| /* |
| * Copyright (c) 1988, 1989, 1993 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * @(#)radix.c 8.6 (Berkeley) 10/17/95 |
| */ |
| |
| /* |
| * Routines to build and maintain radix trees for routing lookups. |
| */ |
| #if defined(KERNEL) || defined(_KERNEL) |
| # undef KERNEL |
| # undef _KERNEL |
| # define KERNEL 1 |
| # define _KERNEL 1 |
| #endif |
| #define __SYS_ATOMIC_OPS_H__ |
| #if !defined(__svr4__) && !defined(__SVR4) && !defined(__osf__) && \ |
| !defined(__hpux) && !defined(__sgi) |
| #include <sys/cdefs.h> |
| #endif |
| #ifndef __P |
| # ifdef __STDC__ |
| # define __P(x) x |
| # else |
| # define __P(x) () |
| # endif |
| #endif |
| #ifdef __osf__ |
| # define CONST |
| # define _IPV6_SWTAB_H |
| # define _PROTO_NET_H_ |
| # define _PROTO_IPV6_H |
| # include <sys/malloc.h> |
| #endif |
| |
| #include <sys/param.h> |
| #ifdef _KERNEL |
| #include <sys/systm.h> |
| #else |
| void panic __P((char *str)); |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #endif |
| #ifdef __hpux |
| #include <syslog.h> |
| #else |
| #include <sys/syslog.h> |
| #endif |
| #include <sys/time.h> |
| #include <netinet/in.h> |
| #include <sys/socket.h> |
| #include <net/if.h> |
| #include "netinet/ip_compat.h" |
| #include "netinet/ip_fil.h" |
| /* END OF INCLUDES */ |
| #include "radix_ipf.h" |
| #ifndef min |
| # define min MIN |
| #endif |
| #ifndef max |
| # define max MAX |
| #endif |
| |
| int max_keylen = 16; |
| static struct radix_mask *rn_mkfreelist; |
| static struct radix_node_head *mask_rnhead; |
| static char *addmask_key; |
| static u_char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; |
| static char *rn_zeros = NULL, *rn_ones = NULL; |
| |
| #define rn_masktop (mask_rnhead->rnh_treetop) |
| #undef Bcmp |
| #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l)) |
| |
| static int rn_satisfies_leaf __P((char *, struct radix_node *, int)); |
| static int rn_lexobetter __P((void *, void *)); |
| static struct radix_mask *rn_new_radix_mask __P((struct radix_node *, |
| struct radix_mask *)); |
| static int rn_freenode __P((struct radix_node *, void *)); |
| #if defined(AIX) && !defined(_KERNEL) |
| struct radix_node *rn_match __P((void *, struct radix_node_head *)); |
| struct radix_node *rn_addmask __P((int, int, void *)); |
| #define FreeS(x, y) KFREES(x, y) |
| #define Bcopy(x, y, z) bcopy(x, y, z) |
| #endif |
| |
| /* |
| * The data structure for the keys is a radix tree with one way |
| * branching removed. The index rn_b at an internal node n represents a bit |
| * position to be tested. The tree is arranged so that all descendants |
| * of a node n have keys whose bits all agree up to position rn_b - 1. |
| * (We say the index of n is rn_b.) |
| * |
| * There is at least one descendant which has a one bit at position rn_b, |
| * and at least one with a zero there. |
| * |
| * A route is determined by a pair of key and mask. We require that the |
| * bit-wise logical and of the key and mask to be the key. |
| * We define the index of a route to associated with the mask to be |
| * the first bit number in the mask where 0 occurs (with bit number 0 |
| * representing the highest order bit). |
| * |
| * We say a mask is normal if every bit is 0, past the index of the mask. |
| * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b, |
| * and m is a normal mask, then the route applies to every descendant of n. |
| * If the index(m) < rn_b, this implies the trailing last few bits of k |
| * before bit b are all 0, (and hence consequently true of every descendant |
| * of n), so the route applies to all descendants of the node as well. |
| * |
| * Similar logic shows that a non-normal mask m such that |
| * index(m) <= index(n) could potentially apply to many children of n. |
