blob: b2422ad47f6f5103f2b181b2c0c1aa44cba52e1b [file] [log] [blame] [raw]
/*
* Copyright (C) 1995-2003 by Darren Reed.
*
* See the IPFILTER.LICENCE file for details on licencing.
*
* $Id$
*/
#if defined(KERNEL) || defined(_KERNEL)
# undef KERNEL
# undef _KERNEL
# define KERNEL 1
# define _KERNEL 1
#endif
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/file.h>
#if defined(_KERNEL) && defined(__FreeBSD_version) && \
(__FreeBSD_version >= 400000) && !defined(KLD_MODULE)
#include "opt_inet6.h"
#endif
#if !defined(_KERNEL) && !defined(__KERNEL__)
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# define _KERNEL
# ifdef __OpenBSD__
struct file;
# endif
# include <sys/uio.h>
# undef _KERNEL
#endif
#if defined(_KERNEL) && (__FreeBSD_version >= 220000)
# include <sys/filio.h>
# include <sys/fcntl.h>
#else
# include <sys/ioctl.h>
#endif
#include <sys/time.h>
#if !defined(linux)
# include <sys/protosw.h>
#endif
#include <sys/socket.h>
#if defined(_KERNEL)
# include <sys/systm.h>
# if !defined(__SVR4) && !defined(__svr4__)
# include <sys/mbuf.h>
# endif
#endif
#if defined(__SVR4) || defined(__svr4__)
# include <sys/filio.h>
# include <sys/byteorder.h>
# ifdef _KERNEL
# include <sys/dditypes.h>
# endif
# include <sys/stream.h>
# include <sys/kmem.h>
#endif
#include <net/if.h>
#ifdef sun
# include <net/af.h>
#endif
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#if !defined(linux)
# include <netinet/ip_var.h>
#endif
#if !defined(__hpux) && !defined(linux)
# include <netinet/tcp_fsm.h>
#endif
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#include "netinet/ip_compat.h"
#include <netinet/tcpip.h>
#include "netinet/ip_fil.h"
#include "netinet/ip_nat.h"
#include "netinet/ip_frag.h"
#include "netinet/ip_state.h"
#include "netinet/ip_proxy.h"
#include "netinet/ip_lookup.h"
#ifdef IPFILTER_SYNC
#include "netinet/ip_sync.h"
#endif
#ifdef IPFILTER_SCAN
#include "netinet/ip_scan.h"
#endif
#ifdef USE_INET6
#include <netinet/icmp6.h>
#endif
#if (__FreeBSD_version >= 300000)
# include <sys/malloc.h>
# if defined(_KERNEL) && !defined(IPFILTER_LKM)
# include <sys/libkern.h>
# include <sys/systm.h>
# endif
#endif
/* END OF INCLUDES */
#if !defined(lint)
static const char sccsid[] = "@(#)ip_state.c 1.8 6/5/96 (C) 1993-2000 Darren Reed";
static const char rcsid[] = "@(#)$Id$";
#endif
static ipstate_t **ipf_state_table = NULL;
static u_long *ipf_state_seed = NULL;
ips_stat_t ipf_state_stats;
static ipftq_t ipf_state_pending;
static ipftq_t ipf_state_deletetq;
#ifdef USE_INET6
static ipstate_t *ipf_checkicmp6matchingstate __P((fr_info_t *));
#endif
static int ipf_allowstateicmp __P((fr_info_t *, ipstate_t *, i6addr_t *));
static ipstate_t *ipf_matchsrcdst __P((fr_info_t *, ipstate_t *, i6addr_t *,
i6addr_t *, tcphdr_t *, u_32_t));
static ipstate_t *ipf_checkicmpmatchingstate __P((fr_info_t *));
static int ipf_state_flush __P((int, int));
static int ipf_state_flush_entry __P((void *));
static ips_stat_t *ipf_statetstats __P((void));
static int ipf_state_del __P((ipstate_t *, int));
static int ipf_state_remove __P((caddr_t));
static int ipf_state_match __P((ipstate_t *is1, ipstate_t *is2));
static int ipf_state_matchaddresses __P((ipstate_t *is1, ipstate_t *is2));
static int ipf_state_matchipv4addrs __P((ipstate_t *is1, ipstate_t *is2));
static int ipf_state_matchipv6addrs __P((ipstate_t *is1, ipstate_t *is2));
static int ipf_state_matchisps __P((ipstate_t *is1, ipstate_t *is2));
static int ipf_state_matchports __P((udpinfo_t *is1, udpinfo_t *is2));
static int ipf_state_matcharray __P((ipstate_t *, int *));
static void ipf_ipsmove __P((ipstate_t *, u_int));
static int ipf_state_tcp __P((fr_info_t *, tcphdr_t *, ipstate_t *));
static int ipf_tcpoptions __P((fr_info_t *, tcphdr_t *, tcpdata_t *));
static ipstate_t *ipf_state_clone __P((fr_info_t *, tcphdr_t *, ipstate_t *));
static void ipf_fixinisn __P((fr_info_t *, ipstate_t *));
static void ipf_fixoutisn __P((fr_info_t *, ipstate_t *));
static void ipf_checknewisn __P((fr_info_t *, ipstate_t *));
static int ipf_stateiter __P((ipftoken_t *, ipfgeniter_t *));
static int ipf_stgettable __P((char *));
int ipf_stputent __P((caddr_t));
int ipf_stgetent __P((caddr_t));
#define ONE_DAY IPF_TTLVAL(1 * 86400) /* 1 day */
#define FIVE_DAYS (5 * ONE_DAY)
#define DOUBLE_HASH(x) (((x) + ipf_state_seed[(x) % ipf_state_size]) % \
ipf_state_size)
u_int ipf_tcpidletimeout = FIVE_DAYS,
ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL),
ipf_tcplastack = IPF_TTLVAL(30),
ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL),
ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL),
ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL),
ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL),
ipf_tcpclosed = IPF_TTLVAL(30),
ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600), /* 2 hours */
ipf_udptimeout = IPF_TTLVAL(120),
ipf_udpacktimeout = IPF_TTLVAL(12),
ipf_icmptimeout = IPF_TTLVAL(60),
ipf_icmpacktimeout = IPF_TTLVAL(6),
ipf_iptimeout = IPF_TTLVAL(60),
ipf_state_wm_freq = IPF_TTLVAL(10),
ipf_state_max = IPSTATE_MAX,
ipf_state_size = IPSTATE_SIZE,
ipf_state_maxbucket = 0,
ipf_state_wm_last = 0,
ipf_state_wm_high = 99,
ipf_state_wm_low = 90,
ipf_state_inited = 0;
int ipf_state_lock = 0,
ipf_state_doflush = 0;
ipftq_t ipf_state_tcptq[IPF_TCP_NSTATES],
ipf_state_udptq,
ipf_state_udpacktq,
ipf_state_iptq,
ipf_state_icmptq,
ipf_state_icmpacktq,
*ipf_state_usertq = NULL;
#ifdef IPFILTER_LOG
int ipf_state_logging = 1;
#else
int ipf_state_logging = 0;
#endif
ipstate_t *ipf_state_list = NULL;
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_init */
/* Returns: int - 0 == success, -1 == failure */
/* Parameters: Nil */
/* */
/* Initialise all the global variables used within the state code. */
/* This action also includes initiailising locks. */
/* ------------------------------------------------------------------------ */
int
ipf_state_init()
{
int i;
KMALLOCS(ipf_state_table,
ipstate_t **, ipf_state_size * sizeof(ipstate_t *));
if (ipf_state_table == NULL)
return -1;
bzero((char *)ipf_state_table, ipf_state_size * sizeof(ipstate_t *));
KMALLOCS(ipf_state_seed, u_long *,
ipf_state_size * sizeof(*ipf_state_seed));
if (ipf_state_seed == NULL)
return -2;
for (i = 0; i < ipf_state_size; i++) {
/*
* XXX - ipf_state_seed[X] should be a random number of sorts.
*/
#if (__FreeBSD_version >= 400000)
ipf_state_seed[i] = arc4random();
#else
ipf_state_seed[i] = ((u_long)ipf_state_seed + i) *
ipf_state_size;
ipf_state_seed[i] ^= 0xa5a55a5a;
ipf_state_seed[i] *= (u_long)ipf_state_seed;
ipf_state_seed[i] ^= 0x5a5aa5a5;
ipf_state_seed[i] *= ipf_state_max;
#endif
}
/* fill icmp reply type table */
for (i = 0; i <= ICMP_MAXTYPE; i++)
icmpreplytype4[i] = -1;
icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
#ifdef USE_INET6
/* fill icmp reply type table */
for (i = 0; i <= ICMP6_MAXTYPE; i++)
icmpreplytype6[i] = -1;
icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
#endif
KMALLOCS(ipf_state_stats.iss_bucketlen, u_int *,
ipf_state_size * sizeof(u_int));
if (ipf_state_stats.iss_bucketlen == NULL)
return -1;
bzero((char *)ipf_state_stats.iss_bucketlen,
ipf_state_size * sizeof(u_int));
if (ipf_state_maxbucket == 0) {
for (i = ipf_state_size; i > 0; i >>= 1)
ipf_state_maxbucket++;
ipf_state_maxbucket *= 2;
}
ipf_state_stats.iss_tcptab = ipf_state_tcptq;
ipf_sttab_init(ipf_state_tcptq);
ipf_state_tcptq[IPF_TCP_NSTATES - 1].ifq_next = &ipf_state_udptq;
IPFTQ_INIT(&ipf_state_udptq, ipf_udptimeout, "ipftq udp tab");
ipf_state_udptq.ifq_next = &ipf_state_udpacktq;
IPFTQ_INIT(&ipf_state_udpacktq, ipf_udpacktimeout, "ipftq udpack tab");
ipf_state_udpacktq.ifq_next = &ipf_state_icmptq;
IPFTQ_INIT(&ipf_state_icmptq, ipf_icmptimeout, "ipftq icmp tab");
ipf_state_icmptq.ifq_next = &ipf_state_icmpacktq;
IPFTQ_INIT(&ipf_state_icmpacktq, ipf_icmpacktimeout,
"ipftq icmpack tab");
ipf_state_icmpacktq.ifq_next = &ipf_state_iptq;
IPFTQ_INIT(&ipf_state_iptq, ipf_iptimeout, "ipftq iptimeout tab");
ipf_state_iptq.ifq_next = &ipf_state_pending;
IPFTQ_INIT(&ipf_state_pending, 1, "ipftq pending");
ipf_state_pending.ifq_next = &ipf_state_deletetq;
IPFTQ_INIT(&ipf_state_deletetq, 1, "ipftq delete");
ipf_state_deletetq.ifq_next = NULL;
RWLOCK_INIT(&ipf_state, "ipf IP state rwlock");
MUTEX_INIT(&ipf_stinsert, "ipf state insert mutex");
ipf_state_inited = 1;
ipf_state_wm_last = ipf_ticks;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_unload */
/* Returns: Nil */
/* Parameters: Nil */
/* */
/* Release and destroy any resources acquired or initialised so that */
/* IPFilter can be unloaded or re-initialised. */
/* ------------------------------------------------------------------------ */
void
ipf_state_unload()
{
ipftq_t *ifq, *ifqnext;
ipstate_t *is;
while ((is = ipf_state_list) != NULL)
ipf_state_del(is, ISL_UNLOAD);
/*
* Proxy timeout queues are not cleaned here because although they
* exist on the state list, appr_unload is called after
* ipf_state_unload and the proxies actually are responsible for them
* being created. Should the proxy timeouts have their own list?
* There's no real justification as this is the only complication.
*/
for (ifq = ipf_state_usertq; ifq != NULL; ifq = ifqnext) {
ifqnext = ifq->ifq_next;
if (((ifq->ifq_flags & IFQF_PROXY) == 0) &&
(ipf_deletetimeoutqueue(ifq) == 0))
ipf_freetimeoutqueue(ifq);
}
ipf_state_stats.iss_inuse = 0;
ipf_state_stats.iss_active = 0;
if (ipf_state_inited == 1) {
ipf_sttab_destroy(ipf_state_tcptq);
MUTEX_DESTROY(&ipf_state_udptq.ifq_lock);
MUTEX_DESTROY(&ipf_state_icmptq.ifq_lock);
MUTEX_DESTROY(&ipf_state_udpacktq.ifq_lock);
MUTEX_DESTROY(&ipf_state_icmpacktq.ifq_lock);
MUTEX_DESTROY(&ipf_state_iptq.ifq_lock);
MUTEX_DESTROY(&ipf_state_deletetq.ifq_lock);
}
if (ipf_state_table != NULL) {
KFREES(ipf_state_table,
ipf_state_size * sizeof(*ipf_state_table));
ipf_state_table = NULL;
}
if (ipf_state_seed != NULL) {
KFREES(ipf_state_seed,
ipf_state_size * sizeof(*ipf_state_seed));
ipf_state_seed = NULL;
}
if (ipf_state_stats.iss_bucketlen != NULL) {
KFREES(ipf_state_stats.iss_bucketlen,
ipf_state_size * sizeof(u_int));
ipf_state_stats.iss_bucketlen = NULL;
}
if (ipf_state_inited == 1) {
ipf_state_inited = 0;
RW_DESTROY(&ipf_state);
MUTEX_DESTROY(&ipf_stinsert);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_statetstats */
/* Returns: ips_state_t* - pointer to state stats structure */
/* Parameters: Nil */
/* */
/* Put all the current numbers and pointers into a single struct and return */
/* a pointer to it. */
/* ------------------------------------------------------------------------ */
static ips_stat_t *
ipf_statetstats()
{
ipf_state_stats.iss_state_size = ipf_state_size;
ipf_state_stats.iss_state_max = ipf_state_max;
ipf_state_stats.iss_table = ipf_state_table;
ipf_state_stats.iss_list = ipf_state_list;
ipf_state_stats.iss_ticks = ipf_ticks;
return &ipf_state_stats;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_remove */
/* Returns: int - 0 == success, != 0 == failure */
/* Parameters: data(I) - pointer to state structure to delete from table */
/* */
/* Search for a state structure that matches the one passed, according to */
/* the IP addresses and other protocol specific information. */
/* ------------------------------------------------------------------------ */
static int
ipf_state_remove(data)
caddr_t data;
{
ipstate_t *sp, st;
int error;
sp = &st;
error = ipf_inobj(data, &st, IPFOBJ_IPSTATE);
if (error)
return EFAULT;
WRITE_ENTER(&ipf_state);
for (sp = ipf_state_list; sp; sp = sp->is_next)
if ((sp->is_p == st.is_p) && (sp->is_v == st.is_v) &&
!bcmp((caddr_t)&sp->is_src, (caddr_t)&st.is_src,
sizeof(st.is_src)) &&
!bcmp((caddr_t)&sp->is_dst, (caddr_t)&st.is_dst,
sizeof(st.is_dst)) &&
!bcmp((caddr_t)&sp->is_ps, (caddr_t)&st.is_ps,
sizeof(st.is_ps))) {
ipf_state_del(sp, ISL_REMOVE);
RWLOCK_EXIT(&ipf_state);
return 0;
}
RWLOCK_EXIT(&ipf_state);
ipf_interror = 100001;
return ESRCH;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_ioctl */
/* Returns: int - 0 == success, != 0 == failure */
/* Parameters: data(I) - pointer to ioctl data */
/* cmd(I) - ioctl command integer */
/* mode(I) - file mode bits used with open */
/* */
/* Processes an ioctl call made to operate on the IP Filter state device. */
/* ------------------------------------------------------------------------ */
int
ipf_state_ioctl(data, cmd, mode, uid, ctx)
caddr_t data;
ioctlcmd_t cmd;
int mode, uid;
void *ctx;
{
int arg, ret, error = 0;
SPL_INT(s);
switch (cmd)
{
/*
* Delete an entry from the state table.
*/
case SIOCDELST :
error = ipf_state_remove(data);
break;
/*
* Flush the state table
*/
case SIOCIPFFL :
error = BCOPYIN(data, &arg, sizeof(arg));
if (error != 0) {
ipf_interror = 100002;
error = EFAULT;
} else {
WRITE_ENTER(&ipf_state);
ret = ipf_state_flush(arg, 4);
RWLOCK_EXIT(&ipf_state);
error = BCOPYOUT(&ret, data, sizeof(ret));
if (error != 0) {
ipf_interror = 100003;
error = EFAULT;
}
}
break;
#ifdef USE_INET6
case SIOCIPFL6 :
error = BCOPYIN(data, &arg, sizeof(arg));
if (error != 0) {
ipf_interror = 100004;
error = EFAULT;
} else {
WRITE_ENTER(&ipf_state);
ret = ipf_state_flush(arg, 6);
RWLOCK_EXIT(&ipf_state);
error = BCOPYOUT(&ret, data, sizeof(ret));
if (error != 0) {
ipf_interror = 100005;
error = EFAULT;
}
}
break;
#endif
case SIOCMATCHFLUSH :
WRITE_ENTER(&ipf_state);
error = ipf_state_matchflush(data);
RWLOCK_EXIT(&ipf_state);
break;
#ifdef IPFILTER_LOG
/*
* Flush the state log.
*/
case SIOCIPFFB :
if (!(mode & FWRITE)) {
ipf_interror = 100008;
error = EPERM;
} else {
int tmp;
tmp = ipf_log_clear(IPL_LOGSTATE);
error = BCOPYOUT(&tmp, data, sizeof(tmp));
if (error != 0) {
ipf_interror = 100009;
error = EFAULT;
}
}
break;
/*
* Turn logging of state information on/off.
*/
case SIOCSETLG :
if (!(mode & FWRITE)) {
ipf_interror = 100010;
error = EPERM;
} else {
error = BCOPYIN(data, &ipf_state_logging,
sizeof(ipf_state_logging));
if (error != 0) {
ipf_interror = 100011;
error = EFAULT;
}
}
break;
/*
* Return the current state of logging.
*/
case SIOCGETLG :
error = BCOPYOUT(&ipf_state_logging, data,
sizeof(ipf_state_logging));
if (error != 0) {
ipf_interror = 100012;
error = EFAULT;
}
break;
/*
* Return the number of bytes currently waiting to be read.
*/
case FIONREAD :
arg = iplused[IPL_LOGSTATE]; /* returned in an int */
error = BCOPYOUT(&arg, data, sizeof(arg));
if (error != 0) {
ipf_interror = 100013;
error = EFAULT;
}
break;
#endif
/*
* Get the current state statistics.
*/
case SIOCGETFS :
error = ipf_outobj(data, ipf_statetstats(), IPFOBJ_STATESTAT);
break;
/*
* Lock/Unlock the state table. (Locking prevents any changes, which
* means no packets match).
*/
case SIOCSTLCK :
if (!(mode & FWRITE)) {
ipf_interror = 100014;
error = EPERM;
} else {
error = ipf_lock(data, &ipf_state_lock);
}
break;
/*
* Add an entry to the current state table.
*/
case SIOCSTPUT :
if (!ipf_state_lock || !(mode &FWRITE)) {
ipf_interror = 100015;
error = EACCES;
break;
}
error = ipf_stputent(data);
break;
/*
* Get a state table entry.
