi;
nat_t *nat;
bzero((char *)&fi, sizeof(fi));
if (np->nl_flags & IPN_IN) {
fi.fin_data[0] = ntohs(np->nl_realport);
fi.fin_data[1] = ntohs(np->nl_outport);
} else {
fi.fin_data[0] = ntohs(np->nl_inport);
fi.fin_data[1] = ntohs(np->nl_outport);
}
if (np->nl_flags & IPN_TCP)
fi.fin_p = IPPROTO_TCP;
else if (np->nl_flags & IPN_UDP)
fi.fin_p = IPPROTO_UDP;
else if (np->nl_flags & (IPN_ICMPERR|IPN_ICMPQUERY))
fi.fin_p = IPPROTO_ICMP;
/*
* We can do two sorts of lookups:
* - IPN_IN: we have the `real' and `out' address, look for `in'.
* - default: we have the `in' and `out' address, look for `real'.
*/
if (np->nl_flags & IPN_IN) {
if ((nat = ipf_nat_inlookup(&fi, np->nl_flags, fi.fin_p,
np->nl_realip, np->nl_outip))) {
np->nl_inip = nat->nat_odstip;
np->nl_inport = nat->nat_odport;
}
} else {
/*
* If nl_inip is non null, this is a lookup based on the real
* ip address. Else, we use the fake.
*/
if ((nat = ipf_nat_outlookup(&fi, np->nl_flags, fi.fin_p,
np->nl_inip, np->nl_outip))) {
if ((np->nl_flags & IPN_FINDFORWARD) != 0) {
fr_info_t fin;
bzero((char *)&fin, sizeof(fin));
fin.fin_p = nat->nat_pr[0];
fin.fin_data[0] = ntohs(nat->nat_ndport);
fin.fin_data[1] = ntohs(nat->nat_nsport);
if (ipf_nat_inlookup(&fin, np->nl_flags,
fin.fin_p, nat->nat_ndstip,
nat->nat_nsrcip) != NULL) {
np->nl_flags &= ~IPN_FINDFORWARD;
}
}
np->nl_realip = nat->nat_ndstip;
np->nl_realport = nat->nat_ndport;
}
}
return nat;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_match_v4 */
/* Returns: int - 0 == no match, 1 == match */
/* Parameters: fin(I) - pointer to packet information */
/* np(I) - pointer to NAT rule */
/* */
/* Pull the matching of a packet against a NAT rule out of that complex */
/* loop inside ipf_nat_checkin() and lay it out properly in its own function. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_match_v4(fin, np)
fr_info_t *fin;
ipnat_t *np;
{
frtuc_t *ft;
int match;
if ((fin->fin_p == IPPROTO_ENCAP) && (np->in_redir & NAT_ENCAP))
return ipf_nat_matchencap(fin, np);
match = 0;
switch (np->in_osrcatype)
{
case FRI_NORMAL :
match = ((fin->fin_saddr & np->in_osrcmsk) != np->in_osrcaddr);
break;
#ifdef IPFILTER_LOOKUP
case FRI_LOOKUP :
match = (*np->in_osrcfunc)(np->in_osrcptr, np->in_v,
&fin->fin_saddr);
break;
#endif
}
match ^= ((np->in_flags & IPN_NOTSRC) != 0);
if (match)
return 0;
match = 0;
switch (np->in_odstatype)
{
case FRI_NORMAL :
match = ((fin->fin_daddr & np->in_odstmsk) != np->in_odstaddr);
break;
#ifdef IPFILTER_LOOKUP
case FRI_LOOKUP :
match = (*np->in_odstfunc)(np->in_odstptr, fin->fin_v,
&fin->fin_daddr);
break;
#endif
}
match ^= ((np->in_flags & IPN_NOTDST) != 0);
if (match)
return 0;
ft = &np->in_tuc;
if (!(fin->fin_flx & FI_TCPUDP) ||
(fin->fin_flx & (FI_SHORT|FI_FRAGBODY))) {
if (ft->ftu_scmp || ft->ftu_dcmp)
return 0;
return 1;
}
return ipf_tcpudpchk(&fin->fin_fi, ft);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_update */
/* Returns: Nil */
/* Parameters: nat(I) - pointer to NAT structure */
/* np(I) - pointer to NAT rule */
/* */
/* Updates the lifetime of a NAT table entry for non-TCP packets. Must be */
/* called with fin_rev updated - i.e. after calling ipf_nat_proto(). */
/* ------------------------------------------------------------------------ */
void
ipf_nat_update(fin, nat, np)
fr_info_t *fin;
nat_t *nat;
ipnat_t *np;
{
ipftq_t *ifq, *ifq2;
ipftqent_t *tqe;
MUTEX_ENTER(&nat->nat_lock);
tqe = &nat->nat_tqe;
ifq = tqe->tqe_ifq;
/*
* We allow over-riding of NAT timeouts from NAT rules, even for
* TCP, however, if it is TCP and there is no rule timeout set,
* then do not update the timeout here.
*/
if (np != NULL)
ifq2 = np->in_tqehead[fin->fin_rev];
else
ifq2 = NULL;
if (nat->nat_pr[0] == IPPROTO_TCP && ifq2 == NULL) {
(void) ipf_tcp_age(&nat->nat_tqe, fin, ipf_nat_tqb, 0, 2);
} else {
if (ifq2 == NULL) {
if (nat->nat_pr[0] == IPPROTO_UDP)
ifq2 = &ipf_nat_udptq;
else if (nat->nat_pr[0] == IPPROTO_ICMP)
ifq2 = &ipf_nat_icmptq;
else
ifq2 = &ipf_nat_iptq;
}
ipf_movequeue(tqe, ifq, ifq2);
}
MUTEX_EXIT(&nat->nat_lock);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_ipfout */
/* Returns: frentry_t* - NULL (packet may have been translated, let it */
/* pass), &ipfnatblock - block/drop the packet. */
/* Parameters: fin(I) - pointer to packet information */
/* passp(I) - point to filtering result flags */
/* */
/* This is purely and simply a wrapper around ipf_nat_checkout for the sole */
/* reason of being able to activate NAT from an ipf rule using "call-now". */
/* ------------------------------------------------------------------------ */
frentry_t *
ipf_nat_ipfout(fin, passp)
fr_info_t *fin;
u_32_t *passp;
{
frentry_t *fr = fin->fin_fr;
switch (ipf_nat_checkout(fin, passp))
{
case -1 :
fin->fin_reason = 13;
fr = &ipfnatblock;
MUTEX_ENTER(&fr->fr_lock);
fr->fr_ref++;
MUTEX_EXIT(&fr->fr_lock);
return fr;
case 0 :
break;
case 1 :
/*
* Returing NULL causes this rule to be "ignored" but
* it has actually had an influence on the packet so we
* increment counters for it.
*/
MUTEX_ENTER(&fr->fr_lock);
fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
fr->fr_hits++;
MUTEX_EXIT(&fr->fr_lock);
break;
}
return NULL;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_checkout */
/* Returns: int - -1 == packet failed NAT checks so block it, */
/* 0 == no packet translation occurred, */
/* 1 == packet was successfully translated. */
/* Parameters: fin(I) - pointer to packet information */
/* passp(I) - pointer to filtering result flags */
/* */
/* Check to see if an outcoming packet should be changed. ICMP packets are */
/* first checked to see if they match an existing entry (if an error), */
/* otherwise a search of the current NAT table is made. If neither results */
/* in a match then a search for a matching NAT rule is made. Create a new */
/* NAT entry if a we matched a NAT rule. Lastly, actually change the */
/* packet header(s) as required. */
/* ------------------------------------------------------------------------ */
int
ipf_nat_checkout(fin, passp)
fr_info_t *fin;
u_32_t *passp;
{
struct ifnet *ifp, *sifp;
icmphdr_t *icmp = NULL;
tcphdr_t *tcp = NULL;
int rval, natfailed;
ipnat_t *np = NULL;
u_int nflags = 0;
u_32_t ipa, iph;
int natadd = 1;
frentry_t *fr;
nat_t *nat;
if (ipf_nat_stats.ns_rules == 0 || ipf_nat_lock != 0)
return 0;
natfailed = 0;
fr = fin->fin_fr;
sifp = fin->fin_ifp;
if (fr != NULL) {
ifp = fr->fr_tifs[fin->fin_rev].fd_ifp;
if ((ifp != NULL) && (ifp != (void *)-1))
fin->fin_ifp = ifp;
}
ifp = fin->fin_ifp;
if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) {
switch (fin->fin_p)
{
case IPPROTO_TCP :
nflags = IPN_TCP;
break;
case IPPROTO_UDP :
nflags = IPN_UDP;
break;
case IPPROTO_ICMP :
icmp = fin->fin_dp;
/*
* This is an incoming packet, so the destination is
* the icmp_id and the source port equals 0
*/
if ((fin->fin_flx & FI_ICMPQUERY) != 0)
nflags = IPN_ICMPQUERY;
break;
default :
break;
}
if ((nflags & IPN_TCPUDP))
tcp = fin->fin_dp;
}
ipa = fin->fin_saddr;
READ_ENTER(&ipf_nat);
if ((fin->fin_p == IPPROTO_ICMP) && !(nflags & IPN_ICMPQUERY) &&
(nat = ipf_nat_icmperror(fin, &nflags, NAT_OUTBOUND)))
/*EMPTY*/;
else if ((fin->fin_flx & FI_FRAG) && (nat = ipf_frag_natknown(fin)))
natadd = 0;
else if ((nat = ipf_nat_outlookup(fin, nflags|NAT_SEARCH,
(u_int)fin->fin_p, fin->fin_src,
fin->fin_dst))) {
nflags = nat->nat_flags;
} else {
u_32_t hv, msk, nmsk;
/*
* If there is no current entry in the nat table for this IP#,
* create one for it (if there is a matching rule).
*/
RWLOCK_EXIT(&ipf_nat);
msk = 0xffffffff;
nmsk = ipf_nat_map_masks;
WRITE_ENTER(&ipf_nat);
maskloop:
iph = ipa & htonl(msk);
hv = NAT_HASH_FN(iph, 0, ipf_nat_maprules_sz);
for (np = ipf_nat_map_rules[hv]; np; np = np->in_mnext)
{
if ((np->in_ifps[1] && (np->in_ifps[1] != ifp)))
continue;
if (np->in_v != fin->fin_v)
continue;
if (np->in_pr[1] && (np->in_pr[1] != fin->fin_p))
continue;
if ((np->in_flags & IPN_RF) &&
!(np->in_flags & nflags))
continue;
if (np->in_flags & IPN_FILTER) {
switch (ipf_nat_match_v4(fin, np))
{
case 0 :
continue;
case -1 :
rval = -1;
goto outmatchfail;
case 1 :
default :
break;
}
} else if ((ipa & np->in_osrcaddr) != np->in_osrcaddr)
continue;
if ((fr != NULL) &&
!ipf_matchtag(&np->in_tag, &fr->fr_nattag))
continue;
if (*np->in_plabel != '\0') {
if (((np->in_flags & IPN_FILTER) == 0) &&
(np->in_odport != fin->fin_data[1]))
continue;
if (appr_ok(fin, tcp, np) == 0)
continue;
}
if (np->in_flags & IPN_NO) {
np->in_hits++;
break;
}
if ((nat = ipf_nat_add(fin, np, NULL, nflags,
NAT_OUTBOUND))) {
np->in_hits++;
break;
} else
natfailed = -1;
}
if ((np == NULL) && (nmsk != 0)) {
while (nmsk) {
msk <<= 1;
if (nmsk & 0x80000000)
break;
nmsk <<= 1;
}
if (nmsk != 0) {
nmsk <<= 1;
goto maskloop;
}
}
MUTEX_DOWNGRADE(&ipf_nat);
}
if (nat != NULL) {
rval = ipf_nat_out(fin, nat, natadd, nflags);
if (rval == 1) {
MUTEX_ENTER(&nat->nat_lock);
nat->nat_ref++;
MUTEX_EXIT(&nat->nat_lock);
nat->nat_touched = ipf_ticks;
fin->fin_nat = nat;
}
} else
rval = natfailed;
outmatchfail:
RWLOCK_EXIT(&ipf_nat);
switch (rval)
{
case -1 :
if (passp != NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_drop);
*passp = FR_BLOCK;
fin->fin_reason = 11;
}
fin->fin_flx |= FI_BADNAT;
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_badnat);
break;
case 0 :
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_ignored);
break;
case 1 :
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_translated);
break;
}
fin->fin_ifp = sifp;
return rval;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_out */
/* Returns: int - -1 == packet failed NAT checks so block it, */
/* 1 == packet was successfully translated. */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to NAT structure */
/* natadd(I) - flag indicating if it is safe to add frag cache */
/* nflags(I) - NAT flags set for this packet */
/* */
/* Translate a packet coming "out" on an interface. */
/* ------------------------------------------------------------------------ */
int
ipf_nat_out(fin, nat, natadd, nflags)
fr_info_t *fin;
nat_t *nat;
int natadd;
u_32_t nflags;
{
icmphdr_t *icmp;
u_short *csump;
tcphdr_t *tcp;
ipnat_t *np;
int skip;
int i;
tcp = NULL;
icmp = NULL;
csump = NULL;
np = nat->nat_ptr;
if ((natadd != 0) && (fin->fin_flx & FI_FRAG) && (np != NULL))
(void) ipf_frag_natnew(fin, 0, nat);
MUTEX_ENTER(&nat->nat_lock);
nat->nat_bytes[1] += fin->fin_plen;
nat->nat_pkts[1]++;
MUTEX_EXIT(&nat->nat_lock);
/*
* Fix up checksums, not by recalculating them, but
* simply computing adjustments.