| * Thus, for each non-host route, we attach its mask to a list at an internal |
| * node as high in the tree as we can go. |
| * |
| * The present version of the code makes use of normal routes in short- |
| * circuiting an explict mask and compare operation when testing whether |
| * a key satisfies a normal route, and also in remembering the unique leaf |
| * that governs a subtree. |
| */ |
| |
| struct radix_node * |
| rn_search(v_arg, head) |
| void *v_arg; |
| struct radix_node *head; |
| { |
| struct radix_node *x; |
| caddr_t v; |
| |
| for (x = head, v = v_arg; x->rn_b >= 0;) { |
| if (x->rn_bmask & v[x->rn_off]) |
| x = x->rn_r; |
| else |
| x = x->rn_l; |
| } |
| return (x); |
| } |
| |
| struct radix_node * |
| rn_search_m(v_arg, head, m_arg) |
| struct radix_node *head; |
| void *v_arg, *m_arg; |
| { |
| struct radix_node *x; |
| caddr_t v = v_arg, m = m_arg; |
| |
| for (x = head; x->rn_b >= 0;) { |
| if ((x->rn_bmask & m[x->rn_off]) && |
| (x->rn_bmask & v[x->rn_off])) |
| x = x->rn_r; |
| else |
| x = x->rn_l; |
| } |
| return x; |
| } |
| |
| int |
| rn_refines(m_arg, n_arg) |
| void *m_arg, *n_arg; |
| { |
| caddr_t m = m_arg, n = n_arg; |
| caddr_t lim, lim2 = lim = n + *(u_char *)n; |
| int longer = (*(u_char *)n++) - (int)(*(u_char *)m++); |
| int masks_are_equal = 1; |
| |
| if (longer > 0) |
| lim -= longer; |
| while (n < lim) { |
| if (*n & ~(*m)) |
| return 0; |
| if (*n++ != *m++) |
| masks_are_equal = 0; |
| } |
| while (n < lim2) |
| if (*n++) |
| return 0; |
| if (masks_are_equal && (longer < 0)) |
| for (lim2 = m - longer; m < lim2; ) |
| if (*m++) |
| return 1; |
| return (!masks_are_equal); |
| } |
| |
| struct radix_node * |
| rn_lookup(v_arg, m_arg, head) |
| void *v_arg, *m_arg; |
| struct radix_node_head *head; |
| { |
| struct radix_node *x; |
| caddr_t netmask = 0; |
| |
| if (m_arg) { |
| if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0) |
| return (0); |
| netmask = x->rn_key; |
| } |
| x = rn_match(v_arg, head); |
| if (x && netmask) { |
| while (x && x->rn_mask != netmask) |
| x = x->rn_dupedkey; |
| } |
| return x; |
| } |
| |
| static int |
| rn_satisfies_leaf(trial, leaf, skip) |
| char *trial; |
| struct radix_node *leaf; |
| int skip; |
| { |
| char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; |
| char *cplim; |
| int length = min(*(u_char *)cp, *(u_char *)cp2); |
| |
| if (cp3 == 0) |
| cp3 = rn_ones; |
| else |
| length = min(length, *(u_char *)cp3); |
| cplim = cp + length; |
| cp3 += skip; |
| cp2 += skip; |
| for (cp += skip; cp < cplim; cp++, cp2++, cp3++) |
| if ((*cp ^ *cp2) & *cp3) |
| return 0; |
| return 1; |
| } |
| |
| struct radix_node * |
| rn_match(v_arg, head) |
| void *v_arg; |
| struct radix_node_head *head; |
| { |
| caddr_t v = v_arg; |
| struct radix_node *t = head->rnh_treetop, *x; |
| caddr_t cp = v, cp2; |
| caddr_t cplim; |
| struct radix_node *saved_t, *top = t; |
| int off = t->rn_off, vlen = *(u_char *)cp, matched_off; |
| int test, b, rn_b; |
| |
| /* |
| * Open code rn_search(v, top) to avoid overhead of extra |
| * subroutine call. |
| */ |
| for (; t->rn_b >= 0; ) { |
| if (t->rn_bmask & cp[t->rn_off]) |
| t = t->rn_r; |
| else |
| t = t->rn_l; |
| } |
| /* |
| * See if we match exactly as a host destination |
| * or at least learn how many bits match, for normal mask finesse. |
| * |
| * It doesn't hurt us to limit how many bytes to check |
| * to the length of the mask, since if it matches we had a genuine |
| * match and the leaf we have is the most specific one anyway; |
| * if it didn't match with a shorter length it would fail |
| * with a long one. This wins big for class B&C netmasks which |
| * are probably the most common case... |
| */ |
| if (t->rn_mask) |