*/
case SIOCSTGET :
if (!ipf_state_lock) {
ipf_interror = 100016;
error = EACCES;
break;
}
error = ipf_stgetent(data);
break;
/*
* Return a copy of the hash table bucket lengths
*/
case SIOCSTAT1 :
error = BCOPYOUT(ipf_state_stats.iss_bucketlen, data,
ipf_state_size * sizeof(u_int));
if (error != 0) {
ipf_interror = 100017;
error = EFAULT;
}
break;
case SIOCGENITER :
{
ipftoken_t *token;
ipfgeniter_t iter;
error = ipf_inobj(data, &iter, IPFOBJ_GENITER);
if (error != 0)
break;
SPL_SCHED(s);
token = ipf_findtoken(IPFGENITER_STATE, uid, ctx);
if (token != NULL) {
error = ipf_stateiter(token, &iter);
} else {
ipf_interror = 100018;
error = ESRCH;
}
RWLOCK_EXIT(&ipf_tokens);
SPL_X(s);
break;
}
case SIOCGTABL :
error = ipf_stgettable(data);
break;
case SIOCIPFDELTOK :
error = BCOPYIN(data, &arg, sizeof(arg));
if (error != 0) {
ipf_interror = 100019;
error = EFAULT;
} else {
SPL_SCHED(s);
error = ipf_deltoken(arg, uid, ctx);
SPL_X(s);
}
break;
case SIOCGTQTAB :
error = ipf_outobj(data, ipf_state_tcptq, IPFOBJ_STATETQTAB);
break;
default :
ipf_interror = 100020;
error = EINVAL;
break;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_stgetent */
/* Returns: int - 0 == success, != 0 == failure */
/* Parameters: data(I) - pointer to state structure to retrieve from table */
/* */
/* Copy out state information from the kernel to a user space process. If */
/* there is a filter rule associated with the state entry, copy that out */
/* as well. The entry to copy out is taken from the value of "ips_next" in */
/* the struct passed in and if not null and not found in the list of current*/
/* state entries, the retrieval fails. */
/* ------------------------------------------------------------------------ */
int
ipf_stgetent(data)
caddr_t data;
{
ipstate_t *is, *isn;
ipstate_save_t ips;
int error;
error = ipf_inobj(data, &ips, IPFOBJ_STATESAVE);
if (error)
return EFAULT;
READ_ENTER(&ipf_state);
isn = ips.ips_next;
if (isn == NULL) {
isn = ipf_state_list;
if (isn == NULL) {
if (ips.ips_next == NULL) {
RWLOCK_EXIT(&ipf_state);
ipf_interror = 100021;
return ENOENT;
}
return 0;
}
} else {
/*
* Make sure the pointer we're copying from exists in the
* current list of entries. Security precaution to prevent
* copying of random kernel data.
*/
for (is = ipf_state_list; is; is = is->is_next)
if (is == isn)
break;
if (!is) {
RWLOCK_EXIT(&ipf_state);
ipf_interror = 100022;
return ESRCH;
}
}
ips.ips_next = isn->is_next;
bcopy((char *)isn, (char *)&ips.ips_is, sizeof(ips.ips_is));
ips.ips_rule = isn->is_rule;
if (isn->is_rule != NULL)
bcopy((char *)isn->is_rule, (char *)&ips.ips_fr,
sizeof(ips.ips_fr));
RWLOCK_EXIT(&ipf_state);
error = ipf_outobj(data, &ips, IPFOBJ_STATESAVE);
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_stputent */
/* Returns: int - 0 == success, != 0 == failure */
/* Parameters: data(I) - pointer to state information struct */
/* */
/* This function implements the SIOCSTPUT ioctl: insert a state entry into */
/* the state table. If the state info. includes a pointer to a filter rule */
/* then also add in an orphaned rule (will not show up in any "ipfstat -io" */
/* output. */
/* ------------------------------------------------------------------------ */
int
ipf_stputent(data)
caddr_t data;
{
ipstate_t *is, *isn;
ipstate_save_t ips;
int error, out, i;
frentry_t *fr;
char *name;
error = ipf_inobj(data, &ips, IPFOBJ_STATESAVE);
if (error != 0)
return error;
KMALLOC(isn, ipstate_t *);
if (isn == NULL) {
ipf_interror = 100023;
return ENOMEM;
}
bcopy((char *)&ips.ips_is, (char *)isn, sizeof(*isn));
bzero((char *)isn, offsetof(struct ipstate, is_pkts));
isn->is_sti.tqe_pnext = NULL;
isn->is_sti.tqe_next = NULL;
isn->is_sti.tqe_ifq = NULL;
isn->is_sti.tqe_parent = isn;
isn->is_ifp[0] = NULL;
isn->is_ifp[1] = NULL;
isn->is_ifp[2] = NULL;
isn->is_ifp[3] = NULL;
isn->is_sync = NULL;
fr = ips.ips_rule;
if (fr == NULL) {
READ_ENTER(&ipf_state);
ipf_state_insert(isn, 0);
MUTEX_EXIT(&isn->is_lock);
RWLOCK_EXIT(&ipf_state);
return 0;
}
if (isn->is_flags & SI_NEWFR) {
KMALLOC(fr, frentry_t *);
if (fr == NULL) {
KFREE(isn);
ipf_interror = 100024;
return ENOMEM;
}
bcopy((char *)&ips.ips_fr, (char *)fr, sizeof(*fr));
out = fr->fr_flags & FR_OUTQUE ? 1 : 0;
isn->is_rule = fr;
ips.ips_is.is_rule = fr;
MUTEX_NUKE(&fr->fr_lock);
MUTEX_INIT(&fr->fr_lock, "state filter rule lock");
/*
* Look up all the interface names in the rule.
*/
for (i = 0; i < 4; i++) {
name = fr->fr_ifnames[i];
fr->fr_ifas[i] = ipf_resolvenic(name, fr->fr_family);
name = isn->is_ifname[i];
isn->is_ifp[i] = ipf_resolvenic(name, isn->is_v);
}
fr->fr_ref = 0;
fr->fr_dsize = 0;
fr->fr_data = NULL;
fr->fr_type = FR_T_NONE;
ipf_resolvedest(&fr->fr_tifs[0], fr->fr_family);
ipf_resolvedest(&fr->fr_tifs[1], fr->fr_family);
ipf_resolvedest(&fr->fr_dif, fr->fr_family);
/*
* send a copy back to userland of what we ended up
* to allow for verification.
*/
error = ipf_outobj(data, &ips, IPFOBJ_STATESAVE);
if (error != 0) {
KFREE(isn);
MUTEX_DESTROY(&fr->fr_lock);
KFREE(fr);
ipf_interror = 100025;
return EFAULT;
}
READ_ENTER(&ipf_state);
ipf_state_insert(isn, 0);
MUTEX_EXIT(&isn->is_lock);
RWLOCK_EXIT(&ipf_state);
} else {
READ_ENTER(&ipf_state);
for (is = ipf_state_list; is; is = is->is_next)
if (is->is_rule == fr) {
ipf_state_insert(isn, 0);
MUTEX_EXIT(&isn->is_lock);
break;
}
if (is == NULL) {
KFREE(isn);
isn = NULL;
}
RWLOCK_EXIT(&ipf_state);
if (isn == NULL) {
ipf_interror = 100033;
return ESRCH;
}
}
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_insert */
/* Returns: Nil */
/* Parameters: is(I) - pointer to state structure */
/* rev(I) - flag indicating forward/reverse direction of packet */
/* */
/* Inserts a state structure into the hash table (for lookups) and the list */
/* of state entries (for enumeration). Resolves all of the interface names */
/* to pointers and adjusts running stats for the hash table as appropriate. */
/* */
/* Locking: it is assumed that some kind of lock on ipf_state is held. */
/* Exits with is_lock initialised and held. */
/* ------------------------------------------------------------------------ */
void
ipf_state_insert(is, rev)
ipstate_t *is;
int rev;
{
frentry_t *fr;
u_int hv;
int i;
MUTEX_INIT(&is->is_lock, "ipf state entry");
fr = is->is_rule;
if (fr != NULL) {
MUTEX_ENTER(&fr->fr_lock);
fr->fr_ref++;
fr->fr_statecnt++;
MUTEX_EXIT(&fr->fr_lock);
}
/*
* Look up all the interface names in the state entry.
*/
for (i = 0; i < 4; i++) {
if (is->is_ifp[i] != NULL)
continue;
is->is_ifp[i] = ipf_resolvenic(is->is_ifname[i], is->is_v);
}
/*
* If we could trust is_hv, then the modulous would not be needed,
* but when running with IPFILTER_SYNC, this stops bad values.
*/
hv = is->is_hv % ipf_state_size;
/* TRACE is, hv */
is->is_hv = hv;
/*
* We need to get both of these locks...the first because it is
* possible that once the insert is complete another packet might
* come along, match the entry and want to update it.
*/
MUTEX_ENTER(&is->is_lock);
MUTEX_ENTER(&ipf_stinsert);
/*
* add into list table.
*/
if (ipf_state_list != NULL)
ipf_state_list->is_pnext = &is->is_next;
is->is_pnext = &ipf_state_list;
is->is_next = ipf_state_list;
ipf_state_list = is;
if (ipf_state_table[hv] != NULL)
ipf_state_table[hv]->is_phnext = &is->is_hnext;
else
ipf_state_stats.iss_inuse++;
is->is_phnext = ipf_state_table + hv;
is->is_hnext = ipf_state_table[hv];
ipf_state_table[hv] = is;
ipf_state_stats.iss_bucketlen[hv]++;
ipf_state_stats.iss_active++;
MUTEX_EXIT(&ipf_stinsert);
ipf_state_setqueue(is, rev);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_matchipv4addrs */
/* Returns: int - 2 addresses match (strong match), 1 reverse match, */
/* 0 no match */
/* Parameters: is1, is2 pointers to states we are checking */
/* */
/* Function matches IPv4 addresses it returns strong match for ICMP proto */
/* even there is only reverse match */
/* ------------------------------------------------------------------------ */
static int
ipf_state_matchipv4addrs(is1, is2)
ipstate_t *is1, *is2;
{
int rv;
if (is1->is_saddr == is2->is_saddr && is1->is_daddr == is2->is_daddr)
rv = 2;
else if (is1->is_saddr == is2->is_daddr &&
is1->is_daddr == is2->is_saddr) {
/* force strong match for ICMP protocol */
rv = (is1->is_p == IPPROTO_ICMP) ? 2 : 1;
}
else
rv = 0;
return (rv);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_matchipv6addrs */
/* Returns: int - 2 addresses match (strong match), 1 reverse match, */
/* 0 no match */
/* Parameters: is1, is2 pointers to states we are checking */
/* */
/* Function matches IPv6 addresses it returns strong match for ICMP proto */
/* even there is only reverse match */
/* ------------------------------------------------------------------------ */
static int
ipf_state_matchipv6addrs(is1, is2)
ipstate_t *is1, *is2;
{
int rv;
if (IP6_EQ(&is1->is_src, &is2->is_src) &&
IP6_EQ(&is1->is_dst, &is2->is_dst))
rv = 2;
else if (IP6_EQ(&is1->is_src, &is2->is_dst) &&
IP6_EQ(&is1->is_dst, &is2->is_src)) {
/* force strong match for ICMPv6 protocol */
rv = (is1->is_p == IPPROTO_ICMPV6) ? 2 : 1;
}
else
rv = 0;
return (rv);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_matchaddresses */
/* Returns: int - 2 addresses match, 1 reverse match, zero no match */
/* Parameters: is1, is2 pointers to states we are checking */
/* */
/* function retruns true if two pairs of addresses belong to single */
/* connection. suppose there are two endpoints: */
/* endpoint1 1.1.1.1 */
/* endpoint2 1.1.1.2 */
/* */
/* the state is established by packet flying from .1 to .2 so we see: */
/* is1->src = 1.1.1.1 */
/* is1->dst = 1.1.1.2 */
/* now endpoint 1.1.1.2 sends answer */
/* retreives is1 record created by first packat and compares it with is2 */
/* temporal record, is2 is initialized as follows: */
/* is2->src = 1.1.1.2 */
/* is2->dst = 1.1.1.1 */
/* in this case 1 will be returned */
/* */
/* the ipf_matchaddresses() assumes those two records to be same. of course */
/* the ipf_matchaddresses() also assume records are same in case you pass */
/* identical arguments (i.e. ipf_matchaddress(is1, is1) would return 2 */
/* ------------------------------------------------------------------------ */
static int
ipf_state_matchaddresses(is1, is2)
ipstate_t *is1, *is2;
{
int rv;
if (is1->is_v == 4) {
rv = ipf_state_matchipv4addrs(is1, is2);
}
else {
rv = ipf_state_matchipv6addrs(is1, is2);
}
return (rv);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_matchports */
/* Returns: int - 2 match, 1 rverse match, 0 no match */
/* Parameters: ppairs1, ppairs - src, dst ports we want to match */
/* */
/* performs the same match for isps members as for addresses */
/* ------------------------------------------------------------------------ */
static int
ipf_state_matchports(ppairs1, ppairs2)
udpinfo_t *ppairs1, *ppairs2;
{
int rv;
if (ppairs1->us_sport == ppairs2->us_sport &&
ppairs1->us_dport == ppairs2->us_dport)
rv = 2;
else if (ppairs1->us_sport == ppairs2->us_dport &&
ppairs1->us_dport == ppairs2->us_sport)
rv = 1;
else
rv = 0;
return (rv);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_matchisps */
/* Returns: int - nonzero if isps members match, 0 nomatch */
/* Parameters: is1, is2 - states we want to match */
/* */
/* performs the same match for isps members as for addresses */
/* ------------------------------------------------------------------------ */
static int
ipf_state_matchisps(is1, is2)
ipstate_t *is1, *is2;
{
int rv;
if (is1->is_p == is2->is_p) {
switch (is1->is_p)
{
case IPPROTO_TCP :
case IPPROTO_UDP :
case IPPROTO_GRE :
/* greinfo_t can be also interprted as port pair */
rv = ipf_state_matchports(&is1->is_ps.is_us,
&is2->is_ps.is_us);
break;
case IPPROTO_ICMP :
case IPPROTO_ICMPV6 :
/* force strong match for ICMP datagram. */
if (bcmp(&is1->is_ps, &is2->is_ps,
sizeof(icmpinfo_t)) == 0) {
rv = 2;
} else {
rv = 0;
}
break;
default:
rv = 0;
}
} else {
rv = 0;
}
return (rv);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_match */
/* Returns: int - nonzero match, zero no match */
/* Parameters: is1, is2 - states we want to match */
/* */
/* ------------------------------------------------------------------------ */
static int
ipf_state_match(is1, is2)
ipstate_t *is1, *is2;
{
int rv;
int amatch;
int pmatch;
if (bcmp(&is1->is_pass, &is2->is_pass,
offsetof(struct ipstate, is_authmsk) -
offsetof(struct ipstate, is_pass)) == 0) {
pmatch = ipf_state_matchisps(is1, is2);
amatch = ipf_state_matchaddresses(is1, is2);
rv = (amatch != 0) && (amatch == pmatch);
} else {
rv = 0;
}
return (rv);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_add */
/* Returns: ipstate_t - 0 = success */
/* Parameters: fin(I) - pointer to packet information */
/* stsave(O) - pointer to place to save pointer to created */
/* state structure. */
/* flags(I) - flags to use when creating the structure */
/* */
/* Creates a new IP state structure from the packet information collected. */
/* Inserts it into the state table and appends to the bottom of the active */
/* list. If the capacity of the table has reached the maximum allowed then */
/* the call will fail and a flush is scheduled for the next timeout call. */
/* */
/* NOTE: The use of stsave to point to nat_state will result in memory */
/* corruption. It should only be used to point to objects that will */
/* either outlive this (not expired) or will deref the ip_state_t */
/* when they are deleted. */
/* ------------------------------------------------------------------------ */
int
ipf_state_add(fin, stsave, flags)
fr_info_t *fin;
ipstate_t **stsave;
u_int flags;
{
ipstate_t *is, ips;
struct icmp *ic;
u_int pass, hv;
frentry_t *fr;
tcphdr_t *tcp;
frdest_t *fdp;
#if 0
grehdr_t *gre;
#endif
int out;
if (ipf_state_lock ||
(fin->fin_flx & (FI_SHORT|FI_STATE|FI_FRAGBODY|FI_BAD)) ||
((fin->fin_flx & FI_OOW) && !(fin->fin_tcpf & TH_SYN))) {
ATOMIC_INCL(ipf_state_stats.iss_add_bad);
return -1;
}
if ((ipf_state_stats.iss_active * 100 / ipf_state_max) >
ipf_state_wm_high) {
ipf_state_doflush = 1;
}
/*
* If a "keep state" rule has reached the maximum number of references
* to it, then schedule an automatic flush in case we can clear out
* some "dead old wood". Note that because the lock isn't held on
* fr it is possible that we could overflow. The cost of overflowing
* is being ignored here as the number by which it can overflow is
* a product of the number of simultaneous threads that could be
* executing in here, so a limit of 100 won't result in 200, but could
* result in 101 or 102.
*/
fr = fin->fin_fr;
if (fr != NULL) {
if ((ipf_state_stats.iss_active >= ipf_state_max) &&
(fr->fr_statemax == 0)) {
ATOMIC_INCL(ipf_state_stats.iss_max);
return 1;
}
if ((fr->fr_statemax != 0) &&
(fr->fr_statecnt >= fr->fr_statemax)) {
ATOMIC_INCL(ipf_state_stats.iss_max_ref);
return 2;
}
}
is = &ips;
if (fr == NULL) {
pass = ipf_flags;
is->is_tag = FR_NOLOGTAG;
} else {
pass = fr->fr_flags;
}
ic = NULL;
tcp = NULL;
out = fin->fin_out;
bzero((char *)is, sizeof(*is));
is->is_die = 1 + ipf_ticks;
/*
* We want to check everything that is a property of this packet,
* but we don't (automatically) care about it's fragment status as
* this may change.
*/
is->is_pass = pass;
is->is_v = fin->fin_v;
is->is_opt[0] = fin->fin_optmsk;
is->is_optmsk[0] = 0xffffffff;
is->is_optmsk[1] = 0xffffffff;
if (is->is_v == 6) {
is->is_opt[0] &= ~0x8;
is->is_optmsk[0] &= ~0x8;
is->is_optmsk[1] &= ~0x8;
}
is->is_sec = fin->fin_secmsk;
is->is_secmsk = 0xffff;
is->is_auth = fin->fin_auth;
is->is_authmsk = 0xffff;
/*
* Copy and calculate...
*/
hv = (is->is_p = fin->fin_fi.fi_p);
is->is_src = fin->fin_fi.fi_src;
hv += is->is_saddr;
is->is_dst = fin->fin_fi.fi_dst;
hv += is->is_daddr;
#ifdef USE_INET6
if (fin->fin_v == 6) {
/*
* For ICMPv6, we check to see if the destination address is
* a multicast address. If it is, do not include it in the
* calculation of the hash because the correct reply will come
* back from a real address, not a multicast address.
*/
if ((is->is_p == IPPROTO_ICMPV6) &&
IN6_IS_ADDR_MULTICAST(&is->is_dst.in6)) {
/*
* So you can do keep state with neighbour discovery.
