| /*- |
| * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * This code is derived from the Stanford/CMU enet packet filter, |
| * (net/enet.c) distributed as part of 4.3BSD, and code contributed |
| * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence |
| * Berkeley Laboratory. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * This product includes software developed by the University of |
| * California, Berkeley and its contributors. |
| * 4. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * @(#)bpf.c 7.5 (Berkeley) 7/15/91 |
| */ |
| |
| #if !(defined(lint) || defined(KERNEL) || defined(_KERNEL)) |
| static const char rcsid[] = |
| "@(#) $Header$ (LBL)"; |
| #endif |
| |
| #include <sys/param.h> |
| #include <sys/types.h> |
| #include <sys/time.h> |
| #include <sys/socket.h> |
| |
| #include <netinet/in.h> |
| #include <net/if.h> |
| |
| #include "netinet/ip_compat.h" |
| #include "bpf-ipf.h" |
| |
| |
| #if (defined(__hpux) || SOLARIS) && (defined(_KERNEL) || defined(KERNEL)) |
| # include <sys/sysmacros.h> |
| # include <sys/stream.h> |
| #endif |
| |
| #include "pcap-ipf.h" |
| |
| #if !defined(KERNEL) && !defined(_KERNEL) |
| #include <stdlib.h> |
| #endif |
| |
| #define int32 bpf_int32 |
| #define u_int32 bpf_u_int32 |
| |
| static int m_xword __P((mb_t *, int, int *)); |
| static int m_xhalf __P((mb_t *, int, int *)); |
| |
| #ifndef LBL_ALIGN |
| /* |
| * XXX - IA-64? If not, this probably won't work on Win64 IA-64 |
| * systems, unless LBL_ALIGN is defined elsewhere for them. |
| * XXX - SuperH? If not, this probably won't work on WinCE SuperH |
| * systems, unless LBL_ALIGN is defined elsewhere for them. |
| */ |
| #if defined(sparc) || defined(__sparc__) || defined(mips) || \ |
| defined(ibm032) || defined(__alpha) || defined(__hpux) || \ |
| defined(__arm__) |
| #define LBL_ALIGN |
| #endif |
| #endif |
| |
| #ifndef LBL_ALIGN |
| |
| #define EXTRACT_SHORT(p) ((u_short)ntohs(*(u_short *)p)) |
| #define EXTRACT_LONG(p) (ntohl(*(u_int32 *)p)) |
| #else |
| #define EXTRACT_SHORT(p)\ |
| ((u_short)\ |
| ((u_short)*((u_char *)p+0)<<8|\ |
| (u_short)*((u_char *)p+1)<<0)) |
| #define EXTRACT_LONG(p)\ |
| ((u_int32)*((u_char *)p+0)<<24|\ |
| (u_int32)*((u_char *)p+1)<<16|\ |
| (u_int32)*((u_char *)p+2)<<8|\ |
| (u_int32)*((u_char *)p+3)<<0) |
| #endif |
| |
| #define MINDEX(len, _m, _k) \ |
| { \ |
| len = M_LEN(m); \ |
| while ((_k) >= len) { \ |
| (_k) -= len; \ |
| (_m) = (_m)->m_next; \ |
| if ((_m) == 0) \ |
| return 0; \ |
| len = M_LEN(m); \ |
| } \ |
| } |
| |
| static int |
| m_xword(m, k, err) |
| register mb_t *m; |
| register int k, *err; |
| { |
| register int len; |
| register u_char *cp, *np; |
| register mb_t *m0; |
| |
| MINDEX(len, m, k); |
| cp = MTOD(m, u_char *) + k; |
| if (len - k >= 4) { |
| *err = 0; |
| return EXTRACT_LONG(cp); |
| } |
| m0 = m->m_next; |
| if (m0 == 0 || M_LEN(m0) + len - k < 4) |
| goto bad; |
| *err = 0; |
| np = MTOD(m0, u_char *); |
| switch (len - k) { |
| |