* This is only done for STREAMS based IP implementations where the
* checksum has already been calculated by IP. In all other cases,
* IPFilter is called before the checksum needs calculating so there
* is no call to modify whatever is in the header now.
*/
if (fin->fin_v == 4) {
if (nflags == IPN_ICMPERR) {
u_32_t s1, s2, sumd, msumd;
s1 = LONG_SUM(ntohl(fin->fin_saddr));
if (nat->nat_dir == NAT_OUTBOUND) {
s2 = LONG_SUM(ntohl(nat->nat_nsrcaddr));
} else {
s2 = LONG_SUM(ntohl(nat->nat_odstaddr));
}
CALC_SUMD(s1, s2, sumd);
msumd = sumd;
s1 = LONG_SUM(ntohl(fin->fin_daddr));
if (nat->nat_dir == NAT_OUTBOUND) {
s2 = LONG_SUM(ntohl(nat->nat_ndstaddr));
} else {
s2 = LONG_SUM(ntohl(nat->nat_osrcaddr));
}
CALC_SUMD(s1, s2, sumd);
msumd += sumd;
ipf_fix_outcksum(fin, &fin->fin_ip->ip_sum, msumd);
}
#if !defined(_KERNEL) || defined(MENTAT) || defined(__sgi) || \
defined(linux) || defined(BRIDGE_IPF)
else {
/*
* Strictly speaking, this isn't necessary on BSD
* kernels because they do checksum calculation after
* this code has run BUT if ipfilter is being used
* to do NAT as a bridge, that code doesn't exist.
*/
switch (nat->nat_dir)
{
case NAT_OUTBOUND :
ipf_fix_outcksum(fin, &fin->fin_ip->ip_sum,
nat->nat_ipsumd);
break;
case NAT_INBOUND :
ipf_fix_incksum(fin, &fin->fin_ip->ip_sum,
nat->nat_ipsumd);
break;
default :
break;
}
}
#endif
}
/*
* Address assignment is after the checksum modification because
* we are using the address in the packet for determining the
* correct checksum offset (the ICMP error could be coming from
* anyone...)
*/
switch (nat->nat_dir)
{
case NAT_OUTBOUND :
fin->fin_ip->ip_src = nat->nat_nsrcip;
fin->fin_saddr = nat->nat_nsrcaddr;
fin->fin_ip->ip_dst = nat->nat_ndstip;
fin->fin_daddr = nat->nat_ndstaddr;
break;
case NAT_INBOUND :
fin->fin_ip->ip_src = nat->nat_odstip;
fin->fin_saddr = nat->nat_ndstaddr;
fin->fin_ip->ip_dst = nat->nat_osrcip;
fin->fin_daddr = nat->nat_nsrcaddr;
break;
case NAT_ENCAPIN :
fin->fin_flx |= FI_ENCAP;
case NAT_DIVERTIN :
{
mb_t *m;
skip = ipf_nat_decap(fin, nat);
if (skip <= 0) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_decap_fail);
return -1;
}
m = fin->fin_m;
#if defined(MENTAT) && defined(_KERNEL)
m->b_rptr += skip;
#else
m->m_data += skip;
m->m_len -= skip;
# ifdef M_PKTHDR
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len -= skip;
# endif
#endif
ipf_nat_update(fin, nat, np);
nflags &= ~IPN_TCPUDPICMP;
fin->fin_flx |= FI_NATED;
if (np != NULL && np->in_tag.ipt_num[0] != 0)
fin->fin_nattag = &np->in_tag;
return 1;
/* NOTREACHED */
}
case NAT_ENCAPOUT :
{
u_32_t s1, s2, sumd;
ip_t *ip;
mb_t *m;
if (ipf_nat_encapok(fin, nat) == -1)
return -1;
m = M_DUPLICATE(np->in_divmp);
if (m == NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_encap_dup);
return -1;
}
ip = MTOD(m, ip_t *);
/* TRACE (fin,ip) */
ip->ip_off = (fin->fin_ip->ip_off & htons(IP_DF));
ip->ip_id = htons(ipf_nextipid(fin));
ip->ip_len = htons(fin->fin_plen + 20);
s1 = 0;
/*
* We subtract 20 here because ip_len has already been set
* to this value when the template checksum is created.
*/
s2 = ntohs(ip->ip_id) + ntohs(ip->ip_len) - 20;
s2 += ntohs(ip->ip_off) & IP_DF;
/* TRACE (s1,s2,ip) */
CALC_SUMD(s1, s2, sumd);
/* TRACE (sumd) */
#if !defined(_KERNEL) || defined(MENTAT) || defined(__sgi) || \
defined(linux) || defined(BRIDGE_IPF)
ipf_fix_outcksum(fin, &ip->ip_sum, sumd);
#endif
/* TRACE (ip) */
PREP_MB_T(fin, m);
fin->fin_ip = ip;
fin->fin_plen += 20; /* UDP + new IPv4 hdr */
fin->fin_dlen += 20; /* UDP + old IPv4 hdr */
fin->fin_flx |= FI_ENCAP;
nflags &= ~IPN_TCPUDPICMP;
break;
}
case NAT_DIVERTOUT :
{
u_32_t s1, s2, sumd;
udphdr_t *uh;
ip_t *ip;
mb_t *m;
m = M_DUPLICATE(np->in_divmp);
if (m == NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_divert_dup);
return -1;
}
ip = MTOD(m, ip_t *);
ip->ip_id = htons(ipf_nextipid(fin));
s1 = ip->ip_len;
ip->ip_len = ntohs(ip->ip_len);
ip->ip_len += fin->fin_plen;
ip->ip_len = htons(ip->ip_len);
uh = (udphdr_t *)(ip + 1);
uh->uh_ulen += fin->fin_plen;
uh->uh_ulen = htons(uh->uh_ulen);
s2 = ntohs(ip->ip_id) + ntohs(ip->ip_len);
CALC_SUMD(s1, s2, sumd);
#if !defined(_KERNEL) || defined(MENTAT) || defined(__sgi) || \
defined(linux) || defined(BRIDGE_IPF)
ipf_fix_incksum(fin, &ip->ip_sum, sumd);
#endif
PREP_MB_T(fin, m);
fin->fin_ip = ip;
fin->fin_plen += 28; /* UDP + new IPv4 hdr */
fin->fin_dlen += 28; /* UDP + old IPv4 hdr */
nflags &= ~IPN_TCPUDPICMP;
break;
}
default :
break;
}
if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) {
if ((nat->nat_nsport != 0) && (nflags & IPN_TCPUDP)) {
tcp = fin->fin_dp;
switch (nat->nat_dir)
{
case NAT_OUTBOUND :
tcp->th_sport = nat->nat_nsport;
fin->fin_data[0] = ntohs(nat->nat_nsport);
tcp->th_dport = nat->nat_ndport;
fin->fin_data[0] = ntohs(nat->nat_ndport);
break;
case NAT_INBOUND :
tcp->th_sport = nat->nat_odport;
fin->fin_data[0] = ntohs(nat->nat_odport);
tcp->th_dport = nat->nat_osport;
fin->fin_data[0] = ntohs(nat->nat_osport);
break;
}
}
if ((nat->nat_nsport != 0) && (nflags & IPN_ICMPQUERY)) {
icmp = fin->fin_dp;
icmp->icmp_id = nat->nat_nicmpid;
}
csump = ipf_nat_proto(fin, nat, nflags);
}
ipf_nat_update(fin, nat, np);
/*
* The above comments do not hold for layer 4 (or higher) checksums...
*/
if (csump != NULL) {
if (nat->nat_dir == NAT_OUTBOUND)
ipf_fix_outcksum(fin, csump, nat->nat_sumd[1]);
else
ipf_fix_incksum(fin, csump, nat->nat_sumd[1]);
}
#ifdef IPFILTER_SYNC
ipf_sync_update(SMC_NAT, fin, nat->nat_sync);
#endif
/* ------------------------------------------------------------- */
/* A few quick notes: */
/* Following are test conditions prior to calling the */
/* appr_check routine. */
/* */
/* A NULL tcp indicates a non TCP/UDP packet. When dealing */
/* with a redirect rule, we attempt to match the packet's */
/* source port against in_dport, otherwise we'd compare the */
/* packet's destination. */
/* ------------------------------------------------------------- */
if ((np != NULL) && (np->in_apr != NULL)) {
i = appr_check(fin, nat);
if (i == 0)
i = 1;
else if (i == -1) {
ATOMIC_INCL(ipf_nat_stats.ns_side[1].ns_appr_fail);
}
} else {
i = 1;
}
fin->fin_flx |= FI_NATED;
return i;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_ipfin */
/* Returns: frentry_t* - NULL (packet may have been translated, let it */
/* pass), &ipfnatblock - block/drop the packet. */
/* Parameters: fin(I) - pointer to packet information */
/* passp(I) - point to filtering result flags */
/* */
/* This is purely and simply a wrapper around ipf_nat_checkin for the sole */
/* reason of being able to activate NAT from an ipf rule using "call-now". */
/* ------------------------------------------------------------------------ */
frentry_t *
ipf_nat_ipfin(fin, passp)
fr_info_t *fin;
u_32_t *passp;
{
frentry_t *fr = fin->fin_fr;
switch (ipf_nat_checkin(fin, passp))
{
case -1 :
fin->fin_reason = 13;
fr = &ipfnatblock;
MUTEX_ENTER(&fr->fr_lock);
fr->fr_ref++;
MUTEX_EXIT(&fr->fr_lock);
return fr;
case 0 :
return NULL;
case 1 :
/*
* Returing NULL causes this rule to be "ignored" but
* it has actually had an influence on the packet so we
* increment counters for it.
*/
MUTEX_ENTER(&fr->fr_lock);
fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
fr->fr_hits++;
MUTEX_EXIT(&fr->fr_lock);
return NULL;
}
return NULL;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_checkin */
/* Returns: int - -1 == packet failed NAT checks so block it, */
/* 0 == no packet translation occurred, */
/* 1 == packet was successfully translated. */
/* Parameters: fin(I) - pointer to packet information */
/* passp(I) - pointer to filtering result flags */
/* */
/* Check to see if an incoming packet should be changed. ICMP packets are */
/* first checked to see if they match an existing entry (if an error), */
/* otherwise a search of the current NAT table is made. If neither results */
/* in a match then a search for a matching NAT rule is made. Create a new */
/* NAT entry if a we matched a NAT rule. Lastly, actually change the */
/* packet header(s) as required. */
/* ------------------------------------------------------------------------ */
int
ipf_nat_checkin(fin, passp)
fr_info_t *fin;
u_32_t *passp;
{
u_int nflags, natadd;
int rval, natfailed;
struct ifnet *ifp;
struct in_addr in;
icmphdr_t *icmp;
tcphdr_t *tcp;
u_short dport;
ipnat_t *np;
nat_t *nat;
u_32_t iph;
if (ipf_nat_stats.ns_rules == 0 || ipf_nat_lock != 0)
return 0;
tcp = NULL;
icmp = NULL;
dport = 0;
natadd = 1;
nflags = 0;
natfailed = 0;
ifp = fin->fin_ifp;
if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) {
switch (fin->fin_p)
{
case IPPROTO_TCP :
nflags = IPN_TCP;
break;
case IPPROTO_UDP :
nflags = IPN_UDP;
break;
case IPPROTO_ICMP :
icmp = fin->fin_dp;
/*
* This is an incoming packet, so the destination is
* the icmp_id and the source port equals 0
*/
if ((fin->fin_flx & FI_ICMPQUERY) != 0) {
nflags = IPN_ICMPQUERY;
dport = icmp->icmp_id;
} break;
default :
break;
}
if ((nflags & IPN_TCPUDP)) {
tcp = fin->fin_dp;
dport = fin->fin_data[1];
}
}
in = fin->fin_dst;
READ_ENTER(&ipf_nat);
if ((fin->fin_p == IPPROTO_ICMP) && !(nflags & IPN_ICMPQUERY) &&
(nat = ipf_nat_icmperror(fin, &nflags, NAT_INBOUND)))
/*EMPTY*/;
else if ((fin->fin_flx & FI_FRAG) && (nat = ipf_frag_natknown(fin)))
natadd = 0;
else if ((nat = ipf_nat_inlookup(fin, nflags|NAT_SEARCH,
(u_int)fin->fin_p,
fin->fin_src, in))) {
nflags = nat->nat_flags;
} else {
u_32_t hv, msk, rmsk;
RWLOCK_EXIT(&ipf_nat);
rmsk = ipf_nat_rdr_masks;
msk = 0xffffffff;
WRITE_ENTER(&ipf_nat);
/*
* If there is no current entry in the nat table for this IP#,
* create one for it (if there is a matching rule).