*
* Here we could use the address from the neighbour
* solicit message to put in the state structure and
* we could use that without a wildcard flag too...
*/
flags |= SI_W_DADDR;
hv -= is->is_daddr;
} else {
hv += is->is_dst.i6[1];
hv += is->is_dst.i6[2];
hv += is->is_dst.i6[3];
}
hv += is->is_src.i6[1];
hv += is->is_src.i6[2];
hv += is->is_src.i6[3];
}
#endif
if ((fin->fin_v == 4) &&
(fin->fin_flx & (FI_MULTICAST|FI_BROADCAST|FI_MBCAST))) {
flags |= SI_W_DADDR;
hv -= is->is_daddr;
}
switch (is->is_p)
{
#ifdef USE_INET6
case IPPROTO_ICMPV6 :
ic = fin->fin_dp;
switch (ic->icmp_type)
{
case ICMP6_ECHO_REQUEST :
hv += (is->is_icmp.ici_id = ic->icmp_id);
/*FALLTHROUGH*/
case ICMP6_MEMBERSHIP_QUERY :
case ND_ROUTER_SOLICIT :
case ND_NEIGHBOR_SOLICIT :
case ICMP6_NI_QUERY :
is->is_icmp.ici_type = ic->icmp_type;
break;
default :
ATOMIC_INCL(ipf_state_stats.iss_icmp6_notquery);
return -2;
}
break;
#endif
case IPPROTO_ICMP :
ic = fin->fin_dp;
switch (ic->icmp_type)
{
case ICMP_ECHO :
case ICMP_TSTAMP :
case ICMP_IREQ :
case ICMP_MASKREQ :
is->is_icmp.ici_type = ic->icmp_type;
hv += (is->is_icmp.ici_id = ic->icmp_id);
break;
default :
ATOMIC_INCL(ipf_state_stats.iss_icmp_notquery);
return -3;
}
break;
#if 0
case IPPROTO_GRE :
gre = fin->fin_dp;
is->is_gre.gs_flags = gre->gr_flags;
is->is_gre.gs_ptype = gre->gr_ptype;
if (GRE_REV(is->is_gre.gs_flags) == 1) {
is->is_call[0] = fin->fin_data[0];
is->is_call[1] = fin->fin_data[1];
}
break;
#endif
if ((fin->fin_v == 4) &&
(fin->fin_flx & (FI_MULTICAST|FI_BROADCAST|FI_MBCAST))) {
if (fin->fin_out == 0) {
flags |= SI_W_DADDR|SI_CLONE;
hv -= is->is_daddr;
} else {
flags |= SI_W_SADDR|SI_CLONE;
hv -= is->is_saddr;
}
}
case IPPROTO_TCP :
tcp = fin->fin_dp;
if (tcp->th_flags & TH_RST) {
ATOMIC_INCL(ipf_state_stats.iss_tcp_rstadd);
return -4;
}
/* TRACE is, flags, hv */
/*
* The endian of the ports doesn't matter, but the ack and
* sequence numbers do as we do mathematics on them later.
*/
is->is_sport = htons(fin->fin_data[0]);
is->is_dport = htons(fin->fin_data[1]);
if ((flags & (SI_W_DPORT|SI_W_SPORT)) == 0) {
hv += is->is_sport;
hv += is->is_dport;
}
/* TRACE is, flags, hv */
/*
* If this is a real packet then initialise fields in the
* state information structure from the TCP header information.
*/
is->is_maxdwin = 1;
is->is_maxswin = ntohs(tcp->th_win);
if (is->is_maxswin == 0)
is->is_maxswin = 1;
if ((fin->fin_flx & FI_IGNORE) == 0) {
is->is_send = ntohl(tcp->th_seq) + fin->fin_dlen -
(TCP_OFF(tcp) << 2) +
((tcp->th_flags & TH_SYN) ? 1 : 0) +
((tcp->th_flags & TH_FIN) ? 1 : 0);
is->is_maxsend = is->is_send;
/*
* Window scale option is only present in
* SYN/SYN-ACK packet.
*/
if ((tcp->th_flags & ~(TH_FIN|TH_ACK|TH_ECNALL)) ==
TH_SYN &&
(TCP_OFF(tcp) > (sizeof(tcphdr_t) >> 2))) {
if (ipf_tcpoptions(fin, tcp,
&is->is_tcp.ts_data[0]) == -1) {
fin->fin_flx |= FI_BAD;
}
}
if ((fin->fin_out != 0) && (pass & FR_NEWISN) != 0) {
ipf_checknewisn(fin, is);
ipf_fixoutisn(fin, is);
}
if ((tcp->th_flags & TH_OPENING) == TH_SYN)
flags |= IS_TCPFSM;
else {
is->is_maxdwin = is->is_maxswin * 2;
is->is_dend = ntohl(tcp->th_ack);
is->is_maxdend = ntohl(tcp->th_ack);
is->is_maxdwin *= 2;
}
}
/*
* If we're creating state for a starting connection, start
* the timer on it as we'll never see an error if it fails
* to connect.
*/
break;
case IPPROTO_UDP :
tcp = fin->fin_dp;
is->is_sport = htons(fin->fin_data[0]);
is->is_dport = htons(fin->fin_data[1]);
if ((flags & (SI_W_DPORT|SI_W_SPORT)) == 0) {
hv += tcp->th_dport;
hv += tcp->th_sport;
}
break;
default :
break;
}
hv = DOUBLE_HASH(hv);
is->is_hv = hv;
is->is_rule = fr;
is->is_flags = flags & IS_INHERITED;
/*
* Look for identical state.
*/
for (is = ipf_state_table[is->is_hv % ipf_state_size]; is != NULL;
is = is->is_hnext) {
if (ipf_state_match(&ips, is) == 1)
break;
}
if (is != NULL) {
ATOMIC_INCL(ipf_state_stats.iss_add_dup);
return 3;
}
if (ipf_state_stats.iss_bucketlen[hv] >= ipf_state_maxbucket) {
ATOMIC_INCL(ipf_state_stats.iss_bucket_full);
return 4;
}
KMALLOC(is, ipstate_t *);
if (is == NULL) {
ATOMIC_INCL(ipf_state_stats.iss_nomem);
return 5;
}
bcopy((char *)&ips, (char *)is, sizeof(*is));
/*
* Do not do the modulous here, it is done in ipf_state_insert().
*/
if (fr != NULL) {
ipftq_t *tq;
(void) strncpy(is->is_group, fr->fr_group, FR_GROUPLEN);
if (fr->fr_age[0] != 0) {
tq = ipf_addtimeoutqueue(&ipf_state_usertq,
fr->fr_age[0]);
is->is_tqehead[0] = tq;
is->is_sti.tqe_flags |= TQE_RULEBASED;
}
if (fr->fr_age[1] != 0) {
tq = ipf_addtimeoutqueue(&ipf_state_usertq,
fr->fr_age[1]);
is->is_tqehead[1] = tq;
is->is_sti.tqe_flags |= TQE_RULEBASED;
}
is->is_tag = fr->fr_logtag;
/*
* The name '-' is special for network interfaces and causes
* a NULL name to be present, always, allowing packets to
* match it, regardless of their interface.
*/
if ((fin->fin_ifp == NULL) ||
(fr->fr_ifnames[out << 1][0] == '-' &&
fr->fr_ifnames[out << 1][1] == '\0')) {
is->is_ifp[out << 1] = fr->fr_ifas[0];
strncpy(is->is_ifname[out << 1], fr->fr_ifnames[0],
sizeof(fr->fr_ifnames[0]));
} else {
is->is_ifp[out << 1] = fin->fin_ifp;
COPYIFNAME(fin->fin_ifp, is->is_ifname[out << 1]);
}
is->is_ifp[(out << 1) + 1] = fr->fr_ifas[1];
strncpy(is->is_ifname[(out << 1) + 1], fr->fr_ifnames[1],
sizeof(fr->fr_ifnames[1]));
is->is_ifp[(1 - out) << 1] = fr->fr_ifas[2];
strncpy(is->is_ifname[((1 - out) << 1)], fr->fr_ifnames[2],
sizeof(fr->fr_ifnames[2]));
is->is_ifp[((1 - out) << 1) + 1] = fr->fr_ifas[3];
strncpy(is->is_ifname[((1 - out) << 1) + 1], fr->fr_ifnames[3],
sizeof(fr->fr_ifnames[3]));
} else {
if (fin->fin_ifp != NULL) {
is->is_ifp[out << 1] = fin->fin_ifp;
COPYIFNAME(fin->fin_ifp, is->is_ifname[out << 1]);
}
}
/*
* It may seem strange to set is_ref to 2, but ipf_check() will call
* ipf_state_deref() after calling ipf_state_add() and the idea is to
* have it exist at the end of ipf_check() with is_ref == 1.
*/
is->is_ref = 2;
is->is_pkts[0] = 0, is->is_bytes[0] = 0;
is->is_pkts[1] = 0, is->is_bytes[1] = 0;
is->is_pkts[2] = 0, is->is_bytes[2] = 0;
is->is_pkts[3] = 0, is->is_bytes[3] = 0;
if ((fin->fin_flx & FI_IGNORE) == 0) {
is->is_pkts[out] = 1;
is->is_bytes[out] = fin->fin_plen;
is->is_flx[out][0] = fin->fin_flx & FI_CMP;
is->is_flx[out][0] &= ~FI_OOW;
}
if (pass & FR_STSTRICT)
is->is_flags |= IS_STRICT;
if (pass & FR_STATESYNC)
is->is_flags |= IS_STATESYNC;
if (flags & (SI_WILDP|SI_WILDA)) {
ATOMIC_INCL(ipf_state_stats.iss_wild);
}
is->is_rulen = fin->fin_rule;
if (pass & FR_LOGFIRST)
is->is_pass &= ~(FR_LOGFIRST|FR_LOG);
READ_ENTER(&ipf_state);
ipf_state_insert(is, fin->fin_rev);
if (fin->fin_p == IPPROTO_TCP) {
/*
* If we're creating state for a starting connection, start the
* timer on it as we'll never see an error if it fails to
* connect.
*/
(void) ipf_tcp_age(&is->is_sti, fin, ipf_state_tcptq,
is->is_flags, 2);
MUTEX_EXIT(&is->is_lock);
#ifdef IPFILTER_SCAN
if ((is->is_flags & SI_CLONE) == 0)
(void) ipf_scan_attachis(is);
#endif
} else {
MUTEX_EXIT(&is->is_lock);
}
#ifdef IPFILTER_SYNC
if ((is->is_flags & IS_STATESYNC) && ((is->is_flags & SI_CLONE) == 0))
is->is_sync = ipf_sync_new(SMC_STATE, fin, is);
#endif
if (ipf_state_logging)
ipf_state_log(is, ISL_NEW);
RWLOCK_EXIT(&ipf_state);
*stsave = is;
fin->fin_state = is;
fin->fin_rev = IP6_NEQ(&is->is_dst, &fin->fin_daddr);
fin->fin_flx |= FI_STATE;
if (fin->fin_flx & FI_FRAG)
(void) ipf_frag_new(fin, pass);
fdp = &fr->fr_tifs[0];
if (fdp->fd_type == FRD_POOL)
fdp->fd_ptr = ipf_lookup_res_name(IPLT_DSTLIST, IPL_LOGIPF,
fdp->fd_name, NULL);
fdp = &fr->fr_tifs[1];
if (fdp->fd_type == FRD_POOL)
fdp->fd_ptr = ipf_lookup_res_name(IPLT_DSTLIST, IPL_LOGIPF,
fdp->fd_name, NULL);
fdp = &fr->fr_dif;
if (fdp->fd_type == FRD_POOL)
fdp->fd_ptr = ipf_lookup_res_name(IPLT_DSTLIST, IPL_LOGIPF,
fdp->fd_name, NULL);
ATOMIC_INCL(ipf_state_stats.iss_proto[is->is_p]);
ATOMIC_INC(ipf_state_stats.iss_active_proto[is->is_p]);
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_tcpoptions */
/* Returns: int - 1 == packet matches state entry, 0 == it does not, */
/* -1 == packet has bad TCP options data */
/* Parameters: fin(I) - pointer to packet information */
/* tcp(I) - pointer to TCP packet header */
/* td(I) - pointer to TCP data held as part of the state */
/* */
/* Look after the TCP header for any options and deal with those that are */
/* present. Record details about those that we recogise. */
/* ------------------------------------------------------------------------ */
static int
ipf_tcpoptions(fin, tcp, td)
fr_info_t *fin;
tcphdr_t *tcp;
tcpdata_t *td;
{
int off, mlen, ol, i, len, retval;
char buf[64], *s, opt;
mb_t *m = NULL;
len = (TCP_OFF(tcp) << 2);
if (fin->fin_dlen < len) {
ATOMIC_INCL(ipf_state_stats.iss_tcp_toosmall);
return 0;
}
len -= sizeof(*tcp);
off = fin->fin_plen - fin->fin_dlen + sizeof(*tcp) + fin->fin_ipoff;
m = fin->fin_m;
mlen = MSGDSIZE(m) - off;
if (len > mlen) {
len = mlen;
retval = 0;
} else {
retval = 1;
}
COPYDATA(m, off, len, buf);
for (s = buf; len > 0; ) {
opt = *s;
if (opt == TCPOPT_EOL)
break;
else if (opt == TCPOPT_NOP)
ol = 1;
else {
if (len < 2)
break;
ol = (int)*(s + 1);
if (ol < 2 || ol > len)
break;
/*
* Extract the TCP options we are interested in out of
* the header and store them in the the tcpdata struct.
*/
switch (opt)
{
case TCPOPT_WINDOW :
if (ol == TCPOLEN_WINDOW) {
i = (int)*(s + 2);
if (i > TCP_WSCALE_MAX)
i = TCP_WSCALE_MAX;
else if (i < 0)
i = 0;
td->td_winscale = i;
td->td_winflags |= TCP_WSCALE_SEEN|
TCP_WSCALE_FIRST;
} else
retval = -1;
break;
case TCPOPT_MAXSEG :
/*
* So, if we wanted to set the TCP MAXSEG,
* it should be done here...
*/
if (ol == TCPOLEN_MAXSEG) {
i = (int)*(s + 2);
i <<= 8;
i += (int)*(s + 3);
td->td_maxseg = i;
} else
retval = -1;
break;
case TCPOPT_SACK_PERMITTED :
if (ol == TCPOLEN_SACK_PERMITTED)
td->td_winflags |= TCP_SACK_PERMIT;
else
retval = -1;
break;
}
}
len -= ol;
s += ol;
}
if (retval == -1) {
ATOMIC_INCL(ipf_state_stats.iss_tcp_badopt);
}
return retval;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_tcp */
/* Returns: int - 1 == packet matches state entry, 0 == it does not */
/* Parameters: fin(I) - pointer to packet information */
/* tcp(I) - pointer to TCP packet header */
/* is(I) - pointer to master state structure */
/* */
/* Check to see if a packet with TCP headers fits within the TCP window. */
/* Change timeout depending on whether new packet is a SYN-ACK returning */
/* for a SYN or a RST or FIN which indicate time to close up shop. */
/* ------------------------------------------------------------------------ */
static int
ipf_state_tcp(fin, tcp, is)
fr_info_t *fin;
tcphdr_t *tcp;
ipstate_t *is;
{
tcpdata_t *fdata, *tdata;
int source, ret, flags;
source = !fin->fin_rev;
if (((is->is_flags & IS_TCPFSM) != 0) && (source == 1) &&
(ntohs(is->is_sport) != fin->fin_data[0]))
source = 0;
fdata = &is->is_tcp.ts_data[!source];
tdata = &is->is_tcp.ts_data[source];
MUTEX_ENTER(&is->is_lock);
/*
* If a SYN packet is received for a connection that is on the way out
* but hasn't yet departed then advance this session along the way.
*/
if ((tcp->th_flags & TH_OPENING) == TH_SYN) {
if ((is->is_state[0] > IPF_TCPS_ESTABLISHED) &&
(is->is_state[1] > IPF_TCPS_ESTABLISHED)) {
is->is_state[!source] = IPF_TCPS_CLOSED;
ipf_movequeue(&is->is_sti, is->is_sti.tqe_ifq,
&ipf_state_deletetq);
MUTEX_EXIT(&is->is_lock);
ATOMIC_INCL(ipf_state_stats.iss_tcp_closing);
return 0;
}
}
ret = ipf_tcpinwindow(fin, fdata, tdata, tcp, is->is_flags);
if (ret > 0) {
#ifdef IPFILTER_SCAN
if (is->is_flags & (IS_SC_CLIENT|IS_SC_SERVER)) {
ipf_scan_packet(fin, is);
if (FR_ISBLOCK(is->is_pass)) {
MUTEX_EXIT(&is->is_lock);
ATOMIC_INCL(ipf_state_stats.iss_scan_block);
return 1;
}
}
#endif
/*
* Nearing end of connection, start timeout.
*/
ret = ipf_tcp_age(&is->is_sti, fin, ipf_state_tcptq,
is->is_flags, ret);
if (ret == 0) {
MUTEX_EXIT(&is->is_lock);
ATOMIC_INCL(ipf_state_stats.iss_tcp_fsm);
return 0;
}
if (ipf_state_logging > 4)
ipf_state_log(is, ISL_STATECHANGE);
/*
* set s0's as appropriate. Use syn-ack packet as it
* contains both pieces of required information.
*/
/*
* Window scale option is only present in SYN/SYN-ACK packet.
* Compare with ~TH_FIN to mask out T/TCP setups.