| case 1: |
| return (cp[0] << 24) | (np[0] << 16) | (np[1] << 8) | np[2]; |
| |
| case 2: |
| return (cp[0] << 24) | (cp[1] << 16) | (np[0] << 8) | np[1]; |
| |
| default: |
| return (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | np[0]; |
| } |
| bad: |
| *err = 1; |
| return 0; |
| } |
| |
| static int |
| m_xhalf(m, k, err) |
| register mb_t *m; |
| register int k, *err; |
| { |
| register int len; |
| register u_char *cp; |
| register mb_t *m0; |
| |
| MINDEX(len, m, k); |
| cp = MTOD(m, u_char *) + k; |
| if (len - k >= 2) { |
| *err = 0; |
| return EXTRACT_SHORT(cp); |
| } |
| m0 = m->m_next; |
| if (m0 == 0) |
| goto bad; |
| *err = 0; |
| return (cp[0] << 8) | MTOD(m0, u_char *)[0]; |
| bad: |
| *err = 1; |
| return 0; |
| } |
| |
| /* |
| * Execute the filter program starting at pc on the packet p |
| * wirelen is the length of the original packet |
| * buflen is the amount of data present |
| * For the kernel, p is assumed to be a pointer to an mbuf if buflen is 0, |
| * in all other cases, p is a pointer to a buffer and buflen is its size. |
| */ |
| u_int |
| bpf_filter(pc, p, wirelen, buflen) |
| register struct bpf_insn *pc; |
| register u_char *p; |
| u_int wirelen; |
| register u_int buflen; |
| { |
| register u_int32 A, X; |
| register int k; |
| int32 mem[BPF_MEMWORDS]; |
| mb_t *m, *n; |
| int merr = 0; /* XXX: GCC */ |
| int len; |
| |
| if (buflen == 0) { |
| m = (mb_t *)p; |
| p = MTOD(m, u_char *); |
| buflen = M_LEN(m); |
| } else |
| m = NULL; |
| |
| if (pc == 0) |
| /* |
| * No filter means accept all. |
| */ |
| return (u_int)-1; |
| A = 0; |
| X = 0; |
| --pc; |
| while (1) { |
| ++pc; |
| switch (pc->code) { |
| |
| default: |
| return 0; |
| case BPF_RET|BPF_K: |
| return (u_int)pc->k; |
| |
| case BPF_RET|BPF_A: |
| return (u_int)A; |
| |
| case BPF_LD|BPF_W|BPF_ABS: |
| k = pc->k; |
| if (k + sizeof(int32) > buflen) { |
| if (m == NULL) |
| return 0; |
| A = m_xword(m, k, &merr); |
| if (merr != 0) |
| return 0; |
| continue; |
| } |
| A = EXTRACT_LONG(&p[k]); |
| continue; |
| |
| case BPF_LD|BPF_H|BPF_ABS: |
| k = pc->k; |
| if (k + sizeof(short) > buflen) { |
| if (m == NULL) |
| return 0; |
| A = m_xhalf(m, k, &merr); |
| if (merr != 0) |
| return 0; |
| continue; |
| } |
| A = EXTRACT_SHORT(&p[k]); |
| continue; |
| |
| case BPF_LD|BPF_B|BPF_ABS: |
| k = pc->k; |
| if (k >= buflen) { |
| if (m == NULL) |
| return 0; |
| n = m; |
| MINDEX(len, n, k); |
| A = MTOD(n, u_char *)[k]; |
| continue; |
| } |
| A = p[k]; |
| continue; |
| |
| case BPF_LD|BPF_W|BPF_LEN: |
| A = wirelen; |
| continue; |
| |
| case BPF_LDX|BPF_W|BPF_LEN: |
| X = wirelen; |
| continue; |
| |
| case BPF_LD|BPF_W|BPF_IND: |
| k = X + pc->k; |
| if (k + sizeof(int32) > buflen) { |
| if (m == NULL) |
| return 0; |
| A = m_xword(m, k, &merr); |
| if (merr != 0) |
| return 0; |
| continue; |
| } |
| A = EXTRACT_LONG(&p[k]); |
| continue; |
| |
| case BPF_LD|BPF_H|BPF_IND: |
| k = X + pc->k; |
| if (k + sizeof(short) > buflen) { |