*/
maskloop:
iph = in.s_addr & htonl(msk);
hv = NAT_HASH_FN(iph, 0, ipf_nat_rdrrules_sz);
/* TRACE (iph,msk,rmsk,hv,ipf_nat_rdrrules_sz) */
for (np = ipf_nat_rdr_rules[hv]; np; np = np->in_rnext) {
if (np->in_ifps[0] && (np->in_ifps[0] != ifp))
continue;
if (np->in_v != fin->fin_v)
continue;
if (np->in_pr[0] && (np->in_pr[0] != fin->fin_p))
continue;
if ((np->in_flags & IPN_RF) && !(np->in_flags & nflags))
continue;
if (np->in_flags & IPN_FILTER) {
switch (ipf_nat_match_v4(fin, np))
{
case 0 :
continue;
case -1 :
rval = -1;
goto inmatchfail;
case 1 :
default :
break;
}
} else {
if ((in.s_addr & np->in_odstmsk) !=
np->in_odstaddr)
continue;
if (np->in_odport &&
((np->in_dtop < dport) ||
(dport < np->in_odport)))
continue;
}
if (*np->in_plabel != '\0') {
if (!appr_ok(fin, tcp, np)) {
continue;
}
}
if (np->in_flags & IPN_NO) {
np->in_hits++;
break;
}
nat = ipf_nat_add(fin, np, NULL, nflags, NAT_INBOUND);
if (nat != NULL) {
np->in_hits++;
break;
} else
natfailed = -1;
}
if ((np == NULL) && (rmsk != 0)) {
while (rmsk) {
msk <<= 1;
if (rmsk & 0x80000000)
break;
rmsk <<= 1;
}
if (rmsk != 0) {
rmsk <<= 1;
goto maskloop;
}
}
MUTEX_DOWNGRADE(&ipf_nat);
}
if (nat != NULL) {
rval = ipf_nat_in(fin, nat, natadd, nflags);
if (rval == 1) {
MUTEX_ENTER(&nat->nat_lock);
nat->nat_ref++;
MUTEX_EXIT(&nat->nat_lock);
nat->nat_touched = ipf_ticks;
fin->fin_nat = nat;
}
} else
rval = natfailed;
inmatchfail:
RWLOCK_EXIT(&ipf_nat);
switch (rval)
{
case -1 :
if (passp != NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_drop);
*passp = FR_BLOCK;
fin->fin_reason = 12;
}
fin->fin_flx |= FI_BADNAT;
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_badnat);
break;
case 0 :
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_ignored);
break;
case 1 :
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_translated);
break;
}
return rval;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_in */
/* Returns: int - -1 == packet failed NAT checks so block it, */
/* 1 == packet was successfully translated. */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to NAT structure */
/* natadd(I) - flag indicating if it is safe to add frag cache */
/* nflags(I) - NAT flags set for this packet */
/* Locks Held: (READ) */
/* */
/* Translate a packet coming "in" on an interface. */
/* ------------------------------------------------------------------------ */
int
ipf_nat_in(fin, nat, natadd, nflags)
fr_info_t *fin;
nat_t *nat;
int natadd;
u_32_t nflags;
{
u_32_t sumd, ipsumd, sum1, sum2;
icmphdr_t *icmp;
u_short *csump;
tcphdr_t *tcp;
ipnat_t *np;
int skip;
int i;
tcp = NULL;
csump = NULL;
np = nat->nat_ptr;
fin->fin_fr = nat->nat_fr;
if (np != NULL) {
if ((natadd != 0) && (fin->fin_flx & FI_FRAG))
(void) ipf_frag_natnew(fin, 0, nat);
/* ------------------------------------------------------------- */
/* A few quick notes: */
/* Following are test conditions prior to calling the */
/* appr_check routine. */
/* */
/* A NULL tcp indicates a non TCP/UDP packet. When dealing */
/* with a map rule, we attempt to match the packet's */
/* source port against in_dport, otherwise we'd compare the */
/* packet's destination. */
/* ------------------------------------------------------------- */
if (np->in_apr != NULL) {
i = appr_check(fin, nat);
if (i == -1) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].
ns_appr_fail);
return -1;
}
}
}
#ifdef IPFILTER_SYNC
ipf_sync_update(SMC_NAT, fin, nat->nat_sync);
#endif
MUTEX_ENTER(&nat->nat_lock);
nat->nat_bytes[0] += fin->fin_plen;
nat->nat_pkts[0]++;
MUTEX_EXIT(&nat->nat_lock);
ipsumd = nat->nat_ipsumd;
/*
* Fix up checksums, not by recalculating them, but
* simply computing adjustments.
* Why only do this for some platforms on inbound packets ?
* Because for those that it is done, IP processing is yet to happen
* and so the IPv4 header checksum has not yet been evaluated.
* Perhaps it should always be done for the benefit of things like
* fast forwarding (so that it doesn't need to be recomputed) but with
* header checksum offloading, perhaps it is a moot point.
*/
switch (nat->nat_dir)
{
case NAT_INBOUND :
if ((fin->fin_flx & FI_ICMPERR) == 0) {
fin->fin_ip->ip_src = nat->nat_nsrcip;
fin->fin_saddr = nat->nat_nsrcaddr;
} else {
sum1 = nat->nat_osrcaddr;
sum2 = nat->nat_nsrcaddr;
CALC_SUMD(sum1, sum2, sumd);
ipsumd -= sumd;
}
fin->fin_ip->ip_dst = nat->nat_ndstip;
fin->fin_daddr = nat->nat_ndstaddr;
#if !defined(_KERNEL) || defined(MENTAT) || defined(__sgi) || \
defined(__osf__) || defined(linux)
ipf_fix_outcksum(fin, &fin->fin_ip->ip_sum, ipsumd);
#endif
break;
case NAT_OUTBOUND :
if ((fin->fin_flx & FI_ICMPERR) == 0) {
fin->fin_ip->ip_src = nat->nat_odstip;
fin->fin_saddr = nat->nat_odstaddr;
} else {
sum1 = nat->nat_odstaddr;
sum2 = nat->nat_ndstaddr;
CALC_SUMD(sum1, sum2, sumd);
ipsumd -= sumd;
}
fin->fin_ip->ip_dst = nat->nat_osrcip;
fin->fin_daddr = nat->nat_osrcaddr;
#if !defined(_KERNEL) || defined(MENTAT) || defined(__sgi) || \
defined(__osf__) || defined(linux)
ipf_fix_incksum(fin, &fin->fin_ip->ip_sum, ipsumd);
#endif
break;
case NAT_ENCAPIN :
{
ip_t *ip;
mb_t *m;
/*
* XXX
* This is not necessarily true. What we need to know here
* is the MTU of the interface out which the packets will go
* and this won't be nat_ifps[1] because that is where we
* send packets after stripping off stuff - what's needed
* here is the MTU of the interface for the route to the
* destination of the outer header.
*/
if (ipf_nat_encapok(fin, nat) == -1)
return -1;
m = M_DUPLICATE(np->in_divmp);
if (m == NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_encap_dup);
return -1;
}
ip = MTOD(m, ip_t *);
ip->ip_id = htons(ipf_nextipid(fin));
sum1 = ntohs(ip->ip_len);
ip->ip_len = htons(fin->fin_plen + 20);
sum2 = ntohs(ip->ip_id) + ntohs(ip->ip_len);
CALC_SUMD(sum1, sum2, sumd);
#if !defined(_KERNEL) || defined(MENTAT) || defined(__sgi) || \
defined(__osf__) || defined(linux)
ipf_fix_outcksum(fin, &ip->ip_sum, sumd);
#endif
PREP_MB_T(fin, m);
fin->fin_ip = ip;
fin->fin_plen += 20; /* UDP + new IPv4 hdr */
fin->fin_dlen += 20; /* UDP + old IPv4 hdr */
fin->fin_flx |= FI_ENCAP;
nflags &= ~IPN_TCPUDPICMP;
break;
}
case NAT_DIVERTIN :
{
udphdr_t *uh;
ip_t *ip;
mb_t *m;
m = M_DUPLICATE(np->in_divmp);
if (m == NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_divert_dup);
return -1;
}
ip = MTOD(m, ip_t *);
ip->ip_id = htons(ipf_nextipid(fin));
sum1 = ntohs(ip->ip_len);
ip->ip_len = ntohs(ip->ip_len);
ip->ip_len += fin->fin_plen;
ip->ip_len = htons(ip->ip_len);
uh = (udphdr_t *)(ip + 1);
uh->uh_ulen += fin->fin_plen;
uh->uh_ulen = htons(uh->uh_ulen);
sum2 = ntohs(ip->ip_id) + ntohs(ip->ip_len);
sum2 += ntohs(ip->ip_off) & IP_DF;
CALC_SUMD(sum1, sum2, sumd);
#if !defined(_KERNEL) || defined(MENTAT) || defined(__sgi) || \
defined(__osf__) || defined(linux)
ipf_fix_outcksum(fin, &ip->ip_sum, sumd);
#endif
PREP_MB_T(fin, m);
fin->fin_ip = ip;
fin->fin_plen += 28; /* UDP + new IPv4 hdr */
fin->fin_dlen += 28; /* UDP + old IPv4 hdr */
nflags &= ~IPN_TCPUDPICMP;
break;
}
case NAT_ENCAPOUT :
fin->fin_flx |= FI_ENCAP;
case NAT_DIVERTOUT :
{
mb_t *m;
skip = ipf_nat_decap(fin, nat);
if (skip <= 0) {
ATOMIC_INCL(ipf_nat_stats.ns_side[0].ns_decap_fail);
return -1;
}
m = fin->fin_m;
#if defined(MENTAT) && defined(_KERNEL)
m->b_rptr += skip;
#else
m->m_data += skip;
m->m_len -= skip;
# ifdef M_PKTHDR
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len -= skip;
# endif
#endif
ipf_nat_update(fin, nat, np);
nflags &= ~IPN_TCPUDPICMP;
fin->fin_flx |= FI_NATED;
if (np != NULL && np->in_tag.ipt_num[0] != 0)
fin->fin_nattag = &np->in_tag;
return 1;
/* NOTREACHED */
}
}
if (nflags & IPN_TCPUDP)
tcp = fin->fin_dp;
if (!(fin->fin_flx & FI_SHORT) && (fin->fin_off == 0)) {
if ((nat->nat_odport != 0) && (nflags & IPN_TCPUDP)) {
switch (nat->nat_dir)
{
case NAT_INBOUND :
tcp->th_sport = nat->nat_nsport;
fin->fin_data[0] = ntohs(nat->nat_nsport);
tcp->th_dport = nat->nat_ndport;
fin->fin_data[1] = ntohs(nat->nat_ndport);
break;
case NAT_OUTBOUND :
tcp->th_sport = nat->nat_odport;
fin->fin_data[0] = ntohs(nat->nat_odport);
tcp->th_dport = nat->nat_osport;
fin->fin_data[1] = ntohs(nat->nat_osport);
break;
}
}
if ((nat->nat_odport != 0) && (nflags & IPN_ICMPQUERY)) {
icmp = fin->fin_dp;
icmp->icmp_id = nat->nat_nicmpid;
}
csump = ipf_nat_proto(fin, nat, nflags);
}
ipf_nat_update(fin, nat, np);
/*
* The above comments do not hold for layer 4 (or higher) checksums...
*/
if (csump != NULL) {
if (nat->nat_dir == NAT_OUTBOUND)
ipf_fix_incksum(fin, csump, nat->nat_sumd[0]);
else
ipf_fix_outcksum(fin, csump, nat->nat_sumd[0]);
}
fin->fin_flx |= FI_NATED;
if (np != NULL && np->in_tag.ipt_num[0] != 0)
fin->fin_nattag = &np->in_tag;
return 1;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_proto */
/* Returns: u_short* - pointer to transport header checksum to update, */
/* NULL if the transport protocol is not recognised */
/* as needing a checksum update. */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to NAT structure */
/* nflags(I) - NAT flags set for this packet */
/* */
/* Return the pointer to the checksum field for each protocol so understood.*/
/* If support for making other changes to a protocol header is required, */
/* that is not strictly 'address' translation, such as clamping the MSS in */
/* TCP down to a specific value, then do it from here. */
/* ------------------------------------------------------------------------ */
u_short *
ipf_nat_proto(fin, nat, nflags)
fr_info_t *fin;
nat_t *nat;
u_int nflags;
{
icmphdr_t *icmp;
u_short *csump;
tcphdr_t *tcp;
udphdr_t *udp;
csump = NULL;
if (fin->fin_out == 0) {
fin->fin_rev = (nat->nat_dir & NAT_OUTBOUND);
} else {
fin->fin_rev = ((nat->nat_dir & NAT_OUTBOUND) == 0);
}
switch (fin->fin_p)
{
case IPPROTO_TCP :
tcp = fin->fin_dp;
if ((nflags & IPN_TCP) != 0)
csump = &tcp->th_sum;
/*
* Do a MSS CLAMPING on a SYN packet,
* only deal IPv4 for now.
*/
if ((nat->nat_mssclamp != 0) && (tcp->th_flags & TH_SYN) != 0)
ipf_nat_mssclamp(tcp, nat->nat_mssclamp, fin, csump);
break;
case IPPROTO_UDP :
udp = fin->fin_dp;
if ((nflags & IPN_UDP) != 0) {
if (udp->uh_sum != 0)
csump = &udp->uh_sum;
}
break;
case IPPROTO_ICMP :
icmp = fin->fin_dp;
if ((nflags & IPN_ICMPQUERY) != 0) {
if (icmp->icmp_cksum != 0)
csump = &icmp->icmp_cksum;
}
break;
}
return csump;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_unload */
/* Returns: Nil */
/* Parameters: Nil */
/* */
/* Free all memory used by NAT structures allocated at runtime. */
/* ------------------------------------------------------------------------ */
void
ipf_nat_unload()
{
ipftq_t *ifq, *ifqnext;
(void) ipf_nat_clearlist();
(void) ipf_nat_flushtable();
/*
* Proxy timeout queues are not cleaned here because although they
* exist on the NAT list, appr_unload is called after unload
* and the proxies actually are responsible for them being created.
* Should the proxy timeouts have their own list? There's no real
* justification as this is the only complication.