*/
flags = tcp->th_flags & ~(TH_FIN|TH_ECNALL);
if (flags == (TH_SYN|TH_ACK)) {
is->is_s0[source] = ntohl(tcp->th_ack);
is->is_s0[!source] = ntohl(tcp->th_seq) + 1;
if ((TCP_OFF(tcp) > (sizeof(tcphdr_t) >> 2))) {
if (ipf_tcpoptions(fin, tcp, fdata) == -1)
fin->fin_flx |= FI_BAD;
}
if ((fin->fin_out != 0) && (is->is_pass & FR_NEWISN))
ipf_checknewisn(fin, is);
} else if (flags == TH_SYN) {
is->is_s0[source] = ntohl(tcp->th_seq) + 1;
if ((TCP_OFF(tcp) > (sizeof(tcphdr_t) >> 2))) {
if (ipf_tcpoptions(fin, tcp, fdata) == -1)
fin->fin_flx |= FI_BAD;
}
if ((fin->fin_out != 0) && (is->is_pass & FR_NEWISN))
ipf_checknewisn(fin, is);
}
ret = 1;
} else {
ATOMIC_INCL(ipf_state_stats.iss_tcp_oow);
fin->fin_flx |= FI_OOW;
ret = 0;
}
MUTEX_EXIT(&is->is_lock);
return ret;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_checknewisn */
/* Returns: Nil */
/* Parameters: fin(I) - pointer to packet information */
/* is(I) - pointer to master state structure */
/* */
/* Check to see if this TCP connection is expecting and needs a new */
/* sequence number for a particular direction of the connection. */
/* */
/* NOTE: This does not actually change the sequence numbers, only gets new */
/* one ready. */
/* ------------------------------------------------------------------------ */
static void
ipf_checknewisn(fin, is)
fr_info_t *fin;
ipstate_t *is;
{
u_32_t sumd, old, new;
tcphdr_t *tcp;
int i;
i = fin->fin_rev;
tcp = fin->fin_dp;
if (((i == 0) && !(is->is_flags & IS_ISNSYN)) ||
((i == 1) && !(is->is_flags & IS_ISNACK))) {
old = ntohl(tcp->th_seq);
new = ipf_newisn(fin);
is->is_isninc[i] = new - old;
CALC_SUMD(old, new, sumd);
is->is_sumd[i] = (sumd & 0xffff) + (sumd >> 16);
is->is_flags |= ((i == 0) ? IS_ISNSYN : IS_ISNACK);
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_tcpinwindow */
/* Returns: int - 1 == packet inside TCP "window", 0 == not inside. */
/* Parameters: fin(I) - pointer to packet information */
/* fdata(I) - pointer to tcp state informatio (forward) */
/* tdata(I) - pointer to tcp state informatio (reverse) */
/* tcp(I) - pointer to TCP packet header */
/* */
/* Given a packet has matched addresses and ports, check to see if it is */
/* within the TCP data window. In a show of generosity, allow packets that */
/* are within the window space behind the current sequence # as well. */
/* ------------------------------------------------------------------------ */
int
ipf_tcpinwindow(fin, fdata, tdata, tcp, flags)
fr_info_t *fin;
tcpdata_t *fdata, *tdata;
tcphdr_t *tcp;
int flags;
{
tcp_seq seq, ack, end;
int ackskew, tcpflags;
u_32_t win, maxwin;
int dsize, inseq;
/*
* Find difference between last checked packet and this packet.
*/
tcpflags = tcp->th_flags;
seq = ntohl(tcp->th_seq);
ack = ntohl(tcp->th_ack);
if (tcpflags & TH_SYN)
win = ntohs(tcp->th_win);
else
win = ntohs(tcp->th_win) << fdata->td_winscale;
/*
* A window of 0 produces undesirable behaviour from this function.
*/
if (win == 0)
win = 1;
dsize = fin->fin_dlen - (TCP_OFF(tcp) << 2) +
((tcpflags & TH_SYN) ? 1 : 0) + ((tcpflags & TH_FIN) ? 1 : 0);
/*
* if window scaling is present, the scaling is only allowed
* for windows not in the first SYN packet. In that packet the
* window is 65535 to specify the largest window possible
* for receivers not implementing the window scale option.
* Currently, we do not assume TTCP here. That means that
* if we see a second packet from a host (after the initial
* SYN), we can assume that the receiver of the SYN did
* already send back the SYN/ACK (and thus that we know if
* the receiver also does window scaling)
*/
if (!(tcpflags & TH_SYN) && (fdata->td_winflags & TCP_WSCALE_FIRST)) {
fdata->td_winflags &= ~TCP_WSCALE_FIRST;
fdata->td_maxwin = win;
}
end = seq + dsize;
if ((fdata->td_end == 0) &&
(!(flags & IS_TCPFSM) ||
((tcpflags & TH_OPENING) == TH_OPENING))) {
/*
* Must be a (outgoing) SYN-ACK in reply to a SYN.
*/
fdata->td_end = end - 1;
fdata->td_maxwin = 1;
fdata->td_maxend = end + win;
}
if (!(tcpflags & TH_ACK)) { /* Pretend an ack was sent */
ack = tdata->td_end;
} else if (((tcpflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) &&
(ack == 0)) {
/* gross hack to get around certain broken tcp stacks */
ack = tdata->td_end;
}
maxwin = tdata->td_maxwin;
ackskew = tdata->td_end - ack;
/*
* Strict sequencing only allows in-order delivery.
*/
if ((flags & IS_STRICT) != 0) {
if (seq != fdata->td_end) {
ATOMIC_INCL(ipf_state_stats.iss_tcp_strict);
return 0;
}
}
#define SEQ_GE(a,b) ((int)((a) - (b)) >= 0)
#define SEQ_GT(a,b) ((int)((a) - (b)) > 0)
inseq = 0;
if ((SEQ_GE(fdata->td_maxend, end)) &&
(SEQ_GE(seq, fdata->td_end - maxwin)) &&
/* XXX what about big packets */
#define MAXACKWINDOW 66000
(-ackskew <= (MAXACKWINDOW)) &&
( ackskew <= (MAXACKWINDOW << fdata->td_winscale))) {
inseq = 1;
/*
* Microsoft Windows will send the next packet to the right of the
* window if SACK is in use.
*/
} else if ((seq == fdata->td_maxend) && (ackskew == 0) &&
(fdata->td_winflags & TCP_SACK_PERMIT) &&
(tdata->td_winflags & TCP_SACK_PERMIT)) {
ATOMIC_INCL(ipf_state_stats.iss_winsack);
inseq = 1;
/*
* Sometimes a TCP RST will be generated with only the ACK field
* set to non-zero.
*/
} else if ((seq == 0) && (tcpflags == (TH_RST|TH_ACK)) &&
(ackskew >= -1) && (ackskew <= 1)) {
inseq = 1;
} else if (!(flags & IS_TCPFSM)) {
int i;
i = (fin->fin_rev << 1) + fin->fin_out;
#if 0
if (is_pkts[i]0 == 0) {
/*
* Picking up a connection in the middle, the "next"
* packet seen from a direction that is new should be
* accepted, even if it appears out of sequence.
*/
inseq = 1;
} else
#endif
if (!(fdata->td_winflags &
(TCP_WSCALE_SEEN|TCP_WSCALE_FIRST))) {
/*
* No TCPFSM and no window scaling, so make some
* extra guesses.
*/
if ((seq == fdata->td_maxend) && (ackskew == 0))
inseq = 1;
else if (SEQ_GE(seq + maxwin, fdata->td_end - maxwin))
inseq = 1;
}
}
/* TRACE(inseq, fdata, tdata, seq, end, ack, ackskew, win, maxwin) */
if (inseq) {
/* if ackskew < 0 then this should be due to fragmented
* packets. There is no way to know the length of the
* total packet in advance.
* We do know the total length from the fragment cache though.
* Note however that there might be more sessions with
* exactly the same source and destination parameters in the
* state cache (and source and destination is the only stuff
* that is saved in the fragment cache). Note further that
* some TCP connections in the state cache are hashed with
* sport and dport as well which makes it not worthwhile to
* look for them.
* Thus, when ackskew is negative but still seems to belong
* to this session, we bump up the destinations end value.
*/
if (ackskew < 0)
tdata->td_end = ack;
/* update max window seen */
if (fdata->td_maxwin < win)
fdata->td_maxwin = win;
if (SEQ_GT(end, fdata->td_end))
fdata->td_end = end;
if (SEQ_GE(ack + win, tdata->td_maxend))
tdata->td_maxend = ack + win;
return 1;
}
ATOMIC_INCL(ipf_state_stats.iss_oow);
fin->fin_flx |= FI_OOW;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_clone */
/* Returns: ipstate_t* - NULL == cloning failed, */
/* else pointer to new state structure */
/* Parameters: fin(I) - pointer to packet information */
/* tcp(I) - pointer to TCP/UDP header */
/* is(I) - pointer to master state structure */
/* */
/* Create a "duplcate" state table entry from the master. */
/* ------------------------------------------------------------------------ */
static ipstate_t *
ipf_state_clone(fin, tcp, is)
fr_info_t *fin;
tcphdr_t *tcp;
ipstate_t *is;
{
ipstate_t *clone;
u_32_t send;
if (ipf_state_stats.iss_active == ipf_state_max) {
ATOMIC_INCL(ipf_state_stats.iss_max);
ipf_state_doflush = 1;
return NULL;
}
KMALLOC(clone, ipstate_t *);
if (clone == NULL) {
ATOMIC_INCL(ipf_state_stats.iss_clone_nomem);
return NULL;
}
bcopy((char *)is, (char *)clone, sizeof(*clone));
MUTEX_NUKE(&clone->is_lock);
clone->is_die = ONE_DAY + ipf_ticks;
clone->is_state[0] = 0;
clone->is_state[1] = 0;
send = ntohl(tcp->th_seq) + fin->fin_dlen - (TCP_OFF(tcp) << 2) +
((tcp->th_flags & TH_SYN) ? 1 : 0) +
((tcp->th_flags & TH_FIN) ? 1 : 0);
if (fin->fin_rev == 1) {
clone->is_dend = send;
clone->is_maxdend = send;
clone->is_send = 0;
clone->is_maxswin = 1;
clone->is_maxdwin = ntohs(tcp->th_win);
if (clone->is_maxdwin == 0)
clone->is_maxdwin = 1;
} else {
clone->is_send = send;
clone->is_maxsend = send;
clone->is_dend = 0;
clone->is_maxdwin = 1;
clone->is_maxswin = ntohs(tcp->th_win);
if (clone->is_maxswin == 0)
clone->is_maxswin = 1;
}
clone->is_flags &= ~SI_CLONE;
clone->is_flags |= SI_CLONED;
ipf_state_insert(clone, fin->fin_rev);
clone->is_ref = 2;
if (clone->is_p == IPPROTO_TCP) {
(void) ipf_tcp_age(&clone->is_sti, fin, ipf_state_tcptq,
clone->is_flags, 2);
}
MUTEX_EXIT(&clone->is_lock);
#ifdef IPFILTER_SCAN
(void) ipf_scan_attachis(is);
#endif
#ifdef IPFILTER_SYNC
if (is->is_flags & IS_STATESYNC)
clone->is_sync = ipf_sync_new(SMC_STATE, fin, clone);
#endif
ATOMIC_INCL(ipf_state_stats.iss_cloned);
return clone;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_matchsrcdst */
/* Returns: Nil */
/* Parameters: fin(I) - pointer to packet information */
/* is(I) - pointer to state structure */
/* src(I) - pointer to source address */
/* dst(I) - pointer to destination address */
/* tcp(I) - pointer to TCP/UDP header */
/* */
/* Match a state table entry against an IP packet. The logic below is that */
/* ret gets set to one if the match succeeds, else remains 0. If it is */
/* still 0 after the test. no match. */
/* ------------------------------------------------------------------------ */
static ipstate_t *
ipf_matchsrcdst(fin, is, src, dst, tcp, cmask)
fr_info_t *fin;
ipstate_t *is;
i6addr_t *src, *dst;
tcphdr_t *tcp;
u_32_t cmask;
{
int ret = 0, rev, out, flags, flx = 0, idx;
u_short sp, dp;
u_32_t cflx;
void *ifp;
rev = IP6_NEQ(&is->is_dst, dst);
ifp = fin->fin_ifp;
out = fin->fin_out;
flags = is->is_flags;
sp = 0;
dp = 0;
if (tcp != NULL) {
sp = htons(fin->fin_sport);
dp = ntohs(fin->fin_dport);
}
if (!rev) {
if (tcp != NULL) {
if (!(flags & SI_W_SPORT) && (sp != is->is_sport))
rev = 1;
else if (!(flags & SI_W_DPORT) && (dp != is->is_dport))
rev = 1;
}
}
idx = (out << 1) + rev;
/*
* If the interface for this 'direction' is set, make sure it matches.
* An interface name that is not set matches any, as does a name of *.
*/
if ((is->is_ifp[idx] == ifp) || (is->is_ifp[idx] == NULL &&
(*is->is_ifname[idx] == '\0' || *is->is_ifname[idx] == '-' ||
*is->is_ifname[idx] == '*')))
ret = 1;
if (ret == 0) {
ATOMIC_INCL(ipf_state_stats.iss_lookup_badifp);
/* TRACE is, out, rev, idx */
return NULL;
}
ret = 0;
/*
* Match addresses and ports.
*/
if (rev == 0) {
if ((IP6_EQ(&is->is_dst, dst) || (flags & SI_W_DADDR)) &&
(IP6_EQ(&is->is_src, src) || (flags & SI_W_SADDR))) {
if (tcp) {
if ((sp == is->is_sport || flags & SI_W_SPORT)&&
(dp == is->is_dport || flags & SI_W_DPORT))
ret = 1;
} else {
ret = 1;
}
}
} else {
if ((IP6_EQ(&is->is_dst, src) || (flags & SI_W_DADDR)) &&
(IP6_EQ(&is->is_src, dst) || (flags & SI_W_SADDR))) {
if (tcp) {
if ((dp == is->is_sport || flags & SI_W_SPORT)&&
(sp == is->is_dport || flags & SI_W_DPORT))
ret = 1;
} else {
ret = 1;
}
}
}
if (ret == 0) {
ATOMIC_INCL(ipf_state_stats.iss_lookup_badport);
/* TRACE rev, is, sp, dp, src, dst */
return NULL;
}
/*
* Whether or not this should be here, is questionable, but the aim
* is to get this out of the main line.
*/
if (tcp == NULL)
flags = is->is_flags & ~(SI_WILDP|SI_NEWFR|SI_CLONE|SI_CLONED);
/*
* Only one of the source or destination address can be flaged as a
* wildcard. Fill in the missing address, if set.
* For IPv6, if the address being copied in is multicast, then
* don't reset the wild flag - multicast causes it to be set in the
* first place!
*/
if ((flags & (SI_W_SADDR|SI_W_DADDR))) {
fr_ip_t *fi = &fin->fin_fi;
if ((flags & SI_W_SADDR) != 0) {
if (rev == 0) {
#ifdef USE_INET6
if (is->is_v == 6 &&
IN6_IS_ADDR_MULTICAST(&fi->fi_src.in6))
/*EMPTY*/;
else
#endif
{
is->is_src = fi->fi_src;
is->is_flags &= ~SI_W_SADDR;
}
} else {
#ifdef USE_INET6
if (is->is_v == 6 &&
IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
/*EMPTY*/;
else
#endif
{
is->is_src = fi->fi_dst;
is->is_flags &= ~SI_W_SADDR;
}
}
} else if ((flags & SI_W_DADDR) != 0) {
if (rev == 0) {
#ifdef USE_INET6
if (is->is_v == 6 &&
IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
/*EMPTY*/;
else
#endif
{
is->is_dst = fi->fi_dst;
is->is_flags &= ~SI_W_DADDR;
}
} else {
#ifdef USE_INET6
if (is->is_v == 6 &&
IN6_IS_ADDR_MULTICAST(&fi->fi_src.in6))
/*EMPTY*/;
else
#endif
{
is->is_dst = fi->fi_src;
is->is_flags &= ~SI_W_DADDR;
}
}
}
if ((is->is_flags & (SI_WILDA|SI_WILDP)) == 0) {
ATOMIC_DECL(ipf_state_stats.iss_wild);
}
}
flx = fin->fin_flx & cmask;
cflx = is->is_flx[out][rev];
/*
* Match up any flags set from IP options.
*/
if ((cflx && (flx != (cflx & cmask))) ||
((fin->fin_optmsk & is->is_optmsk[rev]) != is->is_opt[rev]) ||
((fin->fin_secmsk & is->is_secmsk) != is->is_sec) ||
((fin->fin_auth & is->is_authmsk) != is->is_auth)) {
ATOMIC_INCL(ipf_state_stats.iss_miss_mask);
return NULL;
}
if ((fin->fin_flx & FI_IGNORE) != 0) {
fin->fin_rev = rev;
return is;
}
/*
* Only one of the source or destination port can be flagged as a
* wildcard. When filling it in, fill in a copy of the matched entry
* if it has the cloning flag set.
*/
if ((flags & (SI_W_SPORT|SI_W_DPORT))) {
if ((flags & SI_CLONE) != 0) {
ipstate_t *clone;
clone = ipf_state_clone(fin, tcp, is);
if (clone == NULL)
return NULL;
is = clone;
} else {
ATOMIC_DECL(ipf_state_stats.iss_wild);
}
if ((flags & SI_W_SPORT) != 0) {
if (rev == 0) {
is->is_sport = sp;
is->is_send = ntohl(tcp->th_seq);
} else {
is->is_sport = dp;
is->is_send = ntohl(tcp->th_ack);
}
is->is_maxsend = is->is_send + 1;
} else if ((flags & SI_W_DPORT) != 0) {
if (rev == 0) {
is->is_dport = dp;
is->is_dend = ntohl(tcp->th_ack);
} else {
is->is_dport = sp;
is->is_dend = ntohl(tcp->th_seq);
}
is->is_maxdend = is->is_dend + 1;
}
is->is_flags &= ~(SI_W_SPORT|SI_W_DPORT);
if ((flags & SI_CLONED) && ipf_state_logging)
ipf_state_log(is, ISL_CLONE);
}
ret = -1;
if (is->is_flx[out][rev] == 0) {
is->is_flx[out][rev] = flx;
is->is_opt[rev] = fin->fin_optmsk;
if (is->is_v == 6)
is->is_opt[rev] &= ~0x8;
}
/*
* Check if the interface name for this "direction" is set and if not,
* fill it in.
*/
if (is->is_ifp[idx] == NULL &&
(*is->is_ifname[idx] == '\0' || *is->is_ifname[idx] == '*')) {
is->is_ifp[idx] = ifp;
COPYIFNAME(ifp, is->is_ifname[idx]);
}
fin->fin_rev = rev;
return is;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_checkicmpmatchingstate */
/* Returns: Nil */
/* Parameters: fin(I) - pointer to packet information */
/* */
/* If we've got an ICMP error message, using the information stored in the */
/* ICMP packet, look for a matching state table entry. */
/* */
/* If we return NULL then no lock on ipf_state is held. */
/* If we return non-null then a read-lock on ipf_state is held. */
/* ------------------------------------------------------------------------ */
static ipstate_t *
ipf_checkicmpmatchingstate(fin)
fr_info_t *fin;
{
ipstate_t *is, **isp;
u_short sport, dport;
i6addr_t dst, src;
struct icmp *ic;
u_short savelen;
icmphdr_t *icmp;
fr_info_t ofin;
tcphdr_t *tcp;
int type, len;
u_char pr;
ip_t *oip;
u_int hv;
/*
* Does it at least have the return (basic) IP header ?
* Is it an actual recognised ICMP error type?
* Only a basic IP header (no options) should be with
* an ICMP error header.
*/
if ((fin->fin_v != 4) || (fin->fin_hlen != sizeof(ip_t)) ||
(fin->fin_plen < ICMPERR_MINPKTLEN) ||
!(fin->fin_flx & FI_ICMPERR)) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_bad);
return NULL;
}
ic = fin->fin_dp;
type = ic->icmp_type;
oip = (ip_t *)((char *)ic + ICMPERR_ICMPHLEN);
/*
* Check if the at least the old IP header (with options) and
* 8 bytes of payload is present.
*/
if (fin->fin_plen < ICMPERR_MAXPKTLEN + ((IP_HL(oip) - 5) << 2)) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_short);
return NULL;
}
/*
* Sanity Checks.
*/
len = fin->fin_dlen - ICMPERR_ICMPHLEN;
if ((len <= 0) || ((IP_HL(oip) << 2) > len)) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_short);
return NULL;
}
/*
* Is the buffer big enough for all of it ? It's the size of the IP
* header claimed in the encapsulated part which is of concern. It
* may be too big to be in this buffer but not so big that it's
* outside the ICMP packet, leading to TCP deref's causing problems.