| if (m == NULL) |
| return 0; |
| A = m_xhalf(m, k, &merr); |
| if (merr != 0) |
| return 0; |
| continue; |
| } |
| A = EXTRACT_SHORT(&p[k]); |
| continue; |
| |
| case BPF_LD|BPF_B|BPF_IND: |
| k = X + pc->k; |
| if (k >= buflen) { |
| if (m == NULL) |
| return 0; |
| n = m; |
| MINDEX(len, n, k); |
| A = MTOD(n, u_char *)[k]; |
| continue; |
| } |
| A = p[k]; |
| continue; |
| |
| case BPF_LDX|BPF_MSH|BPF_B: |
| k = pc->k; |
| if (k >= buflen) { |
| if (m == NULL) |
| return 0; |
| n = m; |
| MINDEX(len, n, k); |
| X = (MTOD(n, char *)[k] & 0xf) << 2; |
| continue; |
| } |
| X = (p[pc->k] & 0xf) << 2; |
| continue; |
| |
| case BPF_LD|BPF_IMM: |
| A = pc->k; |
| continue; |
| |
| case BPF_LDX|BPF_IMM: |
| X = pc->k; |
| continue; |
| |
| case BPF_LD|BPF_MEM: |
| A = mem[pc->k]; |
| continue; |
| |
| case BPF_LDX|BPF_MEM: |
| X = mem[pc->k]; |
| continue; |
| |
| case BPF_ST: |
| mem[pc->k] = A; |
| continue; |
| |
| case BPF_STX: |
| mem[pc->k] = X; |
| continue; |
| |
| case BPF_JMP|BPF_JA: |
| pc += pc->k; |
| continue; |
| |
| case BPF_JMP|BPF_JGT|BPF_K: |
| pc += (A > pc->k) ? pc->jt : pc->jf; |
| continue; |
| |
| case BPF_JMP|BPF_JGE|BPF_K: |
| pc += (A >= pc->k) ? pc->jt : pc->jf; |
| continue; |
| |
| case BPF_JMP|BPF_JEQ|BPF_K: |
| pc += (A == pc->k) ? pc->jt : pc->jf; |
| continue; |
| |
| case BPF_JMP|BPF_JSET|BPF_K: |
| pc += (A & pc->k) ? pc->jt : pc->jf; |
| continue; |
| |
| case BPF_JMP|BPF_JGT|BPF_X: |
| pc += (A > X) ? pc->jt : pc->jf; |
| continue; |
| |
| case BPF_JMP|BPF_JGE|BPF_X: |
| pc += (A >= X) ? pc->jt : pc->jf; |
| continue; |
| |
| case BPF_JMP|BPF_JEQ|BPF_X: |
| pc += (A == X) ? pc->jt : pc->jf; |
| continue; |
| |
| case BPF_JMP|BPF_JSET|BPF_X: |
| pc += (A & X) ? pc->jt : pc->jf; |
| continue; |
| |
| case BPF_ALU|BPF_ADD|BPF_X: |
| A += X; |
| continue; |
| |
| case BPF_ALU|BPF_SUB|BPF_X: |
| A -= X; |
| continue; |
| |
| case BPF_ALU|BPF_MUL|BPF_X: |
| A *= X; |
| continue; |
| |
| case BPF_ALU|BPF_DIV|BPF_X: |
| if (X == 0) |
| return 0; |
| A /= X; |
| continue; |
| |
| case BPF_ALU|BPF_AND|BPF_X: |
| A &= X; |
| continue; |
| |
| case BPF_ALU|BPF_OR|BPF_X: |
| A |= X; |
| continue; |
| |
| case BPF_ALU|BPF_LSH|BPF_X: |
| A <<= X; |
| continue; |
| |
| case BPF_ALU|BPF_RSH|BPF_X: |
| A >>= X; |
| continue; |
| |
| case BPF_ALU|BPF_ADD|BPF_K: |
| A += pc->k; |
| continue; |
| |
| case BPF_ALU|BPF_SUB|BPF_K: |
| A -= pc->k; |
| continue; |
| |
| case BPF_ALU|BPF_MUL|BPF_K: |
| A *= pc->k; |
| continue; |
| |
| case BPF_ALU|BPF_DIV|BPF_K: |
| A /= pc->k; |
| continue; |
| |
| case BPF_ALU|BPF_AND|BPF_K: |
| A &= pc->k; |
| continue; |
| |
| case BPF_ALU|BPF_OR|BPF_K: |
| A |= pc->k; |
| continue; |
| |
| case BPF_ALU|BPF_LSH|BPF_K: |
| A <<= pc->k; |
| continue; |
| |
| case BPF_ALU|BPF_RSH|BPF_K: |
| A >>= pc->k; |
| continue; |
| |
| case BPF_ALU|BPF_NEG: |
| A = -A; |
| continue; |
| |
| case BPF_MISC|BPF_TAX: |
| X = A; |
| continue; |
| |
| case BPF_MISC|BPF_TXA: |
| A = X; |
| continue; |