| vlen = *(u_char *)t->rn_mask; |
| cp += off; |
| cp2 = t->rn_key + off; |
| cplim = v + vlen; |
| for (; cp < cplim; cp++, cp2++) |
| if (*cp != *cp2) |
| goto on1; |
| /* |
| * This extra grot is in case we are explicitly asked |
| * to look up the default. Ugh! |
| */ |
| if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey) |
| t = t->rn_dupedkey; |
| return t; |
| on1: |
| test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ |
| for (b = 7; (test >>= 1) > 0;) |
| b--; |
| matched_off = cp - v; |
| b += matched_off << 3; |
| rn_b = -1 - b; |
| /* |
| * If there is a host route in a duped-key chain, it will be first. |
| */ |
| if ((saved_t = t)->rn_mask == 0) |
| t = t->rn_dupedkey; |
| for (; t; t = t->rn_dupedkey) |
| /* |
| * Even if we don't match exactly as a host, |
| * we may match if the leaf we wound up at is |
| * a route to a net. |
| */ |
| if (t->rn_flags & RNF_NORMAL) { |
| if (rn_b <= t->rn_b) |
| return t; |
| } else if (rn_satisfies_leaf(v, t, matched_off)) |
| return t; |
| t = saved_t; |
| /* start searching up the tree */ |
| do { |
| struct radix_mask *m; |
| t = t->rn_p; |
| m = t->rn_mklist; |
| if (m) { |
| /* |
| * If non-contiguous masks ever become important |
| * we can restore the masking and open coding of |
| * the search and satisfaction test and put the |
| * calculation of "off" back before the "do". |
| */ |
| do { |
| if (m->rm_flags & RNF_NORMAL) { |
| if (rn_b <= m->rm_b) |
| return (m->rm_leaf); |
| } else { |
| off = min(t->rn_off, matched_off); |
| x = rn_search_m(v, t, m->rm_mask); |
| while (x && x->rn_mask != m->rm_mask) |
| x = x->rn_dupedkey; |
| if (x && rn_satisfies_leaf(v, x, off)) |
| return x; |
| } |
| m = m->rm_mklist; |
| } while (m); |
| } |
| } while (t != top); |
| return 0; |
| } |
| |
| #ifdef RN_DEBUG |
| int rn_nodenum; |
| struct radix_node *rn_clist; |
| int rn_saveinfo; |
| int rn_debug = 1; |
| #endif |
| |
| struct radix_node * |
| rn_newpair(v, b, nodes) |
| void *v; |
| int b; |
| struct radix_node nodes[2]; |
| { |
| struct radix_node *tt = nodes, *t = tt + 1; |
| t->rn_b = b; |
| t->rn_bmask = 0x80 >> (b & 7); |
| t->rn_l = tt; |
| t->rn_off = b >> 3; |
| tt->rn_b = -1; |
| tt->rn_key = (caddr_t)v; |
| tt->rn_p = t; |
| tt->rn_flags = t->rn_flags = RNF_ACTIVE; |
| #ifdef RN_DEBUG |
| tt->rn_info = rn_nodenum++; |
| t->rn_info = rn_nodenum++; |
| tt->rn_twin = t; |
| tt->rn_ybro = rn_clist; |
| rn_clist = tt; |
| #endif |
| return t; |
| } |
| |
| struct radix_node * |
| rn_insert(v_arg, head, dupentry, nodes) |
| void *v_arg; |
| struct radix_node_head *head; |
| int *dupentry; |
| struct radix_node nodes[2]; |
| { |
| caddr_t v = v_arg; |
| struct radix_node *top = head->rnh_treetop; |
| int head_off = top->rn_off, vlen = (int)*((u_char *)v); |
| struct radix_node *t = rn_search(v_arg, top); |
| caddr_t cp = v + head_off; |
| int b; |
| struct radix_node *tt; |
| |
| #ifdef RN_DEBUG |
| if (rn_debug) |
| log(LOG_DEBUG, "rn_insert(%p,%p,%p,%p)\n", v_arg, head, dupentry, nodes); |
| #endif |
| /* |
| * Find first bit at which v and t->rn_key differ |
| */ |
| { |
| caddr_t cp2 = t->rn_key + head_off; |
| int cmp_res; |
| caddr_t cplim = v + vlen; |
| |
| while (cp < cplim) |
| if (*cp2++ != *cp++) |
| goto on1; |
| *dupentry = 1; |
| return t; |
| on1: |
| *dupentry = 0; |
| cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; |
| for (b = (cp - v) << 3; cmp_res; b--) |
| cmp_res >>= 1; |
| } |
| { |
| struct radix_node *p, *x = top; |
| cp = v; |
| do { |
| p = x; |
| if (cp[x->rn_off] & x->rn_bmask) |
| x = x->rn_r; |
| else |
| x = x->rn_l; |
| } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */ |
| #ifdef RN_DEBUG |
| if (rn_debug) |
| log(LOG_DEBUG, "rn_insert: Going In:\n"); // traverse(p); |