* This is possible because we don't know how big oip_hl is when we
* do the pullup early in ipf_check() and thus can't guarantee it is
* all here now.
*/
#ifdef _KERNEL
{
mb_t *m;
m = fin->fin_m;
# if defined(MENTAT)
if ((char *)oip + len > (char *)m->b_wptr) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_short);
return NULL;
}
# else
if ((char *)oip + len > (char *)fin->fin_ip + m->m_len) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_short);
return NULL;
}
# endif
}
#endif
bcopy((char *)fin, (char *)&ofin, sizeof(*fin));
/*
* in the IPv4 case we must zero the i6addr union otherwise
* the IP6_EQ and IP6_NEQ macros produce the wrong results because
* of the 'junk' in the unused part of the union
*/
bzero((char *)&src, sizeof(src));
bzero((char *)&dst, sizeof(dst));
/*
* we make an fin entry to be able to feed it to
* matchsrcdst note that not all fields are encessary
* but this is the cleanest way. Note further we fill
* in fin_mp such that if someone uses it we'll get
* a kernel panic. ipf_matchsrcdst does not use this.
*
* watch out here, as ip is in host order and oip in network
* order. Any change we make must be undone afterwards, like
* oip->ip_len.
*/
savelen = oip->ip_len;
oip->ip_len = htons(len);
ofin.fin_flx = FI_NOCKSUM;
ofin.fin_v = 4;
ofin.fin_ip = oip;
ofin.fin_m = NULL; /* if dereferenced, panic XXX */
ofin.fin_mp = NULL; /* if dereferenced, panic XXX */
(void) ipf_makefrip(IP_HL(oip) << 2, oip, &ofin);
ofin.fin_ifp = fin->fin_ifp;
ofin.fin_out = !fin->fin_out;
hv = (pr = oip->ip_p);
src.in4 = oip->ip_src;
hv += src.in4.s_addr;
dst.in4 = oip->ip_dst;
hv += dst.in4.s_addr;
/*
* Reset the short and bad flag here because in ipf_matchsrcdst()
* the flags for the current packet (fin_flx) are compared against
* those for the existing session.
*/
ofin.fin_flx &= ~(FI_BAD|FI_SHORT);
/*
* Put old values of ip_len back as we don't know
* if we have to forward the packet or process it again.
*/
oip->ip_len = savelen;
switch (oip->ip_p)
{
case IPPROTO_ICMP :
/*
* an ICMP error can only be generated as a result of an
* ICMP query, not as the response on an ICMP error
*
* XXX theoretically ICMP_ECHOREP and the other reply's are
* ICMP query's as well, but adding them here seems strange XXX
*/
if ((ofin.fin_flx & FI_ICMPERR) != 0) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_icmperr);
return NULL;
}
/*
* perform a lookup of the ICMP packet in the state table
*/
icmp = (icmphdr_t *)((char *)oip + (IP_HL(oip) << 2));
hv += icmp->icmp_id;
hv = DOUBLE_HASH(hv);
READ_ENTER(&ipf_state);
for (isp = &ipf_state_table[hv]; ((is = *isp) != NULL); ) {
isp = &is->is_hnext;
if ((is->is_p != pr) || (is->is_v != 4))
continue;
if (is->is_pass & FR_NOICMPERR)
continue;
is = ipf_matchsrcdst(&ofin, is, &src, &dst,
NULL, FI_ICMPCMP);
if ((is != NULL) && !ipf_allowstateicmp(fin, is, &src))
return is;
}
RWLOCK_EXIT(&ipf_state);
ATOMIC_INCL(ipf_state_stats.iss_icmp_miss);
return NULL;
case IPPROTO_TCP :
case IPPROTO_UDP :
break;
default :
ATOMIC_INCL(ipf_state_stats.iss_icmp_miss);
return NULL;
}
tcp = (tcphdr_t *)((char *)oip + (IP_HL(oip) << 2));
dport = tcp->th_dport;
sport = tcp->th_sport;
hv += dport;
hv += sport;
hv = DOUBLE_HASH(hv);
READ_ENTER(&ipf_state);
for (isp = &ipf_state_table[hv]; ((is = *isp) != NULL); ) {
isp = &is->is_hnext;
/*
* Only allow this icmp though if the
* encapsulated packet was allowed through the
* other way around. Note that the minimal amount
* of info present does not allow for checking against
* tcp internals such as seq and ack numbers. Only the
* ports are known to be present and can be even if the
* short flag is set.
*/
if ((is->is_p == pr) && (is->is_v == 4) &&
(is = ipf_matchsrcdst(&ofin, is, &src, &dst,
tcp, FI_ICMPCMP))) {
if (ipf_allowstateicmp(fin, is, &src) == 0)
return is;
}
}
RWLOCK_EXIT(&ipf_state);
ATOMIC_INCL(ipf_state_stats.iss_icmp_miss);
return NULL;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_allowstateicmp */
/* Returns: int - 1 = packet denied, 0 = packet allowed */
/* Parameters: fin(I) - pointer to packet information */
/* is(I) - pointer to state table entry */
/* */
/* For an ICMP packet that has so far matched a state table entry, check if */
/* there are any further refinements that might mean we want to block this */
/* packet. This code isn't specific to either IPv4 or IPv6. */
/* ------------------------------------------------------------------------ */
static int
ipf_allowstateicmp(fin, is, src)
fr_info_t *fin;
ipstate_t *is;
i6addr_t *src;
{
frentry_t *savefr;
frentry_t *fr;
u_32_t ipass;
int backward;
int oi;
int i;
fr = is->is_rule;
if (fr != NULL && fr->fr_icmpgrp != NULL) {
savefr = fin->fin_fr;
fin->fin_fr = *fr->fr_icmpgrp;
ipass = ipf_scanlist(fin, ipf_pass);
fin->fin_fr = savefr;
if (FR_ISBLOCK(ipass)) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_headblock);
return 1;
}
}
/*
* i : the index of this packet (the icmp unreachable)
* oi : the index of the original packet found in the
* icmp header (i.e. the packet causing this icmp)
* backward : original packet was backward compared to
* the state
*/
backward = IP6_NEQ(&is->is_src, src);
fin->fin_rev = !backward;
i = (!backward << 1) + fin->fin_out;
oi = (backward << 1) + !fin->fin_out;
if (is->is_pass & FR_NOICMPERR) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_banned);
return 1;
}
if (is->is_icmppkts[i] > is->is_pkts[oi]) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_toomany);
return 1;
}
ATOMIC_INCL(ipf_state_stats.iss_icmp_hits);
is->is_icmppkts[i]++;
/*
* we deliberately do not touch the timeouts
* for the accompanying state table entry.
* It remains to be seen if that is correct. XXX
*/
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_ipsmove */
/* Returns: Nil */
/* Parameters: is(I) - pointer to state table entry */
/* hv(I) - new hash value for state table entry */
/* Write Locks: ipf_state */
/* */
/* Move a state entry from one position in the hash table to another. */
/* ------------------------------------------------------------------------ */
static void
ipf_ipsmove(is, hv)
ipstate_t *is;
u_int hv;
{
ipstate_t **isp;
u_int hvm;
hvm = is->is_hv;
/* TRACE is, is_hv, hvm */
/*
* Remove the hash from the old location...
*/
isp = is->is_phnext;
if (is->is_hnext)
is->is_hnext->is_phnext = isp;
*isp = is->is_hnext;
if (ipf_state_table[hvm] == NULL)
ipf_state_stats.iss_inuse--;
ipf_state_stats.iss_bucketlen[hvm]--;
/*
* ...and put the hash in the new one.
*/
hvm = DOUBLE_HASH(hv);
is->is_hv = hvm;
/* TRACE is, hv, is_hv, hvm */
isp = &ipf_state_table[hvm];
if (*isp)
(*isp)->is_phnext = &is->is_hnext;
else
ipf_state_stats.iss_inuse++;
ipf_state_stats.iss_bucketlen[hvm]++;
is->is_phnext = isp;
is->is_hnext = *isp;
*isp = is;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_lookup */
/* Returns: ipstate_t* - NULL == no matching state found, */
/* else pointer to state information is returned */
/* Parameters: fin(I) - pointer to packet information */
/* tcp(I) - pointer to TCP/UDP header. */
/* */
/* Search the state table for a matching entry to the packet described by */
/* the contents of *fin. */
/* */
/* If we return NULL then no lock on ipf_state is held. */
/* If we return non-null then a read-lock on ipf_state is held. */
/* ------------------------------------------------------------------------ */
ipstate_t *
ipf_state_lookup(fin, tcp, ifqp)
fr_info_t *fin;
tcphdr_t *tcp;
ipftq_t **ifqp;
{
u_int hv, hvm, pr, v, tryagain;
ipstate_t *is, **isp;
u_short dport, sport;
i6addr_t src, dst;
struct icmp *ic;
ipftq_t *ifq;
int oow;
is = NULL;
ifq = NULL;
tcp = fin->fin_dp;
ic = (struct icmp *)tcp;
hv = (pr = fin->fin_fi.fi_p);
src = fin->fin_fi.fi_src;
dst = fin->fin_fi.fi_dst;
hv += src.in4.s_addr;
hv += dst.in4.s_addr;
v = fin->fin_fi.fi_v;
#ifdef USE_INET6
if (v == 6) {
hv += fin->fin_fi.fi_src.i6[1];
hv += fin->fin_fi.fi_src.i6[2];
hv += fin->fin_fi.fi_src.i6[3];
if ((fin->fin_p == IPPROTO_ICMPV6) &&
IN6_IS_ADDR_MULTICAST(&fin->fin_fi.fi_dst.in6)) {
hv -= dst.in4.s_addr;
} else {
hv += fin->fin_fi.fi_dst.i6[1];
hv += fin->fin_fi.fi_dst.i6[2];
hv += fin->fin_fi.fi_dst.i6[3];
}
}
#endif
if ((v == 4) &&
(fin->fin_flx & (FI_MULTICAST|FI_BROADCAST|FI_MBCAST))) {
if (fin->fin_out == 0) {
hv -= src.in4.s_addr;
} else {
hv -= dst.in4.s_addr;
}
}
/* TRACE fin_saddr, fin_daddr, hv */
/*
* Search the hash table for matching packet header info.
*/
switch (pr)
{
#ifdef USE_INET6
case IPPROTO_ICMPV6 :
tryagain = 0;
if (v == 6) {
if ((ic->icmp_type == ICMP6_ECHO_REQUEST) ||
(ic->icmp_type == ICMP6_ECHO_REPLY)) {
hv += ic->icmp_id;
}
}
READ_ENTER(&ipf_state);
icmp6again:
hvm = DOUBLE_HASH(hv);
for (isp = &ipf_state_table[hvm]; ((is = *isp) != NULL); ) {
isp = &is->is_hnext;
/*
* If a connection is about to be deleted, no packets
* are allowed to match it.
*/
if (is->is_sti.tqe_ifq == &ipf_state_deletetq)
continue;
if ((is->is_p != pr) || (is->is_v != v))
continue;
is = ipf_matchsrcdst(fin, is, &src, &dst, NULL, FI_CMP);
if (is != NULL &&
ipf_matchicmpqueryreply(v, &is->is_icmp,
ic, fin->fin_rev)) {
if (fin->fin_rev)
ifq = &ipf_state_icmpacktq;
else
ifq = &ipf_state_icmptq;
break;
}
}
if (is != NULL) {
if ((tryagain != 0) && !(is->is_flags & SI_W_DADDR)) {
hv += fin->fin_fi.fi_src.i6[0];
hv += fin->fin_fi.fi_src.i6[1];
hv += fin->fin_fi.fi_src.i6[2];
hv += fin->fin_fi.fi_src.i6[3];
ipf_ipsmove(is, hv);
MUTEX_DOWNGRADE(&ipf_state);
}
break;
}
RWLOCK_EXIT(&ipf_state);
/*
* No matching icmp state entry. Perhaps this is a
* response to another state entry.
*
* XXX With some ICMP6 packets, the "other" address is already
* in the packet, after the ICMP6 header, and this could be
* used in place of the multicast address. However, taking
* advantage of this requires some significant code changes
* to handle the specific types where that is the case.
*/
if ((ipf_state_stats.iss_wild != 0) &&
(v == 6) && (tryagain == 0) &&
!IN6_IS_ADDR_MULTICAST(&fin->fin_fi.fi_src.in6)) {
hv -= fin->fin_fi.fi_src.i6[0];
hv -= fin->fin_fi.fi_src.i6[1];
hv -= fin->fin_fi.fi_src.i6[2];
hv -= fin->fin_fi.fi_src.i6[3];
tryagain = 1;
WRITE_ENTER(&ipf_state);
goto icmp6again;
}
is = ipf_checkicmp6matchingstate(fin);
if (is != NULL)
return is;
break;
#endif
case IPPROTO_ICMP :
if (v == 4) {
hv += ic->icmp_id;
}
hv = DOUBLE_HASH(hv);
READ_ENTER(&ipf_state);
for (isp = &ipf_state_table[hv]; ((is = *isp) != NULL); ) {
isp = &is->is_hnext;
if ((is->is_p != pr) || (is->is_v != v))
continue;
is = ipf_matchsrcdst(fin, is, &src, &dst, NULL, FI_CMP);
if ((is != NULL) &&
(ic->icmp_id == is->is_icmp.ici_id) &&
ipf_matchicmpqueryreply(v, &is->is_icmp,
ic, fin->fin_rev)) {
if (fin->fin_rev)
ifq = &ipf_state_icmpacktq;
else
ifq = &ipf_state_icmptq;
break;
}
}
if (is == NULL) {
RWLOCK_EXIT(&ipf_state);
}
break;
case IPPROTO_TCP :
case IPPROTO_UDP :
ifqp = NULL;
sport = htons(fin->fin_data[0]);
hv += sport;
dport = htons(fin->fin_data[1]);
hv += dport;
oow = 0;
tryagain = 0;
READ_ENTER(&ipf_state);
retry_tcpudp:
hvm = DOUBLE_HASH(hv);
/* TRACE hv, hvm */
for (isp = &ipf_state_table[hvm]; ((is = *isp) != NULL); ) {
isp = &is->is_hnext;
if ((is->is_p != pr) || (is->is_v != v))
continue;
fin->fin_flx &= ~FI_OOW;
is = ipf_matchsrcdst(fin, is, &src, &dst, tcp, FI_CMP);
if (is != NULL) {
if (pr == IPPROTO_TCP) {
if (!ipf_state_tcp(fin, tcp, is)) {
oow |= fin->fin_flx & FI_OOW;
continue;
}
}
break;
}
}
if (is != NULL) {
if (tryagain &&
!(is->is_flags & (SI_CLONE|SI_WILDP|SI_WILDA))) {
hv += dport;
hv += sport;
ipf_ipsmove(is, hv);
MUTEX_DOWNGRADE(&ipf_state);
}
break;
}
RWLOCK_EXIT(&ipf_state);
if (ipf_state_stats.iss_wild) {
if (tryagain == 0) {
hv -= dport;
hv -= sport;
} else if (tryagain == 1) {
hv = fin->fin_fi.fi_p;
/*
* If we try to pretend this is a reply to a
* multicast/broadcast packet then we need to
* exclude part of the address from the hash
* calculation.
*/
if (fin->fin_out == 0) {
hv += src.in4.s_addr;
} else {
hv += dst.in4.s_addr;
}
hv += dport;
hv += sport;
}
tryagain++;
if (tryagain <= 2) {
WRITE_ENTER(&ipf_state);
goto retry_tcpudp;
}
}
fin->fin_flx |= oow;
break;
#if 0
case IPPROTO_GRE :
gre = fin->fin_dp;
if (GRE_REV(gre->gr_flags) == 1) {
hv += gre->gr_call;
}
/* FALLTHROUGH */
#endif
default :
ifqp = NULL;
hvm = DOUBLE_HASH(hv);
READ_ENTER(&ipf_state);
for (isp = &ipf_state_table[hvm]; ((is = *isp) != NULL); ) {
isp = &is->is_hnext;
if ((is->is_p != pr) || (is->is_v != v))
continue;
is = ipf_matchsrcdst(fin, is, &src, &dst, NULL, FI_CMP);
if (is != NULL) {
ifq = &ipf_state_iptq;
break;
}
}
if (is == NULL) {
RWLOCK_EXIT(&ipf_state);
}
break;
}
if (is != NULL) {
if (((is->is_sti.tqe_flags & TQE_RULEBASED) != 0) &&
(is->is_tqehead[fin->fin_rev] != NULL))
ifq = is->is_tqehead[fin->fin_rev];
if (ifq != NULL && ifqp != NULL)
*ifqp = ifq;
} else {
ATOMIC_INCL(ipf_state_stats.iss_lookup_miss);
}
return is;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_check */
/* Returns: frentry_t* - NULL == search failed, */
/* else pointer to rule for matching state */
/* Parameters: ifp(I) - pointer to interface */
/* passp(I) - pointer to filtering result flags */
/* */
/* Check if a packet is associated with an entry in the state table. */
/* ------------------------------------------------------------------------ */
frentry_t *
ipf_state_check(fin, passp)
fr_info_t *fin;
u_32_t *passp;
{
ipftqent_t *tqe;
ipstate_t *is;
frentry_t *fr;
tcphdr_t *tcp;
ipftq_t *ifq;
u_int pass;
int inout;
if (ipf_state_lock || (ipf_state_list == NULL))
return NULL;
if (fin->fin_flx & (FI_SHORT|FI_FRAGBODY|FI_BAD)) {
ATOMIC_INCL(ipf_state_stats.iss_check_bad);
return NULL;
}
is = fin->fin_state;
if (is != NULL) {
READ_ENTER(&ipf_state);
fr = is->is_rule;
MUTEX_ENTER(&is->is_lock);
goto stateheld;
}
if ((fin->fin_flx & FI_TCPUDP) ||
(fin->fin_fi.fi_p == IPPROTO_ICMP)
#ifdef USE_INET6
|| (fin->fin_fi.fi_p == IPPROTO_ICMPV6)
#endif
)
tcp = fin->fin_dp;
else
tcp = NULL;
ifq = NULL;
/*
* Search the hash table for matching packet header info.
*/
is = ipf_state_lookup(fin, tcp, &ifq);
switch (fin->fin_p)
{
#ifdef USE_INET6
case IPPROTO_ICMPV6 :
if (is != NULL)
break;
if (fin->fin_v == 6) {
is = ipf_checkicmp6matchingstate(fin);
}
break;
#endif
case IPPROTO_ICMP :
if (is != NULL)
break;
/*
* No matching icmp state entry. Perhaps this is a
* response to another state entry.