| } |
| } |
| } |
| |
| |
| /* |
| * Return true if the 'fcode' is a valid filter program. |
| * The constraints are that each jump be forward and to a valid |
| * code, that memory accesses are within valid ranges (to the |
| * extent that this can be checked statically; loads of packet |
| * data have to be, and are, also checked at run time), and that |
| * the code terminates with either an accept or reject. |
| * |
| * The kernel needs to be able to verify an application's filter code. |
| * Otherwise, a bogus program could easily crash the system. |
| */ |
| int |
| bpf_validate(f, len) |
| struct bpf_insn *f; |
| int len; |
| { |
| u_int i, from; |
| const struct bpf_insn *p; |
| |
| if (len == 0) |
| return 1; |
| |
| if (len < 1 || len > BPF_MAXINSNS) |
| return 0; |
| |
| for (i = 0; i < len; ++i) { |
| p = &f[i]; |
| switch (BPF_CLASS(p->code)) { |
| /* |
| * Check that memory operations use valid addresses. |
| */ |
| case BPF_LD: |
| case BPF_LDX: |
| switch (BPF_MODE(p->code)) { |
| case BPF_IMM: |
| break; |
| case BPF_ABS: |
| case BPF_IND: |
| case BPF_MSH: |
| /* |
| * More strict check with actual packet length |
| * is done runtime. |
| */ |
| #if 0 |
| if (p->k >= bpf_maxbufsize) |
| return 0; |
| #endif |
| break; |
| case BPF_MEM: |
| if (p->k >= BPF_MEMWORDS) |
| return 0; |
| break; |
| case BPF_LEN: |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case BPF_ST: |
| case BPF_STX: |
| if (p->k >= BPF_MEMWORDS) |
| return 0; |
| break; |
| case BPF_ALU: |
| switch (BPF_OP(p->code)) { |
| case BPF_ADD: |
| case BPF_SUB: |
| case BPF_OR: |
| case BPF_AND: |
| case BPF_LSH: |
| case BPF_RSH: |
| case BPF_NEG: |
| break; |
| case BPF_DIV: |
| /* |
| * Check for constant division by 0. |
| */ |
| if (BPF_RVAL(p->code) == BPF_K && p->k == 0) |
| return 0; |
| default: |
| return 0; |
| } |
| break; |
| case BPF_JMP: |
| /* |
| * Check that jumps are within the code block, |
| * and that unconditional branches don't go |
| * backwards as a result of an overflow. |
| * Unconditional branches have a 32-bit offset, |
| * so they could overflow; we check to make |
| * sure they don't. Conditional branches have |
| * an 8-bit offset, and the from address is <= |
| * BPF_MAXINSNS, and we assume that BPF_MAXINSNS |
| * is sufficiently small that adding 255 to it |
| * won't overflow. |
| * |
| * We know that len is <= BPF_MAXINSNS, and we |
| * assume that BPF_MAXINSNS is < the maximum size |
| * of a u_int, so that i + 1 doesn't overflow. |
| */ |
| from = i + 1; |
| switch (BPF_OP(p->code)) { |
| case BPF_JA: |
| if (from + p->k < from || from + p->k >= len) |
| return 0; |
| break; |
| case BPF_JEQ: |
| case BPF_JGT: |
| case BPF_JGE: |
| case BPF_JSET: |
| if (from + p->jt >= len || from + p->jf >= len) |
| return 0; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case BPF_RET: |
| break; |
| case BPF_MISC: |
| break; |
| default: |
| return 0; |
| } |
| } |
| return BPF_CLASS(f[len - 1].code) == BPF_RET; |
| } |