| #endif |
| t = rn_newpair(v_arg, b, nodes); |
| tt = t->rn_l; |
| if ((cp[p->rn_off] & p->rn_bmask) == 0) |
| p->rn_l = t; |
| else |
| p->rn_r = t; |
| x->rn_p = t; |
| t->rn_p = p; /* frees x, p as temp vars below */ |
| if ((cp[t->rn_off] & t->rn_bmask) == 0) { |
| t->rn_r = x; |
| } else { |
| t->rn_r = tt; |
| t->rn_l = x; |
| } |
| #ifdef RN_DEBUG |
| if (rn_debug) |
| log(LOG_DEBUG, "rn_insert: Coming Out:\n"); // traverse(p); |
| #endif |
| } |
| return (tt); |
| } |
| |
| struct radix_node * |
| rn_addmask(n_arg, search, skip) |
| int search, skip; |
| void *n_arg; |
| { |
| caddr_t netmask = (caddr_t)n_arg; |
| struct radix_node *x; |
| caddr_t cp, cplim; |
| int b = 0, mlen, j; |
| int maskduplicated, m0, isnormal; |
| struct radix_node *saved_x; |
| static int last_zeroed = 0; |
| |
| #ifdef RN_DEBUG |
| if (rn_debug) |
| log(LOG_DEBUG, "rn_addmask(%p,%d,%d)\n", n_arg, search, skip); |
| #endif |
| mlen = *(u_char *)netmask; |
| if ((mlen = *(u_char *)netmask) > max_keylen) |
| mlen = max_keylen; |
| if (skip == 0) |
| skip = 1; |
| if (mlen <= skip) |
| return (mask_rnhead->rnh_nodes); |
| if (skip > 1) |
| Bcopy(rn_ones + 1, addmask_key + 1, skip - 1); |
| if ((m0 = mlen) > skip) |
| Bcopy(netmask + skip, addmask_key + skip, mlen - skip); |
| /* |
| * Trim trailing zeroes. |
| */ |
| for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) |
| cp--; |
| mlen = cp - addmask_key; |
| if (mlen <= skip) { |
| if (m0 >= last_zeroed) |
| last_zeroed = mlen; |
| return (mask_rnhead->rnh_nodes); |
| } |
| if (m0 < last_zeroed) |
| Bzero(addmask_key + m0, last_zeroed - m0); |
| *addmask_key = last_zeroed = mlen; |
| x = rn_search(addmask_key, rn_masktop); |
| if (Bcmp(addmask_key, x->rn_key, mlen) != 0) |
| x = 0; |
| if (x || search) |
| return (x); |
| R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); |
| if ((saved_x = x) == 0) |
| return (0); |
| Bzero(x, max_keylen + 2 * sizeof (*x)); |
| netmask = cp = (caddr_t)(x + 2); |
| Bcopy(addmask_key, cp, mlen); |
| x = rn_insert(cp, mask_rnhead, &maskduplicated, x); |
| if (maskduplicated) { |
| #if 0 |
| log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n"); |
| #endif |
| Free(saved_x); |
| return (x); |
| } |
| /* |
| * Calculate index of mask, and check for normalcy. |
| */ |
| cplim = netmask + mlen; |
| isnormal = 1; |
| for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) |
| cp++; |
| if (cp != cplim) { |
| for (j = 0x80; (j & *cp) != 0; j >>= 1) |
| b++; |
| if (*cp != normal_chars[b] || cp != (cplim - 1)) |
| isnormal = 0; |
| } |
| b += (cp - netmask) << 3; |
| x->rn_b = -1 - b; |
| if (isnormal) |
| x->rn_flags |= RNF_NORMAL; |
| return (x); |
| } |
| |
| static int /* XXX: arbitrary ordering for non-contiguous masks */ |
| rn_lexobetter(m_arg, n_arg) |
| void *m_arg, *n_arg; |
| { |
| u_char *mp = m_arg, *np = n_arg, *lim; |
| |
| if (*mp > *np) |
| return 1; /* not really, but need to check longer one first */ |
| if (*mp == *np) |
| for (lim = mp + *mp; mp < lim;) |
| if (*mp++ > *np++) |
| return 1; |
| return 0; |
| } |
| |
| static struct radix_mask * |
| rn_new_radix_mask(tt, next) |
| struct radix_node *tt; |
| struct radix_mask *next; |
| { |
| struct radix_mask *m; |
| |
| MKGet(m); |
| if (m == 0) { |
| #if 0 |
| log(LOG_ERR, "Mask for route not entered\n"); |
| #endif |
| return (0); |
| } |
| Bzero(m, sizeof *m); |
| m->rm_b = tt->rn_b; |
| m->rm_flags = tt->rn_flags; |
| if (tt->rn_flags & RNF_NORMAL) |
| m->rm_leaf = tt; |
| else |
| m->rm_mask = tt->rn_mask; |
| m->rm_mklist = next; |
| tt->rn_mklist = m; |
| return m; |
| } |
| |
| struct radix_node * |
| rn_addroute(v_arg, n_arg, head, treenodes) |
| void *v_arg, *n_arg; |
| struct radix_node_head *head; |
| struct radix_node treenodes[2]; |