*/
is = ipf_checkicmpmatchingstate(fin);
break;
case IPPROTO_TCP :
if (is == NULL)
break;
if (is->is_pass & FR_NEWISN) {
if (fin->fin_out == 0)
ipf_fixinisn(fin, is);
else if (fin->fin_out == 1)
ipf_fixoutisn(fin, is);
}
break;
default :
if (fin->fin_rev)
ifq = &ipf_state_udpacktq;
else
ifq = &ipf_state_udptq;
break;
}
if (is == NULL) {
ATOMIC_INCL(ipf_state_stats.iss_check_miss);
return NULL;
}
fr = is->is_rule;
if (fr != NULL) {
if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
if (fin->fin_nattag == NULL) {
RWLOCK_EXIT(&ipf_state);
ATOMIC_INCL(ipf_state_stats.iss_check_notag);
return NULL;
}
if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag)!=0) {
RWLOCK_EXIT(&ipf_state);
ATOMIC_INCL(ipf_state_stats.iss_check_nattag);
return NULL;
}
}
(void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN);
fin->fin_icode = fr->fr_icode;
}
fin->fin_rule = is->is_rulen;
fin->fin_fr = is->is_rule;
fin->fin_state = is;
/*
* If this packet is a fragment and the rule says to track fragments,
* then create a new fragment cache entry.
*/
if ((fin->fin_flx & FI_FRAG) && FR_ISPASS(is->is_pass))
(void) ipf_frag_new(fin, is->is_pass);
/*
* For TCP packets, ifq == NULL. For all others, check if this new
* queue is different to the last one it was on and move it if so.
*/
tqe = &is->is_sti;
if ((tqe->tqe_flags & TQE_RULEBASED) != 0)
ifq = is->is_tqehead[fin->fin_rev];
MUTEX_ENTER(&is->is_lock);
is->is_ref++;
if (ifq != NULL)
ipf_movequeue(tqe, tqe->tqe_ifq, ifq);
stateheld:
inout = (fin->fin_rev << 1) + fin->fin_out;
is->is_pkts[inout]++;
is->is_bytes[inout] += fin->fin_plen;
MUTEX_EXIT(&is->is_lock);
pass = is->is_pass;
#ifdef IPFILTER_SYNC
if (is->is_flags & IS_STATESYNC)
ipf_sync_update(SMC_STATE, fin, is->is_sync);
#endif
RWLOCK_EXIT(&ipf_state);
ATOMIC_INCL(ipf_state_stats.iss_hits);
fin->fin_flx |= FI_STATE;
if ((pass & FR_LOGFIRST) != 0)
pass &= ~(FR_LOGFIRST|FR_LOG);
*passp = pass;
return fr;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_fixoutisn */
/* Returns: Nil */
/* Parameters: fin(I) - pointer to packet information */
/* is(I) - pointer to master state structure */
/* */
/* Called only for outbound packets, adjusts the sequence number and the */
/* TCP checksum to match that change. */
/* ------------------------------------------------------------------------ */
static void
ipf_fixoutisn(fin, is)
fr_info_t *fin;
ipstate_t *is;
{
tcphdr_t *tcp;
int rev;
u_32_t seq;
tcp = fin->fin_dp;
rev = fin->fin_rev;
if ((is->is_flags & IS_ISNSYN) != 0) {
if (rev == 0) {
seq = ntohl(tcp->th_seq);
seq += is->is_isninc[0];
tcp->th_seq = htonl(seq);
ipf_fix_outcksum(fin, &tcp->th_sum, is->is_sumd[0]);
}
}
if ((is->is_flags & IS_ISNACK) != 0) {
if (rev == 1) {
seq = ntohl(tcp->th_seq);
seq += is->is_isninc[1];
tcp->th_seq = htonl(seq);
ipf_fix_outcksum(fin, &tcp->th_sum, is->is_sumd[1]);
}
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_fixinisn */
/* Returns: Nil */
/* Parameters: fin(I) - pointer to packet information */
/* is(I) - pointer to master state structure */
/* */
/* Called only for inbound packets, adjusts the acknowledge number and the */
/* TCP checksum to match that change. */
/* ------------------------------------------------------------------------ */
static void
ipf_fixinisn(fin, is)
fr_info_t *fin;
ipstate_t *is;
{
tcphdr_t *tcp;
int rev;
u_32_t ack;
tcp = fin->fin_dp;
rev = fin->fin_rev;
if ((is->is_flags & IS_ISNSYN) != 0) {
if (rev == 1) {
ack = ntohl(tcp->th_ack);
ack -= is->is_isninc[0];
tcp->th_ack = htonl(ack);
ipf_fix_incksum(fin, &tcp->th_sum, is->is_sumd[0]);
}
}
if ((is->is_flags & IS_ISNACK) != 0) {
if (rev == 0) {
ack = ntohl(tcp->th_ack);
ack -= is->is_isninc[1];
tcp->th_ack = htonl(ack);
ipf_fix_incksum(fin, &tcp->th_sum, is->is_sumd[1]);
}
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_sync */
/* Returns: Nil */
/* Parameters: ifp(I) - pointer to interface */
/* */
/* Walk through all state entries and if an interface pointer match is */
/* found then look it up again, based on its name in case the pointer has */
/* changed since last time. */
/* */
/* If ifp is passed in as being non-null then we are only doing updates for */
/* existing, matching, uses of it. */
/* ------------------------------------------------------------------------ */
void
ipf_state_sync(ifp)
void *ifp;
{
ipstate_t *is;
int i;
if (ipf_running <= 0)
return;
WRITE_ENTER(&ipf_state);
if (ipf_running <= 0) {
RWLOCK_EXIT(&ipf_state);
return;
}
for (is = ipf_state_list; is; is = is->is_next) {
/*
* Look up all the interface names in the state entry.
*/
for (i = 0; i < 4; i++) {
if (ifp == NULL || ifp == is->is_ifp[i])
is->is_ifp[i] = ipf_resolvenic(is->is_ifname[i],
is->is_v);
}
}
RWLOCK_EXIT(&ipf_state);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_del */
/* Returns: int - 0 = deleted, else refernce count on active struct */
/* Parameters: is(I) - pointer to state structure to delete */
/* why(I) - if not 0, log reason why it was deleted */
/* Write Locks: ipf_state */
/* */
/* Deletes a state entry from the enumerated list as well as the hash table */
/* and timeout queue lists. Make adjustments to hash table statistics and */
/* global counters as required. */
/* ------------------------------------------------------------------------ */
static int
ipf_state_del(is, why)
ipstate_t *is;
int why;
{
int orphan = 1;
frentry_t *fr;
frdest_t *fdp;
/*
* Since we want to delete this, remove it from the state table,
* where it can be found & used, first.
*/
if (is->is_phnext != NULL) {
*is->is_phnext = is->is_hnext;
if (is->is_hnext != NULL)
is->is_hnext->is_phnext = is->is_phnext;
if (ipf_state_table[is->is_hv] == NULL)
ipf_state_stats.iss_inuse--;
ipf_state_stats.iss_bucketlen[is->is_hv]--;
is->is_phnext = NULL;
is->is_hnext = NULL;
orphan = 0;
}
if (is->is_me != NULL) {
*is->is_me = NULL;
is->is_me = NULL;
}
/*
* Because ipf_state_stats.iss_wild is a count of entries in the state
* table that have wildcard flags set, only decerement it once
* and do it here.
*/
if (is->is_flags & (SI_WILDP|SI_WILDA)) {
if (!(is->is_flags & SI_CLONED)) {
ATOMIC_DECL(ipf_state_stats.iss_wild);
}
is->is_flags &= ~(SI_WILDP|SI_WILDA);
}
/*
* Next, remove it from the timeout queue it is in.
*/
if (is->is_sti.tqe_ifq != NULL)
ipf_deletequeueentry(&is->is_sti);
if (is->is_me != NULL) {
*is->is_me = NULL;
is->is_me = NULL;
}
/*
* If it is still in use by something else, do not go any further,
* but note that at this point it is now an orphan. How can this
* be? ipf_state_flush() calls ipf_delete() directly because it wants
* to empty the table out and if something has a hold on a state
* entry (such as ipfstat), it'll do the deref path that'll bring
* us back here to do the real delete & free.
*/
MUTEX_ENTER(&is->is_lock);
if (is->is_ref > 1) {
is->is_ref--;
MUTEX_EXIT(&is->is_lock);
if (!orphan)
ipf_state_stats.iss_orphan++;
return is->is_ref;
}
MUTEX_EXIT(&is->is_lock);
fr = is->is_rule;
if (fr != NULL) {
fdp = &fr->fr_tifs[0];
if (fdp->fd_type == FRD_POOL)
ipf_lookup_deref(IPLT_DSTLIST, fdp->fd_ptr);
fdp = &fr->fr_tifs[1];
if (fdp->fd_type == FRD_POOL)
ipf_lookup_deref(IPLT_DSTLIST, fdp->fd_ptr);
fdp = &fr->fr_dif;
if (fdp->fd_type == FRD_POOL)
ipf_lookup_deref(IPLT_DSTLIST, fdp->fd_ptr);
}
is->is_ref = 0;
if (is->is_tqehead[0] != NULL) {
(void) ipf_deletetimeoutqueue(is->is_tqehead[0]);
}
if (is->is_tqehead[1] != NULL) {
(void) ipf_deletetimeoutqueue(is->is_tqehead[1]);
}
#ifdef IPFILTER_SYNC
if (is->is_sync)
ipf_sync_del_state(is->is_sync);
#endif
#ifdef IPFILTER_SCAN
(void) ipf_scan_detachis(is);
#endif
/*
* Now remove it from the linked list of known states
*/
if (is->is_pnext != NULL) {
*is->is_pnext = is->is_next;
if (is->is_next != NULL)
is->is_next->is_pnext = is->is_pnext;
is->is_pnext = NULL;
is->is_next = NULL;
}
if (ipf_state_logging != 0 && why != 0)
ipf_state_log(is, why);
if (is->is_p == IPPROTO_TCP)
ipf_state_stats.iss_fin++;
else
ipf_state_stats.iss_expire++;
if (orphan)
ipf_state_stats.iss_orphan--;
if (is->is_rule != NULL) {
is->is_rule->fr_statecnt--;
(void) ipf_derefrule(&is->is_rule);
}
ipf_state_stats.iss_active_proto[is->is_p]--;
MUTEX_DESTROY(&is->is_lock);
KFREE(is);
ipf_state_stats.iss_active--;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_timeout */
/* Returns: Nil */
/* Parameters: Nil */
/* */
/* Slowly expire held state for thingslike UDP and ICMP. The algorithm */
/* used here is to keep the queue sorted with the oldest things at the top */
/* and the youngest at the bottom. So if the top one doesn't need to be */
/* expired then neither will any under it. */
/* ------------------------------------------------------------------------ */
void
ipf_state_timeout()
{
ipftq_t *ifq, *ifqnext;
ipftqent_t *tqe, *tqn;
ipstate_t *is;
SPL_INT(s);
SPL_NET(s);
WRITE_ENTER(&ipf_state);
for (ifq = ipf_state_tcptq; ifq != NULL; ifq = ifq->ifq_next)
for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
if (tqe->tqe_die > ipf_ticks)
break;
tqn = tqe->tqe_next;
is = tqe->tqe_parent;
ipf_state_del(is, ISL_EXPIRE);
}
for (ifq = ipf_state_usertq; ifq != NULL; ifq = ifqnext) {
ifqnext = ifq->ifq_next;
for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
if (tqe->tqe_die > ipf_ticks)
break;
tqn = tqe->tqe_next;
is = tqe->tqe_parent;
ipf_state_del(is, ISL_EXPIRE);
}
}
for (ifq = ipf_state_usertq; ifq != NULL; ifq = ifqnext) {
ifqnext = ifq->ifq_next;
if (((ifq->ifq_flags & IFQF_DELETE) != 0) &&
(ifq->ifq_ref == 0)) {
ipf_freetimeoutqueue(ifq);
}
}
if (ipf_state_doflush) {
(void) ipf_state_flush(2, 0);
ipf_state_doflush = 0;
ipf_state_wm_last = ipf_ticks;
}
RWLOCK_EXIT(&ipf_state);
SPL_X(s);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_flush */
/* Returns: int - 0 == success, -1 == failure */
/* Parameters: Nil */
/* Write Locks: ipf_state */
/* */
/* Flush state tables. Three actions currently defined: */
/* which == 0 : flush all state table entries */
/* which == 1 : flush TCP connections which have started to close but are */
/* stuck for some reason. */
/* which == 2 : flush TCP connections which have been idle for a long time, */
/* starting at > 4 days idle and working back in successive half-*/
/* days to at most 12 hours old. If this fails to free enough */
/* slots then work backwards in half hour slots to 30 minutes. */
/* If that too fails, then work backwards in 30 second intervals */
/* for the last 30 minutes to at worst 30 seconds idle. */
/* ------------------------------------------------------------------------ */
static int
ipf_state_flush(which, proto)
int which, proto;
{
ipftqent_t *tqe, *tqn;
ipstate_t *is, **isp;
ipftq_t *ifq;
int removed;
SPL_INT(s);
removed = 0;
SPL_NET(s);
switch (which)
{
case 0 :
ATOMIC_INCL(ipf_state_stats.iss_flush_all);
/*
* Style 0 flush removes everything...
*/
for (isp = &ipf_state_list; ((is = *isp) != NULL); ) {
if ((proto != 0) && (is->is_v != proto)) {
isp = &is->is_next;
continue;
}
if (ipf_state_del(is, ISL_FLUSH) == 0)
removed++;
else
isp = &is->is_next;
}
break;
case 1 :
ATOMIC_INCL(ipf_state_stats.iss_flush_closing);
/*
* Since we're only interested in things that are closing,
* we can start with the appropriate timeout queue.
*/
for (ifq = ipf_state_tcptq + IPF_TCPS_CLOSE_WAIT; ifq != NULL;
ifq = ifq->ifq_next) {
for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
tqn = tqe->tqe_next;
is = tqe->tqe_parent;
if (is->is_p != IPPROTO_TCP)
break;
if (ipf_state_del(is, ISL_FLUSH) == 0)
removed++;
}
}
/*
* Also need to look through the user defined queues.
*/
for (ifq = ipf_state_usertq; ifq != NULL; ifq = ifq->ifq_next) {
for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
tqn = tqe->tqe_next;
is = tqe->tqe_parent;
if (is->is_p != IPPROTO_TCP)
continue;
if ((is->is_state[0] > IPF_TCPS_ESTABLISHED) &&
(is->is_state[1] > IPF_TCPS_ESTABLISHED)) {
if (ipf_state_del(is, ISL_FLUSH) == 0)
removed++;
}
}
}
break;
case 2 :
break;
/*
* Args 5-11 correspond to flushing those particular states
* for TCP connections.
*/
case IPF_TCPS_CLOSE_WAIT :
case IPF_TCPS_FIN_WAIT_1 :
case IPF_TCPS_CLOSING :
case IPF_TCPS_LAST_ACK :
case IPF_TCPS_FIN_WAIT_2 :
case IPF_TCPS_TIME_WAIT :
case IPF_TCPS_CLOSED :
ATOMIC_INCL(ipf_state_stats.iss_flush_queue);
tqn = ipf_state_tcptq[which].ifq_head;
while (tqn != NULL) {
tqe = tqn;
tqn = tqe->tqe_next;
is = tqe->tqe_parent;
if (ipf_state_del(is, ISL_FLUSH) == 0)
removed++;
}
break;
default :
if (which < 30)
break;
ATOMIC_INCL(ipf_state_stats.iss_flush_state);
/*
* Take a large arbitrary number to mean the number of seconds
* for which which consider to be the maximum value we'll allow
* the expiration to be.
*/
which = IPF_TTLVAL(which);
for (isp = &ipf_state_list; ((is = *isp) != NULL); ) {
if ((proto == 0) || (is->is_v == proto)) {
if (ipf_ticks - is->is_touched > which) {
if (ipf_state_del(is, ISL_FLUSH) == 0) {
removed++;
continue;
}
}
}
isp = &is->is_next;
}
break;
}
if (which != 2) {
SPL_X(s);
return removed;
}
ATOMIC_INCL(ipf_state_stats.iss_flush_timeout);
/*
* Asked to remove inactive entries because the table is full, try
* again, 3 times, if first attempt failed with a different criteria
* each time. The order tried in must be in decreasing age.
* Another alternative is to implement random drop and drop N entries
* at random until N have been freed up.
*/
if (ipf_ticks - ipf_state_wm_last > ipf_state_wm_freq) {
removed = ipf_queueflush(ipf_state_flush_entry, ipf_state_tcptq,
ipf_state_usertq,
&ipf_state_stats.iss_active,
ipf_state_size, ipf_state_wm_low);
ipf_state_wm_last = ipf_ticks;
}
SPL_X(s);
return removed;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_flush_entry */
/* Returns: int - 0 = entry deleted, else not deleted */
/* Parameters: entry(I) - pointer to state structure to delete */
/* Write Locks: ipf_state */
/* */
/* This function is a stepping stone between ipf_queueflush() and */
/* ipf_state_del(). It is used so we can provide a uniform interface via */
/* the ipf_queueflush() function. */
/* ------------------------------------------------------------------------ */
static int
ipf_state_flush_entry(entry)
void *entry;
{
return ipf_state_del(entry, ISL_FLUSH);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_tcp_age */
/* Returns: int - 1 == state transition made, 0 == no change (rejected) */
/* Parameters: tq(I) - pointer to timeout queue information */
/* fin(I) - pointer to packet information */
/* tqtab(I) - TCP timeout queue table this is in */
/* flags(I) - flags from state/NAT entry */
/* ok(I) - can we advance state */
/* */
/* Rewritten by Arjan de Vet <Arjan.deVet@adv.iae.nl>, 2000-07-29: */
/* */
/* - (try to) base state transitions on real evidence only, */
/* i.e. packets that are sent and have been received by ipfilter; */
/* diagram 18.12 of TCP/IP volume 1 by W. Richard Stevens was used. */
/* */
/* - deal with half-closed connections correctly; */
/* */
/* - store the state of the source in state[0] such that ipfstat */
/* displays the state as source/dest instead of dest/source; the calls */
/* to ipf_tcp_age have been changed accordingly. */
/* */
/* Internal Parameters: */
/* */
/* state[0] = state of source (host that initiated connection) */
/* state[1] = state of dest (host that accepted the connection) */
/* */
/* dir == 0 : a packet from source to dest */
/* dir == 1 : a packet from dest to source */
/* */
/* A typical procession for a connection is as follows: */
/* */
/* +--------------+-------------------+ */
/* | Side '0' | Side '1' | */
/* +--------------+-------------------+ */
/* | 0 -> 1 (SYN) | | */
/* | | 0 -> 2 (SYN-ACK) | */
/* | 1 -> 3 (ACK) | | */
/* | | 2 -> 4 (ACK-PUSH) | */
/* | 3 -> 4 (ACK) | | */
/* | ... | ... | */
/* | | 4 -> 6 (FIN-ACK) | */
/* | 4 -> 5 (ACK) | | */
/* | | 6 -> 6 (ACK-PUSH) | */
/* | 5 -> 5 (ACK) | | */
/* | 5 -> 8 (FIN) | | */
/* | | 6 -> 10 (ACK) | */
/* +--------------+-------------------+ */
/* */
/* Locking: it is assumed that the parent of the tqe structure is locked. */
/* ------------------------------------------------------------------------ */
int
ipf_tcp_age(tqe, fin, tqtab, flags, ok)
ipftqent_t *tqe;
fr_info_t *fin;
ipftq_t *tqtab;
int flags, ok;
{
int dlen, ostate, nstate, rval, dir;
u_char tcpflags;
tcphdr_t *tcp;
tcp = fin->fin_dp;
rval = 0;
dir = fin->fin_rev;
tcpflags = tcp->th_flags;
dlen = fin->fin_dlen - (TCP_OFF(tcp) << 2);
if (tcpflags & TH_RST) {
if (!(tcpflags & TH_PUSH) && !dlen)
nstate = IPF_TCPS_CLOSED;
else
nstate = IPF_TCPS_CLOSE_WAIT;
rval = 1;
} else {
ostate = tqe->tqe_state[1 - dir];
nstate = tqe->tqe_state[dir];
switch (nstate)
{
case IPF_TCPS_LISTEN: /* 0 */
if ((tcpflags & TH_OPENING) == TH_OPENING) {
/*
* 'dir' received an S and sends SA in
* response, LISTEN -> SYN_RECEIVED
*/
nstate = IPF_TCPS_SYN_RECEIVED;
rval = 1;
} else if ((tcpflags & TH_OPENING) == TH_SYN) {
/* 'dir' sent S, LISTEN -> SYN_SENT */
nstate = IPF_TCPS_SYN_SENT;
rval = 1;
}
/*
* the next piece of code makes it possible to get
* already established connections into the state table
* after a restart or reload of the filter rules; this
* does not work when a strict 'flags S keep state' is
* used for tcp connections of course
*/
if (((flags & IS_TCPFSM) == 0) &&
((tcpflags & TH_ACKMASK) == TH_ACK)) {
/*
* we saw an A, guess 'dir' is in ESTABLISHED
* mode
*/
switch (ostate)
{
case IPF_TCPS_LISTEN :
case IPF_TCPS_SYN_RECEIVED :
nstate = IPF_TCPS_HALF_ESTAB;
rval = 1;
break;
case IPF_TCPS_HALF_ESTAB :
case IPF_TCPS_ESTABLISHED :
nstate = IPF_TCPS_ESTABLISHED;
rval = 1;
break;
default :
break;
}
}
/*
* TODO: besides regular ACK packets we can have other
* packets as well; it is yet to be determined how we
* should initialize the states in those cases
*/
break;
case IPF_TCPS_SYN_SENT: /* 1 */
if ((tcpflags & ~(TH_ECN|TH_CWR)) == TH_SYN) {
/*
* A retransmitted SYN packet. We do not reset
* the timeout here to ipf_tcptimeout because a
* connection connect timeout does not renew
* after every packet that is sent. We need to
* set rval so as to indicate the packet has
* passed the check for its flags being valid
* in the TCP FSM. Setting rval to 2 has the
* result of not resetting the timeout.