*/
for (ifq = ipf_nat_utqe; ifq != NULL; ifq = ifqnext) {
ifqnext = ifq->ifq_next;
if (((ifq->ifq_flags & IFQF_PROXY) == 0) &&
(ipf_deletetimeoutqueue(ifq) == 0))
ipf_freetimeoutqueue(ifq);
}
if (ipf_nat_table[0] != NULL) {
KFREES(ipf_nat_table[0], sizeof(nat_t *) * ipf_nat_table_sz);
ipf_nat_table[0] = NULL;
}
if (ipf_nat_table[1] != NULL) {
KFREES(ipf_nat_table[1], sizeof(nat_t *) * ipf_nat_table_sz);
ipf_nat_table[1] = NULL;
}
if (ipf_nat_map_rules != NULL) {
KFREES(ipf_nat_map_rules,
sizeof(ipnat_t *) * ipf_nat_maprules_sz);
ipf_nat_map_rules = NULL;
}
if (ipf_nat_rdr_rules != NULL) {
KFREES(ipf_nat_rdr_rules,
sizeof(ipnat_t *) * ipf_nat_rdrrules_sz);
ipf_nat_rdr_rules = NULL;
}
if (ipf_hm_maptable != NULL) {
KFREES(ipf_hm_maptable,
sizeof(hostmap_t *) * ipf_nat_hostmap_sz);
ipf_hm_maptable = NULL;
}
if (ipf_nat_stats.ns_side[0].ns_bucketlen != NULL) {
KFREES(ipf_nat_stats.ns_side[0].ns_bucketlen,
sizeof(u_int *) * ipf_nat_table_sz);
ipf_nat_stats.ns_side[0].ns_bucketlen = NULL;
}
if (ipf_nat_stats.ns_side[1].ns_bucketlen != NULL) {
KFREES(ipf_nat_stats.ns_side[1].ns_bucketlen,
sizeof(u_int *) * ipf_nat_table_sz);
ipf_nat_stats.ns_side[1].ns_bucketlen = NULL;
}
if (ipf_nat_maxbucket_reset == 1)
ipf_nat_maxbucket = 0;
if (ipf_nat_inited == 1) {
ipf_nat_inited = 0;
ipf_sttab_destroy(ipf_nat_tqb);
RW_DESTROY(&ipf_natfrag);
RW_DESTROY(&ipf_nat);
MUTEX_DESTROY(&ipf_nat_new);
MUTEX_DESTROY(&ipf_natio);
MUTEX_DESTROY(&ipf_nat_udptq.ifq_lock);
MUTEX_DESTROY(&ipf_nat_icmptq.ifq_lock);
MUTEX_DESTROY(&ipf_nat_iptq.ifq_lock);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_expire */
/* Returns: Nil */
/* Parameters: Nil */
/* */
/* Check all of the timeout queues for entries at the top which need to be */
/* expired. */
/* ------------------------------------------------------------------------ */
void
ipf_nat_expire()
{
ipftq_t *ifq, *ifqnext;
ipftqent_t *tqe, *tqn;
int i;
SPL_INT(s);
SPL_NET(s);
WRITE_ENTER(&ipf_nat);
for (ifq = ipf_nat_tqb, i = 0; ifq != NULL; ifq = ifq->ifq_next) {
for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); i++) {
if (tqe->tqe_die > ipf_ticks)
break;
tqn = tqe->tqe_next;
ipf_nat_delete(tqe->tqe_parent, NL_EXPIRE);
}
}
for (ifq = ipf_nat_utqe; ifq != NULL; ifq = ifqnext) {
ifqnext = ifq->ifq_next;
for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); i++) {
if (tqe->tqe_die > ipf_ticks)
break;
tqn = tqe->tqe_next;
ipf_nat_delete(tqe->tqe_parent, NL_EXPIRE);
}
}
for (ifq = ipf_nat_utqe; ifq != NULL; ifq = ifqnext) {
ifqnext = ifq->ifq_next;
if (((ifq->ifq_flags & IFQF_DELETE) != 0) &&
(ifq->ifq_ref == 0)) {
ipf_freetimeoutqueue(ifq);
}
}
if (ipf_nat_doflush != 0) {
ipf_nat_extraflush(2);
ipf_nat_doflush = 0;
}
RWLOCK_EXIT(&ipf_nat);
SPL_X(s);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_sync */
/* Returns: Nil */
/* Parameters: ifp(I) - pointer to network interface */
/* */
/* Walk through all of the currently active NAT sessions, looking for those */
/* which need to have their translated address updated. */
/* ------------------------------------------------------------------------ */
void
ipf_nat_sync(ifp)
void *ifp;
{
u_32_t sum1, sum2, sumd;
i6addr_t in;
ipnat_t *n;
nat_t *nat;
void *ifp2;
int idx;
SPL_INT(s);
if (ipf_running <= 0)
return;
/*
* Change IP addresses for NAT sessions for any protocol except TCP
* since it will break the TCP connection anyway. The only rules
* which will get changed are those which are "map ... -> 0/32",
* where the rule specifies the address is taken from the interface.
*/
SPL_NET(s);
WRITE_ENTER(&ipf_nat);
if (ipf_running <= 0) {
RWLOCK_EXIT(&ipf_nat);
return;
}
for (nat = ipf_nat_instances; nat; nat = nat->nat_next) {
if ((nat->nat_flags & IPN_TCP) != 0)
continue;
n = nat->nat_ptr;
if (n != NULL) {
if (n->in_redir & NAT_MAP) {
if ((n->in_nsrcaddr != 0) ||
(n->in_nsrcmsk != 0xffffffff))
continue;
} else if (n->in_redir & NAT_REDIRECT) {
if ((n->in_ndstaddr != 0) ||
(n->in_ndstmsk != 0xffffffff))
continue;
}
}
if (((ifp == NULL) || (ifp == nat->nat_ifps[0]) ||
(ifp == nat->nat_ifps[1]))) {
nat->nat_ifps[0] = GETIFP(nat->nat_ifnames[0],
nat->nat_v);
if ((nat->nat_ifps[0] != NULL) &&
(nat->nat_ifps[0] != (void *)-1)) {
nat->nat_mtu[0] = GETIFMTU(nat->nat_ifps[0]);
}
if (nat->nat_ifnames[1][0] != '\0') {
nat->nat_ifps[1] = GETIFP(nat->nat_ifnames[1],
nat->nat_v);
} else {
nat->nat_ifps[1] = nat->nat_ifps[0];
}
if ((nat->nat_ifps[1] != NULL) &&
(nat->nat_ifps[1] != (void *)-1)) {
nat->nat_mtu[1] = GETIFMTU(nat->nat_ifps[1]);
}
ifp2 = nat->nat_ifps[0];
if (ifp2 == NULL)
continue;
/*
* Change the map-to address to be the same as the
* new one.
*/
sum1 = NATFSUM(nat, nat_nsrc6);
if (ipf_ifpaddr(nat->nat_v, FRI_NORMAL, ifp2,
&in, NULL) != -1) {
if (nat->nat_v == 4)
nat->nat_nsrcip = in.in4;
}
sum2 = NATFSUM(nat, nat_nsrc6);
if (sum1 == sum2)
continue;
/*
* Readjust the checksum adjustment to take into
* account the new IP#.
*/
CALC_SUMD(sum1, sum2, sumd);
/* XXX - dont change for TCP when solaris does
* hardware checksumming.
*/
sumd += nat->nat_sumd[0];
nat->nat_sumd[0] = (sumd & 0xffff) + (sumd >> 16);
nat->nat_sumd[1] = nat->nat_sumd[0];
}
}
for (n = ipf_nat_list; (n != NULL); n = n->in_next) {
if ((ifp == NULL) || (n->in_ifps[0] == ifp))
n->in_ifps[0] = ipf_resolvenic(n->in_ifnames[0],
n->in_v);
if ((ifp == NULL) || (n->in_ifps[1] == ifp))
n->in_ifps[1] = ipf_resolvenic(n->in_ifnames[1],
n->in_v);
if (n->in_redir & NAT_REDIRECT)
idx = 1;
else
idx = 0;
if (((ifp == NULL) || (n->in_ifps[idx] == ifp)) &&
(n->in_ifps[idx] != NULL &&
n->in_ifps[idx] != (void *)-1)) {
ipf_nat_nextaddrinit(&n->in_osrc, 0, n->in_ifps[idx]);
ipf_nat_nextaddrinit(&n->in_odst, 0, n->in_ifps[idx]);
ipf_nat_nextaddrinit(&n->in_nsrc, 0, n->in_ifps[idx]);
ipf_nat_nextaddrinit(&n->in_ndst, 0, n->in_ifps[idx]);
}
}
RWLOCK_EXIT(&ipf_nat);
SPL_X(s);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_icmpquerytype4 */
/* Returns: int - 1 == success, 0 == failure */
/* Parameters: icmptype(I) - ICMP type number */
/* */
/* Tests to see if the ICMP type number passed is a query/response type or */
/* not. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_icmpquerytype4(icmptype)
int icmptype;
{
/*
* For the ICMP query NAT code, it is essential that both the query
* and the reply match on the NAT rule. Because the NAT structure
* does not keep track of the icmptype, and a single NAT structure
* is used for all icmp types with the same src, dest and id, we
* simply define the replies as queries as well. The funny thing is,
* altough it seems silly to call a reply a query, this is exactly
* as it is defined in the IPv4 specification
*/
switch (icmptype)
{
case ICMP_ECHOREPLY:
case ICMP_ECHO:
/* route aedvertisement/solliciation is currently unsupported: */
/* it would require rewriting the ICMP data section */
case ICMP_TSTAMP:
case ICMP_TSTAMPREPLY:
case ICMP_IREQ:
case ICMP_IREQREPLY:
case ICMP_MASKREQ:
case ICMP_MASKREPLY:
return 1;
default:
return 0;
}
}
/* ------------------------------------------------------------------------ */
/* Function: nat_log */
/* Returns: Nil */
/* Parameters: nat(I) - pointer to NAT structure */
/* action(I) - action related to NAT structure being performed */
/* */
/* Creates a NAT log entry. */
/* ------------------------------------------------------------------------ */
void
ipf_nat_log(nat, action)
struct nat *nat;
u_int action;
{
#ifdef IPFILTER_LOG
# ifndef LARGE_NAT
struct ipnat *np;
int rulen;
# endif
struct natlog natl;
void *items[1];
size_t sizes[1];
int types[1];
bcopy((char *)&nat->nat_osrc6, (char *)&natl.nl_osrcip,
sizeof(natl.nl_osrcip));
bcopy((char *)&nat->nat_nsrc6, (char *)&natl.nl_nsrcip,
sizeof(natl.nl_nsrcip));
bcopy((char *)&nat->nat_odst6, (char *)&natl.nl_odstip,
sizeof(natl.nl_odstip));
bcopy((char *)&nat->nat_ndst6, (char *)&natl.nl_ndstip,
sizeof(natl.nl_ndstip));
natl.nl_bytes[0] = nat->nat_bytes[0];
natl.nl_bytes[1] = nat->nat_bytes[1];
natl.nl_pkts[0] = nat->nat_pkts[0];
natl.nl_pkts[1] = nat->nat_pkts[1];
natl.nl_odstport = nat->nat_odport;
natl.nl_osrcport = nat->nat_osport;
natl.nl_nsrcport = nat->nat_nsport;
natl.nl_ndstport = nat->nat_ndport;
natl.nl_p = nat->nat_pr[0];
natl.nl_v = nat->nat_v;
natl.nl_type = nat->nat_redir;
natl.nl_action = action;
natl.nl_rule = -1;
bcopy(nat->nat_ifnames[0], natl.nl_ifnames[0],
sizeof(nat->nat_ifnames[0]));
bcopy(nat->nat_ifnames[1], natl.nl_ifnames[1],
sizeof(nat->nat_ifnames[1]));
# ifndef LARGE_NAT
if (nat->nat_ptr != NULL) {
for (rulen = 0, np = ipf_nat_list; np != NULL;
np = np->in_next, rulen++)
if (np == nat->nat_ptr) {
natl.nl_rule = rulen;
break;
}
}
# endif
items[0] = &natl;
sizes[0] = sizeof(natl);
types[0] = 0;
if (ipf_log_items(IPL_LOGNAT, NULL, items, sizes, types, 1) == 0)
ipf_nat_stats.ns_side[0].ns_log++;
else
ipf_nat_stats.ns_side[1].ns_log++;
#endif
}
#if defined(__OpenBSD__)
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_ifdetach */
/* Returns: Nil */
/* Parameters: ifp(I) - pointer to network interface */
/* */
/* Compatibility interface for OpenBSD to trigger the correct updating of */
/* interface references within IPFilter. */
/* ------------------------------------------------------------------------ */
void
ipf_nat_ifdetach(ifp)
void *ifp;
{
ipf_sync(ifp);
return;
}
#endif
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_rulederef */
/* Returns: Nil */
/* Parameters: isp(I) - pointer to pointer to NAT rule */
/* Write Locks: ipf_nat */
/* */
/* ------------------------------------------------------------------------ */
void
ipf_nat_rulederef(inp)
ipnat_t **inp;
{
ipnat_t *in;
in = *inp;
*inp = NULL;
in->in_space++;
in->in_use--;
if (in->in_use == 0 && (in->in_flags & IPN_DELETE)) {
if (in->in_apr)
appr_free(in->in_apr);
ipf_nat_stats.ns_rules--;
KFREE(in);
#if SOLARIS
if (ipf_nat_stats.ns_rules)
pfil_delayed_copy = 1;
#endif
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_deref */
/* Returns: Nil */
/* Parameters: isp(I) - pointer to pointer to NAT table entry */
/* */
/* Decrement the reference counter for this NAT table entry and free it if */
/* there are no more things using it. */
/* */
/* IF nat_ref == 1 when this function is called, then we have an orphan nat */
/* structure *because* it only gets called on paths _after_ nat_ref has been*/
/* incremented. If nat_ref == 1 then we shouldn't decrement it here */
/* because nat_delete() will do that and send nat_ref to -1. */
/* */
/* Holding the lock on nat_lock is required to serialise nat_delete() being */
/* called from a NAT flush ioctl with a deref happening because of a packet.*/
/* ------------------------------------------------------------------------ */
void
ipf_nat_deref(natp)
nat_t **natp;
{
nat_t *nat;
nat = *natp;
*natp = NULL;
MUTEX_ENTER(&nat->nat_lock);
if (nat->nat_ref > 1) {
nat->nat_ref--;
MUTEX_EXIT(&nat->nat_lock);
return;
}
MUTEX_EXIT(&nat->nat_lock);
WRITE_ENTER(&ipf_nat);
ipf_nat_delete(nat, NL_EXPIRE);
RWLOCK_EXIT(&ipf_nat);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_clone */
/* Returns: ipstate_t* - NULL == cloning failed, */
/* else pointer to new state structure */
/* Parameters: fin(I) - pointer to packet information */
/* is(I) - pointer to master state structure */
/* Write Lock: ipf_nat */
/* */
/* Create a "duplcate" state table entry from the master. */
/* ------------------------------------------------------------------------ */
static nat_t *
ipf_nat_clone(fin, nat)
fr_info_t *fin;
nat_t *nat;
{
frentry_t *fr;
nat_t *clone;
ipnat_t *np;
KMALLOC(clone, nat_t *);
if (clone == NULL) {
ipf_nat_stats.ns_side[fin->fin_out].ns_clone_nomem++;
return NULL;
}
bcopy((char *)nat, (char *)clone, sizeof(*clone));
MUTEX_NUKE(&clone->nat_lock);
clone->nat_aps = NULL;
/*
* Initialize all these so that ipf_nat_delete() doesn't cause a crash.