| { |
| caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; |
| struct radix_node *t, *x = NULL, *tt; |
| struct radix_node *saved_tt, *top = head->rnh_treetop; |
| short b = 0, b_leaf = 0; |
| int keyduplicated; |
| caddr_t mmask; |
| struct radix_mask *m, **mp; |
| |
| #ifdef RN_DEBUG |
| if (rn_debug) |
| log(LOG_DEBUG, "rn_addroute(%p,%p,%p,%p)\n", v_arg, n_arg, head, treenodes); |
| #endif |
| /* |
| * In dealing with non-contiguous masks, there may be |
| * many different routes which have the same mask. |
| * We will find it useful to have a unique pointer to |
| * the mask to speed avoiding duplicate references at |
| * nodes and possibly save time in calculating indices. |
| */ |
| if (netmask) { |
| if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0) |
| return (0); |
| b_leaf = x->rn_b; |
| b = -1 - x->rn_b; |
| netmask = x->rn_key; |
| } |
| /* |
| * Deal with duplicated keys: attach node to previous instance |
| */ |
| saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); |
| if (keyduplicated) { |
| for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { |
| if (tt->rn_mask == netmask) |
| return (0); |
| if (netmask == 0 || |
| (tt->rn_mask && |
| ((b_leaf < tt->rn_b) || /* index(netmask) > node */ |
| rn_refines(netmask, tt->rn_mask) || |
| rn_lexobetter(netmask, tt->rn_mask)))) |
| break; |
| } |
| /* |
| * If the mask is not duplicated, we wouldn't |
| * find it among possible duplicate key entries |
| * anyway, so the above test doesn't hurt. |
| * |
| * We sort the masks for a duplicated key the same way as |
| * in a masklist -- most specific to least specific. |
| * This may require the unfortunate nuisance of relocating |
| * the head of the list. |
| * |
| * We also reverse, or doubly link the list through the |
| * parent pointer. |
| */ |
| if (tt == saved_tt) { |
| struct radix_node *xx = x; |
| /* link in at head of list */ |
| (tt = treenodes)->rn_dupedkey = t; |
| tt->rn_flags = t->rn_flags; |
| tt->rn_p = x = t->rn_p; |
| t->rn_p = tt; |
| if (x->rn_l == t) |
| x->rn_l = tt; |
| else |
| x->rn_r = tt; |
| saved_tt = tt; |
| x = xx; |
| } else { |
| (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; |
| t->rn_dupedkey = tt; |
| tt->rn_p = t; |
| if (tt->rn_dupedkey) |
| tt->rn_dupedkey->rn_p = tt; |
| } |
| #ifdef RN_DEBUG |
| t=tt+1; |
| tt->rn_info = rn_nodenum++; |
| t->rn_info = rn_nodenum++; |
| tt->rn_twin = t; |
| tt->rn_ybro = rn_clist; |
| rn_clist = tt; |
| #endif |
| tt->rn_key = (caddr_t) v; |
| tt->rn_b = -1; |
| tt->rn_flags = RNF_ACTIVE; |
| } |
| /* |
| * Put mask in tree. |
| */ |
| if (netmask) { |
| tt->rn_mask = netmask; |
| tt->rn_b = x->rn_b; |
| tt->rn_flags |= x->rn_flags & RNF_NORMAL; |
| } |
| t = saved_tt->rn_p; |
| if (keyduplicated) |
| goto on2; |
| b_leaf = -1 - t->rn_b; |
| if (t->rn_r == saved_tt) |
| x = t->rn_l; |
| else |
| x = t->rn_r; |
| /* Promote general routes from below */ |
| if (x->rn_b < 0) { |
| for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) |
| if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) { |
| *mp = m = rn_new_radix_mask(x, 0); |
| if (m) |
| mp = &m->rm_mklist; |
| } |
| } else if (x->rn_mklist) { |
| /* |
| * Skip over masks whose index is > that of new node |
| */ |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) |
| if (m->rm_b >= b_leaf) |
| break; |
| t->rn_mklist = m; |
| *mp = 0; |
| } |
| on2: |
| /* Add new route to highest possible ancestor's list */ |
| if ((netmask == 0) || (b > t->rn_b )) |
| return tt; /* can't lift at all */ |
| b_leaf = tt->rn_b; |
| do { |
| x = t; |
| t = t->rn_p; |
| } while (b <= t->rn_b && x != top); |
| /* |
| * Search through routes associated with node to |
| * insert new route according to index. |