*/
rval = 2;
} else if ((tcpflags & (TH_SYN|TH_FIN|TH_ACK)) ==
TH_ACK) {
/*
* we see an A from 'dir' which is in SYN_SENT
* state: 'dir' sent an A in response to an SA
* which it received, SYN_SENT -> ESTABLISHED
*/
nstate = IPF_TCPS_ESTABLISHED;
rval = 1;
} else if (tcpflags & TH_FIN) {
/*
* we see an F from 'dir' which is in SYN_SENT
* state and wants to close its side of the
* connection; SYN_SENT -> FIN_WAIT_1
*/
nstate = IPF_TCPS_FIN_WAIT_1;
rval = 1;
} else if ((tcpflags & TH_OPENING) == TH_OPENING) {
/*
* we see an SA from 'dir' which is already in
* SYN_SENT state, this means we have a
* simultaneous open; SYN_SENT -> SYN_RECEIVED
*/
nstate = IPF_TCPS_SYN_RECEIVED;
rval = 1;
}
break;
case IPF_TCPS_SYN_RECEIVED: /* 2 */
if ((tcpflags & (TH_SYN|TH_FIN|TH_ACK)) == TH_ACK) {
/*
* we see an A from 'dir' which was in
* SYN_RECEIVED state so it must now be in
* established state, SYN_RECEIVED ->
* ESTABLISHED
*/
nstate = IPF_TCPS_ESTABLISHED;
rval = 1;
} else if ((tcpflags & ~(TH_ECN|TH_CWR)) ==
TH_OPENING) {
/*
* We see an SA from 'dir' which is already in
* SYN_RECEIVED state.
*/
rval = 2;
} else if (tcpflags & TH_FIN) {
/*
* we see an F from 'dir' which is in
* SYN_RECEIVED state and wants to close its
* side of the connection; SYN_RECEIVED ->
* FIN_WAIT_1
*/
nstate = IPF_TCPS_FIN_WAIT_1;
rval = 1;
}
break;
case IPF_TCPS_HALF_ESTAB: /* 3 */
if (tcpflags & TH_FIN) {
nstate = IPF_TCPS_FIN_WAIT_1;
rval = 1;
} else if ((tcpflags & TH_ACKMASK) == TH_ACK) {
/*
* If we've picked up a connection in mid
* flight, we could be looking at a follow on
* packet from the same direction as the one
* that created this state. Recognise it but
* do not advance the entire connection's
* state.
*/
switch (ostate)
{
case IPF_TCPS_LISTEN :
case IPF_TCPS_SYN_SENT :
case IPF_TCPS_SYN_RECEIVED :
rval = 1;
break;
case IPF_TCPS_HALF_ESTAB :
case IPF_TCPS_ESTABLISHED :
nstate = IPF_TCPS_ESTABLISHED;
rval = 1;
break;
default :
break;
}
}
break;
case IPF_TCPS_ESTABLISHED: /* 4 */
rval = 1;
if (tcpflags & TH_FIN) {
/*
* 'dir' closed its side of the connection;
* this gives us a half-closed connection;
* ESTABLISHED -> FIN_WAIT_1
*/
if (ostate == IPF_TCPS_FIN_WAIT_1) {
nstate = IPF_TCPS_CLOSING;
} else {
nstate = IPF_TCPS_FIN_WAIT_1;
}
} else if (tcpflags & TH_ACK) {
/*
* an ACK, should we exclude other flags here?
*/
if (ostate == IPF_TCPS_FIN_WAIT_1) {
/*
* We know the other side did an active
* close, so we are ACKing the recvd
* FIN packet (does the window matching
* code guarantee this?) and go into
* CLOSE_WAIT state; this gives us a
* half-closed connection
*/
nstate = IPF_TCPS_CLOSE_WAIT;
} else if (ostate < IPF_TCPS_CLOSE_WAIT) {
/*
* still a fully established
* connection reset timeout
*/
nstate = IPF_TCPS_ESTABLISHED;
}
}
break;
case IPF_TCPS_CLOSE_WAIT: /* 5 */
rval = 1;
if (tcpflags & TH_FIN) {
/*
* application closed and 'dir' sent a FIN,
* we're now going into LAST_ACK state
*/
nstate = IPF_TCPS_LAST_ACK;
} else {
/*
* we remain in CLOSE_WAIT because the other
* side has closed already and we did not
* close our side yet; reset timeout
*/
nstate = IPF_TCPS_CLOSE_WAIT;
}
break;
case IPF_TCPS_FIN_WAIT_1: /* 6 */
rval = 1;
if ((tcpflags & TH_ACK) &&
ostate > IPF_TCPS_CLOSE_WAIT) {
/*
* if the other side is not active anymore
* it has sent us a FIN packet that we are
* ack'ing now with an ACK; this means both
* sides have now closed the connection and
* we go into TIME_WAIT
*/
/*
* XXX: how do we know we really are ACKing
* the FIN packet here? does the window code
* guarantee that?
*/
nstate = IPF_TCPS_LAST_ACK;
} else {
/*
* we closed our side of the connection
* already but the other side is still active
* (ESTABLISHED/CLOSE_WAIT); continue with
* this half-closed connection
*/
nstate = IPF_TCPS_FIN_WAIT_1;
}
break;
case IPF_TCPS_CLOSING: /* 7 */
if ((tcpflags & (TH_FIN|TH_ACK)) == TH_ACK) {
nstate = IPF_TCPS_TIME_WAIT;
}
rval = 1;
break;
case IPF_TCPS_LAST_ACK: /* 8 */
if (tcpflags & TH_ACK) {
rval = 1;
}
/*
* we cannot detect when we go out of LAST_ACK state
* to CLOSED because that is based on the reception
* of ACK packets; ipfilter can only detect that a
* packet has been sent by a host
*/
break;
case IPF_TCPS_FIN_WAIT_2: /* 9 */
/* NOT USED */
break;
case IPF_TCPS_TIME_WAIT: /* 10 */
/* we're in 2MSL timeout now */
if (ostate == IPF_TCPS_LAST_ACK) {
nstate = IPF_TCPS_CLOSED;
rval = 1;
} else {
rval = 2;
}
break;
case IPF_TCPS_CLOSED: /* 11 */
rval = 2;
break;
default :
#if defined(_KERNEL)
# if SOLARIS
cmn_err(CE_NOTE,
"tcp %lx flags %x si %lx nstate %d ostate %d\n",
(u_long)tcp, tcpflags, (u_long)tqe,
nstate, ostate);
# else
printf("tcp %lx flags %x si %lx nstate %d ostate %d\n",
(u_long)tcp, tcpflags, (u_long)tqe,
nstate, ostate);
# endif
#else
abort();
#endif
break;
}
}
/*
* If rval == 2 then do not update the queue position, but treat the
* packet as being ok.
*/
if (rval == 2)
rval = 1;
else if (rval == 1) {
if (ok)
tqe->tqe_state[dir] = nstate;
if ((tqe->tqe_flags & TQE_RULEBASED) == 0)
ipf_movequeue(tqe, tqe->tqe_ifq, tqtab + nstate);
}
return rval;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_log */
/* Returns: Nil */
/* Parameters: is(I) - pointer to state structure */
/* type(I) - type of log entry to create */
/* */
/* Creates a state table log entry using the state structure and type info. */
/* passed in. Log packet/byte counts, source/destination address and other */
/* protocol specific information. */
/* ------------------------------------------------------------------------ */
void
ipf_state_log(is, type)
struct ipstate *is;
u_int type;
{
#ifdef IPFILTER_LOG
struct ipslog ipsl;
size_t sizes[1];
void *items[1];
int types[1];
/*
* Copy information out of the ipstate_t structure and into the
* structure used for logging.
*/
ipsl.isl_type = type;
ipsl.isl_pkts[0] = is->is_pkts[0] + is->is_icmppkts[0];
ipsl.isl_bytes[0] = is->is_bytes[0];
ipsl.isl_pkts[1] = is->is_pkts[1] + is->is_icmppkts[1];
ipsl.isl_bytes[1] = is->is_bytes[1];
ipsl.isl_pkts[2] = is->is_pkts[2] + is->is_icmppkts[2];
ipsl.isl_bytes[2] = is->is_bytes[2];
ipsl.isl_pkts[3] = is->is_pkts[3] + is->is_icmppkts[3];
ipsl.isl_bytes[3] = is->is_bytes[3];
ipsl.isl_src = is->is_src;
ipsl.isl_dst = is->is_dst;
ipsl.isl_p = is->is_p;
ipsl.isl_v = is->is_v;
ipsl.isl_flags = is->is_flags;
ipsl.isl_tag = is->is_tag;
ipsl.isl_rulen = is->is_rulen;
(void) strncpy(ipsl.isl_group, is->is_group, FR_GROUPLEN);
if (ipsl.isl_p == IPPROTO_TCP || ipsl.isl_p == IPPROTO_UDP) {
ipsl.isl_sport = is->is_sport;
ipsl.isl_dport = is->is_dport;
if (ipsl.isl_p == IPPROTO_TCP) {
ipsl.isl_state[0] = is->is_state[0];
ipsl.isl_state[1] = is->is_state[1];
}
} else if (ipsl.isl_p == IPPROTO_ICMP) {
ipsl.isl_itype = is->is_icmp.ici_type;
} else if (ipsl.isl_p == IPPROTO_ICMPV6) {
ipsl.isl_itype = is->is_icmp.ici_type;
} else {
ipsl.isl_ps.isl_filler[0] = 0;
ipsl.isl_ps.isl_filler[1] = 0;
}
items[0] = &ipsl;
sizes[0] = sizeof(ipsl);
types[0] = 0;
if (ipf_log_items(IPL_LOGSTATE, NULL, items, sizes, types, 1)) {
ATOMIC_INCL(ipf_state_stats.iss_log_ok);
} else {
ATOMIC_INCL(ipf_state_stats.iss_log_fail);
}
#endif
}
#ifdef USE_INET6
/* ------------------------------------------------------------------------ */
/* Function: ipf_checkicmp6matchingstate */
/* Returns: ipstate_t* - NULL == no match found, */
/* else pointer to matching state entry */
/* Parameters: fin(I) - pointer to packet information */
/* Locks: NULL == no locks, else Read Lock on ipf_state */
/* */
/* If we've got an ICMPv6 error message, using the information stored in */
/* the ICMPv6 packet, look for a matching state table entry. */
/* ------------------------------------------------------------------------ */
static ipstate_t *
ipf_checkicmp6matchingstate(fin)
fr_info_t *fin;
{
struct icmp6_hdr *ic6, *oic;
ipstate_t *is, **isp;
u_short sport, dport;
i6addr_t dst, src;
u_short savelen;
icmpinfo_t *ic;
fr_info_t ofin;
tcphdr_t *tcp;
ip6_t *oip6;
u_char pr;
u_int hv;
int type;
/*
* Does it at least have the return (basic) IP header ?
* Is it an actual recognised ICMP error type?
* Only a basic IP header (no options) should be with
* an ICMP error header.
*/
if ((fin->fin_v != 6) || (fin->fin_plen < ICMP6ERR_MINPKTLEN) ||
!(fin->fin_flx & FI_ICMPERR)) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_bad);
return NULL;
}
ic6 = fin->fin_dp;
type = ic6->icmp6_type;
oip6 = (ip6_t *)((char *)ic6 + ICMPERR_ICMPHLEN);
if (fin->fin_plen < sizeof(*oip6)) {
ATOMIC_INCL(ipf_state_stats.iss_icmp_short);
return NULL;
}
bcopy((char *)fin, (char *)&ofin, sizeof(*fin));
ofin.fin_v = 6;
ofin.fin_ifp = fin->fin_ifp;
ofin.fin_out = !fin->fin_out;
ofin.fin_m = NULL; /* if dereferenced, panic XXX */
ofin.fin_mp = NULL; /* if dereferenced, panic XXX */
/*
* We make a fin entry to be able to feed it to
* matchsrcdst. Note that not all fields are necessary
* but this is the cleanest way. Note further we fill
* in fin_mp such that if someone uses it we'll get
* a kernel panic. ipf_matchsrcdst does not use this.
*
* watch out here, as ip is in host order and oip6 in network
* order. Any change we make must be undone afterwards.
*/
savelen = oip6->ip6_plen;
oip6->ip6_plen = fin->fin_dlen - ICMPERR_ICMPHLEN;
ofin.fin_flx = FI_NOCKSUM;
ofin.fin_ip = (ip_t *)oip6;
(void) ipf_makefrip(sizeof(*oip6), (ip_t *)oip6, &ofin);
ofin.fin_flx &= ~(FI_BAD|FI_SHORT);
oip6->ip6_plen = savelen;
pr = ofin.fin_p;
/*
* an ICMP error can never generate an ICMP error in response.
*/
if (ofin.fin_flx & FI_ICMPERR) {
ATOMIC_INCL(ipf_state_stats.iss_icmp6_icmperr);
return NULL;
}
if (oip6->ip6_nxt == IPPROTO_ICMPV6) {
oic = ofin.fin_dp;
/*
* an ICMP error can only be generated as a result of an
* ICMP query, not as the response on an ICMP error
*
* XXX theoretically ICMP_ECHOREP and the other reply's are
* ICMP query's as well, but adding them here seems strange XXX
*/
if (!(oic->icmp6_type & ICMP6_INFOMSG_MASK)) {
ATOMIC_INCL(ipf_state_stats.iss_icmp6_notinfo);
return NULL;
}
/*
* perform a lookup of the ICMP packet in the state table
*/
hv = (pr = oip6->ip6_nxt);
src.in6 = oip6->ip6_src;
hv += src.in4.s_addr;
dst.in6 = oip6->ip6_dst;
hv += dst.in4.s_addr;
hv += oic->icmp6_id;
hv += oic->icmp6_seq;
hv = DOUBLE_HASH(hv);
READ_ENTER(&ipf_state);
for (isp = &ipf_state_table[hv]; ((is = *isp) != NULL); ) {
ic = &is->is_icmp;
isp = &is->is_hnext;
if ((is->is_p == pr) &&
!(is->is_pass & FR_NOICMPERR) &&
(oic->icmp6_id == ic->ici_id) &&
(oic->icmp6_seq == ic->ici_seq) &&
(is = ipf_matchsrcdst(&ofin, is, &src,
&dst, NULL, FI_ICMPCMP))) {
/*
* in the state table ICMP query's are stored
* with the type of the corresponding ICMP
* response. Correct here
*/
if (((ic->ici_type == ICMP6_ECHO_REPLY) &&
(oic->icmp6_type == ICMP6_ECHO_REQUEST)) ||
(ic->ici_type - 1 == oic->icmp6_type )) {
if (!ipf_allowstateicmp(fin, is, &src))
return is;
}
}
}
RWLOCK_EXIT(&ipf_state);
ATOMIC_INCL(ipf_state_stats.iss_icmp6_miss);
return NULL;
}
hv = (pr = oip6->ip6_nxt);
src.in6 = oip6->ip6_src;
hv += src.i6[0];
hv += src.i6[1];
hv += src.i6[2];
hv += src.i6[3];
dst.in6 = oip6->ip6_dst;
hv += dst.i6[0];
hv += dst.i6[1];
hv += dst.i6[2];
hv += dst.i6[3];
tcp = NULL;
switch (oip6->ip6_nxt)
{
case IPPROTO_TCP :
case IPPROTO_UDP :
tcp = (tcphdr_t *)(oip6 + 1);
dport = tcp->th_dport;
sport = tcp->th_sport;
hv += dport;
hv += sport;
break;
case IPPROTO_ICMPV6 :
oic = (struct icmp6_hdr *)(oip6 + 1);
hv += oic->icmp6_id;
hv += oic->icmp6_seq;
break;
default :
break;
}
hv = DOUBLE_HASH(hv);
READ_ENTER(&ipf_state);
for (isp = &ipf_state_table[hv]; ((is = *isp) != NULL); ) {
isp = &is->is_hnext;
/*
* Only allow this icmp though if the
* encapsulated packet was allowed through the
* other way around. Note that the minimal amount
* of info present does not allow for checking against
* tcp internals such as seq and ack numbers.