*/
clone->nat_tqe.tqe_pnext = NULL;
clone->nat_tqe.tqe_next = NULL;
clone->nat_tqe.tqe_ifq = NULL;
clone->nat_tqe.tqe_parent = clone;
clone->nat_flags &= ~SI_CLONE;
clone->nat_flags |= SI_CLONED;
if (clone->nat_hm)
clone->nat_hm->hm_ref++;
if (ipf_nat_insert(clone, fin->fin_rev) == -1) {
KFREE(clone);
ipf_nat_stats.ns_side[fin->fin_out].ns_insert_fail++;
return NULL;
}
np = clone->nat_ptr;
if (np != NULL) {
if (ipf_nat_logging)
ipf_nat_log(clone, NL_CLONE);
np->in_use++;
}
fr = clone->nat_fr;
if (fr != NULL) {
MUTEX_ENTER(&fr->fr_lock);
fr->fr_ref++;
MUTEX_EXIT(&fr->fr_lock);
}
/*
* Because the clone is created outside the normal loop of things and
* TCP has special needs in terms of state, initialise the timeout
* state of the new NAT from here.
*/
if (clone->nat_pr[0] == IPPROTO_TCP) {
(void) ipf_tcp_age(&clone->nat_tqe, fin, ipf_nat_tqb,
clone->nat_flags, 2);
}
#ifdef IPFILTER_SYNC
clone->nat_sync = ipf_sync_new(SMC_NAT, fin, clone);
#endif
if (ipf_nat_logging)
ipf_nat_log(clone, NL_CLONE);
return clone;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_wildok */
/* Returns: int - 1 == packet's ports match wildcards */
/* 0 == packet's ports don't match wildcards */
/* Parameters: nat(I) - NAT entry */
/* sport(I) - source port */
/* dport(I) - destination port */
/* flags(I) - wildcard flags */
/* dir(I) - packet direction */
/* */
/* Use NAT entry and packet direction to determine which combination of */
/* wildcard flags should be used. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_wildok(nat, sport, dport, flags, dir)
nat_t *nat;
int sport, dport, flags, dir;
{
/*
* When called by dir is set to
* nat_inlookup NAT_INBOUND (0)
* nat_outlookup NAT_OUTBOUND (1)
*
* We simply combine the packet's direction in dir with the original
* "intended" direction of that NAT entry in nat->nat_dir to decide
* which combination of wildcard flags to allow.
*/
switch ((dir << 1) | nat->nat_dir)
{
case 3: /* outbound packet / outbound entry */
if (((nat->nat_osport == sport) ||
(flags & SI_W_SPORT)) &&
((nat->nat_odport == dport) ||
(flags & SI_W_DPORT)))
return 1;
break;
case 2: /* outbound packet / inbound entry */
if (((nat->nat_osport == dport) ||
(flags & SI_W_SPORT)) &&
((nat->nat_odport == sport) ||
(flags & SI_W_DPORT)))
return 1;
break;
case 1: /* inbound packet / outbound entry */
if (((nat->nat_osport == dport) ||
(flags & SI_W_SPORT)) &&
((nat->nat_odport == sport) ||
(flags & SI_W_DPORT)))
return 1;
break;
case 0: /* inbound packet / inbound entry */
if (((nat->nat_osport == sport) ||
(flags & SI_W_SPORT)) &&
((nat->nat_odport == dport) ||
(flags & SI_W_DPORT)))
return 1;
break;
default:
break;
}
return(0);
}
/* ------------------------------------------------------------------------ */
/* Function: nat_mssclamp */
/* Returns: Nil */
/* Parameters: tcp(I) - pointer to TCP header */
/* maxmss(I) - value to clamp the TCP MSS to */
/* fin(I) - pointer to packet information */
/* csump(I) - pointer to TCP checksum */
/* */
/* Check for MSS option and clamp it if necessary. If found and changed, */
/* then the TCP header checksum will be updated to reflect the change in */
/* the MSS. */
/* ------------------------------------------------------------------------ */
static void
ipf_nat_mssclamp(tcp, maxmss, fin, csump)
tcphdr_t *tcp;
u_32_t maxmss;
fr_info_t *fin;
u_short *csump;
{
u_char *cp, *ep, opt;
int hlen, advance;
u_32_t mss, sumd;
hlen = TCP_OFF(tcp) << 2;
if (hlen > sizeof(*tcp)) {
cp = (u_char *)tcp + sizeof(*tcp);
ep = (u_char *)tcp + hlen;
while (cp < ep) {
opt = cp[0];
if (opt == TCPOPT_EOL)
break;
else if (opt == TCPOPT_NOP) {
cp++;
continue;
}
if (cp + 1 >= ep)
break;
advance = cp[1];
if ((cp + advance > ep) || (advance <= 0))
break;
switch (opt)
{
case TCPOPT_MAXSEG:
if (advance != 4)
break;
mss = cp[2] * 256 + cp[3];
if (mss > maxmss) {
cp[2] = maxmss / 256;
cp[3] = maxmss & 0xff;
CALC_SUMD(mss, maxmss, sumd);
ipf_fix_outcksum(fin, csump, sumd);
}
break;
default:
/* ignore unknown options */
break;
}
cp += advance;
}
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_setqueue */
/* Returns: Nil */
/* Parameters: nat(I)- pointer to NAT structure */
/* rev(I) - forward(0) or reverse(1) direction */
/* Locks: ipf_nat (read or write) */
/* */
/* Put the NAT entry on its default queue entry, using rev as a helped in */
/* determining which queue it should be placed on. */
/* ------------------------------------------------------------------------ */
void
ipf_nat_setqueue(nat, rev)
nat_t *nat;
int rev;
{
ipftq_t *oifq, *nifq;
if (nat->nat_ptr != NULL)
nifq = nat->nat_ptr->in_tqehead[rev];
else
nifq = NULL;
if (nifq == NULL) {
switch (nat->nat_pr[0])
{
case IPPROTO_UDP :
nifq = &ipf_nat_udptq;
break;
case IPPROTO_ICMP :
nifq = &ipf_nat_icmptq;
break;
case IPPROTO_TCP :
nifq = ipf_nat_tqb + nat->nat_tqe.tqe_state[rev];
break;
default :
nifq = &ipf_nat_iptq;
break;
}
}
oifq = nat->nat_tqe.tqe_ifq;
/*
* If it's currently on a timeout queue, move it from one queue to
* another, else put it on the end of the newly determined queue.
*/
if (oifq != NULL)
ipf_movequeue(&nat->nat_tqe, oifq, nifq);
else
ipf_queueappend(&nat->nat_tqe, nifq, nat);
return;
}
/* ------------------------------------------------------------------------ */
/* Function: nat_getnext */
/* Returns: int - 0 == ok, else error */
/* Parameters: t(I) - pointer to ipftoken structure */
/* itp(I) - pointer to ipfgeniter_t structure */
/* */
/* Fetch the next nat/ipnat structure pointer from the linked list and */
/* copy it out to the storage space pointed to by itp_data. The next item */
/* in the list to look at is put back in the ipftoken struture. */
/* If we call ipf_freetoken, the accompanying pointer is set to NULL because*/
/* ipf_freetoken will call a deref function for us and we dont want to call */
/* that twice (second time would be in the second switch statement below. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_getnext(t, itp)
ipftoken_t *t;
ipfgeniter_t *itp;
{
hostmap_t *hm, *nexthm = NULL, zerohm;
ipnat_t *ipn, *nextipnat = NULL, zeroipn;
nat_t *nat, *nextnat = NULL, zeronat;
int error = 0, count;
ipftoken_t *freet;
char *dst;
freet = NULL;
count = itp->igi_nitems;
if (count < 1)
return ENOSPC;
READ_ENTER(&ipf_nat);
switch (itp->igi_type)
{
case IPFGENITER_HOSTMAP :
hm = t->ipt_data;
if (hm == NULL) {
nexthm = ipf_hm_maplist;
} else {
nexthm = hm->hm_next;
}
break;
case IPFGENITER_IPNAT :
ipn = t->ipt_data;
if (ipn == NULL) {
nextipnat = ipf_nat_list;
} else {
nextipnat = ipn->in_next;
}
break;
case IPFGENITER_NAT :
nat = t->ipt_data;
if (nat == NULL) {
nextnat = ipf_nat_instances;
} else {
nextnat = nat->nat_next;
}
break;
default :
RWLOCK_EXIT(&ipf_nat);
ipf_interror = 60055;
return EINVAL;
}
dst = itp->igi_data;
for (;;) {
switch (itp->igi_type)
{
case IPFGENITER_HOSTMAP :
if (nexthm != NULL) {
if (nexthm->hm_next == NULL) {
freet = t;
count = 1;
}
if (count == 1) {
ATOMIC_INC32(nexthm->hm_ref);
}
} else {
bzero(&zerohm, sizeof(zerohm));
nexthm = &zerohm;
count = 1;
}
break;
case IPFGENITER_IPNAT :
if (nextipnat != NULL) {
if (nextipnat->in_next == NULL) {
freet = t;
count = 1;
}
if (count == 1) {
MUTEX_ENTER(&nextipnat->in_lock);
nextipnat->in_use++;
MUTEX_EXIT(&nextipnat->in_lock);
}
} else {
bzero(&zeroipn, sizeof(zeroipn));
nextipnat = &zeroipn;
count = 1;
}
break;
case IPFGENITER_NAT :
if (nextnat != NULL) {
if (nextnat->nat_next == NULL) {
count = 1;
freet = t;
}
if (count == 1) {
MUTEX_ENTER(&nextnat->nat_lock);
nextnat->nat_ref++;
MUTEX_EXIT(&nextnat->nat_lock);
}
} else {
bzero(&zeronat, sizeof(zeronat));
nextnat = &zeronat;
count = 1;
}
break;
default :
break;
}
RWLOCK_EXIT(&ipf_nat);
if (freet != NULL) {
ipf_freetoken(freet);
}
switch (itp->igi_type)
{
case IPFGENITER_HOSTMAP :
error = COPYOUT(nexthm, dst, sizeof(*nexthm));
if (error != 0) {
ipf_interror = 60049;
error = EFAULT;
} else {
dst += sizeof(*nexthm);
}
if (freet == NULL) {
t->ipt_data = nexthm;
hm = nexthm;
nexthm = hm->hm_next;
}
break;
case IPFGENITER_IPNAT :
error = COPYOUT(nextipnat, dst, sizeof(*nextipnat));
if (error != 0) {
ipf_interror = 60050;
error = EFAULT;
} else {
dst += sizeof(*nextipnat);
}
if (freet == NULL) {
t->ipt_data = nextipnat;
ipn = nextipnat;
nextipnat = ipn->in_next;
}
break;
case IPFGENITER_NAT :
error = COPYOUT(nextnat, dst, sizeof(*nextnat));
if (error != 0) {
ipf_interror = 60051;
error = EFAULT;
} else {
dst += sizeof(*nextnat);
}
if (freet == NULL) {
t->ipt_data = nextnat;
nat = nextnat;
nextnat = nat->nat_next;
}
break;
}
if ((count == 1) || (error != 0))
break;
READ_ENTER(&ipf_nat);
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: nat_extraflush */
/* Returns: int - 0 == success, -1 == failure */
/* Parameters: which(I) - how to flush the active NAT table */
/* Write Locks: ipf_nat */
/* */
/* Flush nat tables. Three actions currently defined: */
/* which == 0 : flush all nat table entries */
/* which == 1 : flush TCP connections which have started to close but are */
/* stuck for some reason. */
/* which == 2 : flush TCP connections which have been idle for a long time, */
/* starting at > 4 days idle and working back in successive half-*/
/* days to at most 12 hours old. If this fails to free enough */
/* slots then work backwards in half hour slots to 30 minutes. */
/* If that too fails, then work backwards in 30 second intervals */
/* for the last 30 minutes to at worst 30 seconds idle. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_extraflush(which)
int which;
{
ipftq_t *ifq, *ifqnext;
nat_t *nat, **natp;
ipftqent_t *tqn;
int removed;
SPL_INT(s);
removed = 0;
SPL_NET(s);
switch (which)
{
case 0 :
ipf_nat_stats.ns_flush_all++;
/*
* Style 0 flush removes everything...