| * Need same criteria as when sorting dupedkeys to avoid |
| * double loop on deletion. |
| */ |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { |
| if (m->rm_b < b_leaf) |
| continue; |
| if (m->rm_b > b_leaf) |
| break; |
| if (m->rm_flags & RNF_NORMAL) { |
| mmask = m->rm_leaf->rn_mask; |
| if (tt->rn_flags & RNF_NORMAL) { |
| #if 0 |
| log(LOG_ERR, "Non-unique normal route," |
| " mask not entered\n"); |
| #endif |
| return tt; |
| } |
| } else |
| mmask = m->rm_mask; |
| if (mmask == netmask) { |
| m->rm_refs++; |
| tt->rn_mklist = m; |
| return tt; |
| } |
| if (rn_refines(netmask, mmask) |
| || rn_lexobetter(netmask, mmask)) |
| break; |
| } |
| *mp = rn_new_radix_mask(tt, *mp); |
| return tt; |
| } |
| |
| struct radix_node * |
| rn_delete(v_arg, netmask_arg, head) |
| void *v_arg, *netmask_arg; |
| struct radix_node_head *head; |
| { |
| struct radix_node *t, *p, *x, *tt; |
| struct radix_mask *m, *saved_m, **mp; |
| struct radix_node *dupedkey, *saved_tt, *top; |
| caddr_t v, netmask; |
| int b, head_off, vlen; |
| |
| v = v_arg; |
| netmask = netmask_arg; |
| x = head->rnh_treetop; |
| tt = rn_search(v, x); |
| head_off = x->rn_off; |
| vlen = *(u_char *)v; |
| saved_tt = tt; |
| top = x; |
| if (tt == 0 || |
| Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) |
| return (0); |
| /* |
| * Delete our route from mask lists. |
| */ |
| if (netmask) { |
| if ((x = rn_addmask(netmask, 1, head_off)) == 0) |
| return (0); |
| netmask = x->rn_key; |
| while (tt->rn_mask != netmask) |
| if ((tt = tt->rn_dupedkey) == 0) |
| return (0); |
| } |
| if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) |
| goto on1; |
| if (tt->rn_flags & RNF_NORMAL) { |
| if (m->rm_leaf != tt || m->rm_refs > 0) { |
| #if 0 |
| log(LOG_ERR, "rn_delete: inconsistent annotation\n"); |
| #endif |
| return 0; /* dangling ref could cause disaster */ |
| } |
| } else { |
| if (m->rm_mask != tt->rn_mask) { |
| #if 0 |
| log(LOG_ERR, "rn_delete: inconsistent annotation\n"); |
| #endif |
| goto on1; |
| } |
| if (--m->rm_refs >= 0) |
| goto on1; |
| } |
| b = -1 - tt->rn_b; |
| t = saved_tt->rn_p; |
| if (b > t->rn_b) |
| goto on1; /* Wasn't lifted at all */ |
| do { |
| x = t; |
| t = t->rn_p; |
| } while (b <= t->rn_b && x != top); |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) |
| if (m == saved_m) { |
| *mp = m->rm_mklist; |
| MKFree(m); |
| break; |
| } |
| if (m == 0) { |
| #if 0 |
| log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); |
| #endif |
| if (tt->rn_flags & RNF_NORMAL) |
| return (0); /* Dangling ref to us */ |
| } |
| on1: |
| /* |
| * Eliminate us from tree |
| */ |
| if (tt->rn_flags & RNF_ROOT) |
| return (0); |
| #ifdef RN_DEBUG |
| /* Get us out of the creation list */ |
| for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) |
| ; |
| if (t) t->rn_ybro = tt->rn_ybro; |
| #endif |
| t = tt->rn_p; |
| dupedkey = saved_tt->rn_dupedkey; |
| if (dupedkey) { |
| /* |
| * Here, tt is the deletion target and |
| * saved_tt is the head of the dupedkey chain. |
| */ |
| if (tt == saved_tt) { |
| x = dupedkey; |
| x->rn_p = t; |
| if (t->rn_l == tt) |
| t->rn_l = x; |
| else |
| t->rn_r = x; |
| } else { |
| /* find node in front of tt on the chain */ |
| for (x = p = saved_tt; p && p->rn_dupedkey != tt;) |
| p = p->rn_dupedkey; |
| if (p) { |
| p->rn_dupedkey = tt->rn_dupedkey; |
| if (tt->rn_dupedkey) |
| tt->rn_dupedkey->rn_p = p; |
| } |
| #if 0 |
| else |
| log(LOG_ERR, "rn_delete: couldn't find us\n"); |
| #endif |
| } |
| t = tt + 1; |
| if (t->rn_flags & RNF_ACTIVE) { |
| #ifndef RN_DEBUG |
| *++x = *t; |
| p = t->rn_p; |
| #else |
| b = t->rn_info; |
| *++x = *t; |
| t->rn_info = b; |
| p = t->rn_p; |
| #endif |
| if (p->rn_l == t) |
| p->rn_l = x; |
| else |
| p->rn_r = x; |