*/
if ((is->is_p != pr) || (is->is_v != 6) ||
(is->is_pass & FR_NOICMPERR))
continue;
is = ipf_matchsrcdst(&ofin, is, &src, &dst, tcp, FI_ICMPCMP);
if ((is != NULL) && (ipf_allowstateicmp(fin, is, &src) == 0))
return is;
}
RWLOCK_EXIT(&ipf_state);
ATOMIC_INCL(ipf_state_stats.iss_icmp_miss);
return NULL;
}
#endif
/* ------------------------------------------------------------------------ */
/* Function: ipf_sttab_init */
/* Returns: Nil */
/* Parameters: tqp(I) - pointer to an array of timeout queues for TCP */
/* */
/* Initialise the array of timeout queues for TCP. */
/* ------------------------------------------------------------------------ */
void
ipf_sttab_init(tqp)
ipftq_t *tqp;
{
int i;
for (i = IPF_TCP_NSTATES - 1; i >= 0; i--) {
IPFTQ_INIT(&tqp[i], 0, "ipftq tcp tab");
tqp[i].ifq_next = tqp + i + 1;
}
tqp[IPF_TCP_NSTATES - 1].ifq_next = NULL;
tqp[IPF_TCPS_CLOSED].ifq_ttl = ipf_tcpclosed;
tqp[IPF_TCPS_LISTEN].ifq_ttl = ipf_tcptimeout;
tqp[IPF_TCPS_SYN_SENT].ifq_ttl = ipf_tcpsynsent;
tqp[IPF_TCPS_SYN_RECEIVED].ifq_ttl = ipf_tcpsynrecv;
tqp[IPF_TCPS_ESTABLISHED].ifq_ttl = ipf_tcpidletimeout;
tqp[IPF_TCPS_CLOSE_WAIT].ifq_ttl = ipf_tcphalfclosed;
tqp[IPF_TCPS_FIN_WAIT_1].ifq_ttl = ipf_tcphalfclosed;
tqp[IPF_TCPS_CLOSING].ifq_ttl = ipf_tcptimeout;
tqp[IPF_TCPS_LAST_ACK].ifq_ttl = ipf_tcplastack;
tqp[IPF_TCPS_FIN_WAIT_2].ifq_ttl = ipf_tcpclosewait;
tqp[IPF_TCPS_TIME_WAIT].ifq_ttl = ipf_tcptimewait;
tqp[IPF_TCPS_HALF_ESTAB].ifq_ttl = ipf_tcptimeout;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_sttab_destroy */
/* Returns: Nil */
/* Parameters: tqp(I) - pointer to an array of timeout queues for TCP */
/* */
/* Do whatever is necessary to "destroy" each of the entries in the array */
/* of timeout queues for TCP. */
/* ------------------------------------------------------------------------ */
void
ipf_sttab_destroy(tqp)
ipftq_t *tqp;
{
int i;
for (i = IPF_TCP_NSTATES - 1; i >= 0; i--)
MUTEX_DESTROY(&tqp[i].ifq_lock);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_deref */
/* Returns: Nil */
/* Parameters: isp(I) - pointer to pointer to state table entry */
/* */
/* Decrement the reference counter for this state table entry and free it */
/* if there are no more things using it. */
/* */
/* This function is only called when cleaning up after increasing is_ref by */
/* one earlier in the 'code path' so if is_ref is 1 when entering, we do */
/* have an orphan, otherwise not. However there is a possible race between */
/* the entry being deleted via flushing with an ioctl call (that calls the */
/* delete function directly) and the tail end of packet processing so we */
/* need to grab is_lock before doing the check to synchronise the two code */
/* paths. */
/* */
/* When operating in userland (ipftest), we have no timers to clear a state */
/* entry. Therefore, we make a few simple tests before deleting an entry */
/* outright. We compare states on each side looking for a combination of */
/* TIME_WAIT (should really be FIN_WAIT_2?) and LAST_ACK. Then we factor */
/* in packet direction with the interface list to make sure we don't */
/* prematurely delete an entry on a final inbound packet that's we're also */
/* supposed to route elsewhere. */
/* */
/* Internal parameters: */
/* state[0] = state of source (host that initiated connection) */
/* state[1] = state of dest (host that accepted the connection) */
/* */
/* dir == 0 : a packet from source to dest */
/* dir == 1 : a packet from dest to source */
/* ------------------------------------------------------------------------ */
void
ipf_state_deref(isp)
ipstate_t **isp;
{
ipstate_t *is = *isp;
is = *isp;
*isp = NULL;
MUTEX_ENTER(&is->is_lock);
if (is->is_ref > 1) {
is->is_ref--;
MUTEX_EXIT(&is->is_lock);
#ifndef _KERNEL
if ((is->is_sti.tqe_state[0] > IPF_TCPS_ESTABLISHED) ||
(is->is_sti.tqe_state[1] > IPF_TCPS_ESTABLISHED)) {
ipf_state_del(is, ISL_EXPIRE);
}
#endif
return;
}
MUTEX_EXIT(&is->is_lock);
WRITE_ENTER(&ipf_state);
ipf_state_del(is, ISL_ORPHAN);
RWLOCK_EXIT(&ipf_state);
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_setqueue */
/* Returns: Nil */
/* Parameters: is(I) - pointer to state structure */
/* rev(I) - forward(0) or reverse(1) direction */
/* Locks: ipf_state (read or write) */
/* */
/* Put the state entry on its default queue entry, using rev as a helped in */
/* determining which queue it should be placed on. */
/* ------------------------------------------------------------------------ */
void
ipf_state_setqueue(is, rev)
ipstate_t *is;
int rev;
{
ipftq_t *oifq, *nifq;
if ((is->is_sti.tqe_flags & TQE_RULEBASED) != 0)
nifq = is->is_tqehead[rev];
else
nifq = NULL;
if (nifq == NULL) {
switch (is->is_p)
{
#ifdef USE_INET6
case IPPROTO_ICMPV6 :
if (rev == 1)
nifq = &ipf_state_icmpacktq;
else
nifq = &ipf_state_icmptq;
break;
#endif
case IPPROTO_ICMP :
if (rev == 1)
nifq = &ipf_state_icmpacktq;
else
nifq = &ipf_state_icmptq;
break;
case IPPROTO_TCP :
nifq = ipf_state_tcptq + is->is_state[rev];
break;
case IPPROTO_UDP :
if (rev == 1)
nifq = &ipf_state_udpacktq;
else
nifq = &ipf_state_udptq;
break;
default :
nifq = &ipf_state_iptq;
break;
}
}
oifq = is->is_sti.tqe_ifq;
/*
* If it's currently on a timeout queue, move it from one queue to
* another, else put it on the end of the newly determined queue.
*/
if (oifq != NULL)
ipf_movequeue(&is->is_sti, oifq, nifq);
else
ipf_queueappend(&is->is_sti, nifq, is);
return;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_stateiter */
/* Returns: int - 0 == success, else error */
/* Parameters: token(I) - pointer to ipftoken structure */
/* itp(I) - pointer to ipfgeniter structure */
/* */
/* This function handles the SIOCGENITER ioctl for the state tables and */
/* walks through the list of entries in the state table list (ipf_state_list.) */
/* ------------------------------------------------------------------------ */
static int
ipf_stateiter(token, itp)
ipftoken_t *token;
ipfgeniter_t *itp;
{
ipstate_t *is, *next, zero;
int error, count;
char *dst;
if (itp->igi_data == NULL) {
ipf_interror = 100026;
return EFAULT;
}
if (itp->igi_nitems < 1) {
ipf_interror = 100027;
return ENOSPC;
}
if (itp->igi_type != IPFGENITER_STATE) {
ipf_interror = 100028;
return EINVAL;
}
is = token->ipt_data;
if (is == (void *)-1) {
ipf_interror = 100029;
return ESRCH;
}
error = 0;
dst = itp->igi_data;
READ_ENTER(&ipf_state);
if (is == NULL) {
next = ipf_state_list;
} else {
next = is->is_next;
}
count = itp->igi_nitems;
for (;;) {
if (next != NULL) {
/*
* If we find a state entry to use, bump its
* reference count so that it can be used for
* is_next when we come back.
*/
if (count == 1) {
MUTEX_ENTER(&next->is_lock);
next->is_ref++;
MUTEX_EXIT(&next->is_lock);
token->ipt_data = next;
}
} else {
bzero(&zero, sizeof(zero));
next = &zero;
count = 1;
token->ipt_data = NULL;
}
RWLOCK_EXIT(&ipf_state);
/*
* This should arguably be via ipf_outobj() so that the state
* structure can (if required) be massaged going out.
*/
error = COPYOUT(next, dst, sizeof(*next));
if (error != 0) {
ipf_interror = 100030;
error = EFAULT;
}
if ((count == 1) || (error != 0))
break;
dst += sizeof(*next);
count--;
READ_ENTER(&ipf_state);
next = next->is_next;
}
if (is != NULL) {
ipf_state_deref(&is);
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_stgettable */
/* Returns: int - 0 = success, else error */
/* Parameters: data(I) - pointer to ioctl data */
/* */
/* This function handles ioctl requests for tables of state information. */
/* At present the only table it deals with is the hash bucket statistics. */
/* ------------------------------------------------------------------------ */
static int
ipf_stgettable(data)
char *data;
{
ipftable_t table;
int error;
error = ipf_inobj(data, &table, IPFOBJ_GTABLE);
if (error != 0)
return error;
if (table.ita_type != IPFTABLE_BUCKETS) {
ipf_interror = 100031;
return EINVAL;
}
error = COPYOUT(ipf_state_stats.iss_bucketlen, table.ita_table,
ipf_state_size * sizeof(u_int));
if (error != 0) {
ipf_interror = 100032;
error = EFAULT;
}
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_setpending */
/* Returns: Nil */
/* Parameters: is(I) - pointer to state structure */
/* Locks: ipf_state (read or write) */
/* */
/* Put the state entry on to the pending queue - this queue has a very */
/* short lifetime where items are put that can't be deleted straight away */
/* because of locking issues but we want to delete them ASAP, anyway. */
/* ------------------------------------------------------------------------ */
void
ipf_state_setpending(is)
ipstate_t *is;
{
ipftq_t *oifq;
oifq = is->is_sti.tqe_ifq;
if (oifq != NULL)
ipf_movequeue(&is->is_sti, oifq, &ipf_state_pending);
else
ipf_queueappend(&is->is_sti, &ipf_state_pending, is);
if (is->is_me != NULL) {
*is->is_me = NULL;
is->is_me = NULL;
}
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_matchflush */
/* Returns: Nil */
/* Parameters: is(I) - pointer to state structure */
/* Locks: ipf_state (read or write) */
/* */
/* Flush all entries from the list of state entries that match the */
/* properties in the array loaded. */
/* ------------------------------------------------------------------------ */
int
ipf_state_matchflush(data)
caddr_t data;
{
int *array, flushed, error;
ipstate_t *state, *statenext;
ipfobj_t obj;
error = ipf_matcharray_load(data, &obj, &array);
if (error != 0)
return error;
flushed = 0;
for (state = ipf_state_list; state != NULL; state = statenext) {
statenext = state->is_next;
if (ipf_state_matcharray(state, array) == 0) {
ipf_state_del(state, ISL_FLUSH);
flushed++;
}
}
obj.ipfo_retval = flushed;
error = BCOPYOUT(&obj, data, sizeof(obj));
KFREES(array, array[0] * sizeof(*array));
return error;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_matcharray */
/* Returns: int - 0 = no match, 1 = match */
/* Parameters: is(I) - pointer to state structure */
/* Locks: ipf_state (read or write) */
/* */
/* Compare a state entry with the match array passed in and return a value */
/* to indicate whether or not the matching was successful. */
/* ------------------------------------------------------------------------ */
static int
ipf_state_matcharray(state, array)
ipstate_t *state;
int *array;
{
int i, n, *x, e, p;
e = 0;
n = array[0];
x = array + 1;
for (; n > 0; x += 3 + x[2]) {
if (x[0] == IPF_EXP_END)
break;
n -= x[2] + 3;
if (n < 0)
break;
e = 0;
/*
* If we need to match the protocol and that doesn't match,
* don't even both with the instruction array.
*/
p = (x[0] >> 16) & 0xff;
if (p != 0 && p != state->is_p)
break;
switch (x[0])
{
case IPF_EXP_IP_PR :
for (i = 0; !e && i < x[2]; i++) {
e |= (state->is_p == x[i + 3]);
}
break;
case IPF_EXP_IP_SRCADDR :
if (state->is_v != 4)
break;
for (i = 0; !e && i < x[2]; i++) {
e |= ((state->is_saddr & x[i + 4]) ==
x[i + 3]);
}
break;
case IPF_EXP_IP_DSTADDR :
if (state->is_v != 4)
break;
for (i = 0; !e && i < x[2]; i++) {
e |= ((state->is_daddr & x[i + 4]) ==
x[i + 3]);
}
break;
case IPF_EXP_IP_ADDR :
if (state->is_v != 4)
break;
for (i = 0; !e && i < x[2]; i++) {
e |= ((state->is_saddr & x[i + 4]) ==
x[i + 3]) ||
((state->is_daddr & x[i + 4]) ==
x[i + 3]);
}
break;
#ifdef USE_INET6
case IPF_EXP_IP6_SRCADDR :
if (state->is_v != 6)
break;
for (i = 0; !e && i < x[3]; i++) {
e |= IP6_MASKEQ(&state->is_src.in6, x + i + 7,
x + i + 3);
}
break;
case IPF_EXP_IP6_DSTADDR :
if (state->is_v != 6)
break;
for (i = 0; !e && i < x[3]; i++) {
e |= IP6_MASKEQ(&state->is_dst.in6, x + i + 7,
x + i + 3);
}
break;
case IPF_EXP_IP6_ADDR :
if (state->is_v != 6)
break;
for (i = 0; !e && i < x[3]; i++) {
e |= IP6_MASKEQ(&state->is_src.in6, x + i + 7,
x + i + 3) ||
IP6_MASKEQ(&state->is_dst.in6, x + i + 7,
x + i + 3);
}
break;
#endif
case IPF_EXP_UDP_PORT :
case IPF_EXP_TCP_PORT :
for (i = 0; !e && i < x[2]; i++) {
e |= (state->is_sport == x[i + 3]) ||
(state->is_dport == x[i + 3]);
}
break;
case IPF_EXP_UDP_SPORT :
case IPF_EXP_TCP_SPORT :
for (i = 0; !e && i < x[2]; i++) {
e |= (state->is_sport == x[i + 3]);
}
break;
case IPF_EXP_UDP_DPORT :
case IPF_EXP_TCP_DPORT :
for (i = 0; !e && i < x[2]; i++) {
e |= (state->is_dport == x[i + 3]);
}
break;
case IPF_EXP_TCP_STATE :
for (i = 0; !e && i < x[2]; i++) {
e |= (state->is_state[0] == x[i + 3]) ||
(state->is_state[1] == x[i + 3]);
}
break;
case IPF_EXP_IDLE_GT :
e |= (ipf_ticks - state->is_touched > x[3]);
break;
}
/*
* Factor in doing a negative match.
*/
e ^= x[1];
if (!e)
break;
}
return e;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_settimeout */
/* Returns: int 0 = success, else failure */
/* Parameters: t(I) - pointer to tuneable being changed */
/* p(I) - pointer to the new value */
/* */
/* Sets a timeout value for one of the many timeout queues. We find the */
/* correct queue using a somewhat manual process of comparing the timeout */
/* names for each specific value available and calling ipf_apply_timeout on */
/* that queue so that all of the items on it are updated accordingly. */
/* ------------------------------------------------------------------------ */
int
ipf_state_settimeout(t, p)
ipftuneable_t *t;
ipftuneval_t *p;
{
/*
* In case there is nothing to do...
*/
if (*t->ipft_pint == p->ipftu_int)
return 0;
if (!strncmp(t->ipft_name, "tcp_", 4))
return ipf_settimeout_tcp(t, p, ipf_state_tcptq);
if (!strcmp(t->ipft_name, "udp_timeout")) {
ipf_apply_timeout(&ipf_state_udptq, p->ipftu_int);
} else if (!strcmp(t->ipft_name, "udp_ack_timeout")) {
ipf_apply_timeout(&ipf_state_udpacktq, p->ipftu_int);
} else if (!strcmp(t->ipft_name, "icmp_timeout")) {
ipf_apply_timeout(&ipf_state_icmptq, p->ipftu_int);
} else if (!strcmp(t->ipft_name, "icmp_ack_timeout")) {
ipf_apply_timeout(&ipf_state_icmpacktq, p->ipftu_int);
} else if (!strcmp(t->ipft_name, "ip_timeout")) {
ipf_apply_timeout(&ipf_state_iptq, p->ipftu_int);
} else {
ipf_interror = 100034;
return ESRCH;
}
/*
* Update the tuneable being set.
*/
*t->ipft_pint = p->ipftu_int;
return 0;
}
/* ------------------------------------------------------------------------ */
/* Function: ipf_state_rehash */
/* Returns: int 0 = success, else failure */
/* Parameters: t(I) - pointer to tuneable being changed */
/* p(I) - pointer to the new value */
/* */
/* To change the size of the state hash table at runtime, a new table has */
/* to be allocated and then all of the existing entries put in it, bumping */
/* up the bucketlength for it as we go along. */
/* ------------------------------------------------------------------------ */
int
ipf_state_rehash(t, p)
ipftuneable_t *t;
ipftuneval_t *p;
{
ipstate_t **newtab, *is;
u_int *bucketlens;
u_int maxbucket;
u_int newsize;
u_int hv;
int i;
newsize = p->ipftu_int;
/*
* In case there is nothing to do...
*/
if (newsize == ipf_state_size)
return 0;
KMALLOCS(newtab, ipstate_t **, newsize * sizeof(ipstate_t *));
if (newtab == NULL) {
ipf_interror = 100035;
return ENOMEM;
}
KMALLOCS(bucketlens, u_int *, newsize * sizeof(u_int));
if (bucketlens == NULL) {
KFREES(newtab, newsize * sizeof(*ipf_state_table));
ipf_interror = 100036;
return ENOMEM;
}
for (maxbucket = 0, i = newsize; i > 0; i >>= 1)
maxbucket++;
maxbucket *= 2;
bzero((char *)newtab, newsize * sizeof(ipstate_t *));
bzero((char *)bucketlens, newsize * sizeof(u_int));
WRITE_ENTER(&ipf_state);
if (ipf_state_table != NULL) {
KFREES(ipf_state_table,
ipf_state_size * sizeof(*ipf_state_table));
}
ipf_state_table = newtab;
if (ipf_state_stats.iss_bucketlen != NULL) {
KFREES(ipf_state_stats.iss_bucketlen,
ipf_state_size * sizeof(u_int));
}
ipf_state_stats.iss_bucketlen = bucketlens;
ipf_state_maxbucket = maxbucket;
ipf_state_size = newsize;
/*
* Walk through the entire list of state table entries and put them
* in the new state table, somewhere. Because we have a new table,
* we need to restart the counter of how many chains are in use.
*/
ipf_state_stats.iss_inuse = 0;
for (is = ipf_state_list; is != NULL; is = is->is_next) {
is->is_hnext = NULL;
is->is_phnext = NULL;
hv = is->is_hv % ipf_state_size;
if (ipf_state_table[hv] != NULL)
ipf_state_table[hv]->is_phnext = &is->is_hnext;
else
ipf_state_stats.iss_inuse++;
is->is_phnext = ipf_state_table + hv;
is->is_hnext = ipf_state_table[hv];
ipf_state_table[hv] = is;
ipf_state_stats.iss_bucketlen[hv]++;
}
RWLOCK_EXIT(&ipf_state);
return 0;
}