*/
for (natp = &ipf_nat_instances; ((nat = *natp) != NULL); ) {
ipf_nat_delete(nat, NL_FLUSH);
removed++;
}
break;
case 1 :
ipf_nat_stats.ns_flush_closing++;
/*
* Since we're only interested in things that are closing,
* we can start with the appropriate timeout queue.
*/
for (ifq = ipf_nat_tqb + IPF_TCPS_CLOSE_WAIT; ifq != NULL;
ifq = ifq->ifq_next) {
for (tqn = ifq->ifq_head; tqn != NULL; ) {
nat = tqn->tqe_parent;
tqn = tqn->tqe_next;
if (nat->nat_pr[0] != IPPROTO_TCP ||
nat->nat_pr[1] != IPPROTO_TCP)
break;
ipf_nat_delete(nat, NL_EXPIRE);
removed++;
}
}
/*
* Also need to look through the user defined queues.
*/
for (ifq = ipf_nat_utqe; ifq != NULL; ifq = ifqnext) {
ifqnext = ifq->ifq_next;
for (tqn = ifq->ifq_head; tqn != NULL; ) {
nat = tqn->tqe_parent;
tqn = tqn->tqe_next;
if (nat->nat_pr[0] != IPPROTO_TCP ||
nat->nat_pr[1] != IPPROTO_TCP)
continue;
if ((nat->nat_tcpstate[0] >
IPF_TCPS_ESTABLISHED) &&
(nat->nat_tcpstate[1] >
IPF_TCPS_ESTABLISHED)) {
ipf_nat_delete(nat, NL_EXPIRE);
removed++;
}
}
}
break;
/*
* Args 5-11 correspond to flushing those particular states
* for TCP connections.
*/
case IPF_TCPS_CLOSE_WAIT :
case IPF_TCPS_FIN_WAIT_1 :
case IPF_TCPS_CLOSING :
case IPF_TCPS_LAST_ACK :
case IPF_TCPS_FIN_WAIT_2 :
case IPF_TCPS_TIME_WAIT :
case IPF_TCPS_CLOSED :
ipf_nat_stats.ns_flush_state++;
tqn = ipf_nat_tqb[which].ifq_head;
while (tqn != NULL) {
nat = tqn->tqe_parent;
tqn = tqn->tqe_next;
ipf_nat_delete(nat, NL_FLUSH);
removed++;
}
break;
default :
if (which < 30)
break;
ipf_nat_stats.ns_flush_timeout++;
/*
* Take a large arbitrary number to mean the number of seconds
* for which which consider to be the maximum value we'll allow
* the expiration to be.
*/
which = IPF_TTLVAL(which);
for (natp = &ipf_nat_instances; ((nat = *natp) != NULL); ) {
if (ipf_ticks - nat->nat_touched > which) {
ipf_nat_delete(nat, NL_FLUSH);
removed++;
} else
natp = &nat->nat_next;
}
break;
}
if (which != 2) {
SPL_X(s);
return removed;
}
ipf_nat_stats.ns_flush_queue++;
/*
* Asked to remove inactive entries because the table is full, try
* again, 3 times, if first attempt failed with a different criteria
* each time. The order tried in must be in decreasing age.
* Another alternative is to implement random drop and drop N entries
* at random until N have been freed up.
*/
if (ipf_ticks - ipf_nat_last_force_flush > IPF_TTLVAL(5)) {
ipf_nat_last_force_flush = ipf_ticks;
removed = ipf_queueflush(ipf_nat_flush_entry, ipf_nat_tqb,
ipf_nat_utqe, &ipf_nat_stats.ns_active,
ipf_nat_table_sz,
ipf_nat_table_wm_low);
}
SPL_X(s);
return removed;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_flush_entry */
/* Returns: 0 - always succeeds */
/* Parameters: entry(I) - pointer to NAT entry */
/* Write Locks: ipf_nat */
/* */
/* This function is a stepping stone between ipf_queueflush() and */
/* nat_dlete(). It is used so we can provide a uniform interface via the */
/* ipf_queueflush() function. Since the nat_delete() function returns void */
/* we translate that to mean it always succeeds in deleting something. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_flush_entry(entry)
void *entry;
{
ipf_nat_delete(entry, NL_FLUSH);
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_iterator */
/* Returns: int - 0 == ok, else error */
/* Parameters: token(I) - pointer to ipftoken structure */
/* itp(I) - pointer to ipfgeniter_t structure */
/* */
/* This function acts as a handler for the SIOCGENITER ioctls that use a */
/* generic structure to iterate through a list. There are three different */
/* linked lists of NAT related information to go through: NAT rules, active */
/* NAT mappings and the NAT fragment cache. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_iterator(token, itp)
ipftoken_t *token;
ipfgeniter_t *itp;
{
int error;
if (itp->igi_data == NULL) {
ipf_interror = 60052;
return EFAULT;
}
token->ipt_subtype = itp->igi_type;
switch (itp->igi_type)
{
case IPFGENITER_HOSTMAP :
case IPFGENITER_IPNAT :
case IPFGENITER_NAT :
error = ipf_nat_getnext(token, itp);
break;
case IPFGENITER_NATFRAG :
#ifdef USE_MUTEXES
error = ipf_frag_next(token, itp, &ipfr_natlist,
&ipfr_nattail, &ipf_natfrag);
#else
error = ipf_frag_next(token, itp, &ipfr_natlist, &ipfr_nattail);
#endif
break;
default :
ipf_interror = 60053;
error = EINVAL;
break;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_setpending */
/* Returns: Nil */
/* Parameters: nat(I) - pointer to NAT structure */
/* Locks: ipf_nat (read or write) */
/* */
/* Put the NAT entry on to the pending queue - this queue has a very short */
/* lifetime where items are put that can't be deleted straight away because */
/* of locking issues but we want to delete them ASAP, anyway. In calling */
/* this function, it is assumed that the owner (if there is one, as shown */
/* by nat_me) is no longer interested in it. */
/* ------------------------------------------------------------------------ */
void
ipf_nat_setpending(nat)
nat_t *nat;
{
ipftq_t *oifq;
oifq = nat->nat_tqe.tqe_ifq;
if (oifq != NULL)
ipf_movequeue(&nat->nat_tqe, oifq, &ipf_nat_pending);
else
ipf_queueappend(&nat->nat_tqe, &ipf_nat_pending, nat);
if (nat->nat_me != NULL) {
*nat->nat_me = NULL;
nat->nat_me = NULL;
}
}
/* ------------------------------------------------------------------------ */
/* Function: nat_newrewrite */
/* Returns: int - -1 == error, 0 == success (no move), 1 == success and */
/* allow rule to be moved if IPN_ROUNDR is set. */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to NAT entry */
/* ni(I) - pointer to structure with misc. information needed */
/* to create new NAT entry. */
/* Write Lock: ipf_nat */
/* */
/* This function is responsible for setting up an active NAT session where */
/* we are changing both the source and destination parameters at the same */
/* time. The loop in here works differently to elsewhere - each iteration */
/* is responsible for changing a single parameter that can be incremented. */
/* So one pass may increase the source IP#, next source port, next dest. IP#*/
/* and the last destination port for a total of 4 iterations to try each. */
/* This is done to try and exhaustively use the translation space available.*/
/* ------------------------------------------------------------------------ */
static int
ipf_nat_newrewrite(fin, nat, nai)
fr_info_t *fin;
nat_t *nat;
natinfo_t *nai;
{
int src_search = 1;
int dst_search = 1;
fr_info_t frnat;
u_32_t flags;
u_short swap;
ipnat_t *np;
nat_t *natl;
int l = 0;
int changed;
natl = NULL;
changed = -1;
np = nai->nai_np;
flags = nai->nai_flags;
bcopy((char *)fin, (char *)&frnat, sizeof(*fin));
frnat.fin_state = NULL;
nat->nat_hm = NULL;
do {
changed = -1;
/* TRACE (l, src_search, dst_search, np) */
if ((src_search == 0) && (np->in_spnext == 0) &&
(dst_search == 0) && (np->in_dpnext == 0)) {
if (l > 0)
return -1;
}
/*
* Find a new source address
*/
if (ipf_nat_nextaddr(fin, &np->in_nsrc, &frnat.fin_saddr,
&frnat.fin_saddr) == -1) {
return -1;
}
if ((np->in_nsrcaddr == 0) && (np->in_nsrcmsk == 0xffffffff)) {
src_search = 0;
if (np->in_stepnext == 0)
np->in_stepnext = 1;
} else if ((np->in_nsrcaddr == 0) && (np->in_nsrcmsk == 0)) {
src_search = 0;
if (np->in_stepnext == 0)
np->in_stepnext = 1;
} else if (np->in_nsrcmsk == 0xffffffff) {
src_search = 0;
if (np->in_stepnext == 0)
np->in_stepnext = 1;
} else if (np->in_nsrcmsk != 0xffffffff) {
if (np->in_stepnext == 0 && changed == -1) {
np->in_snip++;
np->in_stepnext++;
changed = 0;
}
}
if ((flags & IPN_TCPUDPICMP) != 0) {
if (np->in_spnext != 0)
frnat.fin_data[0] = np->in_spnext;
/*
* Standard port translation. Select next port.
*/
if ((flags & IPN_FIXEDSPORT) != 0) {
np->in_stepnext = 2;
} else if ((np->in_stepnext == 1) &&
(changed == -1) && (natl != NULL)) {
np->in_spnext++;
np->in_stepnext++;
changed = 1;
if (np->in_spnext > np->in_spmax)
np->in_spnext = np->in_spmin;
}
} else {
np->in_stepnext = 2;
}
np->in_stepnext &= 0x3;
/*
* Find a new destination address
*/
/* TRACE (fin, np, l, frnat) */
if (ipf_nat_nextaddr(fin, &np->in_ndst, &frnat.fin_daddr,
&frnat.fin_daddr) == -1)
return -1;
if ((np->in_ndstaddr == 0) && (np->in_ndstmsk == 0xffffffff)) {
dst_search = 0;
if (np->in_stepnext == 2)
np->in_stepnext = 3;
} else if ((np->in_ndstaddr == 0) && (np->in_ndstmsk == 0)) {
dst_search = 0;
if (np->in_stepnext == 2)
np->in_stepnext = 3;
} else if (np->in_ndstmsk == 0xffffffff) {
dst_search = 0;
if (np->in_stepnext == 2)
np->in_stepnext = 3;
} else if (np->in_ndstmsk != 0xffffffff) {
if ((np->in_stepnext == 2) && (changed == -1) &&
(natl != NULL)) {
changed = 2;
np->in_stepnext++;
np->in_dnip++;
}
}
if ((flags & IPN_TCPUDPICMP) != 0) {
if (np->in_dpnext != 0)
frnat.fin_data[1] = np->in_dpnext;
/*
* Standard port translation. Select next port.
*/
if ((flags & IPN_FIXEDDPORT) != 0) {
np->in_stepnext = 0;
} else if (np->in_stepnext == 3 && changed == -1) {
np->in_dpnext++;
np->in_stepnext++;
changed = 3;
if (np->in_dpnext > np->in_dpmax)
np->in_dpnext = np->in_dpmin;
}
} else {
if (np->in_stepnext == 3)
np->in_stepnext = 0;
}
/* TRACE (frnat) */
/*
* Here we do a lookup of the connection as seen from
* the outside. If an IP# pair already exists, try
* again. So if you have A->B becomes C->B, you can
* also have D->E become C->E but not D->B causing
* another C->B. Also take protocol and ports into
* account when determining whether a pre-existing
* NAT setup will cause an external conflict where
* this is appropriate.
*
* fin_data[] is swapped around because we are doing a
* lookup of the packet is if it were moving in the opposite
* direction of the one we are working with now.