| x->rn_l->rn_p = x; |
| x->rn_r->rn_p = x; |
| } |
| goto out; |
| } |
| if (t->rn_l == tt) |
| x = t->rn_r; |
| else |
| x = t->rn_l; |
| p = t->rn_p; |
| if (p->rn_r == t) |
| p->rn_r = x; |
| else |
| p->rn_l = x; |
| x->rn_p = p; |
| /* |
| * Demote routes attached to us. |
| */ |
| if (t->rn_mklist) { |
| if (x->rn_b >= 0) { |
| for (mp = &x->rn_mklist; (m = *mp) != NULL;) |
| mp = &m->rm_mklist; |
| *mp = t->rn_mklist; |
| } else { |
| /* If there are any key,mask pairs in a sibling |
| duped-key chain, some subset will appear sorted |
| in the same order attached to our mklist */ |
| for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) |
| if (m == x->rn_mklist) { |
| struct radix_mask *mm = m->rm_mklist; |
| x->rn_mklist = 0; |
| if (--(m->rm_refs) < 0) |
| MKFree(m); |
| m = mm; |
| } |
| #if 0 |
| if (m) |
| log(LOG_ERR, "%s %p at %p\n", |
| "rn_delete: Orphaned Mask", m, x); |
| #endif |
| } |
| } |
| /* |
| * We may be holding an active internal node in the tree. |
| */ |
| x = tt + 1; |
| if (t != x) { |
| #ifndef RN_DEBUG |
| *t = *x; |
| #else |
| b = t->rn_info; |
| *t = *x; |
| t->rn_info = b; |
| #endif |
| t->rn_l->rn_p = t; |
| t->rn_r->rn_p = t; |
| p = x->rn_p; |
| if (p->rn_l == x) |
| p->rn_l = t; |
| else |
| p->rn_r = t; |
| } |
| out: |
| tt->rn_flags &= ~RNF_ACTIVE; |
| tt[1].rn_flags &= ~RNF_ACTIVE; |
| return (tt); |
| } |
| |
| int |
| rn_walktree(h, f, w) |
| struct radix_node_head *h; |
| int (*f) __P((struct radix_node *, void *)); |
| void *w; |
| { |
| int error; |
| struct radix_node *base, *next; |
| struct radix_node *rn = h->rnh_treetop; |
| /* |
| * This gets complicated because we may delete the node |
| * while applying the function f to it, so we need to calculate |
| * the successor node in advance. |
| */ |
| /* First time through node, go left */ |
| while (rn->rn_b >= 0) |
| rn = rn->rn_l; |
| for (;;) { |
| base = rn; |
| /* If at right child go back up, otherwise, go right */ |
| while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) |
| rn = rn->rn_p; |
| /* Find the next *leaf* since next node might vanish, too */ |
| for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) |
| rn = rn->rn_l; |
| next = rn; |
| /* Process leaves */ |
| while ((rn = base) != NULL) { |
| base = rn->rn_dupedkey; |
| if (!(rn->rn_flags & RNF_ROOT) |
| && (error = (*f)(rn, w))) |
| return (error); |
| } |
| rn = next; |
| if (rn->rn_flags & RNF_ROOT) |
| return (0); |
| } |
| /* NOTREACHED */ |
| } |
| |
| int |
| rn_inithead(head, off) |
| void **head; |
| int off; |
| { |
| struct radix_node_head *rnh; |
| |
| if (*head) |
| return (1); |
| R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh)); |
| if (rnh == 0) |
| return (0); |
| *head = rnh; |
| return rn_inithead0(rnh, off); |
| } |
| |
| int |
| rn_inithead0(rnh, off) |
| struct radix_node_head *rnh; |
| int off; |
| { |
| struct radix_node *t, *tt, *ttt; |
| |
| Bzero(rnh, sizeof (*rnh)); |
| t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); |
| ttt = rnh->rnh_nodes + 2; |
| t->rn_r = ttt; |
| t->rn_p = t; |
| tt = t->rn_l; |
| tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; |
| tt->rn_b = -1 - off; |
| *ttt = *tt; |
| ttt->rn_key = rn_ones; |
| rnh->rnh_addaddr = rn_addroute; |
| rnh->rnh_deladdr = rn_delete; |
| rnh->rnh_matchaddr = rn_match; |
| rnh->rnh_lookup = rn_lookup; |
| rnh->rnh_walktree = rn_walktree; |
| rnh->rnh_treetop = t; |
| return (1); |
| } |
| |
| void |
| rn_init() |
| { |
| char *cp, *cplim; |
| |
| if (max_keylen == 0) { |
| #if 0 |
| log(LOG_ERR, |
| "rn_init: radix functions require max_keylen be set\n"); |
| #endif |
| return; |
| } |
| if (rn_zeros == NULL) { |
| R_Malloc(rn_zeros, char *, 3 * max_keylen); |
| } |
| if (rn_zeros == NULL) |