*/
if (flags & IPN_TCPUDP) {
swap = frnat.fin_data[0];
frnat.fin_data[0] = frnat.fin_data[1];
frnat.fin_data[1] = swap;
}
if (fin->fin_out == 1) {
natl = ipf_nat_inlookup(&frnat,
flags & ~(SI_WILDP|NAT_SEARCH),
(u_int)frnat.fin_p, frnat.fin_dst,
frnat.fin_src);
} else {
natl = ipf_nat_outlookup(&frnat,
flags & ~(SI_WILDP|NAT_SEARCH),
(u_int)frnat.fin_p, frnat.fin_dst,
frnat.fin_src);
}
if (flags & IPN_TCPUDP) {
swap = frnat.fin_data[0];
frnat.fin_data[0] = frnat.fin_data[1];
frnat.fin_data[1] = swap;
}
/* TRACE natl, in_stepnext, l */
if ((natl != NULL) && (l > 8)) /* XXX 8 is arbitrary */
return -1;
np->in_stepnext &= 0x3;
l++;
changed = -1;
} while (natl != NULL);
nat->nat_osrcip = fin->fin_src;
nat->nat_odstip = fin->fin_dst;
nat->nat_nsrcip = frnat.fin_src;
nat->nat_ndstip = frnat.fin_dst;
if ((flags & IPN_TCPUDPICMP) != 0) {
nat->nat_osport = htons(fin->fin_data[0]);
nat->nat_odport = htons(fin->fin_data[1]);
nat->nat_nsport = htons(frnat.fin_data[0]);
nat->nat_ndport = htons(frnat.fin_data[1]);
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: nat_newdivert */
/* Returns: int - -1 == error, 0 == success */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to NAT entry */
/* ni(I) - pointer to structure with misc. information needed */
/* to create new NAT entry. */
/* Write Lock: ipf_nat */
/* */
/* Create a new NAT encap/divert session as defined by the NAT rule. This */
/* is somewhat different to other NAT session creation routines because we */
/* do not iterate through either port numbers or IP addresses, searching */
/* for a unique mapping, however, a complimentary duplicate check is made. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_newdivert(fin, nat, nai)
fr_info_t *fin;
nat_t *nat;
natinfo_t *nai;
{
fr_info_t frnat;
ipnat_t *np;
nat_t *natl;
int p;
np = nai->nai_np;
bcopy((char *)fin, (char *)&frnat, sizeof(*fin));
nat->nat_pr[0] = 0;
nat->nat_osrcaddr = fin->fin_saddr;
nat->nat_odstaddr = fin->fin_daddr;
nat->nat_osport = htons(fin->fin_data[0]);
nat->nat_odport = htons(fin->fin_data[1]);
frnat.fin_saddr = htonl(np->in_snip);
frnat.fin_daddr = htonl(np->in_dnip);
if (np->in_redir & NAT_DIVERTUDP) {
frnat.fin_data[0] = np->in_spnext;
frnat.fin_data[1] = np->in_dpnext;
frnat.fin_flx |= FI_TCPUDP;
p = IPPROTO_UDP;
} else {
frnat.fin_flx &= ~FI_TCPUDP;
p = IPPROTO_ENCAP;
}
if (fin->fin_out == 1) {
natl = ipf_nat_inlookup(&frnat, 0, p,
frnat.fin_dst, frnat.fin_src);
} else {
natl = ipf_nat_outlookup(&frnat, 0, p,
frnat.fin_dst, frnat.fin_src);
}
if (natl != NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_side[fin->fin_out].
ns_divert_exist);
return -1;
}
nat->nat_nsrcaddr = frnat.fin_saddr;
nat->nat_ndstaddr = frnat.fin_daddr;
if (np->in_redir & NAT_DIVERTUDP) {
nat->nat_nsport = htons(frnat.fin_data[0]);
nat->nat_ndport = htons(frnat.fin_data[1]);
}
nat->nat_pr[fin->fin_out] = fin->fin_p;
nat->nat_pr[1 - fin->fin_out] = p;
if (np->in_redir & NAT_ENCAP) {
if (np->in_redir & NAT_REDIRECT)
nat->nat_dir = NAT_ENCAPIN;
else
nat->nat_dir = NAT_ENCAPOUT;
} else {
if (np->in_redir & NAT_REDIRECT)
nat->nat_dir = NAT_DIVERTIN;
else
nat->nat_dir = NAT_DIVERTOUT;
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: nat_builddivertmp */
/* Returns: int - -1 == error, 0 == success */
/* Parameters: np(I) - pointer to a NAT rule */
/* */
/* For encap/divert rules, a skeleton packet representing what will be */
/* prepended to the real packet is created. Even though we don't have the */
/* full packet here, a checksum is calculated that we update later when we */
/* fill in the final details. At present a 0 checksum for UDP is being set */
/* here because it is expected that divert will be used for localhost. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_builddivertmp(np)
ipnat_t *np;
{
udphdr_t *uh;
size_t len;
ip_t *ip;
if ((np->in_redir & NAT_DIVERTUDP) != 0)
len = sizeof(ip_t) + sizeof(udphdr_t);
else
len = sizeof(ip_t);
ALLOC_MB_T(np->in_divmp, len);
if (np->in_divmp == NULL) {
ATOMIC_INCL(ipf_nat_stats.ns_divert_build);
return -1;
}
/*
* First, the header to get the packet diverted to the new destination
*/
ip = MTOD(np->in_divmp, ip_t *);
IP_V_A(ip, 4);
IP_HL_A(ip, 5);
ip->ip_tos = 0;
if ((np->in_redir & NAT_DIVERTUDP) != 0)
ip->ip_p = IPPROTO_UDP;
else
ip->ip_p = IPPROTO_ENCAP;
ip->ip_ttl = 255;
ip->ip_off = 0;
ip->ip_sum = 0;
ip->ip_len = htons(len);
ip->ip_id = 0;
ip->ip_src.s_addr = htonl(np->in_snip);
ip->ip_dst.s_addr = htonl(np->in_dnip);
ip->ip_sum = ipf_cksum((u_short *)ip, sizeof(*ip));
if (np->in_redir & NAT_DIVERTUDP) {
uh = (udphdr_t *)(ip + 1);
uh->uh_sum = 0;
uh->uh_ulen = 8;
uh->uh_sport = htons(np->in_spnext);
uh->uh_dport = htons(np->in_dpnext);
}
return 0;
}
#define MINDECAP (sizeof(ip_t) + sizeof(udphdr_t) + sizeof(ip_t))
/* ------------------------------------------------------------------------ */
/* Function: nat_decap */
/* Returns: int - -1 == error, 0 == success */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to current NAT session */
/* */
/* This function is responsible for undoing a packet's encapsulation in the */
/* reverse of an encap/divert rule. After removing the outer encapsulation */
/* it is necessary to call ipf_makefrip() again so that the contents of 'fin'*/
/* match the "new" packet as it may still be used by IPFilter elsewhere. */
/* We use "dir" here as the basis for some of the expectations about the */
/* outer header. If we return an error, the goal is to leave the original */
/* packet information undisturbed - this falls short at the end where we'd */
/* need to back a backup copy of "fin" - expensive. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_decap(fin, nat)
fr_info_t *fin;
nat_t *nat;
{
char *hdr;
int hlen;
int skip;
mb_t *m;
if ((fin->fin_flx & FI_ICMPERR) != 0) {
/*
* ICMP packets don't get decapsulated, instead what we need
* to do is change the ICMP reply from including (in the data
* portion for errors) the encapsulated packet that we sent
* out to something that resembles the original packet prior
* to encapsulation. This isn't done here - all we're doing
* here is changing the outer address to ensure that it gets
* targetted back to the correct system.
*/
if (nat->nat_dir & NAT_OUTBOUND) {
u_32_t sum1, sum2, sumd;
sum1 = ntohl(fin->fin_daddr);
sum2 = ntohl(nat->nat_osrcaddr);
CALC_SUMD(sum1, sum2, sumd);
fin->fin_ip->ip_dst = nat->nat_osrcip;
fin->fin_daddr = nat->nat_osrcaddr;
#if !defined(_KERNEL) || defined(MENTAT) || defined(__sgi) || \
defined(__osf__) || defined(linux)
ipf_fix_outcksum(fin, &fin->fin_ip->ip_sum, sumd);
#endif
}
return 0;
}
m = fin->fin_m;
skip = fin->fin_hlen;
switch (nat->nat_dir)
{
case NAT_DIVERTIN :
case NAT_DIVERTOUT :
if (fin->fin_plen < MINDECAP)
return -1;
skip += sizeof(udphdr_t);
break;
case NAT_ENCAPIN :
case NAT_ENCAPOUT :
if (fin->fin_plen < (skip + sizeof(ip_t)))
return -1;
break;
default :
return -1;
/* NOTREACHED */
}
/*
* The aim here is to keep the original packet details in "fin" for
* as long as possible so that returning with an error is for the
* original packet and there is little undoing work to do.
*/
if (M_LEN(m) < skip + sizeof(ip_t)) {
if (ipf_pr_pullup(fin, skip + sizeof(ip_t)) == -1)
return -1;
}
hdr = MTOD(fin->fin_m, char *);
fin->fin_ip = (ip_t *)(hdr + skip);
hlen = IP_HL(fin->fin_ip) << 2;
if (ipf_pr_pullup(fin, skip + hlen) == -1) {
ATOMIC_INCL(ipf_nat_stats.ns_side[fin->fin_out].
ns_decap_pullup);
return -1;
}
fin->fin_hlen = hlen;
fin->fin_dlen -= skip;
fin->fin_plen -= skip;
fin->fin_ipoff += skip;
if (ipf_makefrip(hlen, (ip_t *)hdr, fin) == -1) {
ATOMIC_INCL(ipf_nat_stats.ns_side[fin->fin_out].ns_decap_bad);
return -1;
}
return skip;
}
/* ------------------------------------------------------------------------ */
/* Function: nat_matchencap */
/* Returns: int - -1 == packet error, 1 == success, 0 = no match */
/* Parameters: fin(I) - pointer to packet information */
/* np(I) - pointer to a NAT rule */
/* */
/* To properly compare a packet travelling in the reverse direction to an */
/* encap rule, it needs to be pseudo-decapsulated so we can check if a */
/* reply to it would be encapsulated. In doing this, we have to be careful */
/* so as not to actually do any decapsulation nor affect any of the current */
/* stored parameters in "fin" so that we can continue processing it else- */
/* where if it doesn't match. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_matchencap(fin, np)
fr_info_t *fin;
ipnat_t *np;
{
int hlen, match, skip;
u_short *ports;
frtuc_t *ft;
fr_ip_t fi;
char *hdr;
ip_t *ip;
mb_t *m;
/*
* This function is only for matching packets that are appearing from
* the reverse direction against "encap" rules.
*/
if (fin->fin_out == 1) {
if ((np->in_redir & NAT_REDIRECT) == 0)
return 0;
} else {
if ((np->in_redir & NAT_MAP) == 0)
return 0;
}
if (np->in_pr[fin->fin_out] != fin->fin_p)
return 0;
/*
* The aim here is to keep the original packet details in "fin" for
* as long as possible so that returning with an error is for the
* original packet and there is little undoing work to do.
*/
m = fin->fin_m;
skip = fin->fin_hlen;
if (M_LEN(m) < skip + sizeof(ip_t)) {
if (ipf_pr_pullup(fin, sizeof(ip_t)) == -1) {
ATOMIC_INCL(ipf_nat_stats.ns_side[fin->fin_out].
ns_encap_pullup);
return -1;
}
}
hdr = MTOD(fin->fin_m, char *);
ip = (ip_t *)(hdr + skip);
hlen = IP_HL(ip) << 2;
if (ipf_pr_pullup(fin, hlen) == -1) {
ATOMIC_INCL(ipf_nat_stats.ns_side[fin->fin_out].
ns_encap_pullup);
return -1;
}
match = 1;
/*
* Now we should have the entire innder header, so match up the
* address fields - easy enough. Reverse matching of source and
* destination because this is purportedly a "reply" to an encap rule.
*/
switch (np->in_osrcatype)
{
case FRI_NORMAL :
match = ((ip->ip_dst.s_addr & np->in_osrcmsk)
!= np->in_osrcaddr);
break;
#ifdef IPFILTER_LOOKUP
case FRI_LOOKUP :
match = (*np->in_nsrcfunc)(np->in_osrcptr, np->in_v,
&ip->ip_dst.s_addr);
break;
#endif
}
if (match)
return 0;
switch (np->in_odstatype)
{
case FRI_NORMAL :
match = ((ip->ip_src.s_addr & np->in_odstmsk)
!= np->in_odstaddr);
break;
#ifdef IPFILTER_LOOKUP
case FRI_LOOKUP :
match = (*np->in_nsrcfunc)(np->in_odstptr, np->in_v,
&ip->ip_src.s_addr);
break;
#endif
}
if (match)
return 0;
ft = &np->in_tuc;
switch (ip->ip_p)
{
case IPPROTO_TCP :
case IPPROTO_UDP :
/*
* Only need to fetch port numbers for NAT
*/
if (ipf_pr_pullup(fin, hlen + 4) == -1) {
ipf_nat_stats.ns_side[fin->fin_out].ns_encap_pullup++;
return -1;
}
ports = (u_short *)((char *)ip + hlen);
fi.fi_tcpf = 0;
/*
* And again, because we're simulating a reply, put the port
* numbers in the revese place to where they are now.
*/
fi.fi_ports[0] = ntohs(ports[1]);
fi.fi_ports[1] = ntohs(ports[0]);
return ipf_tcpudpchk(&fi, ft);
/* NOTREACHED */
default :
if (ft->ftu_scmp || ft->ftu_dcmp)
return 0;
break;
}
return 1;
}
/* ------------------------------------------------------------------------ */
/* Function: nat_nextaddr */
/* Returns: int - -1 == bad input (no new address), */
/* 0 == success and dst has new address */
/* Parameters: fin(I) - pointer to packet information */
/* na(I) - how to generate new address */
/* old(I) - original address being replaced */
/* dst(O) - where to put the new address */
/* Write Lock: ipf_nat */
/* */
/* This function uses the contents of the "na" structure, in combination */
/* with "old" to produce a new address to store in "dst". Not all of the */
/* possible uses of "na" will result in a new address. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_nextaddr(fin, na, old, dst)
fr_info_t *fin;
nat_addr_t *na;
u_32_t *old, *dst;
{
u_32_t min, max, new;
i6addr_t newip;
int range;
new = 0;
min = na->na_addr[0].in4.s_addr;
switch (na->na_atype)
{
case FRI_RANGE :
max = na->na_addr[1].in4.s_addr;
break;
case FRI_NETMASKED :
case FRI_DYNAMIC :
case FRI_NORMAL :
/*
* Compute the maximum address by adding the inverse of the
* netmask to the minimum address.
*/
max = ~na->na_addr[1].in4.s_addr;
max |= min;
break;
case FRI_BROADCAST :
case FRI_PEERADDR :
case FRI_NETWORK :
case FRI_LOOKUP :
default :
return -1;
}
switch (na->na_function)
{
case NA_RANDOM :
range = ntohl(max) - ntohl(min);
new = ipf_random(range);
new += ntohl(min);
new = htonl(new);
break;
case NA_NORMAL :
/*
* 0/0 as the new address means leave it alone.
*/
if (na->na_addr[0].in4.s_addr == 0 &&
na->na_addr[1].in4.s_addr == 0) {
new = *old;
/*
* 0/32 means get the interface's address
*/
} else if (na->na_addr[0].in4.s_addr == 0 &&
na->na_addr[1].in4.s_addr == 0xffffffff) {
if (ipf_ifpaddr(fin->fin_v, na->na_atype,
fin->fin_ifp, &newip, NULL) == -1) {
ipf_nat_stats.ns_side[fin->fin_out].
ns_ifpaddrfail++;
return -1;
}
new = newip.in4.s_addr;
} else {
new = htonl(na->na_nextip);
}
break;
case NA_HASHMD5 :
{
u_char hash[16];
MD5_CTX ctx;
range = ntohl(max) - ntohl(min);
MD5Init(&ctx);
MD5Update(&ctx, (u_char *)dst, 4);
MD5Final(hash, &ctx);
new = 0;
if (range > 0xffffff)
new = hash[0];
new <<= 8;
if (range > 0xffff)
new |= hash[1];
new <<= 8;
if (range > 0xff)
new |= hash[2];
new <<= 8;
new |= hash[3];
new %= range;
new += ntohl(min);
new = htonl(new);
break;
}
default :
ipf_nat_stats.ns_side[fin->fin_out].ns_badnextaddr++;
return -1;
}
*dst = new;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: nat_nextaddrinit */
/* Returns: int - 0 == success, else error number */
/* Parameters: na(I) - NAT address information for generating new addr*/
/* initial(I) - flag indicating if it is the first call for */
/* this "na" structure. */
/* ifp(I) - network interface to derive address */
/* information from. */
/* */
/* This function is expected to be called in two scenarious: when a new NAT */
/* rule is loaded into the kernel and when the list of NAT rules is sync'd */
/* up with the valid network interfaces (possibly due to them changing.) */
/* To distinguish between these, the "initial" parameter is used. If it is */
/* 1 then this indicates the rule has just been reloaded and 0 for when we */
/* are updating information. This difference is important because in */
/* instances where we are not updating address information associated with */
/* a network interface, we don't want to disturb what the "next" address to */
/* come out of ipf_nat_nextaddr() will be. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_nextaddrinit(na, initial, ifp)
nat_addr_t *na;
int initial;
void *ifp;
{
switch (na->na_atype)
{
#ifdef IPFILTER_LOOKUP
case FRI_LOOKUP :
if (na->na_ptr == NULL) {
na->na_ptr = ipf_resolvelookup(IPL_LOGNAT,
na->na_type,
na->na_num,
&na->na_func);
}
if (na->na_ptr == NULL) {
ipf_interror = 60056;
return ESRCH;
}
break;
#endif
case FRI_DYNAMIC :
case FRI_BROADCAST :
case FRI_NETWORK :
case FRI_NETMASKED :
case FRI_PEERADDR :
if (ifp != NULL)
(void )ipf_ifpaddr(4, na->na_atype, ifp,
&na->na_addr[0], &na->na_addr[1]);
break;
case FRI_SPLIT :
case FRI_RANGE :
if (initial)
na->na_nextip = ntohl(na->na_addr[0].in4.s_addr);
break;
case FRI_NONE :
na->na_addr[0].in4.s_addr &= na->na_addr[1].in4.s_addr;
return 0;
case FRI_NORMAL :
na->na_addr[0].in4.s_addr &= na->na_addr[1].in4.s_addr;
break;
default :
ipf_interror = 60054;
return EINVAL;
}
if (initial && (na->na_atype == FRI_NORMAL)) {
if (na->na_addr[0].in4.s_addr == 0) {
if ((na->na_addr[1].in4.s_addr == 0xffffffff) ||
(na->na_addr[1].in4.s_addr == 0)) {
return 0;
}
}
if (na->na_addr[1].in4.s_addr == 0xffffffff) {
na->na_nextip = ntohl(na->na_addr[0].in4.s_addr);
} else {
na->na_nextip = ntohl(na->na_addr[0].in4.s_addr) + 1;
}
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: nat_encapok */
/* Returns: int - -1 == MTU not big enough, 0 == ok to send packet */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to current NAT session */
/* */
/* The purpose of this function is to determine whether or not a packet can */
/* be sent out of a network interface after it has been encapsulated, before*/
/* the actual encapsulation happens. If it cannot - because the "Don't */
/* fragment" bit has been set - then generate an ICMP error message back to */
/* the origin of the packet, informing it that the packet is too big and */
/* what the actual MTU out for the connection is. */
/* */
/* At present the only question this would leave for strange behaviour is */
/* with local connections that will go out an encapsulation as sending of */
/* ICMP messages to local destinations isn't considered robust. */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_encapok(fin, nat)
fr_info_t *fin;
nat_t *nat;
{
void *sifp;
ipnat_t *n;
int extra;
int mtu;
if (!(fin->fin_ip->ip_off & htons(IP_DF)))
return 0;
n = nat->nat_ptr;
if (n->in_redir & NAT_ENCAP) {
extra = sizeof(ip_t);
} else {
return 0;
}
mtu = GETIFMTU(nat->nat_ifps[1]);
if (fin->fin_plen + extra < mtu)
return 0;
sifp = fin->fin_ifp;
fin->fin_ifp = NULL;
fin->fin_icode = ICMP_UNREACH_NEEDFRAG;
fin->fin_mtu = mtu - extra;
(void) ipf_send_icmp_err(ICMP_UNREACH, fin, 1);
fin->fin_mtu = 0;
return -1;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_rebuildencapicmp */
/* Returns: int - -1 == error, 0 == success */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to current NAT session */
/* */
/* For ICMP replies received in response to packets we've encapsulated on */
/* the way out, we need to replace all of the addressing fields found in */
/* the data section of the ICMP header. The ICMP packet is going to */
/* contain the the IP packet we sent out (IPENCAP) plus at least 64 bits of */
/* the original IP packet - not something that will be of use to the origin */
/* of the offending packet. */
/* ------------------------------------------------------------------------ */
static nat_t *
ipf_nat_rebuildencapicmp(fin, nat)
fr_info_t *fin;
nat_t *nat;
{
icmphdr_t *icmp;
udphdr_t *udp;
ip_t *oip;
int p;
icmp = fin->fin_dp;
oip = (ip_t *)&icmp->icmp_ip;
if (fin->fin_out == 0) {
if (nat->nat_dir == NAT_ENCAPIN) {
oip->ip_src = nat->nat_odstip;
oip->ip_dst = nat->nat_osrcip;
} else {
oip->ip_src = nat->nat_osrcip;
oip->ip_dst = nat->nat_odstip;
}
} else {
if (nat->nat_dir == NAT_ENCAPIN) {
oip->ip_src = nat->nat_osrcip;
oip->ip_dst = nat->nat_odstip;
} else {
oip->ip_src = nat->nat_odstip;
oip->ip_dst = nat->nat_osrcip;
}
}
udp = (udphdr_t *)(oip + 1);
/*
* We use nat_p here because the original UDP header is quite likely
* to have been lost - the error packet returned contains the outer
* encapsulation header plus 64 bits of the inner IP header, no room
* for a UDP or TCP header unless extra data is returned.
*
* XXX - If the entire original packet has been included (possible)
* then we should be just stripping off the outer encapsulation.
* This is a "todo" for the near future.
*/
p = nat->nat_pr[1 - fin->fin_out];
switch (p)
{
case IPPROTO_UDP :
udp->uh_sum = 0;
break;
case IPPROTO_TCP :
/*
* NAT doesn't track the sequence number so we can't pretend
* to know what value this field should carry.
*/
((tcphdr_t *)udp)->th_seq = 0;
break;
default :
break;
}
if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
if (fin->fin_out == 0) {
if (nat->nat_dir == NAT_ENCAPIN) {
udp->uh_sport = nat->nat_odport;
udp->uh_dport = nat->nat_osport;
} else {
udp->uh_sport = nat->nat_osport;
udp->uh_dport = nat->nat_odport;
}
} else {
if (nat->nat_dir == NAT_ENCAPIN) {
udp->uh_sport = nat->nat_osport;
udp->uh_dport = nat->nat_odport;
} else {
udp->uh_sport = nat->nat_odport;
udp->uh_dport = nat->nat_osport;
}
}
}
/* TRACE (fin,oip,udp,icmp) */
oip->ip_p = nat->nat_pr[1 - fin->fin_out];
oip->ip_sum = 0;
oip->ip_sum = ipf_cksum((u_short *)oip, sizeof(*oip));
/*
* Reduce the next MTU setting by the size of the encap header
*/
if (icmp->icmp_type == ICMP_UNREACH &&
icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
icmp->icmp_nextmtu = ntohs(icmp->icmp_nextmtu);
icmp->icmp_nextmtu -= 20;
icmp->icmp_nextmtu = htons(icmp->icmp_nextmtu);
}
icmp->icmp_cksum = 0;
icmp->icmp_cksum = ipf_cksum((u_short *)icmp, fin->fin_dlen);
/* TRACE (fin,oip,udp,icmp) */
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_matchflush */
/* Returns: int - -1 == error, 0 == success */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to current NAT session */
/* */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_matchflush(data)
caddr_t data;
{
int *array, flushed, error;
nat_t *nat, *natnext;
ipfobj_t obj;
error = ipf_matcharray_load(data, &obj, &array);
if (error != 0)
return error;
flushed = 0;
for (nat = ipf_nat_instances; nat != NULL; nat = natnext) {
natnext = nat->nat_next;
if (ipf_nat_matcharray(nat, array) == 0) {
ipf_nat_delete(nat, NL_FLUSH);
flushed++;
}
}
obj.ipfo_retval = flushed;
error = BCOPYOUT(&obj, data, sizeof(obj));
KFREES(array, array[0] * sizeof(*array));
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_matcharray */
/* Returns: int - -1 == error, 0 == success */
/* Parameters: fin(I) - pointer to packet information */
/* nat(I) - pointer to current NAT session */
/* */
/* ------------------------------------------------------------------------ */
static int
ipf_nat_matcharray(nat, array)
nat_t *nat;
int *array;
{
int i, n, *x, e, p;
e = 0;
n = array[0];
x = array + 1;
for (; n > 0; x += 3 + x[2]) {
if (x[0] == IPF_EXP_END)
break;
e = 0;
n -= x[2] + 3;
if (n < 0)
break;
p = x[0] >> 16;
if (p != 0 && p != nat->nat_pr[1])
break;
switch (x[0])
{
case IPF_EXP_IP_PR :
for (i = 0; !e && i < x[2]; i++) {
e |= (nat->nat_pr[1] == x[i + 3]);
}
break;
case IPF_EXP_IP_SRCADDR :
for (i = 0; !e && i < x[2]; i++) {
e |= ((nat->nat_nsrcaddr & x[i + 4]) ==
x[i + 3]);
}
break;
case IPF_EXP_IP_DSTADDR :
for (i = 0; !e && i < x[2]; i++) {
e |= ((nat->nat_ndstaddr & x[i + 4]) ==
x[i + 3]);
}
break;
case IPF_EXP_IP_ADDR :
for (i = 0; !e && i < x[2]; i++) {
e |= ((nat->nat_nsrcaddr & x[i + 4]) ==
x[i + 3]) ||
((nat->nat_ndstaddr & x[i + 4]) ==
x[i + 3]);
}
break;
case IPF_EXP_UDP_PORT :
case IPF_EXP_TCP_PORT :
for (i = 0; !e && i < x[2]; i++) {
e |= (nat->nat_nsport == x[i + 3]) ||
(nat->nat_ndport == x[i + 3]);
}
break;
case IPF_EXP_UDP_SPORT :
case IPF_EXP_TCP_SPORT :
for (i = 0; !e && i < x[2]; i++) {
e |= (nat->nat_nsport == x[i + 3]);
}
break;
case IPF_EXP_UDP_DPORT :
case IPF_EXP_TCP_DPORT :
for (i = 0; !e && i < x[2]; i++) {
e |= (nat->nat_ndport == x[i + 3]);
}
break;
case IPF_EXP_TCP_STATE :
for (i = 0; !e && i < x[2]; i++) {
e |= (nat->nat_tcpstate[0] == x[i + 3]) ||
(nat->nat_tcpstate[1] == x[i + 3]);
}
break;
case IPF_EXP_IDLE_GT :
e |= (ipf_ticks - nat->nat_touched > x[3]);
break;
}
e ^= x[1];
if (!e)
break;
}
return e;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_nat_gettable */
/* Returns: int - 0 = success, else error */
/* Parameters: data(I) - pointer to ioctl data */
/* */
/* This function handles ioctl requests for tables of nat information. */
/* At present the only table it deals with is the hash bucket statistics. */
/* ------------------------------------------------------------------------ */
static int ipf_nat_gettable(data)
char *data;
{
ipftable_t table;
int error;
error = ipf_inobj(data, &table, IPFOBJ_GTABLE);
if (error != 0)
return error;
switch (table.ita_type)
{
case IPFTABLE_BUCKETS_NATIN :
error = COPYOUT(ipf_nat_stats.ns_side[0].ns_bucketlen,
table.ita_table,
ipf_nat_table_sz * sizeof(u_long));
break;
case IPFTABLE_BUCKETS_NATOUT :
error = COPYOUT(ipf_nat_stats.ns_side[1].ns_bucketlen,
table.ita_table,
ipf_nat_table_sz * sizeof(u_long));
break;
default :
ipf_interror = 60058;
return EINVAL;
}
if (error != 0) {
ipf_interror = 60059;
error = EFAULT;
}
return error;
}