| panic("rn_init"); |
| Bzero(rn_zeros, 3 * max_keylen); |
| rn_ones = cp = rn_zeros + max_keylen; |
| addmask_key = cplim = rn_ones + max_keylen; |
| while (cp < cplim) |
| *cp++ = -1; |
| if (rn_inithead((void *)&mask_rnhead, 0) == 0) |
| panic("rn_init 2"); |
| } |
| |
| |
| static int |
| rn_freenode(struct radix_node *n, void *p) |
| { |
| struct radix_node_head *rnh = p; |
| struct radix_node *d; |
| |
| d = rnh->rnh_deladdr(n->rn_key, NULL, rnh); |
| if (d != NULL) { |
| FreeS(d, max_keylen + 2 * sizeof (*d)); |
| } |
| return 0; |
| } |
| |
| |
| void |
| rn_freehead(rnh) |
| struct radix_node_head *rnh; |
| { |
| |
| (void)rn_walktree(rnh, rn_freenode, rnh); |
| |
| rnh->rnh_addaddr = NULL; |
| rnh->rnh_deladdr = NULL; |
| rnh->rnh_matchaddr = NULL; |
| rnh->rnh_lookup = NULL; |
| rnh->rnh_walktree = NULL; |
| |
| Free(rnh); |
| } |
| |
| |
| void |
| rn_fini() |
| { |
| struct radix_mask *m; |
| |
| if (rn_zeros != NULL) { |
| FreeS(rn_zeros, 3 * max_keylen); |
| rn_zeros = NULL; |
| } |
| |
| if (mask_rnhead != NULL) { |
| rn_freehead(mask_rnhead); |
| mask_rnhead = NULL; |
| } |
| |
| while ((m = rn_mkfreelist) != NULL) { |
| rn_mkfreelist = m->rm_mklist; |
| KFREE(m); |
| } |
| } |
| |
| |
| #ifdef USE_MAIN |
| |
| typedef struct myst { |
| addrfamily_t dst; |
| addrfamily_t mask; |
| struct radix_node nodes[2]; |
| } myst_t; |
| |
| int |
| main(int argc, char *argv[]) |
| { |
| struct radix_node_head *rnh; |
| struct radix_node *rn; |
| addrfamily_t af, mf; |
| myst_t st1, st2, *stp; |
| |
| memset(&st1, 0, sizeof(st1)); |
| memset(&st2, 0, sizeof(st2)); |
| memset(&af, 0, sizeof(af)); |
| |
| rn_init(); |
| |
| rnh = NULL; |
| rn_inithead(&rnh, offsetof(addrfamily_t, adf_addr) << 3); |
| |
| st1.dst.adf_len = sizeof(st1); |
| st1.mask.adf_len = sizeof(st1); |
| st1.dst.adf_addr.in4.s_addr = inet_addr("127.0.0.0"); |
| st1.mask.adf_addr.in4.s_addr = inet_addr("255.0.0.0"); |
| rn = rnh->rnh_addaddr(&st1.dst, &st1.mask, rnh, st1.nodes); |
| printf("add.1 %p\n", rn); |
| |
| st2.dst.adf_len = sizeof(st2); |
| st2.mask.adf_len = sizeof(st2); |
| st2.dst.adf_addr.in4.s_addr = inet_addr("127.0.1.0"); |
| st2.mask.adf_addr.in4.s_addr = inet_addr("255.255.255.0"); |
| rn = rnh->rnh_addaddr(&st2.dst, &st2.mask, rnh, st2.nodes); |
| printf("add.2 %p\n", rn); |
| |
| af.adf_len = sizeof(af); |
| af.adf_addr.in4.s_addr = inet_addr("127.0.1.0"); |
| rn = rnh->rnh_matchaddr(&af, rnh); |
| if (rn != NULL) { |
| printf("1.lookup = %p key %p mask %p\n", rn, rn->rn_key, rn->rn_mask); |
| stp = rn->rn_key; |
| printf("%s/", inet_ntoa(stp->dst.adf_addr.in4)); |
| stp = rn->rn_mask; |
| printf("%s\n", inet_ntoa(stp->dst.adf_addr.in4)); |
| } |
| |
| mf.adf_len = sizeof(mf); |
| mf.adf_addr.in4.s_addr = inet_addr("255.255.255.0"); |
| rn = rnh->rnh_lookup(&af, &mf, rnh); |
| if (rn != NULL) { |
| printf("2.lookup = %p key %p mask %p\n", rn, rn->rn_key, rn->rn_mask); |
| stp = rn->rn_key; |
| printf("%s/", inet_ntoa(stp->dst.adf_addr.in4)); |
| stp = rn->rn_mask; |
| printf("%s\n", inet_ntoa(stp->dst.adf_addr.in4)); |
| } |
| |
| af.adf_len = sizeof(af); |
| af.adf_addr.in4.s_addr = inet_addr("126.0.0.1"); |
| rn = rnh->rnh_matchaddr(&af, rnh); |
| if (rn != NULL) { |
| printf("3.lookup = %p key %p mask %p\n", rn, rn->rn_key, rn->rn_mask); |
| stp = rn->rn_key; |
| printf("%s/", inet_ntoa(stp->dst.adf_addr.in4)); |
| stp = rn->rn_mask; |
| printf("%s\n", inet_ntoa(stp->dst.adf_addr.in4)); |
| } |
| |
| return 0; |
| } |
| |
| |
| void |
| log(int level, char *format, ...) |
| { |
| va_list ap; |
| |
| va_start(ap, format); |
| vfprintf(stderr, format, ap); |
| va_end(ap); |
| } |
| #endif |
| |
| |
| #ifndef _KERNEL |
| void |
| panic(char *str) |
| { |
| fputs(str, stderr); |
| abort(); |
| } |
| #endif |